
Datalog Unchained
Victor Vianu

UC San Diego & Inria
vianu@ucsd.edu

ABSTRACT
This is the companion paper of a talk in the Gems of PODS se-
ries, that reviews the development, starting at PODS 1988, of a
family of Datalog-like languages with procedural, forward chain-
ing semantics, providing an alternative to the classical declarative,
model-theoretic semantics. These languages also provide a unified
formalism that can express important classes of queries including
fixpoint, while, and all computable queries. They can also incor-
porate in a natural fashion updates and nondeterminism. Datalog
variants with forward chaining semantics have been adopted in a
variety of settings, including active databases, production systems,
distributed data exchange, and data-driven reactive systems.

ACM Reference Format:
Victor Vianu. 2021. Datalog Unchained. In Proceedings of the 40th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3452021.3458815

1 INTRODUCTION
Datalog emerged in the 80’s as a simple, elegant formalism provid-
ing the basis for deductive databases and the study of recursion in
database languages. Datalog was introduced as a specialization of
logic programming to databases (a discussion of the history can be
found in [95, 96]). Datalog¬, its extension with negation, was also
studied through the lens of logic programming and non-monotonic
reasoning, by which programs are viewed as specifications of con-
sistent states of the world, best understood via model-theoretic
semantics. This approach has led, most prominently, to stratified
Datalog¬ [28, 50, 61, 92]. While stratified semantics provides a very
natural interpretation for negation, it is limited to programs with-
out recursion through negation. The quest to provide semantics to
all Datalog¬ programs culminated with the elegant well-founded
semantics [63]. However, its conceptual complexity, involving 3-
valued models (or equivalently, alternating fixpoints), has precluded
its widespread adoption in practice.

At PODS 1988, two articles [5, 87] independently suggested an
alternative approach, aptly captured by the title of [87]: “Why not
negation by fixpoint?”. Both articles proposed to depart from the
declarative approach and adopt a procedural semantics for Datalog¬
based on forward chaining of rules, called inflationary fixpoint
semantics. As shown in [5], Datalog¬ with inflationary semantics
combines simplicity with expressiveness: it captures precisely the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8381-3/21/06.
https://doi.org/10.1145/3452021.3458815

robust class of fixpoint queries, previously defined by extensions of
first-order logic with a fixpoint operator.

The two PODS 1988 articles initiated a line of research [3, 6, 8,
14, 15, 104, 116] that extended the forward chaining approach to an
entire family of Datalog-like languages, providing an alternative
paradigm for database queries, with natural counterparts to classical
query languages including the fixpoint andwhile queries, and all the
way to computable queries. The forward chaining approach turned
out to also be suitable for studying nondeterministic languages,
yielding an appealing unifying formalism. The present paper tells
the story of this development.

After a brief review of classical query languages, we turn to
Datalog and its extensions. We begin with an informal overview of
Datalog and Datalog¬ with stratified and well-founded semantics.
We then present the procedural, forward chaining semantics of
Datalog¬. One of the nicest results in regard to expressive power
is the convergence of the procedural and declarative semantics to
the fixpoint queries. We also present a further extension denoted
Datalog¬¬ that allows for explicit retraction of facts and expresses
the while queries. Finally, we discuss Datalog¬new , a variant of Dat-
alog that allows for the invention of new values in heads of rules,
and expresses all computable queries. Value invention also arises in
the object-oriented context, where object creation is a very useful
and common feature [12].

Deterministic languages, including rule-based languages, have
well-known limitations of expressive power. For example, there
is no known language that expresses precisely the ptime queries
(e.g., see [79]). This limitation is overcome in the presence of an
order. For example, Datalog¬ with inflationary or well-founded
semantics expresses on ordered databases exactly the queries com-
putable in polynomial time (and so do the weaker semi-positive and
stratified Datalog¬). Another approach, intimately related to the
first, trades off determinism for expressiveness. Indeed, as shown
in [3, 8, 14], nondeterministic variants of Datalog with negation
can express all (deterministic and nondeterministic) queries com-
putable in polynomial time. The nondeterminism arises from the
firing of rule instantiations in arbitrary order. As argued in [15],
nondeterminism can be a very useful feature, independently of
issues of expressiveness. Indeed, nondeterminism has long been
present in expert systems and production systems (e.g., see [38]).

The paper is organized as follows. Some background is provided
in Section 2. The declarative approach is briefly surveyed next.
This reviews Datalog, stratified Datalog¬, and Datalog¬ with well-
founded semantics. The procedural, forward chaining approach is
presented in Section 4, together with results on the relative expres-
sive power of the declarative and procedural languages. Nonde-
terministic languages are discussed in Section 5. A brief review of
intervening Datalog research is outlined in Section 6. To conclude,
we compare the forward chaining and declarative semantics for

This work is licensed under a Creative Commons Attribution International 4.0 License.

PODS ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8381-3/21/06.
https://doi.org/10.1145/3452021.3458815

https://doi.org/10.1145/3452021.3458815
https://doi.org/10.1145/3452021.3458815
https://creativecommons.org/licenses/by/4.0/

Datalog and discuss the adoption of the forward chaining seman-
tics in practice. The presentation relies largely on material from
[3, 5, 6, 8, 14, 15, 116]. The work surveyed in this paper is joint with
Serge Abiteboul.

2 BACKGROUND
In this section, we review some terminology relating to relational
databases. In particular, we recall some of the traditional query
languages, including extensions of first-order logic with recursion
(the fixpoint [49, 98] and while [47] queries).

We assume the existence of four infinite and pairwise disjoint
sets of symbols: the set rel of relation symbols, the set att of at-
tributes, the set dom of constants, and the set var of variables. A
relation schema is a relation symbol together with a finite set of
attributes. The set of attributes of a relation R is denoted by att(R).
A database schema is a finite set of relation schemas. A free tuple
over a relational schema R is a mapping from att(R) into dom ∪
var. A constant tuple over a relational schema R is a mapping from
att(R) into dom. An instance over a relation schema R is a finite set
of constant tuples over R. An instance I over a database schema R is
a mapping fromR such that for each R inR, I(R) is an instance over
R. The set of all instances over a schema R is denoted by inst (R).
Note that we only consider finite instances. For an instance I, we
denote by adom(I) the set of elements of dom occurring in I.

A deterministic database query is a mapping from inst(R) to
inst(answer), where R is a database schema and answer is a re-
lation schema not in R. We also discuss nondeterministic queries.
A nondeterministic query is a subset of inst(R) × inst(answer) for
some R and answer (so it is a relation rather than a mapping). Some
settings use a more general notion of database transformation al-
lowing answer schemas with several relations, some of which may
be part of the input schema (thus capturing updates).

Queries are usually required to obey three conditions: well-
typedness, computability and genericity [17, 48]. Well-typedness
requires that the results of the query be instances of a fixed relation
schema. A query is computable if there is a Turing machine that,
given any standard encoding of an input database (depedent on a to-
tal order on the domain), produces a standard encoding of the query
answer. Genericity requires that the graph of a database query be
closed under isomorphisms of the domain that fix a specified finite
set of constants depending on the query.

We will refer to complexity classes of queries. For each Turing
machine complexity class c, there is a corresponding complexity
class of (nondeterministic) queries denoted (n)db-c. In particular,
the class of nondeterministic queries which can be computed by a
(nondeterministic) Turing machine in polynomial time is denoted
(n)db-ptime. It is important to distinguish between classes ndb-c
of nondeterministic queries and classes of deterministic queries
defined using nondeterministic devices. For example, by Savitch’s
theorem, pspace = npspace, so db-pspace = db-npspace. Both are
classes of deterministic queries. However, ndb-pspace contains
nondeterministic queries, so db-pspace , ndb-pspace (and ndb-
pspace , db-npspace). Similarly, db-np is not to be confused with
ndb-ptime ! Below are some informal examples. All queries take
as input a binary relation representing edges in a graph:

• The query whose answer consists of all vertices lying on a
cycle is a query in db-ptime.
• The nondeterministic query whose answer is obtained by
deleting one of the edges ⟨a,b⟩ or ⟨b,a⟩ for every cycle
{⟨a,b⟩, ⟨b,a⟩} is a query in ndb-ptime.
• The query whose answer is a unary relation which is empty
if the graph has no Hamiltonian circuit and is the set of
vertices of the graph otherwise, is in db-np (because testing
for Hamiltonicity has complexity np).

Some query languages. Most practical query languages in re-
lational databases are based on FO, first-order logic on relations,
sometimes called relational calculus (e.g. see [2]). FO has an alge-
braization called relational algebra [51]. Relational algebra provides
the following operations on relations: πX (projection on attributes
X), σC (selection of tuples satisfying condition C consisting of
(in)equalities among attributes and/or constants), δA→B (rename
attribute A to B), Z (join of two relations), − (difference), and ∪
(union).

There are many useful queries that FO cannot express, such as
the transitive closure of a graph. Numerous extensions of FO with
recursion have been proposed. Most of them converge towards
two very robust classes of queries: fixpoint [49, 98] and while [47].
These can be defined in various ways: by adding fixpoint operators
to FO [6, 98], looping constructs to relational algebra [47, 49], or
by extensions of Datalog [6]. We briefly review here the definition
of fixpoint and while based on the eponymous languages, using
looping constructs (see [2]).

While is an imperative language that extends FO with recursion.
It provides relation variables, assignment statements of the form
R := φ where φ is an FO query, and a looping construct while φ
do where φ is an FO sentence. An equivalent variation uses loops
of the form while change do which iterate the body as long as
some change is made to some relation. Fixpoint is the same as
while except the semantics of assignment is cumulative (i.e., an
assignment denoted R + = φ adds φ to the current content of R).
This guarantees termination of fixpoint programs in polynomial
time, whereaswhile programs require polynomial space. On ordered
databases, fixpoint expresses precisely db-ptime [83, 114] and while
expresses db-pspace [114]. It was further shown in [7] that fixpoint
= while iff ptime = pspace, even without the order assumption.

3 THE DECLARATIVE APPROACH
We briefly review the classical model-theoretic semantics of Datalog
and its extension with negation. For a detailed presentation see [2],
and [96] for a more comprehensive survey.

3.1 Datalog
Much of the activity in deductive databases has focused on a toy
language called Datalog. Some of the early history of Datalog is
discussed in [95, 96]. Although limited, Datalog highlights some
aspects of recursion present in many practical languages. Most
of the optimization techniques in deductive databases have been
developed around Datalog.

As an example, following is a Datalog program that computes the
transitive closure of a graph. The graph is represented in relation

G and its transitive closure in relation T :
T (x,y) ← G(x,y)
T (x,y) ← G(x, z),T (z,y).

A Datalog program “defines” the relations occurring in heads of
rules, from the other relations. The definition is recursive, so de-
fined relations can also occur in bodies of rules. Thus, a Datalog
program is interpreted as a mapping from instances over the rela-
tions occurring in the bodies only, to instances over the relations
occurring in the heads. For example, the program above maps a
relation overG (a graph) to a relation overT (its transitive closure).

We now define the syntax of Datalog.

Definition 3.1. A (Datalog) rule is an expression of the form:

R1(u1) ← R2(u2), . . . ,Rn (un)

where n ≥ 1, R1, . . . ,Rn are relation names, and u1, . . . ,un are free
tuples (tuples of variables and constants). Each variable occurring
in u1 must occur in at least one of u2, . . . ,un . A Datalog program is
a finite set of Datalog rules. The head of the rule is the expression
R1(u1); and R2(u2), . . . ,Rn (un) forms the body.

The set of constants occurring in a Datalog program P is denoted
adom(P); and for an instance I, we use adom(P, I) as an abbreviation
for adom(P) ∪ adom(I).

Let P be a Datalog program. An extensional relation is a relation
occurring only in the body of the rules. An intensional relation
is a relation occurring in the head of some rule of P . The exten-
sional (database) schema, denoted edb(P), consists of the set of all
extensional relation names; whereas the intensional schema idb(P)
consists of all the intensional ones. The schema of P , denoted sch(P)
is the union of edb(P) and idb(P). The semantics of a Datalog pro-
gram is a mapping from database instances over edb(P) to database
instances over idb(P). Typically, one relation of idb(P) is designated
as the answer relation.

The key idea of the declarative approach of deductive databases
is to view the program as a set of first-order sentences that describes
the desired answer. To a Datalog rule

ρ : R1(u1) ← R2(u2), . . . ,Rn (un)

we can associate the logical sentence:

∀x1, . . . , xm (R1(u1) ← R2(u2) ∧ . . . ∧ Rn (un))

where x1, . . . , xm are the variables occurring in the rule; and “←”
is the standard logical implication. For a program P , the set of
sentences associated with the rules of P is denoted by ΣP . It turns
out that for eachDatalog program P , and input I, there is aminimum
model of ΣP extending I. This model is the semantics of P on input
I and is denoted by P(I).

3.2 Stratified Datalog¬

Datalog¬ extends Datalog with negations in the bodies of rules.
The syntax of Datalog¬ is a straightforward extensions of Datalog.
A Datalog¬ rule is an expression of the form

R1(u1) ← L1, ..., Ln

where: R1 is a relation, u1 a free tuple, and each Li is a literal of the
form Ri (ui) (in which case it is called positive) or ¬Ri (ui) (in which

case it is called negative). Each variable in u1 must occur in some
literal Li of the body.

A Datalog¬ program is a non-empty finite set of Datalog¬ rules.
As for Datalog programs, sch(P) denotes the database schema con-
sisting of all relations involved in the program P ; the relations
occurring in heads of rules are the idb relations of P , and the others
are the edb relations of P .

Similarly to Datalog, we can associate to a Datalog¬ program
P the set ΣP of FO sentences corresponding to the rules of P . For
Datalog, the model-theoretic semantics of a program P is given by
the uniqueminimal model of ΣP extending the input. Unfortunately,
this simple solution no longer works for Datalog¬, since uniqueness
of a minimal model extending the input is not guaranteed. Short of
this guarantee, a model-based semantics must specify an “intended”
model that is intuitive and easy to compute. This is the core problem
of “non-monotonic reasoning”: make sense in a consistent way of
the co-existence of negative and positive facts, in a way that reflects
a natural reasoning process.

The most intuitive and widely accepted declarative semantics for
Datalog¬ requires a syntactic restriction that, informally, prohibits
recursion through negation. The resulting syntactic class is called
stratified Datalog¬. Intuitively, the restriction allows to “read” the
program so that, for each idb relation R, the portion of P defining
R comes before the negation of R is used. Once R is computed, the
set of negative facts over R (restricted to the active domain) is well
defined. For example, consider the following stratified Datalog¬
program P defining the complement of transitive closure of a graph
G:

T (x,y) ← G(x,y)
T (x,y) ← G(x, z),T (z,y)
CT (x,y) ← ¬T (x,y).

According to stratified semantics, the idb relationT is defined by the
first two rules, and then its negation is used in the rule definingCT .
Thus, the first two rules are applied before the third. This approach
can be naturally extended to any stratified Datalog¬ program. Not
surprisingly, this appealing semantics has been independently pro-
posed by quite a few investigators [28, 50, 61, 92].

3.3 The Well-Founded Semantics
While stratification provides a simple and elegant approach to defin-
ing semantics of Datalog¬ programs, it has two major limitations.
First, it does not provide semantics to all Datalog¬ programs. Sec-
ond, stratified Datalog¬ programs are not quite satisfactory with
regard to expressive power. From a computational point of view,
they provide recursion and negation. Therefore, one might expect
that they express the fixpoint queries. Unfortunately, as shown
[86] (making use of earlier results from [53] and [49]), stratified
Datalog¬ programs fall short of expressing all fixpoint queries. In-
tuitively, this is due to the fact that the stratification condition
prohibits recursive application of negation, whereas in other lan-
guages expressing fixpoint this computational restriction does not
exist.

The quest for declarative semantics for all Datalog¬ program has
resulted in various proposals, of which the most prominent is the
well-founded semantics [63]. It relies on a fundamental revision of
the expectations on the answer to a Datalog¬ program. Previously,

the answer was required to provide information on the truth or
falsehood of every fact. The well-founded semantics is based on
the idea that a given program may not necessarily provide such
information on all facts. Instead, some facts may simply be indif-
ferent to it, and the answer should be allowed to say that the truth
value of those facts is unknown. Relaxing expectations about the
answer in this fashion allows to provide an elegant, model-theoretic
semantics to all Datalog¬ programs. The price to pay is that the
answer is no longer guaranteed to provide total information. In
particular, the model-theoretic semantics requires a 3-valued logic.

Example 3.2. [63, 65] The example concerns a game with states,
a,b, The game is between two players. The possible moves of
the games are held in a binary relation moves . A tuple ⟨a,b⟩ in
moves indicates that when in state a, one can choose to move to
state b. A player loses if they are in a state from which there are no
moves. The goal is to compute the set of winning states, i.e., the set
of states such that there exists a winning strategy for a player in
this state. These are obtained in a unary predicatewin.

Consider the input K with the following value formoves:

K(moves) = {⟨b, c⟩, ⟨c,a⟩, ⟨a,b⟩, ⟨a,d⟩, ⟨d, e⟩, ⟨d, f ⟩, ⟨f ,д⟩}

It is easily seen that there are indeed winning strategies from
states d (move to e) and f (move to д). Slightly more subtle is
the fact that there is no winning strategy from any of states a, b,
or c . Indeed, a given player can prevent the other from winning,
essentially by forcing a non-terminating sequence of moves.

Now consider the following nonstratifiable program Pwin :

win(x) ← moves(x,y),¬win(y)

Intuitively, Pwin states that a state x is in win if there is at least
one state y that one can move to from x , for which the opposing
player looses. Following is a 3-valued model J of Pwin , that agrees
with K on moves, and is in fact the well-founded semantics of Pwin
on input K. Instance J is such that J(moves) = K(moves) and the
values ofwin-atoms are given as follows:

true win(d),win(f)
false win(e),win(д)
unknown win(a),win(b),win(c).

The well-founded semantics can be compared against classical 2-
valued model-theoretic semantics by casting its 3-valued semantics
into a 2-valued model by taking the true facts as the answer to
a program. In fact, it turns out that for every Datalog¬ program
P there is a Datalog¬ program P̄ whose well-founded semantics
yields a classical 2-valued model whose true facts are the same as
those of P under well-founded semantics [57, 58]. It was shown in
[62] that with the 2-valued interpretation, well-founded semantics
has the same expressive power as the fixpoint queries, and can
also be evaluated in ptime. This non-trivial result makes use of
an equivalent formulation of the well-founded semantics as an
alternating fixpoint computation [62]. Thus, well-founded semantics
overcomes the expressiveness limitations of stratified Datalog¬.

Research on well-founded semantics, and the related notion of
3-stable model, has its roots in investigations of stable and default
model semantics. Stable model semantics was introduced in [65]
and default model semantics in [36, 37]. Stable semantics is based on
Moore’s autoepistemic logic [97], and default semantics is based on

Reiter’s default logic [108]. The equivalence between autoepistemic
and default logic in the general case has been shown in [88]. The
equivalence between stable model semantics and default model
semantics was shown in [37].

Several equivalent definitions of the well-founded semantics
have been proposed. The 3-valued model-theoretic approach is
due to [106]. In addition to the alternating fixpoint computation of
[62], other approaches for computing the well-founded semantics
are exhibited in [37, 105]. Historically, the first definition of the
well-founded semantics was proposed in [63, 64].

In summary, the stratified semantics provides a very natural,
intuitive interpretation for the sublass of Datalog¬ without recur-
sion through negation. While the well-founded semantics provides
model-theoretic semantics to all Datalog¬ programs, it is far less
intuitive and its widespread use remains unlikely. In terms of ex-
pressiveness, Datalog¬ with well-founded semantics overcomes the
limitations of stratified Datalog¬ by capturing the fixpoint queries.
At the time, no model-theoretic semantics had been defined for
Datalog-like languages that yielded expressiveness beyond fixpoint.
These limitations motivated the study of the forward chaining ap-
proach to Datalog-like languages, that had already been in practical
use in production systems [38] and active databases [117].

4 THE FORWARD CHAINING APPROACH
We describe next the forward chaining semantics of Datalog¬ (ex-
pressing the fixpoint queries) and two extensions: Datalog¬¬ (al-
lowing negations in heads of rules and expressing the while queries)
and Datalog¬new (allowing for the “invention” of new values, and
expressing all computable queries).

4.1 Datalog¬

The forward chaining (or inflationary) semantics of Datalog¬ is
intuitively very simple: the rules of the program are fired in parallel
with all applicable instantiations, until a fixpoint is reached. We
first illustrate this straightforward semantics with an example.

Example 4.1. We present a Datalog¬ program with input a graph
in binary relation G. The program computes the relation
closer (x,y, x ′,y′) defined as follows:

closer (x,y, x ′,y′) = {⟨x,y, x ′,y′⟩ | d(x,y) ≤ d(x ′,y′)},

where d(a,b) denotes the distance between nodes a and b in G.
(d(a,b) is infinite if there is no path from x to y.) The program is:

T (x,y) ← G(x,y)
T (x,y) ← T (x, z),G(z,y)
closer (x,y, x ′,y′) ← T (x,y),¬T (x ′,y′).

The program is evaluated as follows. The rules are fired simultane-
ously with all applicable valuations. At each such firing, some facts
are inferred. This is repeated until no new facts can be inferred.
A negative fact such as ¬T (x ′,y′) is true if T (x ′,y′) has not been
inferred so far. This does not precludeT (x ′,y′) from being inferred
at a later firing of the rules. One firing of the rules is called a “stage”
in the evaluation of the program. In the above program, the transi-
tive closure ofG is computed in T . Consider the consecutive stages
in the evaluation of the program. Note that, if the fact T (x,y) is
inferred at stage n, then d(x,y) = n. So, if T (x ′,y′) has not been in-
ferred yet, this means that the distance between x and y is less than

that between x ′ and y′. Thus, ifT (x,y) and ¬T (x ′,y′) hold at some
stage n, then d(x,y) ≤ n and d(x ′,y′) > n and closer (x,y, x ′,y′) is
then inferred.

Formally, the forward chaining semantics of Datalog¬ is defined
as follows. Let P be a Datalog¬ program and K an instance over
sch(P). An instantiation of a rule A← L1, . . . , Ln with respect to K
is a rule ν (A) ← ν (L1), . . . ,ν (Ln)where ν is a valuationwhichmaps
each variable into adom(P,K). A factA′ is an immediate consequence
for K and P ifA′ ∈ K(R) for some edb relation R, orA′ ← L′1, ..., L

′
n

is an instantiation of a rule in P and: each positive L′i is a fact in K,
and for each negative L′i = ¬A

′
i ,A
′
i <K. The immediate consequence

operator of P , denoted ΓP , is now defined as follows. For each K
over sch(P),

ΓP (K) = K ∪ {A | A is an immediate consequence for K and P}.

Given an instance I over edb(P), one can compute ΓP (I), Γ2
P (I), Γ

3
P (I),

etc. As suggested in Example 4.1, each application of ΓP is called a
stage in the evaluation. From the definition of ΓP , it follows that

ΓP (I) ⊆ Γ2
P (I) ⊆ Γ3

P (I) ⊆ . . .

As for Datalog, the sequence reaches a fixpoint, denoted ΓωP (I), after
a finite number of steps. The restriction of this to the idb relations
(or some subset thereof) is called the image (or answer) of P on I.

In the procedural semantics described above, increasing sets of
facts are inferred by firings of the rules. For that reason, this seman-
tics is also referred to as the inflationary semantics for Datalog¬
(there is an “inflation” of tuples!). The language Datalog¬ with infla-
tionary semantics is also referred to as inflationary Datalog¬. This
semantics was first proposed for Datalog¬ in [5, 87]. It extends the
fixpoint semantics proposed for Datalog in [50], also considered
earlier in the context of logic programming [27, 113].

In the case of Datalog, the minimum model semantics and the
inflationary fixpoint semantics coincide. For Datalog¬, this per-
fect match of declarative and procedural semantics is lost. First, a
Datalog¬ program may not have a unique minimal model. More-
over, while the result produced by inflationary semantics is a model
of the program, it is not necessarily a minimal one.

Datalog¬ with inflationary semantics provides recursion and
negation, and it is straightforward to see that every query it ex-
presses is a fixpoint query. The converse would seem unlikely, since
Datalog¬ is a much simpler language than those previously known
to express the fixpoint queries. Surprisingly, the following was
shown in [5, 6]:

Theorem 4.2. Inflationary Datalog¬ expresses precisely the fix-
point queries.

The simulation of fixpoint by inflationary Datalog¬ presents two
main difficulties, related to the simulation of the control capabili-
ties available in fixpoint. The first involves delaying the firing of
a rule until after the completion of a fixpoint by another set of
rules. Intuitively, this is hard because checking that the fixpoint
has been reached involves checking the non-existence rather than
the existence of some valuation, and Datalog¬ is more naturally
geared towards checking the existence of valuations. The solution
to this difficulty is illustrated in the following example.

Example 4.3. The following Datalog¬ program computes the
complement of the transitive closure of a graph G. The example

illustrates the technique used to delay the firing of a rule (computing
the complement) until the fixpoint of a set of rules (computing the
transitive closure) has been reached, i.e., until the application of the
transitivity rule yields no new tuples. To monitor this, the relations
old-T , old-T -except-f inal are used. old-T follows the computation
of T , but is one step behind it. The relation old-T -except-f inal is
identical to old-T , but includes a clause which prevents it from
firing when T has reached its last iteration. Thus, old-T and old-T -
except-f inal differ only in the iteration after the transitive closure
T reaches its final value. In the subsequent iteration, the program
recognizes that the fixpoint has been reached, and fires the rule
computing the complement in relation CT . The program is:

T (x,y) ← G(x,y)
T (x,y) ← G(x, z),T (z,y)
old-T (x,y) ← T (x,y)
old-T -except-f inal(x,y) ← T (x,y),T (x ′, z′),T (z′,y′),

¬T (x ′,y′)
CT (x,y) ← ¬T (x,y),old-T (x ′,y′),

¬old-T -except-f inal(x ′,y′).

(It is assumed that G is not empty.)

The second difficulty concerns keeping track of iterations of the
body in the computation of a loop. Given a loop

while chanдe do body

the simulation of body itself may involve numerous relations, whose
behavior may be “sabotaged” by an overly zealous application of
iteration. To overcome this we separate the “internal” computa-
tion of the body from the “external” iteration, as illustrated in the
following example.

Example 4.4. Let G be a binary relation schema. Consider the
fixpoint program

дood + = ∅;
while chanдe do
дood + = φ

where
φ = ∀y (G(y, x) → дood(y)).

Note that the query computes the set of nodes in G that are not
reachable from a cycle. (In other words, the nodes such that the
lengths of paths leading to them are bounded.) One iteration is
achieved by the Datalog¬ program P :

bad(x) ← G(y, x),¬дood(y)
delay ←

дood(x) ← delay,¬bad(x)

Simply iterating P does not yield the desired result. Intuitively, the
relations delay and bad , which are used as “scratch paper” in the
computation of a single iteration of the loop, cannot be re-initialized,
and so cannot be effectively re-used to perform the computation of
subsequent iterations.

To overcome this problem, we essentially create a version of P
for each iteration The versions are distinguished by using “times-
tamps”. The nodes themselves serve as timestamps. The timestamps
marking iteration i are the values newly introduced in relation good
at iteration i − 1. Relations delay and delay-stamped are used to de-
lay the derivation of new tuples in дood until bad and bad-stamped

(respectively) have been computed in the current iteration. The pro-
cess continues until no new values are introduced in an iteration.
The full program is the union of the three rules given above, which
perform the first iteration, and the following rules, which perform
the iteration with timestamp t :

bad-stamped(x, t) ← G(y, x),¬дood(y),дood(t)
delay-stamped(t) ← дood(t)
дood(x) ← delay-stamped(t),¬bad-stamped(x, t).

4.2 Datalog¬¬

Recall that in Datalog¬ with inflationary semantics, a fact that
has been inferred can never be retracted. Datalog¬¬ allows ex-
plicit retraction of a previously inferred fact (thus, the semantics
of Datalog¬¬ is “noninflationary”) [6]1. Syntactically, this is done
using negations in heads of rules, interpreted as deletions of facts.
Moreover, input relations are allowed in heads of rules, thus pro-
viding the ability to perform updates. The resulting language is
denoted by Datalog¬¬, to indicate that negations are allowed in
both heads and bodies of rules.

The immediate consequence operator ΓP and semantics of a
Datalog¬¬ program are analogous to those for Datalog¬ with the
following important proviso. If a negative literal ¬A is inferred, the
fact A is removed, unless A is also inferred in the same firing of the
rules. This gives priority to inference of positive over negative facts
and is somewhat arbitrary. Other possibilities are: (i) give priority
to negative facts, (ii) interpret the simultaneous inference of A and
¬A as a “no-op”, i.e., including A in the new instance only if it is
there in the old one; and (iii) interpret the simultaneous inference
of A and ¬A as a contradiction which makes the result undefined.
The chosen semantics has the advantage over (iii) that the result is
always defined. In any case, the choice of semantics is not crucial: it
results in equivalent languages. With the semantics chosen above,
termination is no longer guaranteed. For instance, the program

T (0) ← T (1)
¬T (1) ← T (1)
T (1) ← T (0)
¬T (0) ← T (0)

never terminates on input T (0). Indeed, the value of T flip-flops
between {⟨0⟩} and {⟨1⟩} so no fixpoint is reached.

By a method similar to the above, it can be shown that Datalog¬¬
expresses precisely the while queries [6].

How about the relationship between Datalog¬ and Datalog¬¬?
Clearly, Datalog¬ is subsumed by Datalog¬¬. Intuitively, it is tempt-
ing to believe that Datalog¬¬ is more powerful than Datalog¬ (con-
sidering only terminating queries). However, this is far from obvi-
ous. Indeed, the following is a consequence of results in [7] on the
relationship between fixpoint and while:

Theorem 4.5. Inflationary Datalog¬ is strictly less expressive than
Datalog¬¬ iff ptime , pspace.

Since it is open whether ptime , pspace, the relationship be-
tween inflationary (or well-founded) Datalog¬ and Datalog¬¬ re-
mains open. However, the strict inclusion is conjectured to be true.

1The language Datalog¬¬ is denoted in [6] by Datalog¬⋆

4.3 Datalog¬new
All the languages considered so far express queries within db-
pspace. Intuitively, this is so because each program uses a fixed
number of relations of fixed arity, which are filled in the course of
the computation with tuples over the elements of the input. Thus,
such programs can build an amount of space which is no more than
polynomial in the number of elements of the input.

Suppose that we wish to have a complete language, i.e. a language
expressing all queries. One way to break the polynomial “space
barrier”, first suggested in [4], is to allow programs to invent new
values in the course of the computation. Besides the computational
justification, this is useful in object-oriented databases, where the
creation of new object identifiers is a useful and very common
feature. Such a feature was studied in the object-oriented language
IQL [12].

We describe an extension of Datalog¬, defined in [6], that ex-
presses all deterministic queries. This extension introduces new
values in the course of the computation (but not in the answer).
We informally describe the language, denoted by Datalog¬new . The
syntax is the same as that of Datalog¬, except that variables that do
not appear in body of a rule may appear in its head. The inflationary
semantics of this language is similar to that of Datalog¬. The only
difference consists in the use of the variables that occur only in
heads of rules: these are valuated outside the current active domain,
thus resulting in the “invention” of new values. Specifically, in the
application of the immediate consequence operator, each instantia-
tion of a rule body in the current active domain is extended with one
instantiation of the remaining variables with distinct values outside
the active domain. The choice of the particular new values is non-
deterministic. However, this is the only source of nondeterminism.
If the final result contains only values from the input, which can
be enforced by a straightforward syntactic safety restriction, then
the query defined by such a program is deterministic. Furthermore,
Datalog¬new is complete:

Theorem 4.6. [6] Datalog¬new expresses all deterministic queries.

Intuitively, the proof uses the invented values to simulate the
Turing machine computing the query, as well as the encodings of
the input database on the initial Turing tape, and the decoding of
the output. Each total order of the active domain generates one
standard encoding, and the computation is carried out in parallel on
all the encodings. The new values provide the unbounded amount
of space needed for the simulation, thus overcoming the pspace
barrier.

The relative expressive power of the various rule-based lan-
guages is summarized in Figure 1. The arrow ⇑ indicates strict
inclusion and the arrow ↑ indicates strict inclusion iff ptime ,
pspace.

We note that Datalog extensions with forward chaining seman-
tics that model various active databases are investigated in [104].
The results provide insight into the programming paradigm of ac-
tive databases, the interplay of various features, and their impact
on expressiveness and complexity. In particular, this yields highly
expressive active database languages capturing pspace, exptime,
expspace, as well as all computable queries, on ordered databases.

Datalog¬new ≡ all computable queries
⇑

Datalog¬¬ ≡ while
↑

well-founded Datalog¬ ≡ inflationary Datalog¬ ≡ fixpoint
⇑

stratified Datalog¬
⇑

Datalog

Figure 1: Relative expressive power of Datalog variants.

4.4 Limitations in expressive power
Although the languages discussed here are quite powerful, they
have certain shortcomings with regard to expressive power. Indeed,
there are very “simple” queries that none of the languages can
express. The prototypical example is the evenness query on a unary
relation:

even(R) =

{
true if | R | is even
f alse if | R | is odd.

where |R | is the number of elements in R.
This difficulty is not specific to rule-based languages. Indeed,

it extends to most deterministic languages. To understand the dif-
ficulty involved, consider the natural way to compute the query:
remove elements from R one at a time, and keep a binary counter.
However, the elements of R are logically undistinguishable one
from another, so no deterministic language that adheres to the data
independence principle can perform the algorithm just described.
There are two ways out: (i) sacrifice data independence, or (ii) sacri-
fice determinism by allowing a nondeterministic construct to pick
an arbitrary element from a set. We will explore each of these trade-
offs in turn. Suspending the data independence principle is modeled
by access to an order among the elements in the database (which is
a reasonable mathematical metaphor for access to the additional
symmetry-breaking information provided by the internal storage).

Intuitively, there is a strong connection between the use of or-
der (i.e., information on the internal storage) and nondeterminism.
If a query is implemented using information on internal storage,
then the answer may depend on such information and thus appear
nondeterministic at the logical level.

4.5 The impact of order
The assumption that databases are ordered can have dramatic im-
pact on the expressive power of languages. In ordered databases,
the schema is assumed to contain a binary relation providing a total
order on the active domain of each instance. With this assump-
tion, it turns out that stratified Datalog¬, inflationary Datalog¬,
and Datalog¬ with well-founded semantics are all equivalent and
express precisely db-ptime. Furthermore, the apparently much
weaker semi-positive Datalog¬, consisting of Datalog¬ where nega-
tion is only applied to edb relations, is almost as powerful as these
languages. The “almost” is due to a technicality concerning the
order: we also need to assume that the minimum and maximum
constants are explicitly given. Surprisingly, these constants, that
can be computed with an FO query if an order is given, cannot be
computed with semi-positive programs.

Theorem 4.7. Stratified Datalog¬, Datalog¬ with well-founded se-
mantics, and inflationary Datalog¬ are equivalent on ordered databases
and express exactly the db-ptime queries. They are also equivalent to
semi-positive Datalog¬ on ordered databases withmin andmax and
express exactly the db-ptime queries.

The result that semi-positive Datalog¬ expresses db-ptime on
ordered databases with min and max is due to [101]. The result
that inflationary Datalog¬ expresses db-ptime follows from results
in [6] (equivalence of inflationary Datalog¬ and fixpoint) and [83,
114] (who showed that fixpoint expresses db-ptime on ordered
databases).

Without the order assumption, there is no known deterministic
language that expresses precisely the db-ptime queries. Indeed,
the existence of such a language remains one of the main open
problems in the theory of query languages (e.g., see [79]).

The following characterizes the power of Datalog¬¬ on ordered
databases. It follows from a result of [6] showing the equivalence
of Datalog¬¬ and while, and from a result of [114] showing that
while expresses db-pspace on ordered databases.

Theorem 4.8. Datalog¬¬ expresses exactly the db-pspace queries
on ordered databases.

5 NONDETERMINISTIC LANGUAGES
The arguments in favor of nondeterministic languages are both
practical and theoretical. The first is that nondeterminism occurs
naturally in many practical settings. There are natural nondetermin-
istic queries and updates, whose implementation using determin-
istic languages is contrived and inefficient. There are well-known
applications in Artificial Intelligence which naturally lead to nonde-
terminism, and expert systems shells (such as KEE or OPS5 [39, 59])
whose rule-based components work nondeterministically. Reactive
systems, such as data-driven workflows, are usually nondetermin-
istic (e.g., see [10, 11, 16, 78]). The theoretical arguments for non-
determinism involve primarily the expressive power of nondeter-
ministic languages. Indeed, the use of nondeterminism circumvents
some of the expressiveness limitations discussed above, associated
with deterministic languages. As mentioned, it is conjectured that
there is no deterministic language expressing exactly the queries
computable in polynomial time. On the other hand, there are non-
deterministic languages expressing exactly the (deterministic and
nondeterministic) queries computable in polynomial time.

5.1 Nondeterministic Datalog¬(¬)

We next consider nondeterministic versions of the Datalog¬(¬)
languages. Recall that the procedural, deterministic semantics for
these languages was the result of evaluating programs by repeatedly
firing all rules in parallel, up to a fixpoint. The nondeterministic
semantics is obtained by firing one instantiation of a rule at a
time, based on a nondeterministic choice. For instance consider the
program:

¬G(x,y) ← G(x,y),G(y, x).

With deterministic semantics, the program removes from the graph
G all cycles of length two. With the nondeterministic semantics,
the program computes one of several possible “orientations” for G

(i.e., for every pair of edges (x,y) and (y, x) in G, one of the edges
is removed).

We first define the syntax of the nondeterministic version of
Datalog¬¬, denoted N-Datalog¬¬ [6]. The difference with the deter-
ministic version is that heads of rules may contain several literals,
and equality can be used in bodies. It can be seen that these features
would be redundant with the deterministic semantics.

Definition 5.1. A N-Datalog¬¬ program is a finite set of rules of
the form

A1,...,Ak ← B1,...,Bn
(k ≥ 1, n ≥ 0), where each Aj is a literal of the form (¬) Q(x1,...,xm)
(m ≥ 0), and each Bi is a literal of the same form, or (¬) x1 = x2
(the xi ’s are variables or constants). It is required that each variable
occurring in the head of a rule also occur positively bound in the
body. □

To formally define the nondeterministic semantics, we introduce
the notion of (nondeterministic) immediate successor of a set of
facts using a rule. Let r be an N-Datalog¬¬ rule. Let I be a set of
facts and r ′ be an instantiation of r such that (i) each literal of
the body of r ′ is true in I , (ii) the head of r ′ is consistent and (iii)
each variable is valuated to some constant occurring in I . Then the
instance J obtained from I by deleting the factsA such that ¬A is in
the head of r ′, and inserting the facts A in the head of r ′, is called
an immediate successor of I using r .

By condition (ii) above, an instantiation of a rule is not considered
if its head contains a literal and its negation.

Definition 5.2. Let P be an N-Datalog¬¬ program. The effect of P
is a relation over sets of facts defined as follows: for each I , (I , J) is
in eff(P) iff there exists a sequence I0 = I , ..., In = J such that (i) for
each i , Ii+1 is an immediate successor of Ii using some r in P , and
(ii) there is no immediate successor J ′ , J of J using some rule in
P . □

The language N-Datalog¬ is a specialization of N-Datalog¬¬
obtained by disallowing negative literals in heads of rules (thus,
negation can only occur in bodies of rules).

5.2 Expressive power
We present several results on the expressive power of N-Datalog¬
and N-Datalog¬¬. As discussed earlier, the most significant result
involves expressibility of ndb-ptime.

We consider first the expressive power of N-Datalog¬¬.

Theorem 5.3. [6] N-Datalog¬¬ expresses exactly ndb-pspace.

Consider next the expressive power of N-Datalog¬. It is easy to
see that each N-Datalog¬ query is in ndb-ptime. It turns out that
there are simple ndb-ptime queries that cannot be expressed in
N-Datalog¬. We show this next, and then show how N-Datalog¬
can be augmented to increase the expressive power to ndb-ptime.

The strict inclusion in ndb-ptime is shown using the following
example [6].

Example 5.4. Let R = {P (A),Q(AB)}. It can be shown that there is
no N-Datalog¬ program which computes P − πA(Q).

The precise characterization of the power of N-Datalog¬ is open.
We note, however, that N-Datalog¬ expresses exactly ndb-ptime
in the presence of order.

As seen in the example above, there are very simple queries
that N-Datalog¬ cannot compute. We now look at the origin of
this weakness and show how it can be corrected. Note that N-
Datalog¬ does not provide sufficient control capability to simulate
the composition of two programs. Indeed, P−πA(Q) can be obtained
as the composition of the mappings defined by the following two
rules:

T (x) ← Q(x,y), and
answer (x) ← P(x),¬T (x).

The weak control capability of N-Datalog¬ makes it impossible
for programs in this language to simulate the explicit control nec-
essary to compute ndb-ptime queries. Note that, in the case of
N-Datalog¬¬, the control needed is provided by deletions. For ex-
ample, the query in Example 5.4 is computed by the following
N-Datalog¬¬ program:

answer (x) ← P(x)
¬answer (x),¬P(x) ← Q(x,y).

The constructs we add to N-Datalog¬ essentially provide suffi-
cient control to simulate composition (in an inflationary manner).
We consider two alternative constructs. The first construct allows
for an “inconsistency” symbol ⊥ to appear in heads of rules. The
resulting language is denoted N-Datalog¬⊥. The idea is that if such
a symbol is derived in a computation, that particular computation is
abandoned. The second construct is universal quantification in bod-
ies of rules and yields the language N-Datalog¬∀. We first present
N-Datalog¬⊥, then N-Datalog¬∀. These languages are from [6].

N-Datalog¬⊥: The language N-Datalog¬ is extended with the sym-
bol ⊥ that can occur only as a literal in the head of rules. A pair
(I,J) is in the effect of a N-Datalog¬⊥ program iff J is obtained by a
computation where ⊥ is not derived.

N-Datalog¬∀: The language N-Datalog¬ is extended to allow rules
of the form:

A1, ...,Aq ← ∀®xB1, ...,Bn,

where ®x is a sequence of variables occurring only in the body of the
rule. Let ®y be the vector of the variables occurring in B1, ...,Bn and
not in ®x , and v be a valuation of ®y. The rule is fired with valuation
v if for each extension v of v to the variables in ®x (which valuates
variables in ®x in the active domain), vB1 ∧ ... ∧vBn holds.

To illustrate these two languages, we show how to compute the
query of Example 5.4 with N-Datalog¬∀ or N-Datalog¬⊥ programs.

Example 5.5. The mapping P − πA(Q) is computed by the follow-
ing N-Datalog¬∀ program:

answer (x) ← ∀yP(x),¬Q(x,y).

A N-Datalog¬⊥ program computing the same query is:

PRO J (x) ← ¬done-with-proj,Q(x,y)
done-with-proj ←
⊥ ← done-with-proj,Q(x,y),¬PRO J (x)
answer (x) ← done-with-proj, P(x),¬PRO J (x).

Intuitively, in N-Datalog¬∀, one can check that a stage is com-
pleted (using ∀) before proceeding to the next one; this allows sim-
ulating composition. In N-Datalog¬⊥, a detected error leads to the
derivation of ⊥. The following shows that in fact these constructs
provide sufficient power to bridge the gap between N-Datalog¬
and ndb-ptime.

Theorem 5.6. [6] For each query τ the following are equivalent:

• τ is in ndb-ptime,
• τ is defined by a N-Datalog¬⊥ program, and
• τ is defined by a N-Datalog¬∀ program.

We have seen so far nondeterministic languages capturing ndb-
pspace and ndb-ptime. Similarly to the deterministic case, a com-
plete language can be obtained by augmenting N-Datalog¬ with
the ability to create new values. The resulting language is denoted
N-Datalog¬new .

Theorem 5.7. [6] N-Datalog¬new expresses all nondeterministic
queries.

It turns out that the nondeterministic languages described above
are closely related to nondeterministic extensions of fixpoint logics,
introduced in [14] (see also [15]). In these languages, nondetermin-
ism is provided by a witness operatorW . Informally,Wx̄φ(x̄) results
in nondeterministically choosing a value of x̄ that satisfiesφ(x̄). The
addition ofW to fixpoint logics yields nondeterministic extensions
FO + IFP +W of inflationary fixpoint logic, and FO + PFP +W of
partial fixpoint logic. It is shown in [14] that N-Datalog¬¬ is equiv-
alent to FO + PFP +W , and N-Datalog¬∀ (as well as N-Datalog¬⊥)
is equivalent to FO + IFP +W .

We note that another way to introduce nondeterminism in rule-
based languages is provided by the choice operator first presented
in [90]. This construct has been included in the language LDL, an
implementation of Datalog¬ [99]. Variations of the choice operator,
and its connection with stable models of Datalog¬ programs, are
further studied in [66, 109]. The expressive power of the choice
operator in the context of Datalog is investigated in [52]. The main
result exhibits a language expressing exactly ndb-ptime. Further
Datalog languages using the choice operator and expressing the
Boolean hierarchy are exhibited in [76].

5.3 Connections with Determinism
Recall that one of the motivations for considering nondeterministic
languages is their ability to express more deterministic queries. In
this section we consider the ability of various nondeterministic
languages to express deterministic queries. We also consider the
deterministic queries definable by considering the “possible” and
“certain” answers of a nondeterministic query, in the spirit of queries
on databases with incomplete information. The results are from
[3].

The notion of deterministic fragment expressed by a language is
defined next.

Definition 5.8. The deterministic fragment of a (nondeterministic)
language is the set of deterministic queries defined by programs in
the language. The deterministic fragment of a language L is denoted
det(L). □

In the previous section we characterized the nondeterministic
queries expressible in the various languages. These results can
be used to characterize the deterministic fragments expressible in
these languages. Thus, we have:

Theorem 5.9.
(1) det(N-Datalog¬∀) = det(N-Datalog¬⊥) = db-ptime.
(2) det(N-Datalog¬¬) = db-pspace.

It is important to note that (1) does not provide a language ex-
pressing db-ptime, since it is undecidable whether a N-Datalog¬∀
or N-Datalog¬⊥ program defines a deterministic query.

An alternative way of obtaining deterministic queries using
nondeterministic programs is suggested by the work of [82] on
incomplete information. Indeed, there is a natural connection be-
tween incomplete information and nondeterminism. As noted in
[1], incomplete information can be seen as resulting from incom-
pletely specified (therefore nondeterministic) updates. The notions
of possible and certain answers in [82] suggest the following defini-
tion:

Definition 5.10. Given a nondeterministic program P , the im-
age of an input I under P with the possibility semantics (denoted
poss(I, P)) and the certainty semantics (denoted cert(I, P)) are de-
fined by:

poss(I, P) =
⋃
{J | (I, J) ∈ eff(P)}, and

cert(I, P) =
⋂
{J | (I, J) ∈ eff(P)}.

The deterministic queries expressed by a program P under pos-
sibility semantics is denoted poss(P), and under certainty semantics
cert(P). For a language L,

poss(L) = {poss(P) | P ∈ L} and cert(L) = {cert(P) | P ∈ L}.

The poss or cert semantics yield significant power:

Theorem 5.11.
(1) poss(N-Datalog¬∀) = poss(N-Datalog¬⊥) = db-np.
(2) cert(N-Datalog¬∀) = cert(N-Datalog¬⊥) = db-co-np.
(3) cert(N-Datalog¬¬) = poss(N-Datalog¬¬) = db-pspace.

Observe that, for N-Datalog¬¬, the poss and cert semantics do
not yield additional power. In particular, these semantics can be
simulated within the deterministic fragment of N-Datalog¬¬.

This concludes our review of the Datalog-like languages with
forward chaining semantics, studied in [3, 5, 6, 8, 14, 15, 116]. We
next discuss briefly some of the developments in Datalog research
since these languages have been proposed, and situate them in the
broader context.

6 DATALOG REDUX
Over time, research on recursive queries has been received by
the database systems community with varying degrees of enthusi-
asm. By the end of the 80’s, the attitude towards Datalog research
had turned largely negative. This is perhaps best exemplified by
the influential Laguna Beach report of 1989 [102], which includes
this statement: “The participants were unanimously negative on the
prospective research contribution of general recursive query process-
ing, and interfaces between a DBMS and Prolog.” As late as 1998, the
no less influential [111], stated that “No practical applications of
recursive query processing have been found to date”.

And yet they persisted. Despite the ups-and-downs in popularity,
work on Datalog-like languages continued in the database and logic
programming communities in the 80’s and 90’s. On the theoretical
front, there was much work on the expressiveness and complexity
of Datalog-like languages (for a comprehensive survey, see [54]).
Driven by theoretical and practical considerations, many extensions
of Datalog have been put forward. They include arithmetic, sets,
disjunction, aggregation, constraints, object-oriented constructs,
complex objects, updates, etc. This has resulted in an entire ecosys-
tem of languages, many of which were implemented. An excellent
survey of these developments is provided in [96].

Research on Datalog was eventually rehabilitated in the data-
base systems community and beyond. In an invited PODS 2010 talk
[80] and companion paper [81], Joe Hellerstein delivered an impas-
sioned rehabilitation of Datalog from the viewpoint of the systems
community, pointing out the widespread use and effectiveness of
Datalog-like languages in areas as diverse as security and privacy
protocols, program analysis, natural language processing, proba-
bilistic inference, modular robotics, multiplayer games, telecom
diagnosis, networking, and distributed systems.

The last two decades have seen a robust “Datalog Spring” in
which Datalog research has expanded with renewed energy. The
sequence of Datalog workshops on the theme of the "Resurgence
of Datalog in Academia and Industry" [20, 31, 55] was emblematic
of this optimism. A broad account of this renewed activity, within
and beyond the database community, can be found in [96]. Notable
in the database theory community has been an increased symbiosis
between theoretical research and practice (even yielding a num-
ber of start-ups!), as well as increased presence in adjacent areas
such as AI and Knowledge Representation. Following are a few
representative examples.

Datalog for networking Networking is an area where recursive
processing and reasoning occurs naturally, and has led to the rise
of “declarative networking”, in which Datalog variants are used to
specify and reason about distributed protocols and services (e.g., see
[81, 93, 94]). These languages extend Datalog with a variety of fea-
tures, including location identifiers, timestamps, and states (in the
spirit of Statelog [91]). Dedalus and Bloom, both Datalog variants,
were put forward by Hellerstein’s team as a promising foundation
for programming and reasoning about distributed systems [18, 19].
Their investigation of consistency properties of distributed systems
led to the so called “CALM conjecture”, [80, 81] which was subse-
quently studied in the database theory community using a model
of communicating transducers [21–25]. The use of the declarative
approach in network monitoring was also explored in [9]. It should
be noted that the term “declarative” refers broadly to Datalog-like
rule-based languages, with a mix of declarative and procedural
semantics (e.g., see [103]). Negation, when present, is typically re-
stricted to be stratified (and interpreted under stratified semantics).
See [94] for a survey on declarative networking circa 2012.

Datalog for data extraction The Lixto project [32, 69] is a poster
child for successful practical applications of Datalog relying on sig-
nificant theoretical foundations. Lixto focuses on Web data extrac-
tion and has at its core Monadic Datalog over trees. The approach

relies on deep and elegant theoretical results on the expressive-
ness and complexity of Monadic Datalog on trees and structures of
bounded tree width [67, 68, 70–74]. In particular, it is shown in [68]
that Monadic Datalog captures exactly Monadic Second Order logic
over trees. This provides the expressiveness needed by wrappers
for Web data extraction, while also guaranteeing efficiency. The
Lixto project has been incorporated in a commercial product, McK-
insey Periscope. A follow-up project, DIADEM, aimed to achieve
fully automatic wrapper generation and uses at its core a related
language based on Datalog [60].

Datalog for ontologies Datalog has proven to be an effective for-
malism for specifying and answering queries over ontologies. In
particular, it provides an elegant unifying formalism that subsumes
well-known description logics. Datalog+/- is a family of Datalog
variants put forward for this purpose [40–42]. The Datalog+/- lan-
guages are obtained by first extending Datalog with existentially
quantified variables in heads of rules, then considering various re-
strictions (guarded, linear, and weakly guarded) to ensure tractabil-
ity. Other extensions, such as falsity in heads of rules, keys, and
stratified negation, are also considered, and their complexity charac-
terized. Importantly, the Datalog+/- family of languages can express
the popular DLite family [44, 45] of descriprion logics. It also sub-
sumes F-logic Lite [43], a tractable fragment of the well-known
F-logic [85], central in deductive object-oriented databases.

Datalog for knowledge graphs An outgrowth of Datalog+/-,
Vadalog is a Datalog-based language geared towards reasoning
about knowledge graphs [33–35]. Vadalog has at its core Warded
Datalog+/-, a variant of Datalog+/- that has good properties in terms
of expressiveness and complexity [30, 75]. Vadalog is part of the
VADA project [89, 112], in which Vadalog is extended with various
features, including access to external resources such as text pro-
cessing, data analytics and machine learning, modeled uniformly
as transducers. The VADA project has generated considerable in-
terest from industrial partners. Data analytics on big graphs is also
provided by the BigDatalog system [110] that relies on Datalog
extended with aggregates, with fixpoint semantics [118].

Datalog for data exchange on theWebDatalog variants are used
in several approaches for high-level specifications of data sharing
and exchange on the Web. Orchestra [78, 84] is a collaborative data
sharing system that supports the exchange of data and updates
among peers and relies on an extension of Datalog with Skolem
functions. Webdamlog is a Datalog variant used to exchange data
among peers on the Web, with the novel twist that rules can also
be exchanged, in addition to data [11]. Webdamlog also uses up-
dates in heads of rules, similarly to N-Datalog¬¬ (see Section 4.2).
The semantics is nondeterministic and based on forward chaining,
similarly to active rules. Interestingly, the abilty to exchange rules
is more than syntactic sugar: it increases the expressiveness of the
language. The exchange of rules is also used in Active XML, whose
core is a rule-based language using tree patterns [10, 13].

Datalog for data management Several startups have emerged
that provide full data management systems relying on Datalog

variants. LogicBlox is a commercial database system that supports
sophisticated analytics and is implemented on top of LogiQL, a rich
extension of Datalog [29]. LogiQL can support business applica-
tions, workflows and data analytics, and is evaluated bottom-up.
LogicBlox also contains updates needed for interactive features,
in the spirit of Datalog¬¬ [77]. Interestingly, the LogicBlox team
included a substantial number of database theoreticians and pro-
duced some remarkable algorithms, such as the leapfrog trie join,
shown to be optimal [115] in the sense of [100]. DATOMIC is an-
other startup that has built a full data management system driven
by a Datalog-like language [26].

7 CONCLUSION
We have reviewed the procedural, forward chaining approach to
Datalog developed in [3, 5, 6, 8, 14, 15, 116], and briefly the state of
contemporaneous Datalog research and later developments.

How does the procedural, forward chaining semantics measure
up against the declarative alternative? The two paradigms are philo-
sophically very different. The declarative approach attempts to
model a natural reasoning process. In particular, consistency in
the reasoning process is required: one cannot use a fact and later
infer its negation, as can happen in the procedural semantics. As
we have seen, the solution is ideally described as a model of the
program satisfying certain desirable properties, such as minimality.
However, in the presence of negation, the lack of a unique minimal
model leads to the need to specify an “intended” model among sev-
eral possible candidates. Beyond stratified semantics, the criteria
for selecting the intended model become increasingly contrived.
Furthermore, the assumption that the chosen criterion captures a
fictitious programmer’s natural reasoning process rests on shallow
ground.

In contrast, the procedural, forward chaining approach provides
semantics that is extremely simple to describe. However, the seman-
tics is purely computational and does not yield a solution easily
justifiable in model theoretic terms, beyond the fact that the answer
is one model of the program. Also, despite the simplicity of the
computational semantics, programs can be hard to understand, as
their effect is very sensitive to timing (e.g., see Examples 4.1 and
4.3). In terms of expressiveness, the Datalog-like languages with
forward chaining semantics provide a unifying formalism capable
of capturing the main classes of queries, including fixpoint, while,
and all the way to computable queries. They can also incorporate
in a natural manner nondeterminism and updates. Declarative se-
mantics seems to hit an expressiveness ceiling with well-founded
semantics, capturing the fixpoint queries.

The final test for the various semantics has to rest with program-
mers and adoption in practical languages. In that respect, the for-
ward chaining approach was an early leader, having been adopted
in production systems and expert systems [39, 59] as well as ac-
tive databases [117], at a time when implementations of deductive
databases were limited to prototypes (see [107] for an early survey
of deductive database implementations). Subsequently, the land-
scape becamemuchmore diverse. There have beenmany implemen-
tations of Datalog variants, with declarative and procedural seman-
tics (e.g., see [96]). Most practical Datalog-like languages use strati-
fied negation, which emerges as the indisputable success story of

declarative semantics. As seen above, Datalog-like languages with
forward chaining semantics, with features including updates and
nondeterminism, remain common in a limited class of applications,
mostly those that can be viewed as data-driven reactive systems.
Such applications include active databases, production systems,
data-driven workflows, peer-to-peer data exchange, and systems
supporting interactive features (e.g., see [10, 11, 46, 56, 77, 103, 117]).

Overall, the forward chaining paradigm has demonstrated its
theoretical appeal and persistence in practice. It will most likely
continue to provide a useful alternative within the rich landscape
of Datalog.

ACKNOWLEDGMENTS
This work was supported in part by the ANR Headwork project
ANR-16-CE23-0015 and the National Science Foundation under
award III-1815247. The author is grateful to Pierre Bourhis and Luc
Segoufin for their insightful comments on this paper. Special thanks
to Serge Abiteboul for revisiting our joint work and providing many
useful suggestions for the presentation.

REFERENCES
[1] S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In

Proc. of Intl. Conf. on Very Large Data Bases, pages 1–12, 1985.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison Wesley,

1995.
[3] S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic languages to express

deterministic transformations. In Proc. ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pages 218–229, 1990.

[4] S. Abiteboul and V. Vianu. A transaction language complete for database update
and specification. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems, pages 260–268, 1987.

[5] S. Abiteboul and V. Vianu. Procedural and declarative database update languages.
In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems,
pages 240–250, 1988.

[6] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43:62–124, 1991.

[7] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc.
ACM SIGACT Symp. on the Theory of Computing, pages 209–219, 1991.

[8] S. Abiteboul and V. Vianu. Non-determinism in logic-based languages. Annals
of Math. and Artif. Int., 3:151–186, 1991.

[9] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo. Diagnosis of asyn-
chronous discrete event systems: datalog to the rescue! In Proc. ACM SIGMOD-
SIGACT-SIGART Symp. on Principles of Database Systems, pages 358–367, 2005.

[10] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active XML project: an
overview. VLDB J., 17(5):1019–1040, 2008.

[11] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Émilien Antoine. A
rule-based language for web data management. In Proc. ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pages 293–304, 2011.

[12] Serge Abiteboul and Paris C. Kanellakis. Object identity as a query language
primitive. J. ACM, 45(5):798–842, 1998.

[13] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of active XML
systems. ACM Trans. Database Syst., 34(4):23:1–23:44, 2009. Also in PODS 2008.

[14] Serge Abiteboul and Victor Vianu. Fixpoint extensions of first-order logic and
Datalog-like languages. In Proc. IEEE Symp. on Logic in Computer Science, pages
71–79, 1989.

[15] Serge Abiteboul and Victor Vianu. Non-determinism in logic-based languages.
Ann. Math. Artif. Intell., 3(2-4):151–186, 1991.

[16] Serge Abiteboul and Victor Vianu. Collaborative data-driven workflows: think
global, act local. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems, pages 91–102, 2013.

[17] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proc.
ACM Symp. on Principles of Programming Languages, pages 110–117, 1979.

[18] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.
Consistency analysis in Bloom: a CALM and collected approach. In CIDR 2011,
Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 9-12, 2011, Online Proceedings, pages 249–260, 2011.

[19] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David
Maier, and Russell Sears. Dedalus: Datalog in time and space. In Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19,

2010. Revised Selected Papers, volume 6702 of Lecture Notes in Computer Science,
pages 262–281. Springer, 2010.

[20] Mario Alviano and Andreas Pieris, editors. Datalog 2.0 2019 - 3rd International
Workshop on the Resurgence of Datalog in Academia and Industry co-located
with the 15th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2019) at the Philadelphia Logic Week 2019, Philadelphia, PA
(USA), June 4-5, 2019, volume 2368 of CEURWorkshop Proceedings. CEUR-WS.org,
2019.

[21] Tom J. Ameloot. Declarative networking: Recent theoretical work on coordina-
tion, correctness, and declarative semantics. SIGMOD Rec., 43(2):5–16, 2014.

[22] Tom J. Ameloot and Jan Van den Bussche. Deciding eventual consistency for a
simple class of relational transducer networks. In Alin Deutsch, editor, Proc. of
Intl. Conf. on Database Theory, pages 86–98, 2012.

[23] Tom J. Ameloot, Jan Van den Bussche, William R. Marczak, Peter Alvaro, and
JosephM. Hellerstein. Putting logic-based distributed systems on stable grounds.
Theory Pract. Log. Program., 16(4):378–417, 2016.

[24] Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. Weaker forms of
monotonicity for declarative networking: A more fine-grained answer to the
calm-conjecture. ACM Trans. Database Syst., 40(4):21:1–21:45, 2016.

[25] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational transducers
for declarative networking. J. ACM, 60(2):15:1–15:38, 2013. Also in PODS 2011.

[26] J. Anderson, M. Gaare, J. Holguın, N. Bailey, and T. Pratley. The Datomic database,
pages 169–215. In Professional Clojure, Wiley Online Library, 2016.

[27] K. Apt and M. van Emden. Contributions to the theory of logic programming.
J. ACM, 29(3):841–862, 1982.

[28] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

[29] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and im-
plementation of the LogicBlox system. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data, pages 1371–1382, 2015.

[30] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages for
querying the semantic web. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pages 14–26, 2014.

[31] Pablo Barceló and Reinhard Pichler, editors. Datalog in Academia and Industry
- Second International Workshop, Datalog 2.0, Vienna, Austria, September 11-13,
2012. Proceedings, volume 7494 of Lecture Notes in Computer Science. Springer,
2012.

[32] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information
extraction with lixto. In Proc. of Intl. Conf. on Very Large Data Bases, pages
119–128, 2001.

[33] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. Swift
logic for big data and knowledge graphs. In Proc. of the Intl. Joint Conference on
Artificial Intelligence, IJCAI 2017, pages 2–10, 2017.

[34] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The Vadalog system:
Datalog-based reasoning for knowledge graphs. Proc. VLDB Endow., 11(9):975–
987, 2018.

[35] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. The
space-efficient core of Vadalog. In Proc. ACM SIGMOD-SIGACT-SIGAI Symp. on
Principles of Database Systems, pages 270–284, 2019.

[36] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and circum-
scription. In Proc. IEEE Symp. on Logic in Computer Science, pages 89–97, 1987.

[37] N. Bidoit and C. Froidevaux. General logic databases and programs: Default
logic semantics and stratification. J. Information and Computation, 91(1):15–54,
1991.

[38] L. Brownston, R. Farrel, E. Kant, and N. Martin. Programming Expert Systems in
OPS5. Addison Wesley, 1985.

[39] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming
Expert Systems in OPS5: An Introduction to Rule-Based Programming. Addison-
Wesley Longman Publishing Co., Inc., USA, 1985.

[40] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified
approach to ontologies and integrity constraints. In Ronald Fagin, editor, Proc.
of Intl. Conf. on Database Theory, volume 361, pages 14–30, 2009.

[41] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified
approach to ontologies and integrity constraints. In Proc. of Intl. Conf. on
Database Theory, volume 361, pages 14–30, 2009.

[42] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas
Pieris. Datalog+/-: A family of logical knowledge representation and query
languages for new applications. In Proc. IEEE Symp. on Logic in Computer Science,
pages 228–242, 2010.

[43] Andrea Calì and Michael Kifer. Containment of conjunctive object meta-queries.
In Proceedings of the 32nd International Conference on Very Large Data Bases,
Seoul, Korea, September 12-15, 2006, pages 942–952, 2006.

[44] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Dl-lite: Tractable description logics for ontologies. In
Proceedings, The Twentieth National Conference on Artificial Intelligence and the

Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pages 602–607, 2005.

[45] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. J. Autom. Reason., 39(3):385–429, 2007.

[46] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Foundations
of data-aware process analysis: a database theory perspective. In Proc. ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, pages 1–12,
2013.

[47] A. K. Chandra. Programming primitives for database languages. In Proc. ACM
Symp. on Principles of Programming Languages, pages 50–62, 1981.

[48] A.K. Chandra and D. Harel. Computable queries for relational data bases. Journal
of Computer and System Sciences, 21(2):156–178, 1980.

[49] A.K. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25(1):99–128, 1982.

[50] A.K. Chandra and D. Harel. Horn clause queries and generalizations. J. Logic
Programming, 2(1):1–15, 1985.

[51] E. F. Codd. A relational model of data for large shared data banks. Comm. of
the ACM, 13(6):377–387, 1970.

[52] L. Corciulo, F. Giannotti, and D. Pedreschi. Datalog with non-deterministic
choice computes NDB-PTIME. In Proc. of Intl. Conf. on Deductive and Object-
Oriented Databases (DOOD), 93.

[53] E. Dalhaus. Skolem normal forms concerning the least fixpoint. In E. Börger,
editor, Computation Theory and Logic, volume 270, pages 101–106. Springer
Verlag, Lecture Notes in Computer Science, Berlin/New York, 1987.

[54] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complex-
ity and expressive power of logic programming. ACM Comput. Surv., 33(3):374–
425, 2001.

[55] Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers, editors.
Datalog Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March
16-19, 2010. Revised Selected Papers, volume 6702 of Lecture Notes in Computer
Science. Springer, 2011.

[56] Alin Deutsch, RichardHull, and Victor Vianu. Automatic verification of database-
centric systems. SIGMOD Rec., 43(3):5–17, 2014.

[57] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Total and partial well-
founded Datalog coincide. In Proc. of Intl. Conf. on Database Theory, pages
113–124, 1997.

[58] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Games and total Datalog¬
queries. Theor. Comput. Sci., 239(2):257–276, 2000.

[59] C. L. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie
Mellon University, 1981.

[60] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Chris-
tian Schallhart, and Cheng Wang. DIADEM: thousands of websites to a single
database. Proc. VLDB Endow., 7(14):1845–1856, 2014.

[61] A. Van Gelder. Negation as failure using tight derivations for general logic
programs. In IEEE Symp. on Logic Programming, pages 127–139, 1986.

[62] A. Van Gelder. The alternating fixpoint of logic programs with negation. In
Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems,
pages 1–11, 1989.

[63] A. VanGelder, K.A. Ross, and J.S. Schlipf. Thewell-founded semantics for general
logic programs. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems, pages 221–230, 1988.

[64] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38:620–650, 1991.

[65] M. Gelfond and V. Lifschitz. The stable model semantics for logic programs. In
Intl. Conf. on Logic Programming, pages 1070–1080, 1988.

[66] F. Giannotti, D. Pedreschi, D. Saccà, and C. Zaniolo. Nondeterminism in deduc-
tive databases. In Proc. of Intl. Conf. on Deductive and Object-Oriented Databases
(DOOD), pages 129–146, Los Altos, CA, 1991. Springer Verlag, Lecture Notes in
Computer Science 566.

[67] Georg Gottlob and Christoph Koch. Monadic queries over tree-structured data.
In Proc. IEEE Symp. on Logic in Computer Science, pages 189–202, 2002.

[68] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power
of languages for web information extraction. J. ACM, 51(1):74–113, 2004. Also
in PODS 2002.

[69] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and Sergio
Flesca. The lixto data extraction project - back and forth between theory and
practice. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database
Systems, pages 1–12, 2004.

[70] Georg Gottlob, Reinhard Pichler, and Emanuel Sallinger. Function symbols in
tuple-generating dependencies: Expressive power and computability. In Proc.
ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, pages
65–77, 2015.

[71] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key
to tractability of knowledge representation and reasoning. In Proceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth
Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, pages 250–256, 2006.

[72] Georg Gottlob, Reinhard Pichler, and Fang Wei. Tractable database design
through bounded treewidth. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pages 124–133, 2006.

[73] Georg Gottlob, Reinhard Pichler, and Fang Wei. Abduction with bounded
treewidth: From theoretical tractability to practically efficient computation. In
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1541–1546, 2008.

[74] Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite
structures of bounded treewidth. ACM Trans. Comput. Log., 12(1):3:1–3:48, 2010.
Also in PODS 2007.

[75] Georg Gottlob and Andreas Pieris. Beyond SPARQL under OWL 2 QL entailment
regime: Rules to the rescue. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 2999–3007, 2015.

[76] Sergio Greco, Domenico Saccà, and Carlo Zaniolo. Extending stratified datalog to
capture complexity classes ranging from P to QH. Acta Informatica, 37(10):699–
725, 2001.

[77] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog
and recursive query processing. Found. Trends Databases, 5(2):105–195, 2013.

[78] Todd J. Green, Gregory Karvounarakis, Nicholas E. Taylor, Olivier Biton,
Zachary G. Ives, and Val Tannen. ORCHESTRA: facilitating collaborative data
sharing. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 1131–
1133, 2007.

[79] Martin Grohe. The quest for a logic capturing PTIME. In Proc. IEEE Symp. on
Logic in Computer Science, pages 267–271, 2008.

[80] Joseph M. Hellerstein. Datalog redux: experience and conjecture. In Proc. ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, pages 1–2.
ACM, 2010.

[81] Joseph M. Hellerstein. The declarative imperative: experiences and conjectures
in distributed logic. SIGMOD Rec., 39(1):5–19, 2010.

[82] T. Imielinski and W. Lipski. The relational model of data and cylindric algebras.
Journal of Computer and System Sciences, 28(1):80–102, 1984.

[83] N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86–104, 1986.

[84] Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Val
Tannen, Partha Pratim Talukdar, Marie Jacob, and Fernando C. N. Pereira. The
ORCHESTRA collaborative data sharing system. SIGMOD Rec., 37(3):26–32,
2008.

[85] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. J. ACM, 42(4):741–843, 1995.

[86] P. G. Kolaitis. The expressive power of stratified logic programs. Information
and Computation, 90(1):50–66, 1991.

[87] P. G. Kolaitis and C.H. Papadimitriou. Why not negation by fixpoint? In Proc.
ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, pages
231–239, 1988.

[88] S. Konolige. On the relation between default and autoepistemic logic. Artificial
Intelligence, 35(3):343–382, 1988.

[89] Nikolaos Konstantinou, Martin Koehler, Edward Abel, Cristina Civili, Bernd
Neumayr, Emanuel Sallinger, Alvaro A. A. Fernandes, Georg Gottlob, John A.
Keane, Leonid Libkin, and Norman W. Paton. The VADA architecture for cost-
effective data wrangling. In Proc. ACM SIGMOD Intl. Conf. on Management of
Data, pages 1599–1602, 2017.

[90] R. Krishnamurthy and S.A. Naqvi. Nondeterministic choice in datalog. In 5th
Int’l. Conf. on Data and Knowledge Bases, pages 416–424, Los Altos, CA, 1988.
Morgan Kaufmann.

[91] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On active deductive
databases: The Statelog approach. In Transactions and Change in Logic Databases,
International Seminar on Logic Databases and the Meaning of Change, Schloss
Dagstuhl, Germany, September 23-27, 1996 and ILPS ’97 Post-Conference Workshop
on (Trans)Actions and Change in Logic Programming and Deductive Databases,
(DYNAMICS’97) Port Jefferson, NY, USA, October 17, 1997, Invited Surveys and
Selected Papers, volume 1472 of Lecture Notes in Computer Science, pages 69–106.
Springer, 1998.

[92] V. Lifschitz. On the declarative semantics of logic programs with negation. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 177–192. Morgan Kaufmann, Los Altos, CA, 1988.

[93] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative networking. Commun. ACM, 52(11):87–95, 2009.

[94] Boon Thau Loo, Harjot Gill, Changbin Liu, Yun Mao, William R. Marczak,
Micah Sherr, Anduo Wang, and Wenchao Zhou. Recent advances in declarative
networking. In Claudio V. Russo and Neng-Fa Zhou, editors, Practical Aspects of
Declarative Languages - 14th International Symposium, PADL 2012, Philadelphia,
PA, USA, January 23-24, 2012. Proceedings, volume 7149 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2012.

[95] D. Maier and D. S. Warren. Computing with Logic: Logic Programming with
Prolog. Benjamin Cummings, Menlo Park, CA, 1988.

[96] David Maier, K. Tuncay Tekle, Michael Kifer, and David Scott Warren. Datalog:
concepts, history, and outlook. In Michael Kifer and Yanhong Annie Liu, editors,
Declarative Logic Programming: Theory, Systems, and Applications, pages 3–100.
ACM / Morgan & Claypool, 2018.

[97] R.C. Moore. Semantics considerations on non-monotonic logic. Artificial Intelli-
gence, 25:75–94, 1985.

[98] Y.N. Moschovakis. Elementary Induction on Abstract Structures. North Holland,
1974.

[99] S. Naqvi and S. Tsur. A language for data and knowledge bases. Computer Science
Press, Rockville, Maryland, 1989.

[100] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal
join algorithms: [extended abstract]. In Proc. ACM SIGMOD-SIGACT-SIGART
Symp. on Principles of Database Systems, pages 37–48. ACM, 2012.

[101] C.P. Papadimitriou. A note on the expressive power of prolog. Bulletin of the
EATCS, 26:21–23, 1985.

[102] The Laguna Beach Participants. Future directions in DBMS research. SIGMOD
Rec., 18(1):17–26, 1989.

[103] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Operational semantics
for declarative networking. In Practical Aspects of Declarative Languages, 11th
International Symposium, PADL 2009, Savannah, GA, USA, January 19-20, 2009.
Proceedings, volume 5418 of Lecture Notes in Computer Science, pages 76–90.
Springer, 2009.

[104] Philippe Picouet and Victor Vianu. Semantics and expressiveness issues in
active databases. J. Comput. Syst. Sci., 57(3):325–355, 1998. Also in ICDT 1997.

[105] T. Przymusinski. Every logic program has a natural stratification and an iterated
least fixpoint model. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems, pages 11–21, 1989.

[106] T. Przymusinski. Well-founded semantics coincides with three-valued stable
semantics. Fundamenta Informaticae, XIII:445–463, 1990.

[107] R. Ramakrishnan and J.D. Ullman. A survey of deductive database systems. J.
Logic Programming, 23(2):125–149, 1995.

[108] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1):80–132, 1980.
[109] D. Saccà and C. Zaniolo. Stable models and non-determinism in logic programs

with negation. In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems, pages 205–217, 1990.

[110] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson
Condie, and Carlo Zaniolo. Big data analytics with datalog queries on spark. In
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 1135–1149, 2016.

[111] Michael Stonebraker and Joseph M. Hellerstein, editors. Readings in Database
Systems, Third Edition. Morgan Kaufmann, 1998.

[112] VADA project website. http://vada.org.uk, 2021. Accessed: 2021-03-04.
[113] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a

programming language. J. ACM, 23(4):733–742, 1976.
[114] M. Y. Vardi. The complexity of relational query languages. In Proc. ACM SIGACT

Symp. on the Theory of Computing, pages 137–146, 1982.
[115] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In

Proc. of Intl. Conf. on Database Theory, pages 96–106, 2014.
[116] Victor Vianu. Rule-based languages. Ann. Math. Artif. Intell., 19(1-2):215–259,

1997.
[117] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced

Database Processing. Morgan-Kaufmann, 1995.
[118] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie,

and Matteo Interlandi. Fixpoint semantics and optimization of recursive datalog
programs with aggregates. Theory Pract. Log. Program., 17(5-6):1048–1065, 2017.

http://vada.org.uk

	Abstract
	1 Introduction
	2 Background
	3 The Declarative Approach
	3.1 Datalog
	3.2 Stratified Datalog
	3.3 The Well-Founded Semantics

	4 The Forward Chaining Approach
	4.1 Datalog
	4.2 Datalog
	4.3 Datalognew
	4.4 Limitations in expressive power
	4.5 The impact of order

	5 Nondeterministic languages
	5.1 Nondeterministic Datalog()
	5.2 Expressive power
	5.3 Connections with Determinism

	6 Datalog Redux
	7 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 49.65, 69.23 Width 249.20 Height 91.66 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 49.6485 69.2326 249.1972 91.6587

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 13
 0
 1

 1

 HistoryList_V1
 qi2base

