Speech-driven querying is becoming popular in new device environments such as smartphones, tablets, and even conversational assistants. However, such querying is largely restricted to natural language. Typed SQL remains the gold standard for sophisticated structured querying although it is painful in many environments, which restricts when and how users consume their data. In this work, we propose to bridge this gap by designing a speech-driven querying system and interface for structured data we call SpeakQL. We support a practically useful subset of regular SQL and allow users to query in any domain with novel touch/speech based human-in-the-loop correction mechanisms. Automatic speech recognition (ASR) introduces myriad forms of errors in transcriptions, presenting us with a technical challenge. We exploit our observations of SQL’s properties, its grammar, and the queried database to build a modular architecture. We present the first dataset of spoken SQL queries and a generic approach to generate them for any arbitrary schema. Our experiments show that SpeakQL can automatically correct a large fraction of errors in ASR transcriptions. User studies show that SpeakQL can help users specify SQL queries significantly faster with a speedup of average 2.7x and up to 6.7x compared to typing on a tablet device. SpeakQL also reduces the user effort in specifying queries by a factor of average 10x and up to 60x compared to raw typing effort.