
Application View Maintenance: Optimizing
Change Propagation in Mobile Applications

Konstantinos Zarifis
University of California, San Diego

zarifis@cs.ucsd.edu

Yannis Katsis
University of California, San Diego

ikatsis@cs.ucsd.edu

Yannis Papakonstantinou
University of California, San Diego

yannis@cs.ucsd.edu

Abstract
Web Frameworks that adopt the Model-View-ViewModel (MVVM)
design pattern have been extensively used in the web community
for the development of fully-fledged applications. Such frame-
works, typically, provide algorithms that automate the maintenance
of the application’s view when mutations occur to the underlying
data (also known as model). The automation of this process, com-
monly referred to as Application View Maintenance (AVM), sig-
nificantly improves developer productivity, since it alleviates the
developer from manually performing this task. Such algorithms are
also capable of mutating individual parts of the view when the un-
derlying data mutate, thus avoiding a full reload and rerendering of
the entire application view, (a very expensive operation for HTML
content, especially in the mobile setting).

However, as we show in this work, AVM algorithms of exist-
ing MVVM frameworks are still suboptimal performance-wise. By
continuously exploring the model for mutations, they have a com-
plexity that is proportional to the size of the model and not to the
size of mutations. This suboptimality combined with the low com-
putational power of mobile devices, can lead to severely inefficient
mobile apps, which can also impact the user experience. To address
this issue, we propose a novel AVM algorithm which uses existing
incremental view maintenance techniques, to directly identify the
mutated parts of the model and infer the respective parts of the view
that need to be updated, while avoiding a blowup in complexity pro-
portional to the size of the model of the application. The complexity
and memory consumption of the proposed algorithm are shown to
be typically significantly lower than existing approaches.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Frameworks

General Terms Languages, Performance, Algorithms

Keywords MVVM, change propagation, incremental view main-
tenance

1. Introduction
Model-View-Controller (MVC) frameworks were, until very re-
cently, the state-of-the-art for implementing robust client-side web
applications. When using such frameworks, the application devel-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

World Wide Web Conference ’17 April 3– 7, 2017, Perth, Western Australia
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1. Running Example: Product Monitoring System

oper is solely responsible for propagating mutations to the state of
the application (model) and subsequently to the respective visual
layer (view). This change propagation is handled manually by em-
ploying imperative logic for every single event that might cause
changes at any part of the application state. This extended use of
imperative code makes application development very laborious and
error-prone, especially in bigger, more complex applications, and
results in a code-base that is very difficult to debug and maintain.

MVVM web application frameworks have managed to absolve
developers from such low-level handling of change propagation by
providing constructs that allow them to work at a higher level of ab-
straction. Such frameworks, typically, allow developers to describe
the application using a declarative specification (template). Intu-
itively the template contains rules that describe how the model of
the application can be transformed into its view. One of the impor-
tant benefits of a declarative template is that frameworks can reason
about it and automate the process of change propagation. Popu-

<!-- ... More HTML ... -->!
<table> !
 <tr> <!-- column labels --> </tr>!
 <tr> !
 <td> 0 </td>  
 <td> Microsoft Surface Book </td>!
 <td> 2.96 </td>  
 <td> 693 </td>  
 <td> 2014 </td> !
 </tr>!
 <tr> !
 <td> 1 </td>  
 <td> Lenovo ThinkPad W540 </td>!
 <td> 3.3 </td>  
 <td> 283 </td>  
 <td> 2015 </td> !
 </tr>  
<!-- ... More HTML ... --> !

<!-- ... More template ... -->!
<table>!
 <tr> <!-- column labels --> </tr>!
 <% for product in products %>!
 <tr>!
 <td> <% print product.id %> </td>!
 <td> <% print product.name %> </td>!
 <td> <% print product.rating %> </td>!
 <td> <% print product.units %> </td>!
 <td> <% print product.year %> </td>!
 </tr>!
 <% end for %>!
</table>!
<!-- ... More template ... -->!

[!
 {!
 “id”: 0,!
 “name”: “Microsoft Surface Book”,!
 “rating”: 2.96,!
 “units”: 693,!
 “year”: 2014!
 },!
 {!
 “id”: 1,!
 “name”: “Lenovo ThinkPad W540”,!
 “rating”: 3.3,!
 “units”: 283,!
 “year”: 2015!
 },!
 ...!
]!

(a) Model (b) Template (c) View

Figure 2. MVVM Components for Running Example

lar MVVM frameworks automatically transform mutations on the
model to mutations on the view through mechanisms that are invisi-
ble to the application developer. This notably decreases the amount
of code that has to be written and results in easier-to-develop and
maintain applications while at the same time offering more efficient
rendering since only the parts of the view that depend on mutated
parts of the model are rerendered.

Unfortunately this automation does not come without draw-
backs. As we explain in this paper change propagation algorithms
in existing MVVM frameworks are suboptimal, performing much
worse than the carefully crafted change propagation code that an
application developer would write in an MVC framework. This
suboptimality comes mainly from the fact that existing MVVM
frameworks do not know how the model was mutated since the last
invocation of the change propagation algorithm. In their attempt to
identify the updated parts of the model, they continuously compare
the previous state with the current state of it, resulting in a com-
plexity that is proportional to the size of the model. In other words,
existing change propagation algorithms may end up exploring the
entire model for changes even if a very small part of it actually
changed.

In this work, we explain this inefficiency and present a novel
change propagation approach that avoids computations propor-
tional to the size of the model. Our approach has two important
components: The first component ensures that the change propaga-
tion algorithm knows directly which parts of the model changed.
This is accomplished by observing that most web applications de-
rive their model from databases, which can - using existing algo-
rithms, known as incremental view maintenance (IVM) algorithms
- provide information on what has been modified. The second com-
ponent makes sure that these changes to the model are efficiently
translated to changes on the view. We present an algorithm that per-
forms this transformation, which, although inspired by traditional
IVM approaches, significantly differs from them due to a different
data model and language. The resulting change propagation algo-
rithm has complexity that is proportional to the maximum of (a)
the (typically small) size of the specification of the application and
(b) the changes that need to be applied to the view (i.e., the output
of the algorithm). By not depending on parts of the model that have
not changed, our algorithm can exhibit significant savings over ex-
isting approaches.

Contributions. To summarize, this work makes the following con-
tributions:

• A description of the change propagation algorithms of exist-
ing MVVM frameworks, with an analysis of their complexity,
showing that they are at least proportional to the size of the
model.

• A novel architecture that leverages traditional IVM techniques
to directly inform the framework of specific model mutations.

• A novel change propagation algorithm that can efficiently trans-
late model mutations to view mutations with a corresponding
complexity analysis showing its complexity is typically signifi-
cantly lower than that of existing approaches.

• An experimental evaluation of our change propagation algo-
rithm against the respective change propagation algorithms
employed by the most popular MVVM frameworks currently
available.

Paper Outline. The paper is structured as follows: In Section 2 we
explain the general architecture of MVVM frameworks. In Section
3 we describe the algorithms used by existing MVVM frameworks,
showcasing their suboptimal nature. This inefficiency is addressed
in Sections 4 and 5 where we introduce a novel change propagation
algorithm inspired by works in incremental view maintenance. In
Section 6 we provide an experimental evaluation of our propagation
algorithm against other MVVM frameworks. Finally, in Sections 7
and 8 we discuss related work, future work and conclude the paper.

2. Background - MVVM Framework
Architecture

We next present the basic architecture of MVVM frameworks.
Although individual frameworks differ in their details, most widely
used MVVM frameworks, including AngularJS [5] and ReactJS
[20] follow the same basic architecture outlined below. To describe
the MVVM framework architecture, we will be showing how such
frameworks can be utilized for the implementation of a mobile
(hybrid) application that can be used to monitor information about
products offered by an e-commerce company. We next describe the
details of this application.

EXAMPLE 2.1. The screen, shown in Figure 1, displays live infor-
mation about the product availability at the company’s warehouse.
Technically, this screen is rendered as an HTML table, with each
row corresponding to an individual product and each column to a
particular attribute of a product, such as product ID, name, user
rating, stock availability and year of release. The screen also con-

tains a search box that simplifies the process of obtaining informa-
tion about individual products. As the user types the name of a par-
ticular product the application automatically scrolls up or down
in order to show the row that contains information about the se-
lected product while at the same time it automatically highlights
the product name (similarly to how the search functionality works
on a desktop browser). It is important to note that, as with most
modern monitoring applications, this system is live, therefore the
screen is updated whenever the underlying data, such as the user
rating or the stock availability of a product, change.

An MVVM framework typically consists of three components:
the model, containing the data that should be displayed on the
page, the view, which is the visual page the application user finally
sees and interacts with, and the template, which is a declarative
specification file describing how to transform the data (i.e., the
model) to the visual page (i.e., the view).

EXAMPLE 2.2. Figure 2 shows the model, view, and template for
our running example. The model (shown on the left) consists of a
JSON array containing the product information as it is typically
retrieved from a database. The view (shown on the right) is the
HTML code corresponding to the product table as it is rendered
by the browser.1 Finally, the template (shown in the middle) is a
declarative specification describing how the model is used to create
the view.

Template languages differ across frameworks. However, ab-
stracting out their differences, all template languages offer at least
the following features: (a) an iteration construct, similar to a for
loop, allowing iteration over the members of a collection in the
model, (b) a print construct allowing values of the model to be
printed in the view, and (c) an HTML generation construct allow-
ing the creation of HTML elements, such as tables, cells, etc. To
abstract out from notations and implementation details of partic-
ular frameworks we will be using in this work a simple template
language that offers the above features.2 The language allows users
to specify templates by writing HTML code that may have two
types of embedded directives: a for directive, corresponding to the
iteration construct and a print directive, corresponding to the print
construct. We say that each of these directives binds an element
of the model (being a collection or a scalar) to the view. Due to
space limitations we do not give a formal definition of the template
language but explain it instead through an example.

EXAMPLE 2.3. Figure 2b shows the template of our running ex-
ample. It contains HTML table tags to generate the table object, a
for directive to iterate over the product array and create a row for
each product and print directives to print in table cells each of the
product attributes.

When a page is first loaded, MVVM frameworks evaluate the
template over the model and create the view, which is then rendered
by the browser. What is more interesting is what happens when
the model is updated (for instance when the stock availability
of a product changes). To avoid recomputing the entire template
and re-rendering the entire view whenever a small part of the
model changes, MVVM frameworks typically contain an automatic

1 Technically, the HTML code displayed in Figure 2c is a description of the
view, in contrast to the actual view, which is the visual page produced as the
result of rendering the code. However, this distinction is immaterial to this
work and therefore we will be referring to the HTML code as the view.
2 Although some template languages offer additional constructs, in this
work we focus on the above constructs, which also represent the core
constructs of web applications. Support for a more expressive template
language will be the focus of our future work.

Model Template ViewEvents

Figure 3. Life-Cycle of an MVVM framework

change propagation mechanism for modifying and re-rendering
only the affected parts of the view. This mechanism is described
in the next section.

3. Change Propagation in Existing MVVM
Frameworks

During the lifetime of an application, the underlying model is sub-
ject to mutations. Upon such events, MVVM frameworks invoke
a change propagation algorithm that identifies the model changes
and infers the corresponding view changes that have to be applied.
Figure 3 graphically depicts this process. In this Section we look at
such change propagation algorithms and show that they are subop-
timal both in efficiency and memory consumption. We deliver the
argument using as an example the change propagation algorithm of
AngularJS [5], one of the most popular MVVM frameworks, sup-
ported and maintained by Google and by a rich community of third-
party contributors. As we briefly discuss at the end of the Section
though, similar arguments can be delivered for every other popular
MVVM framework.

In a nutshell, change propagation in Angular takes place in the
following manner: Starting from the fully evaluated view, Angular
identifies all visual elements that are derived from the model (i.e.,
were created through template bindings) and marks for each of
them, the respective part of the model they were derived from.

EXAMPLE 3.1. In our running example, Angular marks that the
value “Microsoft Surface Book” in the view was generated from
attribute “name” of the first element of the model array. Similarly,
for all the other values of the view that come for the model.

For each derived part of the view, Angular places a watcher
that observes the corresponding part of the model that affected
that particular part of the view. When this watcher is invoked,
it checks whether the observed object was mutated since its last
invocation by comparing the current value of it (also referred to
as post-state) to its old cached value (also known as pre-state).
Angular utilizes two types of watchers, shallow and deep. Shallow
watchers compare changes to the reference of the object, while
deep watchers compare changes to the entire value of the object
(which may entail recursively comparing nested objects). If this
process, called dirty checking, identifies that the observed part of
the model was mutated, the framework invokes a renderer that is
capable of appropriately mutating the respective part of the view.

EXAMPLE 3.2. For instance, in our running example, a watcher
will be placed to observe (among others) the units attribute of
the first element of the model array to check whether the stock
availability of the first product changes. If it does (e.g., from 693

to 692), the watcher will call the appropriate renderer to change
the text shown on the corresponding cell of the HTML table from
693 to 692.

When change propagation is initiated, AngularJS carries out a
process called digest-cycle, which iteratively invokes all watchers
that have been placed on the model to perform dirty checking.
Since all watchers are invoked when the digest-cycle is triggered,
Angular’s propagation algorithm has a complexity of O(wd), with
w, the number of watchers and d, the size of the observed object
(with d = 1 if all watchers are shallow). Since each part of
the model bound to the view has a corresponding watcher, the
complexity of the propagation algorithm is essentially proportional
to the total number of model attributes that are bound to the view.
This number can be substantial especially for applications that
display a big part of the model. As a result, even if only a minor
mutation is applied to the model, Angular will end up comparing
the pre-state to the post-state of a very large portion of it (only to
find that most of the checked parts were not even modified).

This procedure is not only computationally expensive, but also
memory-intensive, as it requires storing both the pre-state and the
post-state of the entire model in the main memory, so that watchers
can perform the comparison between the two. For that reason ap-
plications that contain large views (which are derived from equally
large models) often have very high memory requirements that may
not be easily satisfiable by mobile devices. Furthermore, given the
limited computational resources of such devices and the single-
threaded nature of JavaScript (which is the language these algo-
rithms are written in), this procedure can also lead to unrespon-
sive applications since the user-interface often appears to be frozen
while this propagation algorithm operates, which significantly im-
pacts the user experience of the application.

EXAMPLE 3.3. Continuing our running example, assume that the
model consists of 1,000 products. Since each product consists of
5 attributes, each shown on a cell in the view, Angular will place
5,000 watchers. Thus, every time a single value of the model is
changed (e.g., the stock availability of the first product), Angular’s
change propagation algorithm will invoke 5,000 watchers to com-
pare the pre-state and post-state of all 5,000 values in the model
(even though all of them but one have remained stable).

Discussion. While one may think that this substantial number of
comparisons is an inefficiency particular to Angular, it is in fact
a common property of most popular MVVM frameworks (such as
ReactJS [20], Mithril [17] and others). Although the specific de-
tails and the resulting complexity differs slightly between frame-
works (e.g., ReactJS compares the pre-state and post-state of the
view instead of the model), all frameworks end up performing a
large number of comparisons. The reason is that they lack a way
of tracking the mutations that happen to the model and thus have
to perform a significant number of comparisons to reverse engineer
the changes. However, as we show next this can be avoided by ap-
propriately tracking the mutations that happen to the model using
techniques borrowed from the database incremental view mainte-
nance literature.

4. IVM-inspired Change Propagation
Existing MVVM frameworks treat the model as a black box object
that may be mutated in any way between invocations of the change
propagation algorithm. This is the reason why during change prop-
agation they spend significant processing and memory resources
in identifying the mutations that have happened to the model. In
this section we show how this can be avoided. In particular, we
show that for data-driven web applications that retrieve their model
from a database, the framework can know directly which changes

DBMS
IVM

View

MVVM IVM

IVM
Renderer

Model Diffs

View Diffs

Renderer
Calls

Source
Mutations

Triggers

Figure 4. Architecture

have happened to the model by adopting existing incremental view
maintenance (IVM) techniques proposed in the database literature.
Given this knowledge of the model mutations, the framework can
compute the corresponding view mutations by reusing, and in this
instance, also extending existing IVM techniques. Given the im-
portance of IVM in our approach, we next briefly outline the IVM
problem in databases before showing how it can be used for change
propagation in web applications.

4.1 IVM in Databases
A common technique used in database management systems
(DBMSs) to accelerate query processing is to store in the DBMS
the results of commonly asked queries. These stored query results
are referred to as materialized views. While materialized views
speed up query answering, they also introduce a complication:
Since materialized views are results of queries over the data, they
can get out of sync when the underlying data change and need to
be maintained. A straightforward solution for view maintenance is
to recompute the entire view (i.e., query) whenever the underlying
data change. However, this can be very costly, especially when the
dataset is large or the query performs some expensive computation
(such as aggregations) or contains calls to complex user defined
functions.

To avoid this problem, database researchers have worked on
incremental view maintenance (IVM) algorithms, which given as
input the changes that happened to the base tables, compute the
changes that have to happen to the view. By focusing only on
propagating changes (and not recomputing the query over the en-
tire dataset) IVM algorithms are typically significantly faster than
query recomputation approaches. IVM has been a widely studied
technique in the database literature, with a very large number of
publications ranging from the early years of the database field [6–
8, 13, 18] to very recently [4, 15]. For comprehensive surveys on
incremental view maintenance, the reader is referred to [11, 12].

An important concept in IVM works is the notion of diffs. Diffs
describe changes that happened to a table and are therefore used to
represent both the input of an IVM algorithm (i.e., the changes that
have happened to the database tables), as well as its output (i.e.,
the changes that should be applied to the table corresponding to
the materialized view). For the purpose of this discussion, diffs can
be thought of as descriptions of which tuples have been inserted,
deleted or updated in a table.

4.2 IVM-inspired Change Propagation
Having described IVM in general, we are now ready to describe
how it can be used to enable efficient change propagation in

MVVM frameworks. In this work we focus on applications, whose
model is created by querying a database. This is very common in
today’s era of data-driven web applications.

EXAMPLE 4.1. The model of our running example could be cre-
ated by posing the following query over a database containing
two tables, Product and Stock containing general information
about products and stock availability, respectively: SELECT p.id,
p.name, p.rating, s.units, p.year
FROM Product p, Stock s
WHERE p.id = s.id

Since the model is the result of a query over the database, we
can employ existing IVM approaches to provide the framework
directly with the changes that took place on the application model.
In this case, we treat the application model as a materialized view
and ask the DBMS IVM to simply provide the diffs that represent
the changes. In this way, we avoid expensive computations done
by existing frameworks that reverse-engineer the mutations that
occurred (by comparing the pre-state of the model or view with its
post-state) while at the same time limiting the network utilization of
the application since only the information that is needed to update
parts of the model is transmitted to the client instead of the entire
model.

However, this is only the first step. Given the changes to the
model, the framework has to identify the parts of the view that have
to be modified. In existing MVVM frameworks, such as Angular,
this is straightforward, since for each part of the view that can be
modified the framework assigns a watcher over the model. This
watcher is attached to the particular part of the view and thus when-
ever the watched object changes, the framework knows which part
of the view to modify. In our proposed framework though, where
watchers are not preemptively built for all parts of the view that can
be modified, there is no immediate connection between model diffs
and corresponding view changes. The translation has to be done by
an algorithm. This algorithm (which we call MVVM-IVM, as it is
inspired by IVM approaches) takes as input model mutations (rep-
resented as model diffs) and translates them to mutations on the
view description (represented as view description diffs). Finally,
the view description diffs are translated to appropriate renderer in-
vocations that perform the actual view mutations.

Figure 4 shows the resulting architecture. Mutations on the
database tables trigger a traditional DBMS IVM algorithm, which
computes the diffs to the application’s model. These model diffs
are eagerly propagated to the client with the use of WebSockets
[2]. Upon arrival the MVVM-IVM algorithm translates these model
diffs into diffs on the view description. Finally, the IVM renderer
utilizes the view description diff to access the DOM element, tar-
geted by it and invoke renderers that are capable of causing the
apropriate mutations to the respective part of the view.

Out of the above modules, the main novelty lies in the MVVM-
IVM algorithm. It is important to note that, in contrast to the
DBMS IVM algorithm, which we simply borrow from existing
work, the MVVM-IVM algorithm, although inspired from IVM
works, is not a direct adaptation of any existing algorithm. It may
have the same signature as traditional IVM algorithms (which input
diffs and output diffs) but it operates on a different data model
(JSON/HTML instead of the relational model of DBMSs), as well
as on a different language (the template language in contrast to
the SQL language targeted by DBMS IVM techniques). We next
describe the algorithm and discuss its complexity.

5. The MVVM-IVM Algorithm
The MVVM-IVM algorithm takes as input a set of mutations on
the model and produces a set of mutations on the view description.

Signature Semantics

∆insert
array (p̂[k]; v) Insert into array at path p̂,

at position k the value v

∆update(p̂; v) Replace element at path p̂ with value v

4delete(p̂) Delete element at path p̂

Table 1. Possible Diff Signatures

As in traditional IVM approaches, both input and output mutations
are represented as diffs. We next describe the structure of a diff.

Diffs. A diff is of the form ∆type(path; payload), where type is
the type of the modification (insert-array, update, or delete), path
is the path to the element that has changed and payload is the new
value of the element (unless the diff is of type delete in which case
the payload is not applicable). Table 5 summarizes the possible
diff signatures and their semantics.

EXAMPLE 5.1. Continuing our example, assume that the stock
availability of the first product changes from 693 to 692. In that
case, the incoming diff to the MVVM-IVM algorithm will be
∆update(products[0].units; 692), which denotes that the value
of the attribute units of the first products tuple changed to 692.

Our diffs use a simple path language, where p[i] represents the
i-th element of the array at path p and p.n represents the value
of the attribute named n in the tuple at path p. We also assume
that an empty path represents the root of the model. Note that
for uniformity the same path language is also used by the out-
put diffs, which refer to the view description, which is an HTML
(and not a JSON) document. In this case to interpret the paths one
has to look at the HTML document as a JSON document, where
each node of the HTML document is represented as a tuple with
a single attribute/value pair with the following structure: The at-
tribute of the tuple is the name of the node, while the value is an
array containing the JSON representation of the node’s children.
For instance, using this representation, an HTML document of the
form <tr><td>1</td><td>2</td></tr> is represented
by the JSON value {"tr": [{"td": 1}, {"td": 2}]}.

The MVVM-IVM algorithm. Given a set of diffs on the model,
the MVVM-IVM algorithm (shown as Algorithm 1) translates them
into diffs on the view description. To do the translation, it scans
the template from top to bottom, performing work only for the
directives (since they are the ones that can bind elements to the view
description). In each invocation it visits only top-level directives
(i.e., directives that do not appear nested inside other for directives),
as nested directives are acted upon during recursive calls. Since our
template language supports two types of directives - for directives
and print directives - we distinguish two cases.

In the case of a print directive of the form <% print p̂ %
>, where p̂ is a path expression (lines 5-7), the algorithm works
in two steps. It first computes how the input diff transforms the
element targeted by the path (i.e., it computes a new diff for the
element targeted by the path). At this point the diff describes how
the path expression was changed but does not yet take into account
where this value will appear in the view description (i.e the diff
does not have the appropriate path yet). To add this information,
the algorithm in the second step prefixes the path of the diff with
the path where the directive appears in the template. The first step
is performed by the IVMPath procedure (shown as Algorithm 2)
and the second step is performed by the prefixDiffs procedure
(omitted due to lack of space).

In the case of a for directive of the form <% for var in p̂ % >,
where p̂ is a path expression (lines 8-29), the algorithm proceeds

as follows. It firsts computes the diff on the path expression by
calling the IVMPath procedure as explained above. The next step
depends on the computed diff. There are three mutually exclusive
cases (lines 8-24) and one case that may occur together with one of
the others (lines 25-29). We start by explaining the first three cases:

• If the diff updates the entire element targeted by p̂ (in other
words if it changes the entire element over which the for
loop iterates) (lines 10-14), then the algorithm evaluates the
for loop on the diff payload (i.e., on the new value of p̂) and
creates a diff that replaces the result of the original for loop
evaluation with the newly computed result. In order to eval-
uate the for loop on the diff payload, the algorithm instanti-
ates the sub-template rooted at the for directive by calling the
instantiateTemplate procedure.

• If the diff inserts a new element to the element targeted by p̂
(i.e., if it inserts a new element to the collection over which
the for loop iterates) (lines 15-18), then the algorithm evaluates
the body of the for loop on the value of the new element and
creates a diff that inserts the result of this computation at the
right position of the view description.

• If the diff mutates an element of p̂ (i.e., if it mutates an element
of the collection over which the for loop iterates) or part thereof
(lines 19-24), then the algorithm first constructs a diff that
mutates the loop variable var. Then the algorithm recursively
calls itself for the sub-template rooted at the body of the for-
directive and the loop variable diff.

• In addition to these three mutually exclusive cases, there is also
a fourth possibility, which applies in scenarios where directives
that appear nested inside the for loop depend on variables other
than the loop variable var. For instance, this would happen in
our running example if the for directive contained in its body
the line <td><% print products[0].units %></td>
(i.e., if for some reason the template was printing the stock
availability of the first product in the entry of every product pro-
duced by the for directive). In this case (lines 25-29), the algo-
rithm first recursively calls itself for the sub-template rooted at
the body of the for-directive (without binding the variable of the
for loop). Then it extends the resulting diffs so that they apply
to every element produced by the for directive.

Discussion. The complexity of three out of the five cases (i.e., the
case of the print directive and the second and third case of the for
directive), depends only on the size of the template. The only cases
that depend on the size of parts of the model are the first and fourth
cases of the for directive, when the algorithm evaluates a for di-
rective and creates diffs for every element produced by a for direc-
tive, respectively. However, in both cases the work is proportional
to the output of the algorithm, i.e., to the changes that have to be
applied to the view description. Therefore, the MVVM-IVM algo-
rithm has a complexity proportional to the maximum of the size of
the template (which is usually small) and the size of the changes to
the view description. This comes in stark contrast to change prop-
agation in existing MVVM frameworks, which have complexity at
least proportional to the size of the model that is bound to the view.
Note that the difference in complexity can be substantial, as the
complexity of the MVVM-IVM algorithm depends on the size of
the changes, while the complexity of existing change propagation
algorithms depends also on parts of the model that do not lead to
any changes. The complexity of our algorithm is thus similar to the
complexity of manually-crafted change propagation code written
by application developers in MVC frameworks.

Interestingly, the MVVM-IVM algorithm is also superior to
existing algorithms when it comes to memory consumption. Since
it does not need to perform comparisons to figure out what has

Algorithm 1: MVVM-IVM

1 function MVVMIVM(Template T , Model M , Set of Input Diffs
Din)

2 Set of output diffs Dout ← empty bag;
3 for top-level directive d ∈ T do
4 d.path← path to d in template T
5 if d is <% print Path ê %> then
6 ∆← IVMPath(ê,M,Din);
7 Dout = Dout ∪{prefixDiffs(d.path, {∆})}
8 else if d is <% for Var y in Path ê %>B<% end for%>

then
9 ∆type(t̂; p)← IVMPath(ê,M,Din);

10 if t̂ = empty then
11 if type = update then
12 Let T ′ be the template rooted at d,

where ê is replaced by p;
13 p′ ←

instantiateTemplate(T ′,M);
14 Dout =

Dout ∪ {∆update(d.path; p′)};
15 else if t̂ = [k] and type = insert array then
16 M ′ ←M#{y ← p};
17 p′ ← instantiateTemplate(B,M ′);
18 Dout = Dout ∪ {∆insert

array (d.path[k]; p′)};
19 else if t̂ = [k]ŝ then
20 D′

in ← Din ∪ {∆type(y ŝ; p)};
21 Dnested = MVVMIVM (B, M , D′

in);
22 remove first path step of each diff in

Dnested;
23 Dout ←

Dout∪prefixDiffs(d.path[k], Dnested);
24 Dnested = MVVMIVM (B, M , Din);
25 if Dnested not an empty bag then
26 l← length of array e targeted by Path ê
27 for i in [0 ... l] do
28 Dout ← Dout ∪

prefixDiffs(d.path[i], Dnested);
29 end

30 end
31 return Dout;

changed, it does not need to keep both the pre-state and the post-
state of the model (something that happens for instance in the case
of Angular). It suffices to keep only the post-state of a subset of the
model (in particular, the collections that appear in for directives).

6. Experimental Evaluation
To evaluate our propagation algorithm, we compared it to Angu-
lar, Angular 2 and ReactJS in terms of performance. More specifi-
cally, we measured the time needed by each framework, to prop-
agate a simple model mutation all the way to the view. All ex-
periments were executed on a mobile device (LG G4-H811) run-
ning Android 6.0 (Marshmallow), with 1.8 GHz 64-bit Hexa-Core
CPU (Chipset: Qualcomm Snapdragon 808) and 3 GiB of RAM.
The application runs inside a native wrapper that internally uses
Android’s WebView [3] which is based on Google Chrome (ver-
sion: 53.0.2785.124). Google Chrome’s Remote Debugging tool
was used to connect the mobile device to a desktop computer in

Algorithm 2: IVMPath

1 function IVMPath(Path Expression ê, Model M , Set of Input
Diffs Din)

2 for each ∆type(t̂; p) ∈ Din do
3 if t̂ is êŝ then
4 return ∆type(ŝ; p)

5 else if ê is t̂ŝ then
6 if type = update then
7 p′ ← navigate(p, ŝ) ;
8 return ∆update(empty; p′)
9 if type = delete then

10 return ∆delete(empty)
11 else
12 p′ ← navigate(M, ê) ;
13 return ∆update(empty; p′)
14 end
15 return null;

order to enable us to collect the measurements presented in this
section. Specifically, Google Chrome’s profiling tools were used to
retrieve measurements for each tested operation.

Performance of change propagation. To see how these frame-
works perform with regard to change propagation, we used them
to implement the product monitoring system of our running exam-
ple. Since all competing frameworks operate strictly on the client,
we used the part of our architecture that operates on the server-
side (shown in Figure 4 on the left side) to instantiate the model
and propagate it to the client. We then used the template language
and API provided by each framework to generate the HTML table
appearing in Figure 1.

After this step was completed we began modifying the prod-
uct attributes in the underlying database tables which in turn trig-
gered our IVM algorithm. The IVM algorithm generated a model
diff for each mutation that was applied to the database tables. More
specifically, we opted for modifying the User Rating field for each
product in order to ensure a consistent diff size that also leads to a
consistent series of steps on the client, causing the mutation of ap-
proximately equal portions of the application view. The model diff
was eagerly transmitted to the client with the use of WebSockets.
Upon retrieval, we applied the incoming diffs to the model of the
application and we triggered the change propagation algorithm for
each framework. Since all the steps prior to the invocation of the
change propagation algorithm were common across frameworks,
the respective time needed for their completion was also the same.
What was not the same however, was the time required for each
change propagation algorithm to locate the model mutation and call
the appropriate renderer that mutates the view.

In order to explore how the change propagation algorithm is
affected by the size of the model (and the view) of the application
we first constructed a screen with a number of products x and we
measured the time required for the change propagation algorithm
and the renderer to execute. We then began increasing the total
number of products appearing on the screen while still modifying
the User Rating for each product. Figure 5 graphically depicts the
time required by each framework to apply a mutation to the view.
The X axis shows the number of products that appear in the view
and the Y axis shows the time in milliseconds that was needed for
the completion of each task, in a logarithmic scale. Each column
corresponds to the total time needed by each framework to fully
propagate the changes and it is broken down to the time required

Number	of	Products

M
ill
is
ec
on
ds

Change Propagation Break-Down

Angular's	Rendering Angular's	Change	Propagation IVM	Renderer
MVVM-IVM	Change	Propagation React	Rendering React	Change	Propagation
Angular	2	Rendering Angular	2	Change	Propagation

100 1K 10K 50K
1

10

100

1000

10000

Highcharts.com

Figure 5. Experimental Evaluation

by the change propagation algorithm and the actual renderer to
execute.

Experimental Evaluation. In Table 2 we provide detailed in-
formation about the time that was needed for each stage to termi-
nate. As we observe, there are no measurements for ReactJS when
the total number of products appearing in screen is equal to 50K
products, the reason is that the ReactJS framework was unable to
generate the view and the application became unresponsive for an
extend amount of time, which forbid us from collecting the respec-
tive measurements. As we observe both from Figure 5 and the table
2 the rendering stage performs fairly similar for all frameworks,
the slight edge that Angular2 and ReactJS appear to have in render-
ing performance is appointed to the fact that they invoke slightly
more precise renderers that update smaller parts of the view. What
is more interesting however is the fact that the MVVM-IVM’s prop-
agation algorithm is consistently more efficient than the respective
propagation algorithms offered by the other frameworks. One of
the biggest advantages of the MVVM-IVM algorithm is that it is
not affected by the total time of products that appear in the view (or
the model from which the view was derived). Additionally the fact
that all the competing propagation algorithms perform similarly or
much worse than the respective rendering step, proves that they
introduce a significant overhead, since rendering is a notoriously
expensive computation when the view consists of HTML content.

Discussion. It is worth mentioning that 30 fps is the minimum
frame-rate that needs to be supported by an application in order
to ensure a seamless user experience. What that means is that,
each stage involved in mutating the view should be completed in
about 33.3 ms, anything more than that results in a deteriorated user
experience. Despite the fact that propagation algorithms appear to
be independent of the rendering process, that is not the case. In
fact any operation that takes more than 33.3 ms to complete can
negatively affect the user experience due to the single-threaded
nature of JavaScript. For that reason the minimal overhead that is
added by MVVM-IVM is desired because not only it ensures the
immediate propagation of mutations to the view without delays but
at the same time it does not interfere with the user experience of
the application.

7. Related Work
We mentioned the most closely related work, namely MVVM
frameworks, in the previous sections of the paper. In section 3, we
describe the fundamental limitations that prohibit such frameworks
from operating in an efficient manner on mobile devices. Addition-
ally, in section 4.1 we describe the main focus of IVM techniques
employed by database systems which is what powers our propa-
gation algorithms. In this section, we briefly describe work that
is more peripherally related to the concept of change propagation.

MVVM IVM AngularJS Angular 2 ReactJS

Products Change
Propagation Rendering Change

Propagation Rendering Change
Propagation Rendering Change

Propagation Rendering

100 6.49 3.588 6.61 9.79 13.044 3.118 15.306 2.492
1K 9.052 17.746 29.736 28.05 46.972 15.088 154.542 14.238
10K 9.792 137.462 152.568 124.124 247.956 85.156 646.682 79.078
50K 8.214 696.334 493.576 961.644 1390 607.826 - -

Table 2. Change propagation breakdown for each framework

This work has been conducted by researchers mainly in the fields
of programming languages and algorithms.

In the algorithms community, researchers have worked on de-
signing dynamic algorithms that are capable of efficiently updat-
ing their output given dynamic changes on their input. Surveys
that have been conducted in this area [10] describe numerous ap-
proaches that have offered significant speedups in functions that re-
solve individual computation problems, especially when such func-
tions operate on big data. These surveys also describe the signifi-
cant effort that is usually associated with the development and im-
plementation of such algorithms. Some of these algorithms took
years of research to be developed and they are mostly oriented to-
wards solving expensive domain specific problems (such as prob-
lems in computational geometry), while many such problems re-
main open. Since these algorithms were carefully designed for
solving individual computational problems they cannot be easily
extended in order to solve a bigger space of problems using the
same techniques. Therefore, they are not compatible with perform-
ing change propagation in applications, mainly due to the diversity
that such applications exhibit.

In the programming languages community, researchers have de-
veloped techniques that achieve automatic incrementalization of
programs. The main focus of these techniques [19] is the automatic
translation of conventional programs into respective programs that
can respond to dynamically changed data. Since these techniques
provide tools or compiler techniques that automatically perform
this translation, they manage to minimize the effort required for
the implementation of such functions. Recent work on self adjust-
ing computations also includes the use of specially designed high
level languages (or the extension of existing languages with anno-
tations [9, 14]) used to express incremental computations that when
combined with specifically developed compilers, can generate exe-
cutables capable of efficiently handling mutations of input data.

A common denominator of the majority of these techniques is
the fact that the underlying languages utilize a strong type system
that enables the automatic distinction, (or in many cases the explicit
manual distinction) between mutable and immutable input data.
Leaving aside the fact that applications developers cannot neces-
sarily predict which input data will be modified during the lifetime
of an application, the fact that JavaScript is an untyped language
can also be an obstacle, in using such techniques. It is unclear if
these techniques could be used without forcefully introducing a
type-system that application developers would have to adapt to.
While, such a type-system might potentially assist in using some
of these techniques to power incrementally maintained web appli-
cations, it would also steepen the learning curve of the respective
framework since developers would have to familiarize themselves
with the new type system. Lastly, it is unclear how such techniques
can be used in a distributed architecture like the one described in
Section 4

8. Conclusion and Future Work
We have shown that change propagation in current MVVM frame-
works is in general inefficient both in terms of complexity and

memory consumption. The reason is that they do not track the
changes that happen to the model and thus spend significant effort
(in terms of comparisons) to identify which parts of the model have
changed. To address this problem, we have developed a novel and
efficient change propagation algorithm, which works in the com-
mon case where the model of the application is retrieved by query-
ing a database. In such cases, the algorithm can receive the model
changes directly from the database and can avoid the comparisons
of existing frameworks. The novel algorithm brings significant ben-
efits in both complexity and memory consumption over existing
approaches.

Having developed the foundations of this new change propa-
gation approach, we will be working in the future on extensions
that include among others support for more complex template lan-
guages (with additional constructs, such as if-then-else statements)
and more complex views (containing in addition to HTML code
also JavaScript visualization components, such as Google Maps [1]
and Highcharts [16]). Particular interesting would be components
that utilize the HTML5 Canvas instead of plain DOM elements for
their visualizations due to the fast rendering time that it enables

Acknowledgments
We thank Panagiotis Vekris for his detailed comments on earlier
versions of this paper.

References
[1] Google maps. https://developers.google.com/maps/web/.

[2] Websocket. https://en.wikipedia.org/wiki/WebSocket, .

[3] Webview. http://tinyurl.com/pguw3sk, .

[4] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-
order delta processing for dynamic, frequently fresh views. PVLDB, 5
(10):968–979, 2012.

[5] AngularJS. https://angularjs.org/.

[6] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating
materialized views. In SIGMOD Conference, pages 61–71, 1986.

[7] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating derived re-
lations: Detecting irrelevant and autonomously computable updates.
ACM Trans. Database Syst., 14(3):369–400, 1989.

[8] S. Ceri and J. Widom. Deriving production rules for in-
cremental view maintenance. In VLDB, 1991. URL
http://ilpubs.stanford.edu:8090/8/.

[9] Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic incre-
mentalization. ACM SIGPLAN Notices, 47(6):299–310, 2012.

[10] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational
geometry. Proceedings of the IEEE, 80(9):1412–1434, 1992.

[11] R. Chirkova and J. Yang. Materialized views. Foundations and Trends
in Databases, 4(4):295–405, 2012.

[12] A. Gupta and I. S. Mumick. Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Eng. Bull., 1995.

[13] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In SIGMOD, pages 157–166. ACM Press, 1993.

[14] M. A. Hammer, U. A. Acar, and Y. Chen. Ceal: a c-based language
for self-adjusting computation. In ACM Sigplan Notices, volume 44,
pages 25–37. ACM, 2009.

[15] Y. Katsis, K. W. Ong, Y. Papakonstantinou, and K. K. Zhao. Utilizing
ids to accelerate incremental view maintenance. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1985–2000. ACM, 2015.

[16] J. Kuan. Learning Highcharts. Packt Publishing Ltd, 2012.
[17] MithrilJS. https://lhorie.github.io/mithril/index.html.
[18] X. Qian and G. Wiederhold. Incremental recomputation of active

relational expressions. IEEE TKDE, 3(3):337–341, 1991.
[19] G. Ramalingam and T. Reps. A categorized bibliography on incremen-

tal computation. In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 502–510.
ACM, 1993.

[20] ReactJS. https://facebook.github.io/react/.

