Reduction of NIQL v4 to SQL-++ Core

Kian Win Ong, Yannis Papakonstantinou, Gerald Sangudi

We have already seen in Table [4] the subset of SQL++ supported by N1QL, the query language of the Couchbase JSON
database. Rather than allowing the users to write arbitrary SQL-++4, with the risk of allowing the user to write an unsupported
query, N1QL is essentially a dialect of SQL++ that guides the user towards expressing only the supported subset. For example,
while SQL++ allows arbitrary joins, N1QL allows only efficient joins - that is, joins between primary keys and references.
In another example of a restriction, N1QL rather than allowing arbitrary subqueries that would range over attribute/value
pairs or array elements, it introduces special syntactic constructs that are specialized to range over just attribute/value pairs
or just array elements of nested arrays.

In this section we explain how the special syntactic constructs of N1QL’s native syntax (N1QL version 4) are formally
explained via a reduction to SQL-++ core, i.e., can be seen as syntactic sugar over the SQL~++ core. The following discussion
is limited to N1QL features pertaining to the SELECT and FROM functionality of SQL-++. Occasionally, we reduce N1QL to
SQL (rather than SQL++ core). In such case, the further reduction to SQL++ core is identical to SQL’s reduction to SQL++
core.

The nifrom-term corresponds to the from_item. Similarly to the definition of from_item, line 8 provides the base of the
induction and lines 9-11 provide the inductive step. Unlike from_item that allows an arbitrary collection expression to produce
bindings, the nifrom-term expects a path to provide the collection.

The nluse-keys-clause (line 8) restricts the bindings delivered by the nlfrom-term. The following rewriting reduces nluse-
keys-clause into a SQL-++ core expression. In order to emulate the function of keys in SQL++, we assume that the collection
expression e returns tuples, which are bound to v and have a designed primary key attribute p.

e AS v USE PRIMARY KEYS k =

(FROM ¢ AS v

WHERE (SOME r IN k SATISFIES v.p = 1)
SELECT ELEMENT v

N1QL’s JOIN construct (lines 9 and 15) has introduced the special nlon-keys-clause in lieu of SQL’s arbitrary JOIN condition
(lines 9 and 10 of Figure , because the nlon-keys-clause allows the user to express only foreign-key-to-primary-key joins,
which are generally considered to be efficient joins. Therefore the nlon-keys-clause is easily reduced to SQL by the following
reduction. Assume that the left nlfrom-term (line 9) t; defines an alias variable v; (possibly among others) that binds to
tuples that have a primary key attribute p. (Again, in N1QL’s case the primary key attribute would be implicit rather than
explicit.)

t; nljoin-type JOIN r AS 7, ON KEYS e(r,) =
t; nljoin-type JOIN r AS r, ON
SOME z IN e(r,) SATISFIES = = v;.p

The reduction of N1QL’s FLATTEN to SQL++ core was already discussed in Section [5.1]



© 00O Uk W -

nlselect

— nlselect-clause nlfrom-clause (nlgroup-by-clause)?
nlselect-clause

— SELECT ELEMENT nlexpr
nlfrom-clause

— nlfrom-term
nlfrom-term

— nl-path AS alias use-keys-clause

| nlfrom-term nljoin-clause

| nifrom-term nilnest-clause

| nlfrom-term nlunnest-clause
nluse-keys-clause

— USE PRIMARY? KEYS nlexpr
nljoin-clause

— nljoin-type JOIN path AS var nlon-keys-clause
nljoin-type

— INNER

| LEFT
nlon-keys-clause

— ON (PRIMARY)? KEYS niezpr
nlunnest-clause

— nljoin-type FLATTEN nilexpr AS var
nlnest-clause

— nljoin-type NEST path AS var nlon-keys-clause

Figure 19: The reduced N1QL subset




