
Reduction of N1QL v4 to SQL++ Core
Kian Win Ong, Yannis Papakonstantinou, Gerald Sangudi

We have already seen in Table 4 the subset of SQL++ supported by N1QL, the query language of the Couchbase JSON
database. Rather than allowing the users to write arbitrary SQL++, with the risk of allowing the user to write an unsupported
query, N1QL is essentially a dialect of SQL++ that guides the user towards expressing only the supported subset. For example,
while SQL++ allows arbitrary joins, N1QL allows only efficient joins - that is, joins between primary keys and references.
In another example of a restriction, N1QL rather than allowing arbitrary subqueries that would range over attribute/value
pairs or array elements, it introduces special syntactic constructs that are specialized to range over just attribute/value pairs
or just array elements of nested arrays.

In this section we explain how the special syntactic constructs of N1QL’s native syntax (N1QL version 4) are formally
explained via a reduction to SQL++ core, i.e., can be seen as syntactic sugar over the SQL++ core. The following discussion
is limited to N1QL features pertaining to the SELECT and FROM functionality of SQL++. Occasionally, we reduce N1QL to
SQL (rather than SQL++ core). In such case, the further reduction to SQL++ core is identical to SQL’s reduction to SQL++
core.

The n1from-term corresponds to the from item. Similarly to the definition of from item, line 8 provides the base of the
induction and lines 9-11 provide the inductive step. Unlike from item that allows an arbitrary collection expression to produce
bindings, the n1from-term expects a path to provide the collection.

The n1use-keys-clause (line 8) restricts the bindings delivered by the n1from-term. The following rewriting reduces n1use-

keys-clause into a SQL++ core expression. In order to emulate the function of keys in SQL++, we assume that the collection
expression e returns tuples, which are bound to v and have a designed primary key attribute p.

e AS v USE PRIMARY KEYS k ⇒
(FROM e AS v
WHERE (SOME r IN k SATISFIES v.p = r)
SELECT ELEMENT v

N1QL’s JOIN construct (lines 9 and 15) has introduced the special n1on-keys-clause in lieu of SQL’s arbitrary JOIN condition
(lines 9 and 10 of Figure 11), because the n1on-keys-clause allows the user to express only foreign-key-to-primary-key joins,
which are generally considered to be efficient joins. Therefore the n1on-keys-clause is easily reduced to SQL by the following
reduction. Assume that the left n1from-term (line 9) tl defines an alias variable vl (possibly among others) that binds to
tuples that have a primary key attribute p. (Again, in N1QL’s case the primary key attribute would be implicit rather than
explicit.)

tl n1join-type JOIN r AS rv ON KEYS e(rv) ⇒
tl n1join-type JOIN r AS rv ON
SOME x IN e(rv) SATISFIES x = vl.p

The reduction of N1QL’s FLATTEN to SQL++ core was already discussed in Section 5.1.



1 n1select
2 → n1select-clause n1from-clause (n1group-by-clause)?
3 n1select-clause
4 → SELECT ELEMENT n1expr
5 n1from-clause
6 → n1from-term
7 n1from-term
8 → n1-path AS alias use-keys-clause
9 | n1from-term n1join-clause

10 | n1from-term n1nest-clause
11 | n1from-term n1unnest-clause
12 n1use-keys-clause
13 → USE PRIMARY? KEYS n1expr
14 n1join-clause
15 → n1join-type JOIN path AS var n1on-keys-clause
16 n1join-type
17 → INNER
18 | LEFT
19 n1on-keys-clause
20 → ON (PRIMARY)? KEYS n1expr
21 n1unnest-clause
22 → n1join-type FLATTEN n1expr AS var
23 n1nest-clause
24 → n1join-type NEST path AS var n1on-keys-clause

Figure 19: The reduced N1QL subset


