
In-depth Survey of MVVM Web Application Frameworks

Konstantinos Zarifis
University of California, San Diego

zarifis@cs.ucsd.edu

ABSTRACT
Frameworks that adopt the Model-View-Controller (MVC)
design pattern have been extensively used in the web com-
munity for the development of fully-fledged web applica-
tions. Such frameworks enable efficient incremental updates
on the application’s state and visual layer, but they usu-
ally enforce the extended use of imperative logic in order to
accomplish this effect. As an application is extended with
additional functionality, the development process soon be-
comes extremely arduous and error-prone. This has lead
to the emergence of Model-View-ViewModel (MVVM) and
Web Component libraries that achieve higher developer pro-
ductivity by keeping the required source code minimal and
well-organized. Such frameworks can also provide addi-
tional mechanisms that automatically maintain the appli-
cation state and the respective visual layer in sync, thus
alleviating the application developer from this task. On the
downside such mechanisms can negatively impact the per-
formance of a given application and cause noticeable irreg-
ularities to the user experience.

This research exam surveys MVVM and Web Component
libraries that constitute the state-of-the-art in the web com-
munity. It also provides accurate definitions of the modules
that compose an MVVM and a Component library and con-
tains detailed description of the internal workings of each in-
dividual framework. Furthermore, this survey focuses on the
mechanisms that are employed by MVVM and Component
libraries to propagate changes from the application state to
the respective part of the visual layer and describes the ad-
vantages and disadvantages of each individual mechanism.
Lastly, we introduce FORWARD and its respective mecha-
nisms that accomplish change propagation in an asymptoti-
cally more efficient manner than the respective mechanisms
employed by competing frameworks.

1. INTRODUCTION
Web application frameworks and libraries have proven

their importance in building web applications since the Web
1.0 era. They have managed to absolve application devel-
opers from the distraction of implementing mundane boiler-
plate code, thus allowing them to work at a higher level of
abstraction. Opinionated frameworks have accommodated
application developers structure their code in a way that fa-
vors readability, consistency and maintainability by adopt-
ing well known design patterns, while at the same time as-
sisting in avoiding common bad practices that ultimately
lead to error-prone code.

Frameworks that adopt the Model-View-Controller

(MVC) design pattern were, until very recently, the state-
of-the-art for implementing fully fledged client-side web ap-
plications. When using such frameworks, the application
developer is solely responsible for manually specifying the
logic that instantiates the state and the respective visual
layer of the application. Furthermore, as changes occur to
the back-end services and as the user interacts with the ap-
plication’s view, certain mutations typically need to be prop-
agated to the state and the visual layer of the application.
This change propagation is explicitly handled by the ap-
plication developer who employs imperative logic for every
event that might cause such changes. The extended use of
imperative code makes application development very labo-
rious and error-prone, and results in applications that are
very difficult to debug and maintain.

These issues have led to the recent emergence of frame-
works that adopt the Model-View-ViewModel (MVVM) de-
sign pattern, which significantly improves development pro-
ductivity and code reliability. MVVM frameworks typically
allow the use of declarative code that specifies the view of
the application, given an object that represent the applica-
tion state. As the developer mutates the application state,
the framework is able to automatically infer and apply the
respective changes to the view of the application. This no-
tably decreases the amount of code that has to be written
by the application developer since the added logic is only re-
sponsible for applying updates to the state of the application
and not to the visual layer.

Another set of web libraries that assist in limiting the
use of imperative code when implementing applications, are
Web Component libraries. While these libraries do not nec-
essarily follow the MVVM design pattern, they promote the
concepts of compartmentalization and Separation of Con-
cerns [1] in web development by supporting the implemen-
tation of self-contained reusable Web Components. Web
Components can be declaratively utilized as building blocks
of bigger more complex applications, thus enriching their
functionality while minimizing the amount of code required.
Web Components can be used both for managing the state
and the visual layer of an application in a declarative man-
ner, but since their modular design can be quite restricting,
the application developer is often forced to implement Cus-
tom Web Components which in most cases requires the use
of imperative logic.

Both MVVM and Component libraries are equipped with
various mechanisms that enable automatic change propaga-
tion from the application state to the view. These mecha-
nisms are a significant part of a library since they are respon-

sible for simplifying the development process of a modern
application. On the downside, under certain circumstances
they can negatively affect the memory utilization and the
run-time performance of an application. Since these mech-
anisms are a fairly important part of the aforementioned li-
braries we will examine them extensively by specifying their
internal operations and describing how particular scenarios
can dramatically impact their performance.

Additionally, this survey contains a creative part that de-
scribes the internal architecture and mechanisms of FOR-
WARD, an MVVM framework that is currently under de-
velopment by the UCSD Database Group. This framework
employs advanced techniques that promote efficient prop-
agation of changes throughout the life-cycle of an applica-
tion. The employed techniques and the general architecture
of FORWARD is heavily influenced by extended research
that has been conducted in the area of Incremental View
Maintenance (IVM) [2, 3], thus making it particularly suit-
able for applications that receive frequent updates on their
logical and visual layer.

Paper Outline. The paper is structured as follows: In
Section 2 we introduce the background information that is
required for understanding this survey. This section de-
scribes the historical evolution of web frameworks, intro-
duces the terminology that will be used throughout the pa-
per and defines critical, for our analysis, concepts. In Sec-
tion 3 we provide information about existing MVVM frame-
works. Specifically, we describe their programming model,
their internal architecture and general advantages and dis-
advantages of each framework. In Section 4 we describe
the special attributes that define a Component library and
lastly we provide an extensive description of the special char-
acteristics of each individual Component library. Section 5
provides an in-depth analysis of the architecture and inter-
nal workings of FORWARD and finally, Section 6 concludes
the paper.

2. BACKGROUND
Web applications have come a long way since the begin-

ning of the WEB 1.0 era ([4, 5]), from simple read-only
static pages they have evolved into fully-fledged apps that
are capable of completely extinguishing the need for equiv-
alent desktop applications. As the requirement for more ex-
otic features in modern apps increases, so does the need for
application frameworks that simplify the process of imple-
menting such complex systems. In this section, we describe
the historical evolution of web applications by reviewing the
architectural design changes that occurred over time and we
define the basic concepts that are used for the classification
of the frameworks we investigate.

2.1 Web 1.0
Starting with Web 1.0 applications, we will define the

building blocks they consist of and analyze the advantages
and disadvantages of their architecture. While there are
various definitions throughout the Internet about what con-
stitutes a web 1.0 application [4, 6, 7] these definitions are
often too abstract and inconsistent, thus leading to severe
misconceptions. As far as this survey is concerned, Web 1.0
applications typically consist of a client, a server and op-
tionally, a remote database used for persistency (as shown
in Figure 1). The server is responsible for computing a de-
scription of the view that is later transferred to the client in

Figure 1: Web 1.0 Architecture

Figure 2: Client-Server Interaction

order to be displayed. The client of a Web 1.0 application
lacks any business logic (thin client) and it is only respon-
sible for displaying the view that is transmitted from the
server.

The life-cycle of a typical WEB 1.0 application requires
frequent interactions between the client and the server (as
shown in Figure 2). It begins when the user utilizes a
browser to navigate to the address of a remote server. When
this event occurs, an HTTP request is transmitted from
the browser to a remote server. Upon retrieval, the server
replies with an HTTP response, which contains a static
HTML string that describes the initial view of the appli-
cation. When the response is received by the client, the
HTML text is parsed, evaluated and rendered, thus gener-
ating the view of the application. The evaluation stage in-
cludes the instantiation of an internal data structure called
DOM Tree [8]. This data structure is mostly [9] isomorphic
to the HTML text transmitted by the server and it is in-
stantiated and utilized by the browser in order to render the
view of the application.

A typical view may contain links, checkboxes, buttons and
other user interface (UI) elements. As the user interacts

Figure 3: Action-Page Cycle

with such UI elements he triggers events that result to new
requests to the back-end server, which responds with the
HTML string of the next page. This circular process of
actions causing the generation of new pages is called action-
page cycle (shown in Figure 3), and it is a very simple con-
ceptual model that has been used by most web technologies
since the very first years.

It’s worth mentioning that other than page reloads, an
action can also cause side-effects. We define side-effects as
operations that cause mutations on data but do not neces-
sarily trigger changes to the view of the application. Exam-
ples of such events include storing information to a remote
database, charging credit cards, or performing any other op-
erations that mutate the state of the application.

Disadvantages of Web 1.0 applications. While
1.0 applications have a fairly straightforward programming
model (action-page cycle), they also have several disadvan-
tages, mainly due to their monolithic architecture. Such
applications require both a client-side and a server-side part
in order to function properly, as shown in Figure 1. The
client-side application is mostly a stateless, thin client, that
depends on the server for the re-computation of the view
and the execution of side-effects. This results in a heavily
interrupted user experience, since every time a user triggers
an action, a new HTTP round-trip has to be completed be-
fore the new view appears on the screen. While the round-
trip is still in progress, the client remains idle and the user
witnesses a blank screen until the response is retrieved and
displayed by the client.

Furthermore, even if the consecutive views that appear
as the user interacts with an application have little to no
difference from one another, a new page still has to be re-
computed in its entirety, transmitted over the wire and ren-
dered on the client. This leads to a significant increase in
both the computational footprint and bandwidth utilization
of the application, especially since HTML tends to be heav-
ily nested and verbose. Furthermore, Web 1.0 applications
are unable to support visualizations, which significantly lim-
its the features that can be provided by an application.

2.2 Infusing the client with logic(Web 1.5)
In an attempt to resolve the issues that are associated

with Web 1.0 applications, developers started infusing the
client with logic by injecting JavaScript code and external
JavaScript libraries (such as jQuery [10]) on the client [11].
One of the biggest advantages of this approach is that it
completely eliminates the “blocking” user experience, Web
1.0 applications could not avoid. Particularly, by utilizing
client-side logic, applications can perform asynchronous calls
to the back-end and retrieve essential for the application
datasets, while the user is still able to interact with the UI.
Additionally, after retrieving these datasets, the application
developer can manually update only the DOM elements that
need to be modified, thus assisting in decreasing the compu-
tational penalty that was caused by the full reevaluation and
rerendering of the entire view at the end of the action-page
cycle.

Incorporating logic into the client also leads to limited in-
teraction with the server, since certain actions can now be
performed directly by the client. For cases in which the in-
teraction with the back-end cannot be avoided, this architec-
ture enables the use of formats that are far less verbose than
XML/HTML for transmitting information “over the wire”
(such as JSON [12]), thus significantly decreasing the band-
width utilization that is required by applications. Lastly,
another advantage of using JavaScript on the client is the
advanced user experience that can be achieved by leverag-
ing visualization libraries. Application developers can now
use 3rd-party libraries to enrich the visual layer of their ap-
plications with reactive components such as maps [13, 14],
[15, 16], charts [17, 18] and graphs [19, 20], thus improving
the user experience of their applications and enabling data
exploration.

Disadvantages of Web 1.5 applications. While infus-
ing the client with logic certainly enriched web applications
with features that were not possible before, this logic was
introduced in a mostly ad hoc way, which triggered various
negative side effects. Perhaps the biggest downside of this,
is the inevitable inconsistent and tangled code (also known
as “spaghetti code” [21]) that most client-side applications
consist of. The main reason behind this is the fact that
developers simply inject JavaScript code within HTML doc-
uments without following a particular design pattern. This
approach leads to severely disorganized applications, that
become more convoluted as new features are being added
over time. An inconsistent and tangled piece of software is
very difficult to maintain and debug, especially in the case
of loosely-typed languages such as JavaScript.

This problem cannot be resolved even if the application
developer decides to adopt some design pattern, in order to
organize his/her code. Particularly, if the developer chooses
to split his/her code into self-contained JavaScript files and
import them from the respective HTML files, the fact that
all the instantiated variables and functions are loaded into
the global name-space often leads to naming conflicts. This
proves that a design pattern has to be natively supported
by a framework, in order for such issues to be avoided. For
this reason, opinionated frameworks were introduced to as-
sist in application development, by enforcing design patterns
and general best practices that comply with the concept of
Separation of Concerns [1].

2.3 Design Patterns on the Client (Web 2.0)
In this section we will describe the two main design pat-

terns that are adopted by most opinionated frameworks cur-

Figure 4: Product delivery map

rently. To aid in the presentation of these design patterns
we will introduce a sample application utilized by a deliv-
ery company. The application contains a dashboard that
enables easy tracking of delivery trucks that are currently
delivering products. The view of the dashboard (shown in
Figure 4) contains a feed of the location of the company’s
delivery trucks on a Google Maps [22] component, followed
by an HTML table that contains information about each in-
dividual delivery truck. Particularly, each row contains the
VIN number of the delivery truck, the name of the driver,
the time when the current driver’s shift started, the average
speed of the delivery truck and lastly a Progress Bar com-
ponent [23] showing the fraction of items that have been
delivered. Both the individual cells of the HTML table and
the markers shown on the map are updated in real-time

2.3.1 Model-View-Controller (MVC) Design Pattern
One of the most widely used paradigms in modern appli-

cations is the Model-View-Controller design pattern. Ac-
cording to this pattern, an application consists of three in-
dividual components:

• A View is the visual layer of the application. It con-
tains all the UI elements the user sees and interacts
with, such as charts, diagrams, check-boxes or plain
text.

• A Model is an abstract representation of the data
utilized by the application.

• A Controller is the part of the architecture that man-
ages the other two components. Most of the times the
Controller consists of imperative code written by the
application developer, and contains both the business
logic of the application and the logic responsible for
updating the visual layer.

We will now utilize the running example introduced ear-
lier in this section to showcase the various components of
the MVC design pattern. The Model in this case is simply
a list of delivery trucks. Each individual delivery truck is
represented by a JavaScript object but since these objects

Figure 5: Model used by Running Example

Figure 6: Anatomy of an MVC Client-Side Application

are usually nested we will utilize a tree structure in order to
represent them. In Figure 5, we display a tree representa-
tion of the Model; as we see each delivery truck contains the
current coordinates of a truck, along with all the other in-
formation contained in the HTML table (as shown in Figure
4), such as the VIN number, name of the driver and so on.
The View in this application is the entire dashboard shown
in Figure 4, it consists of the HTML table and the two com-
ponents (Google Maps and Progress Bar). The Controller
is the piece of code that interacts with the back-end server
to fetch information about updates on the model and it also
manually propagates the corresponding changes to the view.

In Figure 6 we preview the internal structure of an MVC
client-side application. As we observe the Controller is typ-
ically the synthetic link of the application; it interacts with
the back-end by transmitting and receiving essential infor-
mation, it uses the received data to update the Model of the
application, it utilizes the Model to generate or update the

Figure 7: ViewModel of Google Maps Component

view and it contains the callback functions (actions) that
will be executed when the user triggers UI events.

Disadvantages of MVC applications
While this design pattern assists in the implementation of

more organized and maintainable applications, the fact that
the Controller is responsible for managing both the Model
and the View definitely opposes to the concept of Separa-
tion of Concerns. Additionally, despite the fact that appli-
cation developers that follow this pattern, manage to create
a seamless user experience, (as it enables the developer to
apply incremental updates to the view, thus making the in-
terface very responsive), at the same time these incremental
updates have to be performed manually by the application
developer using imperative code. Most of the times, this
results in writing multiple lines of boiler-plate code even for
simple tasks.

2.3.2 Model-View-ViewModel (MVVM) Design Pat-
tern

In order to resolve the aforementioned issues, a new set
of frameworks were introduced with the intent to simplify
the process of application development by supporting the
MVVM design pattern. Since this pattern is relatively new,
there are very few sources that manage to provide clear def-
initions of what constitutes an MVVM framework and what
its main characteristics are, thus causing many misconcep-
tions in the web community. One of the contributions of
this survey is to provide these definitions and address the
respective misconceptions.

Two of the main characteristics of the MVVM design pat-
tern is that it enforces a stricter Separation of Concerns,
while at the same time limiting the size of the imperative
code required for a web application. The building blocks
of this pattern contain: A Model, a View and a View-
Model. The first two are the same entities we covered in
the description of the MVC design pattern. The ViewModel
is an abstract representation of the View, which contains
the JavaScript objects required by the respective compo-
nent APIs that are responsible for the instantiation of the

Figure 8: Anatomy of an MVVM Client-Side Application

visual layer. Particularly, in the running example presented
earlier, the ViewModel of the Google Maps component is
the JavaScript object shown in Figure 7. Notice that the
ViewModel is essentially generated by utilizing attributes
that already exist on the Model (which shown in Figure
5). For parts of the page that correspond to simple HTML
content, the ViewModel is typically a data structure that is
introduced and maintained by the respective MVVM frame-
works and it is typically isomorphic to the DOM-Tree of the
page.

In most MVVM frameworks the mapping between the
Model and the ViewModel, occurs declaratively by utiliz-
ing a template language that is introduced by the respec-
tive frameworks. Specifically, by utilizing the template lan-
guage the application developer binds a particular part of
the Model to the respective part of the ViewModel, thus
creating the premise that enables frameworks to automati-
cally perform incremental maintenance of the application’s
View when the Model that is bound to it gets updated. This
significantly limits the lines of code the application developer
needs to write, since he no longer has to write and maintain
any imperative logic in order to update the View.

One of the misconceptions that exist in the web commu-
nity about this design pattern, is that it does not contain
a Controller. Most MVVM frameworks still utilize a Con-
troller but the logic that it contains typically does not mu-
tate the View of an application (in contrary to the Con-
troller of an MVC Framework). Instead, the Controller is
only responsible for specifying the actions and side-effects
that execute when the user triggers events as he/she inter-
acts with the View. Additionally, in most MVVM frame-
works the Controller is also responsible for interacting with
the back-end in order to receive and transmit data that syn-
chronize the client-side application state (Model) with the
server-side state. In Figure 8 we show the internal structure
of an MVVM client-side framework.

1 /* ... Additional logic ... */
2 $http.get('http://forward.ucsd.edu/delivery_truck_service')
3 .then(function(result) {
4 $scope.delivery_trucks = result.data;
5 });
6 /* ... */

Figure 9: Part of the Controller used in running example

3. EXISTING MVVM FRAMEWORKS
In this section we examine existing frameworks that fol-

low the MVVM design pattern as defined in Section 2.3.2.
All these frameworks can be used for the development of
client-side web applications but can also be packaged as hy-
brid applications with the intention to operate on mobile
devices. For each web framework we will provide the com-
plexity numbers that show how efficiently each employed
mechanism reflects the changes to the View when changes
are applied to the Model. This is an important factor as
it shows how viable a framework is for mobile development
(since the resources of most mobile devices are quite limited)
or for applications that are designed to display big data vi-
sualizations.

3.1 AngularJS
Perhaps the most widely used MVVM web framework cur-

rently is AngularJS [24]. Angular is mainly supported and
maintained by Google, but since it is an open source frame-
work [25] it also has a very rich community of contributors,
which ranges from individuals to big corporations. From the
perspective of the application developer AngularJS requires
very little boilerplate code for most simple applications. Par-
ticularly the developer’s only responsibility is to specify the
Model of the application and create the bindings between
the Model and the View by utilizing the template language.
When the state of the application is modified, Angular is
able to infer how the respective view will be affected, and it
automatically applies the appropriate changes to it.

Angular’s template language consists of HTML tags that
may contain additional Angular specific attributes which
are utilized for binding data to the corresponding parts of
the View. Other than HTML, the template language can
also contain custom tags that instantiate reusable units,
namely Angular Directives. These modules wrap existing
JavaScript visual layer components such as Google Maps[22],
HighCharts[17] and more, in a way that favors reusability
and code minimalism. When importing such directives the
application developer is able to specify the state of the visual
layer using declarative logic. This greatly reduces the im-
perative code that has to be written and maintained, since
the developer is no longer responsible for explicitly imple-
menting code that reflects every potential modification of
the Model to the View. The Model of the application how-
ever, is specified by using JavaScript code which, despite the
fact that it may contain functional expressions, it is mostly
imperative.

More specifically, in order for a variable v to be used
within Angular’s template language the application devel-
oper has to utilize a Controller to instantiate the contents of
the aforementioned variable and then attach it to the scope
object; the scope object is a crucial part of AngularJS in-
ternal architecture as we will describe later in this section.

1 <html>
2 <!-- ... imports and other irrelevant
3 parts of the template ... -->
4 <div ng-app="truck_delivery" ng-controller="delivery_ctrl">
5 <!-- ... other HTML tags ... -->
6 <div id="map_container">
7 <ui-gmap-google-map
8 center="map.center" zoom="map.zoom" bounds="map.bounds">
9 <ui-gmap-marker ng-repeat="truck in delivery_trucks"

10 idKey="truck.truck_key"
11 coords="truck.coords">
12 </ui-gmap-marker>
13 </ui-gmap-google-map>
14 </div>
15 </div>
16 <div>
17 <table>
18 <tr> <!-- ... column labels ... --> </tr>
19 <tr ng-repeat="truck in delivery_trucks">
20 <td> {{truck.VIN}} /td>
21 <td> {{truck.driver}} /td>
22 <td> {{truck.shift_start_time}} /td>
23 <td> {{truck.avg_speed}} /td>
24 <td>
25 <progressbar type="Circle"
26 strokeWidth="10" trailWidth= "1"
27 easing= "easeInOut" fromColor="#FC5B3F"
28 fromWidth="1" toColor="#6FD57F" toWidth="10"
29 numerator = "truck.delivered_items"
30 denominator="truck.total_items"
31 ></progressbar>
32 </td>
33 </tr>
34 </table>
35 </div>
36 <!-- ... rest of template ... -->
37 </html>

Figure 10: Angular Template Delivery-Trucks

The variables that the application developer attaches to the
scope contain Plain Old JavaScript Objects (POJO), which
simplifies the Model definition since the application devel-
oper is not required to extend any framework specific classes
for this purpose, which is the case for other frameworks, as
we will describe in the next sections. Lastly, Angular pro-
vides two more toolsets, namely Services and Factories, that
mostly assist in data transfer to and from local or remote
databases or web-services. After the required datasets have
been collected by the client, they can be used to instantiate
or update the Model of the application.

In Figures 9 and 10, we show a small snippet of the con-
troller and the template language that is used to generate
the running example shown in Figure 4. The snippet in Fig-
ure 9 shows how an application developer can utilize the http
service to perform an asynchronous HTTP GET request to
a remote server, retrieve the result, assign it to the variable
delivery trucks and then attach this variable to the scope
object. In Figure 10 we show a snippet of the template that
generates the majority of the view of the running example.
In line 4 of the template, we specify the name of the appli-
cation and the controller by utilizing the Angular specific
attributes “ng-app” and “ng-controller”. In lines 7-13 we use
a Google Maps custom directive to generate the map shown
in Figure 4; in lines 25-31 we use a ProgressBar directive
that manages the bars that appear in the last column of
the HTML table. Notice that in these two cases other than
the custom tags used to instantiate the Google-Maps and
ProgressBar directives, we also use special attribute names
to create bindings between some parts of the Model (for

Figure 11: AngularJS Watcher - Building Blocks

Figure 12: AngularJS - Digest Cycle

instance, the coords attribute of the delivery− trucks vari-
able) and the View (for instance the coordinates of the re-
spective marker). In lines 9 and 19, “ng-repeat” iterates
over the entire delivery trucks array and at each iteration
it initializes an alias , namely truck, for each delivery truck,
which can be used to declare bindings between each indi-
vidual truck and the respective replicated instance of the
directive. The directive (and every child directive) is repli-
cated n times, with n being the total number of elements
the delivery trucks contains.

AngularJS Watchers - Dirty Checking.

Every time the application developer binds a single variable
or expression to the template, Angular attaches a Watcher
(Figure 11) to the scope object. Watchers are essentially
trigger definitions that execute when a mutation occurs on
the part of the Model they watch. A Watcher contains the
expression that is being watched, namely: WatchExpression,
the Listener and the ObjectEquality variable. The Watch-
Expression can be a function call, an arithmetic operation
or a reference to some part of the Model. When the cur-
rent result of the WatchExpression changes, Angular triggers
the Listener, which is a callback function that is responsi-
ble for updating the respective part of the view. In order
for the framework to decide if the result of the WatchEx-
pression changed, it needs to compare the current state of
the returned object with the previous state, this process is
called dirty-checking. The kind of comparison that will take
place is defined by ObjectEquality; in general two types of
comparisons are allowed: deep and shallow; in a shallow
comparison, Angular will trigger the Listener function when
the WatchExpression returns a completely new object (The
reference to the watched object changes), while in a deep
comparison Angular will iterate over all the children of the
watched object and it will trigger the Listener function if
one of these nodes is different from the respective node of
the previous state of the object. In order to perform dirty-
checking, Angular needs to store both the pre-state and the

Figure 13: Ember’s Programming model

1 Router.map(function() {
2 this.route('index', path: '/');
3 this.route('post', { path: '/post/:post_id' });
4 });

Figure 14: EmberJS - Route Example

current state of the watched object, therefore the bigger the
watched object is, the higher the memory and the processing
footprint will be.

The Digest Cycle.

A crucial part of the internal architecture of Angular is the
Digest Cycle (shown in Figure 12). This algorithm in con-
junction with dirty-checking performed for each watcher is
responsible for propagating to the View changes that occur
on the Model. The digest cycle is initiated when an event
triggers an action that belongs to Angular’s scope. During
this process, Angular iterates over all the watchers that ex-
ist in the scope and performs a comparison of the old state
of the watched expression with the current one. If a dif-
ference is found, then the corresponding Listener function
is triggered. If some Listener function modifies the Model,
then the digest cycle will get initiated once again. This it-
eration will continue until either the Model stabilizes or the
digest cycle executes ten times, after which Angular throws
an exception and the Angular application is killed.

Complexity of Digest Cycle

The complexity of the digest cycle is proportional to the to-
tal numbers of watchers that have been declared. Addition-
ally, if deep watchers are used, then the complexity becomes
even worse since for each deep watcher the entire watched
object will have to be traversed so that nested values will
be inspected for changes. If w is the number of watchers
that have been declared and d is the size of the watched ob-
ject, with d being equal to 1 in the case of shallow watches,
then the algorithm that performs updates to the view, given
changes on the Model, is O(wd).

3.2 EmberJS

1 Person = Ember.Object.extend({
2 firstName: null,
3 lastName: null,
4

5 fullName: Ember.computed('firstName', 'lastName', {
6 get(key) {
7 return `$this.get('firstName') ${this.get('lastName')}`;
8 },
9 })

10 });
11

12 var Yannis = Person.create();
13 Yannis.set('firstName', 'Yannis');
14 Yannis.set('lastName', 'Papakonstantinou);
15 Yannis.get('fullName'); // Yannis Papakonstantinou

Figure 15: EmberJS - Model Definition

Another framework that follows in the footsteps of Angu-
lar is EmberJS [26]. Similarly to every other MVVM frame-
work, Ember tries to achieve code minimalism by freeing
the application developer from unnecessary boilerplate code
and by utilizing declarative code when appropriate. Em-
ber’s ecosystem comprises Routes, Models, Templates and
Services. As shown in Figure 13, Ember’s life-cycle starts
when the user navigates to a URL that is bound to a particu-
lar Route. When the Route receives the event, it constructs
the Model and calls the appropriate renderer that will gen-
erate the visual layer of the application. The Route can also
utilize the appropriate reusable Services to receive essential
data for the construction of the Model (application state).

EmberJS uses regular expressions to bind a Route to a
particular URL. These expressions can also treat parts of
the URL as variables, which enables message passing to and
from other pages. In Figure 14, we show a snippet that illus-
trates how a Route gets bound to a particular URL. More
specifically, in line 2, we bind the root of the application
to the index route, while in line 3 we bind all the URLs
that match the pattern: “/post/∗” to the post route. This
expression automatically creates a variable post id that is
accessible from the respective route. The value of this vari-
able is equal to the URL step found immediately after the
“/post/” step, for instance if the user navigates to the URL
“/post/5” the variable post id will contain the value 5.

As we mentioned earlier, Routes are responsible for con-
structing the Model of the application. Unlike Angular’s
Model which comprises Plain Old JavaScript Objects, Em-
ber requires the extension of its internal Model objects. This
negatively impacts the user-friendliness of the framework,
since it forces application developers to familiarize them-
selves with the internal data structures used by Ember.
More specifically, developers are required to use Ember’s
API in order to set and retrieve values to/from the Model,
which steepens the learning curve of the framework.

Ember’s Model class can contain observable and computed
properties. An observable is typically a part of the Model
that when updated, will trigger further updates either on
other parts of the Model or the ViewModel of an application.
Ember enables the declaration of callback functions that are
triggered when the associated observable object is updated.
When declaring such callback functions, a developer can use
imperative logic within its body in order to specify the side-
effects that will take place when a mutation is observed. If
one part of the Model needs to be updated every time some

another part is mutated, it can be defined as a computed
property. By doing this, Ember “hardwires” the two parts
of the Model and allows automatic updates of computed
properties when the observable base properties they depend
on are updated.

In Figure 15, we illustrate how the Model is specified in
an Ember application. As we notice in lines 2 and 3 we
specify the attributes included in the Person object. In lines
5-9 we specify a computed property, namely fullName that
depends on the firstName and lastName properties. By
explicitly specifying the base-variables of a computed prop-
erty, the application developer dictates that this property
will get reevaluated when the respective base-variables are
modified. When the developer utilizes a setter to modify an
observed property (as shown in lines 13 and 14) Ember is
able to propagate the respective changes to the computed
property.

Lastly, EmberJS does not have its own custom template
language, it instead utilizes a third-party template language
called HandlebarsJS [27] to generate the templates. Addi-
tionally, Ember enables component wrapping by providing
expendable Components (that are very similar to Angular’s
Directives). When importing such components the applica-
tion developer can declaratively pass the Model that will be
utilized by the component for the generation (or incremen-
tal updating) of the component specific view. In order to
assist in data transfer between local and remote databases
and web services Ember provides the Service class, which is
comparable to Angular’s Factories and Services.

Incremental Updates using Accessors

As mentioned earlier, Ember requires the use of its inter-
nal object class to represent the Model of the application.
Particularly, the application developer uses getters and set-
ters when he wishes to retrieve or update the value of some
Model variable (as shown in Figure 15, in lines 12-15). If
some part of the Model is used in a template, Ember implic-
itly declares this part of the Model as an observable. When
a mutation on that part of the Model is observed, the re-
spective part of the View will be reevaluated and rerendered
automatically.

Observing mutations in Ember is a fairly simple task, since
a setter has to be explicitly invoked by the developer. As a
result, the algorithm that propagates changes in Ember does
not need to identify which part of the Model was mutated.
Instead, when a setter is called, Ember can simply propa-
gate this change to the respective getters, that are associated
with the mutated variable, and cause them to reevaluate the
variables that depend on it. This significantly enables Em-
ber to keep the Model and View in sync at all times, without
wasting resources by iterating over all the observed variables
(which is the case with Angular). More specifically, given an
observable variable v and a set of variables s that depend on
v, the complexity of the algorithm that propagates changes
to each variable in s given d updates on a is O(d|s|), with
|s| being equal to the number of variables in s.

Despite the relatively efficient algorithm that achieves
change propagation, the fact that Ember requires the ex-
tension of its own Model classes and explicit calls to setters
and getters, significantly steepens the learning curve of the
framework. Furthermore, application developers need to be
aware of which parts of the Model will get updated during
the life-cycle of the application and explicitly trigger these

updates. Lastly, using getters and setters can be very dys-
functional in cases when the objects used in an application
are heavily nested. For those reasons, Ember appears to be
less “developer-friendly” than Angular.

3.3 KnockoutJS
Knockout[28], is another MVVM framework that was in-

troduced in October 2010 which makes it the oldest frame-
work in this comparison. Despite its age, Knockout has its
fair share of modern features, such as declarative templates,
data-bindings and automatic updates on the view given
changes on the respective bound Model, which makes it ful-
fill all the requirements that classify it as an MVVM frame-
work. Additionally, Knockout is very lightweight (54kb
when minified, which reduces to 20kb when using HTTP
compression [29]) in comparison to all the other frameworks
we have described so far, which is explained by the fact
that it is missing some features found in other frameworks.
Knockout’s ecosystem mainly consists of Models and Tem-
plates, which means that it lacks all the extra utility com-
ponents that the rest of the frameworks contain, such as
Routes, Services, Factories and so on. For this reason many
online sources consider Knockout to be a lightweight MVVM
library [30] instead of a framework.

Knockout’s life-cycle begins when the user loads the
HTML page that contains the JavaScript files that in-
stantiate the Model. After the Model has been instanti-
ated Knockout parses the template that is contained in the
HTML page and dynamically generates the View. Knock-
out’s internals have several similarities to Ember. Particu-
larly, both frameworks require the application developer to
extend internal object classes, in order to define the Model
and both of them share the concepts of observable proper-
ties and computed values. Dependency tracking also works
in the same way in these two frameworks, if a computed
value depends on some observed variable, a subscriber is de-
clared; when the observed variable changes all subscribers
are triggered and the corresponding computed value gets
updated. The same mechanism is also used to update parts
of the View that depend on observed variables.

Another feature that Knockout supports is Components.
Similarly to Angular and Ember, the developer can choose
to implement reusable Components and introduce them as
custom tags into Knockout’s template language. The main
difference between Knockout’s and Ember’s Components is
the fact that the former cannot contain imperative logic.
This makes Knockout Components suitable for generating
reusable HTML widgets that can be introduced in multiple
parts of an application, but unfitting for wrapping existing
visual libraries such as Google Maps in a reusable Compo-
nent. The reason is that, visual libraries require the use
of imperative logic that utilizes the respective library API
in order to instantiate or update a View while an HTML
widget can be generated by utilizing Knockout’s declarative
template language. That being said, if the developer wishes
to include a Component he/she can either write imperative
code outside of Knockout’s scope or use Knockout’s Custom
Bindings module. Custom Bindings are special Component-
like modules that allow the usage of imperative code, thus
enabling the use of external library APIs. The way Custom
Bindings interact with the rest of the application however
does not favor reusability, therefore the application devel-
oper has to implement a separate Custom Binding every

time he wishes to use a visualization library.

4. WEB COMPONENT FRAMEWORKS
Since the Separation of Concerns is a crucial aspect of web

frameworks we also surveyed libraries that are used for the
implementation of Custom Web Components [31, 32]. These
Components are an attempt to bring component-based soft-
ware engineering [33] in the Web, by providing crucial char-
acteristics such as encapsulation, reusability and extensibil-
ity to the web developer. Web Components have several
similarities to the respective Component/Directive modules
of MVVM frameworks, however the biggest differences be-
tween the two lie in the way these components are structured
internally and the way they interact with the part of the ap-
plication that crosses the framework’s scope.

In general, Web Components are self contained modules
with a pre-defined functionality, which makes them less pa-
rameterizable than the respective Components/Directives of
MVVM frameworks. A Web Component can be used in dif-
ferent parts of a single page (or in different pages) by simply
being imported and injected to the page. The application
developer, typically, it not responsible for performing any
additional operations in order to utilize a 3rd-party Com-
ponent (such as generating the Component state, or map
the state of the Component to the respective Component
attributes), which makes Web Components a good “plug-
n-play” solution for web applications. Generally, MVVM
frameworks are equipped with features that make them bet-
ter candidates for building larger applications, while Web
Components are intended for developing widgets, which can
be used as small self-contained parts in a larger application.

A very crucial feature, that most Web Components sup-
port, which favors encapsulation and reusability, is the
Shadow DOM[34]. This feature assists in encapsulating
the DOM tree that belongs to a Component, thus mak-
ing it independent from the parent DOM nodes. One of
the biggest issues, application developers have to deal with,
when specifying the view of a particular page, is its styling.
In order to describe the styling of a particular part of the
page, they usually have to write style-sheet rules within a
CSS file. When this CSS file is loaded in a particular page,
however, other parts of the page may be affected by the
newly introduced rules. Shadow DOM limits the scope of
these rules and prohibits them from being applied to the
DOM elements that belong to a Component; thus making
the latter completely independent both from the page that
it belongs to and from other Components.

4.1 Polymer
Perhaps the most typical example of a Component li-

brary is PolymerJS [35], which is developed and maintained
by Google. In Polymer, developers can create their own
reusable Components in order to integrate them into their
applications or publish them on the Internet, so that other
developers can utilize them. There is also a big list of
reusable Components offered by the official website that
ranges from Components responsible for introducing generic
UI elements to the view (such as layout components that
generate forms, tables and so on) to Components that only
introduce logic (for instance Components that are respon-
sible for performing requests to back-end services, adding
push notification and bluetooth capabilities and so on). Such
components when combined appropriately they can effec-

Figure 16: Component Based Architecture

1 CustomElement = Polymer({
2 is: 'custom-element',
3

4 created: function() {
5 this.textContent = 'My Custom Element!';
6 }
7 });
8

Figure 17: Custom Polymer Element

tively generate modern applications in a modular manner.
For instance, in Figure 16 we show how different Compo-
nents can be composed together in order to generate a sin-
gle page application. This application comprises 4 different
components; the “Web-Service Component” is responsible
for accessing a remote web-service in order to retrieve the
data that will be used in this application. After the data
have been retrieved they are passed on to the three child
components: “Menu Component”, “Map Component” and
“HTML Table Component” in order to get visualized.

When using such 3rd-party Components, the application
developer is able to create a Web application by strictly writ-
ing declarative code, since he/she essentially manages both
the application state and the View by utilizing custom tags
that represent the respective Components. Despite the fact
that Components are essentially building blocks of bigger
applications, most of the times they lack more sophisticated
features that are essential in most real-world applications;
in such cases imperative code cannot be avoided. The rea-
son behind this, is that if some feature is not offered “out-
of-the-box” by some Component, the application developer
will have to implement a custom Component himself and the
only way to accomplish this is by writing imperative code.

More specifically, in order to implement a custom Compo-
nent, the developer has to extend a Polymer class and over-
ride callback functions and attributes that are contained in
this class. By doing so, the developer is able to introduce
logic that defines the functionality of the Component. In
figure 17, we show a simple Polymer class that overrides the
essential functions and attributes required for a component
to be defined. In line 2, we specify the name of the Com-
ponent and in line 4 we override the created callback func-

tion that will be executed when the custom tag: <custom-
element></custom-element> is inserted in a page; when
this custom tag is parsed and evaluated the text: “My Cus-
tom Element!” will be added to the View. By overriding
callback functions (such as: created, shown in Figure 17),
the component developer is able to define more advanced
logic that is executed at different stages of the life-cycle of
a component.

Polymer allows data exchange between a host component
(parent) and a guest (child) in the form of data-binding. In
order for a Component to allow this behavior, the Compo-
nent developer has to explicitly enable this feature by over-
riding the appropriate functions. Other than data binding,
Polymer allows the use of computed attributes and observ-
ables (which is also supported by EmberJS and KnockoutJS
as we mentioned in the respective sections). Similarly to
Ember and Knockout, change propagation in Polymer is
initiated when a setter is explicitly called within a Com-
ponent. When this occurs, Polymer fires an event which
is then propagated to the descendants and ancestors of the
current Component. If some Component is “listening” for
changes on the mutated part of the Model it will be notified
and it will be responsible for updating the respective part
of the View. The complexity of this algorithm is O(h), with
h being the number of consecutive Components that will be
notified when a mutation is triggered.

4.2 ReactJS
Another Component library that is very widely used in

modern applications is ReactJS. This open source library
is developed and maintained by Facebook, but just like ev-
ery other successful open source framework, it also has a
big community of contributors. Similarly to Polymer, Re-
act enables the development of reusable Components that
can be used as building blocks of bigger applications. The
developer of React Components extends a React class and
overrides the respective callback functions in order to specify
the state and the View of the Component.

More specifically, in order to specify the View, the de-
veloper has to add the respective logic within the render
function of the React class. If the Component developer
wishes to use a visualization library (such as Google Maps
or HighCharts), the render function will contain imperative
code that utilizes the respective API provided by the visu-
alization library. Otherwise, if he/she wishes to define an
HTML View, he/she can either use imperative logic or Re-
act’s template language, namely JSX to do so declaratively.
Specifically, Figures 18 and 19 show how a React Component
can be implemented imperatively and declaratively. In lines
2-10 in Figure 18, we override React’s render function and
create a ul DOM element with class name “customClass”.
This element contains a nested element li with class name
“customList” and value: “My Custom Element!”. In Figure
19, and specifically in lines 4-6 we generate the same compo-
nent declaratively using the JSX template. JSX templates
can contain both standard HTML and custom tags (which
declaratively instantiate other custom React components);
while they also allow the use of expressions that are evalu-
ated during runtime such as arithmetic expressions, function
calls and binds to parts of a Component’s Model. Lastly in
lines 12-15, in Figure 18 and in lines 10-12, in Figure 19,
we attach the newly created React Component to the DOM
tree.

1 var Component = React.createClass({displayName: 'Component',
2 render: function() {
3 var child = React.createElement('li',
4 className: "customList", "My Custom Element!"
5);
6 var rootElement = React.createElement('ul',
7 className: "customClass", child
8);
9 return rootElement;

10 }
11 });
12 ReactDOM.render(
13 React.createElement(Component, null),
14 document.getElementById('content')
15);

Figure 18: Custom ReactJS Component specified impera-
tively

1 var Component = React.createClass({
2 render: function() {
3 return (
4 <ul className="customClass">
5 <li className="customList"> My Custom Element!
6
7);
8 }
9 });

10 ReactDOM.render(<CommentBox />,
11 document.getElementById('content')
12);

Figure 19: Custom ReactJS Component specified in JSX

Virtual DOM

In general, DOM operations are particularly expensive; more
specifically, the complexity of DOM operations is propor-
tional to the size of the DOM subtrees that will be re-
rendered. Most modern application frameworks do not al-
ways apply the minimum DOM manipulations necessary in
order to update the View, which hinders performance. Re-
actJS employs mechanisms that are able to minimize the
DOM operations required to update the View, thus achiev-
ing significant performance increase over competing frame-
works. More specifically, when the Component developer
specifies a View using JSX or imperative code, React inter-
nally instantiates an isomorphic representation of the DOM
Tree; this structure is called Virtual DOM. When the un-
derlying Model of a component is mutated, the application
developer is required to explicitly trigger the action-page
cycle of a component by invoking the setState() function.
During this cycle, React generates a new instance of the
Virtual DOM (post-state) and then proceeds by executing
a “diff-ing” algorithm that attempts to identify parts of the
two instances (pre-state and post-state) that have changed;
these parts are called patches. When this procedure is com-
pleted, React performs the minimum possible renderer calls
that apply these patches to the DOM Tree, thus efficiently
updating the View of the application (as shown in Figure
20).

While this approach undoubtedly limits the rendering cost
of a View, it also has some caveats that, depending on the
use case, could result in performance penalties. The com-
plexity of identifying changes, in React, is proportional to
the entire ViewModel (Virtual DOM) of a Component, since

Figure 20: Virtual DOM Diff-ing

the entire ViewModel has to be reconstructed and compared
with its old state (which has to be kept in memory) every-
time the action-page cycle is triggered. In some real-life
scenarios, the component’s ViewModel can be exceptionally
big, while the number of elements that are subject to changes
is very small; in such cases frameworks that declare observer-
s/watchers would actually be more efficient since the cost of
re-evaluating the entire ViewModel is definitely bigger than
re-rendering small parts of the View that haven’t changed.
Additionally, since the old state of the Virtual DOM has
to be cached in memory, a Component with an exception-
ally big ViewModel could cause the application to crash if it
runs out of memory. Another caveat, that is mostly related
to the way this approach is implemented in React, is that it
only works if the application developer uses, directly (with
imperative code) or indirectly (by utilizing JSX templates)
the Virtual DOM. The Virtual DOM however can only be
used to represent parts of the View that will be translated
to HTML elements, therefore this approach does not work if
the foresaid Component is used to wrap a 3rd-party visual-
ization library. In such cases, the application developer has
to introduce his own internal mechanisms to achieve more
efficient rerendering, which typically leads to complex im-
perative logic.

4.3 MithrilJS
The last Component library that will be included in this

comparison is MithrilJS[36]. This is a particularly small
framework (7.8kB when zipped) that has no dependencies
on other libraries. Mithril has a lot of similarities with Re-
act; particularly both these libraries utilize a “diff-ing” algo-
rithm that uses the Virtual DOM tree to accomplish efficient
rendering and they both use somewhat similar conventions
when implementing a Component. Specifically, they both
require from the developer to override a particular set of
functions that are executed during various phases of the life-
cycle of a Component.

One minor difference between the two is that Mithril does
not provide any base classes that need to be extended, in
order to specify a given Component. The advantage of this
approach is that child classes do not inherit all the utility
methods and properties of the parent, which in JavaScript,
depending on the way inheritance is implemented, could po-
tentially lead to increased memory footprint, since child class
instances may carry clones of all the functions that are de-
fined in the parent class. This however will not be the case if
Prototypical Inheritance [37] is used instead. Another differ-

ence is that Mithril does not support declarative templates
for specifying the View of a component. However, there are
3rd-party libraries (such as MSX [38]) that allow the use of
declarative logic for that purpose.

5. FORWARD
FORWARD is a Web Application framework designed to

enable rapid development of data-driven, information dense
applications. It employs techniques that enable efficient
propagation of changes from the server all the way to the
View, thus making it the ideal framework both for appli-
cations that require dense visualizations that are updated
frequently and for larger commercial applications that con-
sider performance to be a high priority. FORWARD is a
fully-fledged MVVM framework that supports declarative
templates, data binding, unit wrapping and a Unified Ap-
plication State (UAS) that achieves encapsulation over mul-
tiple data sources without introducing any additional over-
head.

5.1 Incremental View Maintenance (IVM)
FORWARD leverages the extended research that has been

conducted in the area of Incremental View Maintenance
from the database community ([39, 40, 41] and more) to
power real-life full-stack and client-side reactive applica-
tions. In the database world, materialized views are uti-
lized to speed up query evaluation and execution by caching
the result of commonly requested queries. A typical query
may require access to different database tables or even tables
that are hosted in databases that reside in completely dif-
ferent physical locations, which significantly limits the per-
formance of query execution. On top of that, a query may
require the execution of aggregate functions that demand the
traversal of entire tables, which can be very inefficient espe-
cially in cases where such queries are performed frequently.
For these reasons, the database community introduced the
concept of materialized views. A materialized view is es-
sentially a database table that caches the result of a query
(view definition), so that it is easily accessible when the same
query is run again in the future (as shown in Figure 21), thus
avoiding the full recomputation of the result.

One caveat with this approach is that such materialized
views can soon become outdated as new datasets are added
to the base tables. A valid solution to this problem is to fre-
quently recompute the result of the view definition, so that
it remains up-to-date at all times. This approach however,
essentially recreates the problem that materialized views are
attempting to resolve in the first place, which is the preven-
tion of the full reevaluation and reexecution of a query. In-
stead, the database community introduced IVM techniques
that can be used to incrementally update the materialized
view as updates are applied to the base tables it depends
on. A typical IVM algorithm takes as input various types of
diff definitions and utilizes a set of IVM rules that dictate
how to efficiently update a materialized view. Most IVM im-
plementations require at least the following diff definitions
in order to describe the different kinds of updates that can
occur in a base table.

• 4insert, describes the insertion of a set of records to a
base table

• 4delete, describes the deletion of a set of records from
a base table

Figure 21: Materialized Views

• 4update, describes the update of a set of records that
belong to a base table

FORWARD is a novel MVVM application framework that
applies this technique to the Web by injecting diff propaga-
tion techniques into the different modules a typical MVVM
application consists of. By doing so, FORWARD essentially
treats the Model, the ViewModel and the View of an appli-
cation as materialized views, thus avoiding the full reevalu-
ation of their state when changes are applied to the datasets
they depend on. This leads to more efficient applications
without compromising the ease of use.

5.2 FORWARD’s Programming Model
FORWARD’s programming model (shown in Figure 22)

comprises a Template, a Virtual Database (VDB), and Ac-
tions. The VDB object essentially describes the Model that
is utilized by the application. Declarative Templates are
used to bind parts of the Model to the ViewModel (also
called Template Instance), thus generating the View (Vi-
sual Page Instance). Lastly, when events are triggered, they
invoke the execution of the actions they are associated with,
which can further mutate the application state, cause side-
effects or trigger the evaluation of a different template.

FORWARD, like most other MVVM frameworks, also
supports the creation of reusable visual components/direc-
tives that are used to wrap 3rd-party libraries. These Vi-
sual Units can be utilized by application developers within
a template to declaratively specify a visual layer that con-
tains visualization components (such as charts and maps).
A Visual Unit contains a set of renderers that are able
to apply changes to the View given changes to the Model.
Since, in FORWARD diffs are first class citizens that are

Virtual(Database((VDB)(

Template(Instance(

Ac7ons(
events(

side;effects(

Visual'Unit'
Library'

SQL'
DB'

NoSQL'
DB'

...'

Slider'

Browser'
Session'

Heatmap'

…'

Bar'Chart'

Visual(Page(Instance(

Data'Layer'

Visual'Layer'

Template(

Figure 22: Programming Model for the Novice Database-
oriented Developer

used throughout the framework, a renderer utilizes the in-
formation contained within a diff to reflect the appropriate
changes to the respective part of the View. Each renderer
is declared by specifying a diff signature; signatures de-
fine the rules used to identify the renderer that is capable of
reflecting the changes that are described within a given diff.

As we observe, FORWARD’s programming model seems
to be on par with the respective programming models of
most MVVM frameworks we have described. This is because
FORWARD, despite the advanced IVM mechanisms that it
employs, it still follows the same principles as other frame-
works, which makes its conceptual model easy to under-
stand and utilize. Despite those similarities FORWARD has
some unique features that greatly simplify the development
of robust applications. Particularly, FORWARD is the only
framework that enables the use of declarative logic for speci-
fying the Model of an application. The application developer
is able to inject, a query that accesses remote databases or
web services, directly into the template and assign its result
to a VDB variable. Such variables can later be bound to the
template in order to generate the View. The query language
that is used for defining VDB variables, namely SQL++, is
an extension of the SQL language that is designed to support
queries on relational and semi-structured data.

In Figure 23 we show the FORWARD template that
is used to generate the View shown in Figure 4. The
declarative specification of the application’s Model is shown
in lines 5-14. This sample assumes that FORWARD is
utilized as a full stack framework, and the base tables:
delivery trucks table, product delivery truck relation and
products have been defined on the server-side part of FOR-
WARD. In lines 17-35 we use a Google Maps unit to generate
the map component shown in Figure 4 and in lines 39-65 we
instantiate the HTML table shown bellow the map. Lastly,
in lines 48-61 we instantiate the progress that is visible in
each row of the HTML table.

5.3 Interaction with Remote Services and
Database Systems

FORWARD has the ability to be utilized both as a full-
stack and a client-side framework. In the first case, FOR-
WARD’S Unified Application State (UAS) [2] is able to in-

1 <% template delivery-trucks (product_name) %>
2 <% import functions %>
3 <% import actions %>
4

5 <% refresh delivery_trucks =
6 SELECT latitude, longitude, VIN, driver,
7 shift_start_time, avg_speed,
8 delivered_items, total_items
9 FROM delivery_trucks_table dtt,

10 product_delivery_truck_relation r,
11 products p
12 WHERE p.name = <% print product_name %>
13 AND dtt.id = r.t_id AND p.id = r.p_id
14 %>
15 <% html %>
16 <div>
17 <% unit Google-Maps %>
18 {
19 options : {
20 zoom: 10,
21 center: {
22 lat: -25.363882,
23 lng : 131.044922
24 },
25 },
26 markers : [
27 <% for truck in delivery_trucks %>
28 {
29 position : {
30 lat : <% print truck.latitude %>,
31 lng : <% print truck.longitude %>
32 }
33 }
34]
35 }
36 <% end unit %>
37 </div>
38 <div>
39 <table>
40 <tr> <!-- ... column labels ... --> </tr>
41 <% for truck in delivery-trucks %>
42 <tr>
43 <td> <% print truck.VIN %> /td>
44 <td> <% print truck.driver %> /td>
45 <td> <% print truck.shift_start_time %> /td>
46 <td> <% print truck.avg_speed %> /td>
47 <td>
48 <% unit ProgressBar %>
49 {
50 type = 'Circle',
51 strokeWidth: 10,
52 trailWidth: 1,
53 easing: 'easeInOut',
54 from: { color: '#FC5B3F', width: 1 },
55 to: { color: '#6FD57F', width: 10 },
56 value : {
57 numerator :<% print truck.delivered_items %>
58 denominator : <% print truck.total_items %>
59 }
60 }
61 <% end unit %>
62 </td>
63 </tr>
64 <% end for %>
65 </table>
66 </div>
67 <% end html %>
68 <% end template %>

Figure 23: Template Delivery-Trucks

tegrate data from multiple sources in an efficient manner by
utilizing a distributed query processor. Additionally, FOR-
WARD’s UAS deals with impedance mismatch issues that
developers typically have to deal with when developing full
stack applications. At the same time FORWARD promotes
location transparency, since the application developer is able
to utilize datasets that may reside on the back-end as if they
were located on the client-side.

As mentioned, FORWARD utilizes IVM techniques that
propagate diffs throughout the application. When FOR-
WARD is utilized as a full-stack framework, it automati-
cally propagates diffs from the server-side to the client-side,
as soon as the respective back-end sources that feed the ap-
plication trigger a mutation. When FORWARD is used as
purely a client-side framework, however, it has no control
over the remote services and the respective sources they
use, therefore it is not aware of whether they support IVM
techniques or not. Despite that, FORWARD is still able
to operate in a diff oriented fashion by employing various
approaches.

The first approach we describe can be used when the un-
derlying remote web services support IVM techniques that
generate diffs. In such cases the client can simply request the
respective diffs and utilize them to update the application
state. This approach is implemented by either employing
polling or interrupts. In the first case, the client periodi-
cally transmits HTTP requests to the server in order to get
the latest diffs; while in the second case WebSockets [42] are
used to propagate diffs from the server-side to the client in
real-time. If the utilized back-end services do not support
IVM techniques, however, this approach cannot be used to
generate diffs on the application state. In this case, the ap-
plication developer can implement his own delta functions
thus manually generating diffs that target the local appli-
cation state. These diffs are then passed on to FORWARD
and eventually lead to the respective updates on the View.
While this approach is fairly efficient and it works without
IVM compatible remote services, it pushes some of the load
to the application developer, since he/she has to manually
generate the diffs.

Lastly, if the application developer does not wish to im-
plement any additional logic in order to generate diffs, FOR-
WARD can identify changes by employing a “diff-ing” algo-
rithm on the client. With this approach FORWARD simply
reevaluates the Model in full when an action occurs and
attempts to identify changes between the current state of
the Model and the previous one. This approach appears to
be similar to the respective “diff-ing” approaches that com-
ponent libraries perform on instances of the Virtual DOM.
Despite the similarities, this “diff-ing” algorithm has several
advantages, since it is run on the Model instead of the View-
Model. The complexity of a “diff-ing” algorithm is typically
proportional to the size of the structure that will be explored
for changes. In most cases the ViewModel of an application
is larger and more heavily nested than the Model. Addition-
ally, a single part of the Model can be used in multiple parts
of the View, therefore if this part of the Model changes it
will eventually trigger changes to multiple parts of the View-
Model. By essentially pushing the “diff-ing” algorithm down
to the Model level, we are able to identify a change and infer
the respective changes that will take place on the ViewModel
more efficiently. For those reasons, even if this approach is
essentially the worst-case scenario for FORWARD it still

performs better than the respective approaches that are uti-
lized by Component Libraries.

5.4 Internal Client-Side Architecture
Since the aforementioned methods generate diffs that do

not explicitly state which parts of the View have to be up-
dated, FORWARD cannot use them to directly infer which
renderer calls have to be called to update the appropriate
parts of the View. Instead FORWARD has to translate those
diffs into diffs that target the ViewModel. This process is
carried through by the template IVM algorithm, which uti-
lizes the incoming diffs, the bindings that are included in
a template and a set of IVM rules in order to generate the
respective ViewModel diffs. FORWARD then uses the View-
Model diffs to identify which Visual Units are responsible for
updating the respective parts of the visual layer and it even-
tually calls the respective renderers that can reflect those
changes to the View.

6. CONCLUSION
In this paper we provide an in depth description of MVVM

and Component Frameworks that are currently considered
the “state-of-the-art” in the web community. Furthermore,
we provide a detailed description of the internal mechanisms
that these frameworks employ to propagate changes from
the application state to the view and explained the trade-
offs that those mechanisms impose. Lastly, we illustrated
the internal architecture of FORWARD and described how
it achieves change propagation, in an efficient manner, using
IVM techniques during the life-cycle of an application.

7. REFERENCES
[1] Walter L. HÃijrsch and Cristina Videira Lopes.

Separation of concerns. Technical report, 1995.

[2] Yupeng Fu, Kian Win Ong, and Yannis
Papakonstantinou. Declarative ajax web applications
through sql++ on a unified application state. arXiv
preprint arXiv:1308.0656, 2013.

[3] Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou,
and Erick Zamora. Forward: data-centric uls using
declarative templates that efficiently wrap third-party
javascript components. Proceedings of the VLDB
Endowment, 7(13):1649–1652, 2014.

[4] Graham Cormode and Balachander Krishnamurthy.
Key differences between web 1.0 and web 2.0. First
Monday, 13(6), 2008.

[5] Sareh Aghaei, Mohammad Ali Nematbakhsh, and
Hadi Khosravi Farsani. Evolution of the world wide
web: From web 1.0 to web 4.0. International Journal
of Web & Semantic Technology, 3(1):1, 2012.

[6] What is web1.0? https:
//www.techopedia.com/definition/27960/web-10.
Accessed: 2016-04-05.

[7] Key differences between web 1.0 and web 2.0. http:
//firstmonday.org/article/view/2125/1972.
Accessed: 2016-04-05.

[8] Wikipedia. Document object model — wikipedia, the
free encyclopedia, 2016. [Online; accessed
5-April-2016].

[9] The html syntax. https://www.w3.org/TR/2011/
WD-html5-20110525/syntax.html. Accessed:
2016-04-05.

https://www.techopedia.com/definition/27960/web-10
https://www.techopedia.com/definition/27960/web-10
http://firstmonday.org/article/view/2125/1972
http://firstmonday.org/article/view/2125/1972
https://www.w3.org/TR/2011/WD-html5-20110525/syntax.html
https://www.w3.org/TR/2011/WD-html5-20110525/syntax.html

[10] John Resig et al. Jquery, 2006.

[11] Thomas Powell. Ajax: The Complete Reference.
McGraw-Hill, Inc., New York, NY, USA, 1 edition,
2008.

[12] Douglas Crockford. The application/json media type
for javascript object notation (json). 2006.

[13] Gabriel Svennerberg. Beginning Google Maps API 3.
Apress, 2010.

[14] Amcharts.
https://www.amcharts.com/javascript-maps/.
Accessed: 2016-04-05.

[15] Paul Crickard III. Leaflet. js Essentials. Packt
Publishing Ltd, 2014.

[16] Erik Hazzard. Openlayers 2.10 beginner’s guide. Packt
Publishing Ltd, 2011.

[17] Joseph Kuan. Learning Highcharts. Packt Publishing
Ltd, 2012.

[18] Google charts.
https://developers.google.com/chart/. Accessed:
2016-04-05.

[19] Rosário Durão, Wei Tie, Kristina Henneke, Karen M
Balch, Maxwell Hill, and Rachel Rayl. Visualizing the
data visualization network: The dvmap project.
European Scientific Journal, 2014.

[20] Wikipedia. D3.js — wikipedia, the free encyclopedia,
2016. [Online; accessed 6-April-2016].

[21] Tommi Mikkonen and Antero Taivalsaari. Web
applications: Spaghetti code for the 21st century.
Technical report, Mountain View, CA, USA, 2007.

[22] Google charts.
https://developers.google.com/maps/web/.
Accessed: 2016-04-05.

[23] Google charts. http:
//kimmobrunfeldt.github.io/progressbar.js/.
Accessed: 2016-04-05.

[24] Angularjs. https://angularjs.org/.

[25] Angularjs open source framework.
https://github.com/angular/angular.js.

[26] Ember, a framework for creating ambitious web
applications. http://emberjs.com/.

[27] Handlebarsjs, minimal templating on steroids.
http://handlebarsjs.com/.

[28] Knockoutjs. http://knockoutjs.com/index.html.

[29] Zhigang Liu, Yousuf Saifullah, Marc Greis, and
Srinivas Sreemanthula. Http compression techniques.
In Wireless Communications and Networking
Conference, 2005 IEEE, volume 4, pages 2495–2500.
IEEE, 2005.

[30] Knockout.js - why it’s not a framework.
https://pwkad.wordpress.com/2013/10/07/
knockout-js-why-its-not-a-framework/.
Accessed: 2016-04-12.

[31] Web components. https://developer.mozilla.org/
en-US/docs/Web/Web_Components. Accessed:
2016-04-12.

[32] Wikipedia - web components.
https://en.wikipedia.org/wiki/Web_Components.
Accessed: 2016-04-12.

[33] George T Heineman and William T Councill.
Component-based software engineering. Putting the
pieces together, addison-westley, page 5, 2001.

[34] Shadow dom. https://developer.mozilla.org/
en-US/docs/Web/Web_Components/Shadow_DOM.
Accessed: 2016-04-05.

[35] Polymer. https://www.polymer-project.org/1.0/.
Accessed: 2016-04-12.

[36] Mithriljs.
https://lhorie.github.io/mithril/index.html.

[37] Inheritance and the prototype chain.
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Inheritance_and_the_prototype_

chain. Accessed: 2016-05-05.

[38] Msx, jsx for mithril.
https://github.com/insin/msx.

[39] Yannis Katsis, Kian Win Ong, Yannis
Papakonstantinou, and Kevin Keliang Zhao. Utilizing
ids to accelerate incremental view maintenance. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1985–2000.
ACM, 2015.

[40] Andreas Behrend and Thomas Jörg. Optimized
incremental etl jobs for maintaining data warehouses.
In Proceedings of the Fourteenth International
Database Engineering & Applications Symposium,
IDEAS ’10, pages 216–224, New York, NY, USA,
2010. ACM.

[41] Latha S Colby, Timothy Griffin, Leonid Libkin,
Inderpal Singh Mumick, and Howard Trickey.
Algorithms for deferred view maintenance. In ACM
SIGMOD Record, volume 25, pages 469–480. ACM,
1996.

[42] Websocket.
https://en.wikipedia.org/wiki/WebSocket.

 https://www.amcharts.com/javascript-maps/
https://developers.google.com/chart/
https://developers.google.com/maps/web/
http://kimmobrunfeldt.github.io/progressbar.js/
http://kimmobrunfeldt.github.io/progressbar.js/
https://angularjs.org/
https://github.com/angular/angular.js
http://emberjs.com/
http://handlebarsjs.com/
http://knockoutjs.com/index.html
 https://pwkad.wordpress.com/2013/10/07/knockout-js-why-its-not-a-framework/
 https://pwkad.wordpress.com/2013/10/07/knockout-js-why-its-not-a-framework/
 https://developer.mozilla.org/en-US/docs/Web/Web_Components
 https://developer.mozilla.org/en-US/docs/Web/Web_Components
 https://en.wikipedia.org/wiki/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM
 https://www.polymer-project.org/1.0/
https://lhorie.github.io/mithril/index.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://github.com/insin/msx
https://en.wikipedia.org/wiki/WebSocket

	Introduction
	Background
	Web 1.0
	Infusing the client with logic(Web 1.5)
	Design Patterns on the Client (Web 2.0)
	Model-View-Controller (MVC) Design Pattern
	Model-View-ViewModel (MVVM) Design Pattern

	Existing MVVM Frameworks
	AngularJS
	EmberJS
	KnockoutJS

	Web Component Frameworks
	Polymer
	ReactJS
	MithrilJS

	FORWARD
	Incremental View Maintenance (IVM)
	FORWARD's Programming Model
	Interaction with Remote Services and Database Systems
	Internal Client-Side Architecture

	Conclusion
	References

