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ABSTRACT
Prior Incremental View Maintenance (IVM) algorithms specify the
view tuples that need to be modified by computing diff sets, which
we call tuple-based diffs since a diff set contains one diff tuple for
each to-be-modified view tuple. idIVM assumes the base tables
have keys and performs IVM by computing ID-based diff sets that
compactly identify the to-be-modified tuples through their IDs.

This work makes the following contributions: (a) An ID-based
IVM system for a large subset of SQL that includes the algebraic
operators selection, join, grouping and aggregation, generalized
projection involving functions, antisemijoin (and therefore nega-
tion/difference) and union. The system is based on a modular ap-
proach, allowing one to extend the supported language simply by
adding one algebraic operator at-a-time, along with equations de-
scribing how ID-based changes are propagated through the opera-
tor. (b) An efficient algorithm that creates an IVM plan for a given
view in four passes that are polynomial in the size of the view ex-
pression. (c) A formal analysis comparing the ID-based IVM al-
gorithm to prior IVM approaches and analytically showing when
one outperforms the other. (d) An experimental comparison of the
ID-based IVM algorithm to prior IVM algorithms showing the su-
periority of the former in common use cases.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
materialized views; incremental view maintenance

1. INTRODUCTION
Materialized views are widely used to speed up query evaluation

by storing the results of commonly asked queries. Being material-
ized, these views have to be brought up to date when the underly-
ing data change. This is typically done through Incremental View
Maintenance (IVM). Abstracting out the details of different IVM
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devices(did, category)
parts(pid, price)
devices_parts(did, pid)

(a) Database schema

CREATE VIEW V AS
SELECT did, pid, price
FROM parts NATURAL JOIN
devices_parts NATURAL JOIN
devices

WHERE category = "phone"

(b) View definition

Figure 1: Database schema and view for running example

approaches, a typical IVM algorithm takes as input three diff tables
D+
R , D−R and DuR per base relation R, containing the tuples that

were inserted, deleted and updated in R and computes the corre-
sponding diff tables D+

V , D−V and DuV for the view V , containing
the changes that have to be performed on V to bring it up to date.

In prior IVM work, each diff table D+
V , D−V and DuV contains

one diff tuple for each view tuple that has to be inserted, deleted
and updated, respectively. This is why we refer to such diffs as
tuple-based diffs (in short t-diffs). In this work we show that if the
base tables contain keys, one can represent the view modifications
in a much more compact way through a novel type of diffs, called
ID-based diffs (in short i-diffs), which identify the to-be-modified
view tuples through their IDs. In contrast to t-diff tuples, a single i-
diff tuple can represent modifications to multiple view tuples. This
difference is crucial, as i-diffs are more efficient to compute than
t-diffs, requiring in general fewer base table accesses as we will ex-
plain next. This leads to more efficient ID-based IVM algorithms,
under common assumptions. The following example demonstrates
the difference between t-diffs and i-diffs. To differentiate between
the two types of diffs, in the rest of the paper we will be using the
standard symbol ∆ to refer to the newly introduced i-diffs and the
symbol D to refer to traditional t-diffs.

EXAMPLE 1.1. Consider the database of an electronic device
manufacturer, storing a list of devices and their parts. Figure 1a
shows the respective database schema, consisting of the relations
devices, parts and devices_parts. The key attributes of each rela-
tion are shown underlined. Also consider the view V of Figure 1b
returning the list of parts for devices of type ‘phone’.

Figure 2 shows an example of tuple-based and ID-based incre-
mental maintenance of V. The initial database and view instance
are shown on the left and t-diffs and i-diffs for a sample change
in relation parts on the right in Figures 2a and 2b, respectively.
Consider the action of updating the price of part “P1” from $10 to
$11. This modification is represented through identical t-diff and i-
diff tuples, as seen in the t-diff tableDuparts and i-diff table ∆u

parts,
respectively. However, this is no longer true when we look at the
diffs that represent the resulting updates that have to happen to the
view. Note that the change of the “P1” price in parts has to be
propagated as updates of all “P1” tuples in the view (which in this
case are the first two tuples). While the t-diff table DuV describes
these changes by two diff tuples, each describing an entire view tu-
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Figure 2: Example of tuple-based and ID-based IVM

ple that has to be updated, the i-diff table ∆u
V describes the same

modifications through a single diff tuple (which intuitively instructs
updating all “P1” tuples in the view).

Obviously ID-based diffs are more compact than their tuple-
based counterparts. More importantly though i-diffs are in general
more efficient to compute than t-diffs. Intuitively, the performance
gains come from the fact that in contrast to t-diffs, i-diffs do not
need to recreate the entire view tuples to be modified and thus can
avoid some base table accesses. We use this observation to design
an ID-based IVM algorithm, which is shown both analytically and
experimentally to perform in most cases fewer base-table and view
accesses than prior tuple-based approaches.

EXAMPLE 1.2. QueriesQD andQ∆ show how the diffs for the
view can be computed from the base tables and the diff for base
relation parts. While computing the t-diff requires joining Duparts
with the base tables devices_parts and devices (see QD) to find all
devices containing part “P1”, producing the i-diffs simply amounts
to finding the modified parts (and not the devices in which they are
contained) and can therefore be accomplished by accessing only
∆u
parts and avoiding all joins with the base relations (see Q∆).

Note that the fewer base table accesses of i-diff computations are
not, just by themselves, an absolute proof of superior performance
of the i-diffs, as maintaining the view should also count the cost of
applying the i-diffs to the view. While both the ID-based and tuple-
based approaches will have to join the resulting view diffs with
the view, the ID-based approach has the drawback of potentially
trying to join more diff tuples by creating dummy i-diff tuples, i.e.,
i-diff tuples describing changes for tuples that do not even exist in
the view. For example, assume that parts included a tuple (P3,
20) and ∆u

parts included a change of P3’s price. Then ∆u
V would

include a dummy P3 tuple, i.e., the system would pay the price of
attempting to update the P3’s in V , albeit there would be no P3 in
V . We call this effect overestimation. Nevertheless, our theoretical
and experimental analysis show that under common circumstances
the i-diff approach is indeed superior. Furthermore, we show that
the advantage of ID-based IVM grows as the queries become more
complex.

Contributions. This paper makes the following contributions:
(a) An ID-based IVM system, called idIVM, applicable when the

base relations have primary keys. The idIVM is based on a modu-
lar, algebraic approach, allowing one to extend the supported view
definition language simply by adding one relational algebra opera-
tor at-a-time and providing i-diff propagation equations describing
how ID-based changes are propagated through it.

(b) A set of i-diff propagation equations for a large subset of SQL
(denoted by QSPJADU ) that includes the algebraic operators se-
lect, project, join, grouping and aggregation with associative func-
tions, generalized projection involving functions, antisemijoin1 and
union. Although the framework can be easily extended to more ex-
pressive view definition languages as described above, our analyti-
cal and experimental results focus onQSPJADU , as it is expressive
enough to cover a large number of practical use cases.

(c) An efficient 4-pass algorithm that creates an IVM plan for
a given algebraically-expressed view and a given set of modifi-
cation types in four passes that are polynomial in the size of the
view expression: The first pass computes the IDs of intermediate
results. The second pass instantiates the operator IVM equations
to the specifics of the view’s operators. The third pass composes
individual equations into the queries of the IVM plan. Finally, the
fourth pass applies minimization and other optimizations particu-
lar to the IVM problem. Unlike general purpose minimization the
considered minimization is polynomial.

(d) An algorithm that given a view expression decides what types
of i-diffs should be mined from the modification log or captured
from triggers. The problem is non-trivial since, as we will see, the
number of types of i-diffs that are applicable, given a base schema
and a view schema, is exponential in the size of the schemas. The
presented algorithm uses the view definition to decide the much
smaller number of sufficient and efficient i-diffs.

(e) A formal analysis proving that for QSPJADU views in many
use cases the ID-based IVM with the i-diff propagation equations
described in the paper is more efficient than tuple-based IVMs. The
analysis is based on a fine-grained cost model counting data ac-
cesses and includes a discussion under the specific conditions under
which tuple-based IVMs can perform better.

(f) An experimental evaluation of the proposed IVM system for
QSPJADU views indicating that in most cases it significantly out-
performs traditional tuple-based approaches. The experimental re-
sults show speedups of 2 to more than 50 over tuple-based IVMs.

Note that ID-based IVM optimization is orthogonal and can be
combined with many of the other IVM issues studied in the liter-
ature [12, 8], such as materialized view selection [3, 25, 19], self
maintenance [5, 11] and compilation into code [2]. We briefly de-
scribe these prior IVM works and their synergies in Section 8.

Outline. The paper is structured as follows: Section 2 defines
ID-based diffs (i-diffs). Section 3 presents the architecture of idIVM.
It consists of two main parts: The first transforms base table mod-
1Therefore capturing queries with negation. The difference opera-
tor is a special case of antisemijoin.



ifications to i-diffs and the second, given a set of i-diffs, creates a
DML script for maintaining the view. For ease of exposition, we
present them in the reverse order, i.e. Section 4 describes the al-
gorithm for the DML script generation and Section 5 describes the
transformation of changes to i-diffs. Sections 6 and 7 compare ana-
lytically and experimentally the efficiency of the generated script to
those produced by tuple-based IVM approaches. Finally, Sections
8 and 9 discuss related work and conclude the paper, respectively.

2. ID-BASED DIFFS
For the following discussion we consider a relational database

DB whose base tables contain keys and a relational view V (Ī , Ā)
over DB, containing a set of key attributes (which we will refer to
as IDs) Ī and a set of non-key attributes Ā.

EXAMPLE 2.1. The view V of our running example contains
IDs Ī = {did, pid} and non-ID attributes Ā = {price}. In the fol-
lowing we will be using the initial instance of V of Figure 2.

View definition language. Although, as we will see, the frame-
work can be easily extended to more expressive view definition
languages, unless otherwise stated, we consider views from the
language QSPJADU , which contains all SQL queries that can be
formulated using the algebraic operators Selection, Projection (in-
volving functions), Join (with arbitrary join conditions), Aggrega-
tion with associative functions sum, avg and count, Antisemijoin
(and thus Difference), and Union2.

General Structure of an i-diff. Let V (Ī , Ā) be a view with IDs
Ī and non-ID attributes Ā. An ID-based diff (in short i-diff ) of type
t ∈ {+,−, u} for relation V is in its most general form a relation
∆t
V (Ī ′, Ā′pre, Ā′′post) satisfying the following properties:

• It contains a subset Ī ′ of the view’s IDs Ī . These are used to
identify the tuples to be modified.

• It may contain two sets Ā′pre and Ā′′post of attributes, such that
Ā′, Ā′′ are sets of non-ID attributes of V . An attribute Apre
and Apost intuitively stores the pre-state value (i.e., initial value
before the change) and respectively post-state value (i.e., new
value after the change) of attribute A of V .

Depending on their type, i-diffs may not contain both pre-state
and post-state attributes. In particular, insert i-diffs (i.e, of type
t = +), do not contain pre-state attributes, since they represent
insertions of tuples that did not exist before. Similarly, delete i-
diffs (i.e., of type t = −) do not contain post-state attributes. Only
update diffs (i.e., of type t = u) may contain both old and new
attribute values. We next describe the semantics for each i-diff type:
Update i-diff. An update i-diff instance ∆u

V for view V (Ī , Ā) is
a relation instance with schema ∆u

V (Ī ′, Ā′pre, Ā′′post), where Ī ′

is a subset of the IDs Ī of V and Ā′, Ā′′ are potentially different
subsets of the non-ID attributes Ā of V (with Ā′ being potentially
the empty set).

Intuitively, each tuple (̄i′, ā′pre, ā
′′
post) in ∆u

V specifies that all
tuples in V with values ī′ for their Ī ′ attributes should have the
values of their Ā′′ attributes updated to ā′′post. Formally, applying
∆u
V on an instance IV of V is equivalent to applying the following

DML statement on IV :

APPLY ∆u
V : UPDATE V

SET Ā′′ = Ā′′post

2To maintain the IDs for the bag union, we employ a special union
all operator, outputting a special attribute b, denoting which child
branch (b = 0/1 for left and right, resp.) a tuple came from.

FROM ∆u
V

WHERE V.Ī ′ = ∆u
V .Ī
′ 3

In the rest of the paper, the instance IV will be implied from the
context and therefore for simplification we will simply refer to a
diff as being applied on the view V .

Note, that although not affecting its semantics, an update i-diff
may also contain pre-state values of some non-ID attributes of V .
As we will see later, this additional information is leveraged by the
IVM algorithm to reduce the number of accesses to the database.

EXAMPLE 2.2. Applying the following update i-diff

∆u
V pid pricepre pricepost

P1 10 11

leads to the update of the price of both tuples in V with pid =
“P1" from 10 to 11.

Remark. In the following we consider only i-diffs where Ī ′ forms
a primary key of the i-diff. The reason is that if Ī ′ is not a key, then
update i-diffs are not well-defined and insert i-diff applications may
lead to primary key violations.
Insert i-diff. An insert i-diff instance ∆+

V for a view V (Ī , Ā) is
a relation instance with schema ∆+

V (Ī , Āpost), or in other words
a relation containing the post-state values for all attributes of the
view and no pre-state values.

Intuitively, an insert i-diff instance ∆+
V contains a set of tuples

that should be inserted into V . Formally, applying ∆+
V has the same

effect as applying the following DML statement on V :

APPLY ∆+
V : INSERT INTO V

SELECT Ī , Āpost AS Ā FROM ∆+
V

WHERE ROW(Ī , Āpost) NOT IN
(SELECT Ī , Ā FROM V )

EXAMPLE 2.3. Applying the following insert i-diff

∆+
V did pid pricepost

D3 P2 20
D4 P3 30

inserts tuples <D3, P2, 20> and <D4, P3, 30> in V .

Remark. The WHERE clause in the above DML statement en-
sures that an attempt is made to insert a tuple into V only if it is
does not already exist in V in the exact same form. This allows
multiple insert i-diffs to try to insert the same tuple.

Delete i-diff. A delete i-diff instance ∆−V for a relation V (Ī , Ā)

is a relation instance with schema ∆−V (Ī ′, Ā′pre), where Ī ′ is a
subset of the IDs Ī of V and Ā′ is a potentially empty subset of the
non-IDs Ā of V .

Intuitively, ∆−V specifies the tuples that should be deleted from
V based on the values of the Ī ′ attributes. Formally, applying ∆−V
has the same effect as applying the following DML statement on V :

APPLY ∆−V : DELETE FROM V
WHERE ROW(Ī ′) IN (SELECT Ī ′ FROM ∆−V )

Note that, similarly to update i-diffs, a delete i-diff may also
specify the pre-state values of the deleted tuples, which are used
to create more efficient IVM solutions.

3Note that for conciseness the UPDATE statement is written using
PostgreSQL’s special UPDATE FROM syntax. However, it could
be equivalently written using standard SQL syntax.



EXAMPLE 2.4. Applying the following delete i-diff

∆−V pid pricepre
P1 10

leads to the deletion of both tuples with pid = “P1” from V .

Effective i-diff instances. Given a set of i-diff instances ∆̄ for a
relation V , applying them on V leads in general to different results
depending on the order of application. However, in this work we
only look at sets of i-diffs where any order of applying them on V
yields the same result. To this end, we define the notion of effective
i-diff instances. Given the pre-state V pre and post-state V post of a
relation V , an i-diff instance ∆t

V is said to be effective w.r.t. V pre

and V post if for each value of a tuple of V it reflects its final value.
Formally, it is effective iff it satisfies the following properties:

• If ∆t
V is an insert i-diff: Every tuple inserted by the i-diff exists

in the post-state (i.e., ∆+
V ⊆ V

post).

• If ∆t
V is a delete i-diff over schema ∆−V (Ī ′, Ā′pre): Every tuple

deleted by the i-diff does not exist in the post-state relational
instance (i.e., πĪ′∆

−
V ∩ πĪ′V

post = ∅).
• If ∆t

V is an update i-diff over schema ∆u
V (Ī ′, Ā′pre, Ā

′′
post): Ev-

ery tuple updated by ∆u
V that exists in the post-state instance,

has all updated attributes Ā′′post set to the corresponding values
in that instance (i.e., πĪ′,Ā′′post∆

u
V nĪ′V post ⊆ πĪ′,Ā′′V post).

It can be shown that a set of effective i-diffs lead to the same
result regardless of the order in which they are applied. In the fol-
lowing the i-diff instances we consider are assumed to be effective.
We will discuss in Sections 4 and 5 how idIVM makes sure that it
always operates on effective i-diff instances.

i-diff schemas. It should be obvious that a single modification
could be represented through i-diffs of different schemas. In par-
ticular, one can include pre-state or post-state values for different
sets of attributes. More importantly, different base table i-diffs may
lead to IVM solutions of different efficiencies. For instance, an up-
date of a t tuple of relation R(Ī , A1, A2) on attribute A1 can be
represented by either an i-diff that contains only the post-state of
A1, or both the post-state of A1 and A2 (even though the value of
A2 did not change). However, the first i-diff will in general lead to
a more efficient solution, since for the second i-diff the IVM algo-
rithm will have to account also for the change of A2, although this
is not needed. This generates a novel challenge of selecting which
base tables i-diff schemas to create, as explained next.

IDs and functional dependencies. As discussed earlier, the set
Ī of ID attributes of a view V forms a key of that view. Moreover,
any i-diff ∆V for the view V identifies the tuples of V to be up-
dated, deleted or inserted through a subset of that key. However,
this cannot be an arbitrary subset of the key. The key Ī of a view
is split into components (Ī1, Ī2, . . . Īn), such that for each compo-
nent of the key there is a functional dependency Īi → Āi from this
component Īi to a subset Āi of non-key attributes of the view. The
i-diff can identify the tuples of the view to be modified through a
subset of these key components.

EXAMPLE 2.5. For instance, in our running example, V has
ID/key Ī = {did, pid}, which can be decomposed into two com-
ponents Ī1 = did and Ī2 = pid, since there is the functional de-
pendency pid→ price (in a more general view V ′ containing also
attributes of the devices relation there would also be a functional
dependency from did to those attributes). Thus the tuples of V can
be identified by an i-diff either through did or through pid (as is
the case in our example).
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Figure 3: idIVM architecture

3. SYSTEM ARCHITECTURE
Figure 3 depicts the architecture of idIVM; an ID-based IVM

system based on i-diffs and built on top of a relational DBMS. The
modules of the system are shown as rounded boxes, while the sys-
tem’s data structures are depicted as white rectangles. idIVM can
be setup to maintain the view either eagerly (i.e., whenever the base
data change, known as eager IVM [6, 7, 10]) or lazily at some later
point in time (known as deferred IVM [9, 15, 17]). In either case,
the modification logging module of the idIVM remains the same.
Furthermore, the only part of the architecture that is substantially
different in the two approaches is the i-diff propagation rules and
cache maintenance rules (see Figure 4). This paper describes the
deferred IVM rules. idIVM contains modules executed at three dif-
ferent times (shown through color-coding in Figure 3): (a) when
the views are defined (orange), (b) whenever the data in the un-
derlying database change (green), and (c) whenever the views are
maintained (blue). We present next briefly each of these stages:

View definition time. The most interesting and novel compu-
tations happen when a view is added to the system. At that point
idIVM precomputes in the form of DML scripts how to translate
i-diffs on the base tables to view updates. This computation hap-
pens through the synergy of two components: First, it employs a
base table i-diff schema generator to decide which i-diff schemas
to generate for the base tables. As we have discussed in Section
2, this is a non-trivial problem, as the same update could be mod-
elled through i-diffs of different schemas. Once the base table i-diff
schemas have been decided, idIVM invokes the ∆-script generator
creating a DML script that accesses the generated i-diffs, the base
tables and the potential caches (which as we will see can be used to
speedup the IVM) to maintain the view. The resulting ∆-script is
stored in a repository to be used at view maintenance time.

Data modification & view maintenance time. Given this of-
fline computation, the system’s online component is simple: When
the base data are modified, a modification logger logs these changes
for later use. When the time comes to maintain the view, the base
table i-diff instance generator consults the modification log and
converts it to instances of the base table i-diff schemas precom-
puted at view definition time. A ∆-script executor then retrieves
the ∆-script corresponding to the view from the ∆-script reposi-
tory and executes it to propagate the changes represented by the
base table i-diff instances to the view instance.

We next describe the ∆-script generation, leaving the discussion
of how to convert base table modifications to i-diffs for Section 5.
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(a) Algebraic plan (annotated by the ∆-script generator)

CREATE VIEW V’ AS
SELECT did, sum(price) AS cost
FROM parts NATURAL JOIN

devices_parts NATURAL JOIN
devices

WHERE category = "phone"
GROUP BY did

(b) View definition

Figure 5: View definition and plan for extended running example

4. ∆-SCRIPT GENERATION ALGORITHM
Given a view definition and a set of base table i-diff schemas, the

∆-script generation algorithm creates a DML script that includes
(a) queries over the base table i-diffs, the base tables and the aux-
iliary caches (which as we will see are used by idIVM to speed up
the IVM) that compute the corresponding view i-diffs and (b) UP-
DATE / INSERT / DELETE statements of the form described in
Section 2 that apply these i-diffs on the view.

The ∆-script generator is based on the algebraic IVM approach
[21, 10, 22]: Each relational operator type (e.g., selection, projec-
tion, join, etc.) is annotated with a set of rules, describing how to
transform an (effective) i-diff over its input schema to an (effective)
i-diff over its output schema. Given this information, the ∆-script
for a view V can be composed from the individual rules for each
operator that appears in an algebraic plan of V . Intuitively, the al-
gorithm is computing how to maintain the entire view by first com-
puting how to maintain all intermediate subviews in the algebraic
plan. This approach enables a modular implementation in which
the supported view definition language can be easily extended by
adding rules for additional relational algebra operators. In this work
we present the rules for all operators included in QSPJADU (i.e.,
selection, join, generalized projection involving functions, group-
ing with aggregation, antisemijoin, and union). Similarly to prior
algebraic IVM approaches, we assume that the algebraic plan of
the view on which the algorithm operates is given as input.

Operator Output ID attributes
SCAN(R) key(R)
σφ(R) ID(R)
πD̄(R) ID(R)
R× S ID(R) ∪ ID(S)
R 1φ S ID(R) ∪ ID(S)
Rn̄φS ID(R)
bag union R ∪ S ID(R) ∪ ID(S) ∪ {b}
group by γḠ,f(M̄)...(R) Ḡ

Table 1: Operator ID inference rules

EXAMPLE 4.1. To showcase the algorithm, we extend the view
of our running example to also perform an aggregation, return-
ing the total cost of the parts for each device. Figures 5b and 5a
show the view definition V ′ and a corresponding algebraic plan,
respectively. The shaded components are annotations inserted by
the algorithm, which we explain below.

idIVM performs the 4 efficient passes of Figure 4.
Pass 1: Inferring ID information for intermediate views. Since

i-diffs determine the view tuples that have to be modified through
their IDs, the view and all intermediate subviews should contain as
part of their output schema a set of ID attributes that form a key
of the corresponding view. idIVM determines the ID attributes that
should be contained in the output schema of each subview through
the use of ID inference rules. An ID inference rule is supplied for
each operator type supported by the system and describes how the
IDs of the view rooted at an operator p can be computed from the
IDs of the subviews rooted at p’s children. Table 1 shows the ID in-
ference rules for operators in QSPJADU .4 idIVM uses these rules
to perform a postorder traversal of the plan checking at each oper-
ator whether the IDs inferred by these rules exist in the operator’s
output schema. If this is not the case, idIVM automatically extends
the plan to include the required ID attributes.

EXAMPLE 4.2. Figure 5a shows the set of IDs for each opera-
tor in a shaded oval on the top right side of the operator.

Note that extending the view with additional ID attributes sim-
ply increases the width of the view instance (i.e., the number of
columns) but does not affect its cardinality (i.e., the number of tu-
ples). In particular, if Vorig is an original view with attributes Ā and
VID is the view inferred by the ID-inference algorithm, then for all
instances of the base tables the original view can be computed from
the original view simply by projecting out the additional attributes
introduced by the ID-inference algorithm (i.e., Vorig = πĀVID).
Given that the number of additional ID attributes is usually small
compared to the number of attributes already in the view, we do
not expect the extension of the view schema with ID attributes to
significantly affect the query evaluation performance. Importantly,
the above observations hold not only for operators in QSPJADU
but for any SQL operator (for the reader wondering how this can
be the case for the duplicate elimination operator δ, given that in
general δ(πA,B(R)) is different from δ(πID,A,B(R)), consider an
implementation where the duplicate elimination operator δ above
is replaced by the group by operator γA,B).

Pass 2: Instantiating rules for each intermediate operator. To
construct the ∆-script for the view, the algorithm employs operator
rules that describe how each operator can propagate i-diffs over its
input to i-diffs over its output.

Operator rules. An operator describes how to transform an i-diff
∆t
input over one of its input schemas to an i-diff ∆t

output over its

4 Union refers to the union all operator described in Section 2.



output schema through a set of queries known as i-diff propaga-
tion rules. These queries can access (a) the operator’s input i-diff
∆t
input and (b) the data corresponding to the subview rooted at the

operator or at one of its child operators. The latter is the way in
which idIVM allows operator rules to access data from the base ta-
bles. Since an operator does not have knowledge of the exact place
in the query plan where it appears to ask for a query result over
the base tables, it can access the base table data only indirectly by
asking for the subview rooted at one of its children through the use
of the Inputi=l,r (standing for left and right input, resp. for binary
operators) or for the subview rooted at itself using theOutput key-
word, respectively. The input subviews can be requested either in
their pre-state form (i.e., using the instances of the base tables be-
fore the diffs were applied to them) or in the post-state (i.e., using
the final instances of the base tables after the diffs were applied to
them). An i-diff propagation rule can specify which of the two ver-
sions of the input it needs through the subscripts pre and post. The
output is always provided in pre-state.

EXAMPLE 4.3. For instance, a general grouping and aggregate
operator V = γḠ,f(X̄)→c(Input) contains among others the i-
diff propagation rule: ∆u

V = γḠ,f(X̄)→c(Inputpost nḠ ∆+
Input),

which semijoins the post-state of the subview rooted at the oper-
ator’s child with an input insert i-diff to find all tuples that be-
long to groups affected by the insertions and use them to recom-
pute the value of the aggregate function for these groups. The
Inputpost keyword is the way in which the operator asks for the
(post-state of) some base data (in this case the base data defined
by the subview rooted at the operator’s child, which for the aggre-
gate operator of Figure 5a is the subview parts ./pid devices_parts
./did σcategory=“phone” devices).

There are two different classes of operators in idIVM: The first
consists of operators which can produce an output effective i-diff by
looking at one input i-diff at a time. These operators are called non-
blocking operators, in contrast to blocking operators which need to
inspect the entire set of input i-diffs before creating an effective
output i-diff. The operator type affects how the operator’s i-diff
propagation rules are expressed. For non-blocking operators, each
rule is expressed over a single input i-diff, while for blocking oper-
ators, a rule is expressed over all input i-diffs.

EXAMPLE 4.4. The general aggregate operator γ of Example
4.3 is a non-blocking operator, since it can decide how to propa-
gate an input insert i-diff without looking at other input i-diffs (e.g.,
delete or update i-diffs). The reason is that for each insert i-diff tu-
ple it recomputes the entire affected group from the base data thus
reflecting indirectly also the changes incurred by other input i-diffs.
On the other hand, imagine a more efficient aggregate operator de-
signed specifically for the SUM aggregate function. This operator
avoids recomputing entire groups by combining all input i-diffs to
figure out the amount by which the aggregate value of each group
has changed. While it avoids some base table accesses, it requires
knowledge of all input i-diffs and is thus a blocking operator.

Tables 4-13 show the i-diff propagation rules for the operators
considered in this work, including join, union, generalized projec-
tion involving functions, antisemijoin and aggregation. Rules for
aggregation are provided in four different versions (see Tables 7, 9,
11, and 12); one for general aggregation functions and others for
specialized functions, such as SUM, COUNT and AVG.

Some operator rules may also benefit from special caches to
speed up IVM. For instance, an aggregate AVG operator in the
presence of a COUNT and SUM cache can incrementally maintain
its output without accessing the base tables. To accomodate such
cases, idIVM allows operators to declare special operator caches
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Figure 6: Rule DAG structure

and associated cache maintenance rules, describing how to com-
pute the i-diffs that maintain the caches. The i-diff propagation
rules can then be expressed also over the operator cache schemas
and the operator cache i-diffs. Table 12 shows the cache mainte-
nance rules and i-diff propagation rules for the AVG operator.

Rule instantiation. In its second pass, the ∆-script generator
algorithm employs the predefined operator rules to compute how
each base table i-diff is propagated from operator to operator in
the view plan. This is done as follows: For each base table i-diff
schema ∆t

R, the algorithm starts from the scan operator of the cor-
responding base table R and in a bottom-up fashion instantiates
the rules for all operators in the path from the scan operator to the
root of the plan.5 The rule instantiation simply consists in selecting
from all rules for the particular operator the ones that apply in the
particular case (based on the input i-diff schema and other condi-
tions) and replacing the abstract schema used in the rules with the
concrete schema of the particular operator instance (e.g., for an op-
erator V = πx(R) the general projection i-diff propagation rule
∆+
V = πā,f(X̄)→c∆

+
R becomes ∆+

V = πx∆+
R).

EXAMPLE 4.5. Consider an update i-diff schema ∆u
parts(pid,

pricepre, pricepost) modeling updates on the price attribute of ta-
ble parts of our running example. Figure 5a shows on the left the
corresponding instantiated rules generated by the algorithm. The
exact rule for the aggregate operator is omitted due to lack of space.
However, it is important to note that it is a rule that mentions the in-
put i-diff and the input and the output of the operator, respectively.

Note that for a single input i-diff an operator may create multiple
output i-diffs. For instance, an update i-diff going through a selec-
tion operator may lead to insert, update and delete i-diffs, depend-
ing on whether a tuple satisfied the condition before and after the
change. Whenever the rules of an operator create multiple output i-
diffs, the above computation continues conceptually in parallel for
each generated i-diff schema. This leads to a directed rule DAG,
whose nodes are instantiated rules and whose edges point from a
rule to all rules that were created using its output schema. Figure 6
shows such a structure. Note how blocking rules convert the struc-
ture that would otherwise be a tree into a DAG.

Pass 3: Composing operator-level instantiated rules into a ∆-
script. Each rule in the DAG is a query expressed over the output
schema of its parent rules (note that the DAG in Figure 6 is shown
inverted with its root shown at the bottom). Thus each i-diff for the
view (which corresponds to a leaf) can be computed by compos-
ing the instantiated rules of its ancestors. The exact order in which
these compositions are performed does not matter, since all con-
sidered i-diffs are effective. This is guaranteed by the fact that (a)
the base table diff instance generator creates effective diffs (as we
will discuss in Section 5) and (b) i-diff propagation rules transform
effective input i-diffs to effective output i-diffs.
5If the base table R appears with multiple aliases, this process is
repeated for every scan operator of R.



1 ∆u
Cache = ∆u

parts;
2 APPLY ∆u

Cache;
3 ∆u

V ′ = πdid,cost→costpre,cost+cost∆→costpost(V
′ 1

γdid,sum(price∆)→cost∆(
πdid,pid,(pricepost−pricein)→price∆(
∆u
Cache 1 πprice→priceinCache)));

4 APPLY ∆u
V ′ ;

Figure 7: ∆-script for running example

To make the generated plan more efficient, idIVM employs also
additional caching, other than the caching used internally by oper-
ators. In particular, for aggregate operators, whose rules typically
ask for the base data corresponding to their input/output (through
the Inputi and Output keywords, resp.), idIVM attempts6 to cre-
ate an intermediate cache in which it materializes this result. This
cache is treated as any other view and maintained during the IVM
process. In particular, idIVM first composes all rules that create the
i-diffs for the cache and then using them as input, composes the rest
of the rules up to the next cache until it reaches the view.

EXAMPLE 4.6. For instance, as we have seen in Figure 5a, the
instantiated rule for the aggregation mentions both the input and
the output of the operator. Thus, idIVM tries to generate two in-
termediate caches; one before the aggregate and another after the
aggregate. Since however the output of the aggregate coincides
with the view (which is already materialized), idIVM creates only
the first cache and utilizes the already existing view as the second.

The result of this composition is a ∆-script, containing queries
that compute i-diffs for an intermediate cache/view and APPLY op-
erators that use the DML statements corresponding to each i-diffs
type (shown in Section 2) to apply these i-diffs to the cache/view.

EXAMPLE 4.7. In our running example idIVM employs an in-
termediate cache below the aggregate operator. Thus, it composes
the rules up to that point, updates the cache and then uses it as
input to compose the rules up to the view, which is subsequently
updated. This leads to the ∆-script of Figure 7.

Pass 4: Optimizing the generated ∆-script. As a last step,
idIVM optimizes the ∆-script by performing semantic optimiza-
tion, which minimizes each individual query included in the plan.
In contrast to general minimization, this minimization takes into
account the special semantics of i-diff tables. As described in Sec-
tion 2, given a base tableR(Ī , Ā) in its post-state and i-diffs ∆+

R(Ī ,

Āpost), ∆−R(Ī , Ā′pre), and ∆u
R(Ī , Ā′pre, Ā

′′
post) over this table, the

following constraints hold: (a) C1 : ∆+
R ⊆ R, (b) C2 : πĪ∆

−
R ∩

πĪR = ∅, and (c) C3 : πĪ,Ā′′post∆
u
R nĪR ⊆ πĪ,Ā′′R. idIVM

minimizes w.r.t. constraints C1 - C3 by employing on top of the
standard relational rewrite rules also the rewrite rules presented in
Figure 8. Semantic minimization is crucial in eliminating ineffi-
ciencies introduced by composing individual operator rules, im-
proving in some cases performance by more than 50%.

Designing operator i-diff propagation rules. The efficiency of
the ∆-script obviously depends on the provided i-diff propagation
rule definitions. Reasoning about the efficiency of individual rules
is hard, as rules affect each other (e.g., a rule avoiding base table
accesses may not bring in some information that could be used by
rules later in the plan, thus leading to higher access cost later).
6Intermediate caches are not generated when they are expected to
contain multi-valued dependencies (for instance due to a many-to-
many join), since in that case reading the result from the cache
would incur more tuple accesses than simply recomputing it on the
fly from the base tables. idIVM exploits foreign key constraints to
infer the absence of multi-valued dependencies.

For semijoin
∆+
R nR.Ī σφ(X̄)R→ σφ(X̄post)∆

+
R

R nR.Ī σφ(Ȳ )∆
+
R → πĪ,Āpost→Āσφ(Ȳ )∆

+
R

∆u
R nR.Ī σφ(X̄)R→ σφ(X̄post)∆

u
R, if X̄ ⊆ Ā′′

R nR.Ī σφ(Ȳ )∆
u
R → πĪ,Ā′′post→Āσφ(Ȳ )∆

u
R, if Ā′′ = Ā

∆−R nR.Ī σφ(X̄)R→ ∅
R nR.Ī σφ(X̄)∆

−
R → ∅

For antisemijoin
∆+
Rn̄R.Īσφ(X̄)R→ σ¬φ(X̄post)∆

+
R

∆u
Rn̄R.Īσφ(X̄)R→ σ¬φ(X̄post)∆

u
R,

if X̄ ⊆ Ā′′
∆−Rn̄R.Īσφ(X̄)R→ ∆−R
Rn̄R.Īσφ(X̄)∆

−
R → R

For join
∆+
R ./R.Ī R→ ∆+

R

∆u
R ./R.Ī R→ ∆u

R

∆−R ./R.Ī R→ ∅
* up to renaming

Figure 8: Rewrite rules for semantic optimization

However, in this work we show that we do not have to get into
this reasoning process. Simply creating rules that individually avoid
accessing the base tables when possible leads to efficient ∆-scripts,
as shown by our analytical and experimental results. To avoid data
accesses, the rules are even allowed to overestimate, i.e. skip some
filtering that would require base table accesses and propagate to
their output i-diffs dummy tuples that do not affect the view.

EXAMPLE 4.8. For instance, the selection operator allows a
delete input i-diff to pass through the operator unmodified. How-
ever, this means that the output i-diff will also instruct the deletion
of tuples that do not satisfy the selection conditions and thus do not
exist in the view. Although this is an overestimated i-diff, it does not
affect the correctness of the generated ∆-script, since the latter will
simply try to delete some tuples from the view that do not exist. On
the other hand, this rule locally minimizes the base table accesses,
as it avoids accessing the base tables to filter out the tuples that do
not satisfy the selection condition.

5. FROM MODIFICATIONS TO I-DIFFS
We saw above how given a set of base table i-diffs, idIVM main-

tains the view. In this section we explain how these base table i-
diffs are generated from base table modifications. This is a non-
trivial problem, since as explained in Section 2, a single modifica-
tion can be represented through i-diffs of different schemas, each
leading potentially to ∆-scripts of different efficiencies.

idIVM solves the i-diff generation problem through the synergy
of three components shown in Figure 3: (a) a modification logger
recording the base table modifications at data modification time, (b)
a base table i-diff schema generator deciding at view definition time
which base table i-diff schemas to generate, and (c) a base table i-
diff instance generator, translating at view maintenance time the
modifications recorded in the log to instances of the pre-computed
i-diff schemas. Logging changes to the base tables can be eas-
ily performed through known techniques, such as DBMS log in-
spections, timestamp queries or triggers (currently used by idIVM).
Therefore we focus next on the other two components.

Generating i-diff schemas. Given a view definition V , idIVM
generates suitable base-table i-diff schemas for all base tables men-
tioned in V . Insertions and deletions are straightforward cases:
Consider a base tableR(Ī , Ā) with key attributes Ī and non-key at-
tributes Ā. For each such table, the i-diff schema generator creates
a single insert i-diff schema ∆+

R(Ī , Āpost) (containing all attributes
of R) and a single delete i-diff schema ∆−R(Ī , Āpre) (containing
all non-ID attributes of R in pre-state form). This is based on the
observation that pre-state values can lead only to a more efficient
∆-script as they may reduce overestimation and the respective view



index lookups. For instance, as shown in Table 6 with blue, a selec-
tion operator can exploit pre-state attributes to filter out the tuples
of an incoming delete i-diff that do not satisfy the condition.

The same does not hold though for post-state attributes included
in update i-diffs. Including more post-state attributes in an update
i-diff schema leads to a generally less efficient ∆-script, as it has
to account also for changes in these attributes. Creating one up-
date i-diff schema for each subset of attributes of each base table is
obviously not an option, due to the exponentiality involved.

In idIVM we solve this problem by observing that the base ta-
ble attributes can be divided into sets of attributes whose updates
lead to the same ∆-script and can thus be grouped together in a
single i-diff schema. For each operator op in the algebraic view
plan, let Cop, be the set of (non-key) base table attributes involved
in any condition (e.g., selection, join etc)7. We refer to Cop as
the set of conditional attributes for op. The set of (non-key) base
table attribute not included in any Cop for any operator op in the
view’s plan is referred to as the set of non-conditional attributes
NC. Non-conditional attributes may still affect the view (since
they could be included in the view’s output), but intuitively they do
not affect the generated ∆-script (up to projections). Updates on
each set of conditional attributes Cop on the other hand may lead
to a different ∆-script, since the updated values may affect whether
the i-diffs make it past op’s condition. Therefore for each base table
R(Ī , Ā), the i-diff schema generation algorithm creates (a) for each
set Cop an update i-diff ∆u

R(Ī , Āpre, Ā
′
post), s.t. Ā′ = Ā ∩ Cop

and (b) an additional update i-diff ∆u
R(Ī , Āpre, Ā

′′
post), containing

the non-conditional attributes of R (i.e., Ā′′ = Ā ∩NC).
Populating i-diff instances. Every time idIVM is invoked to

maintain the view, the i-diff instance generator simply populates
the i-diff tables created at view definition time. This is done by
extracting the changes since the last view maintenance from the
modification log and adding them as diff-tuples to all i-diff tables
that contain at least one of the modified attributes (in the case of
updates) and to the single insert and delete i-diff tables (in the case
of inserts and deletes, respectively). Note, that when extracting
the modifications from the log, the algorithm combines multiple
modifications to the same tuple to a single modification, so as to
generate effective diffs. As discussed in Sections 2 and 4, this is
crucial for the algorithm’s correctness.

6. PERFORMANCE ANALYSIS
We next analytically compute the speedup ratio of ID-based over

tuple-based IVM (i.e., the ratio tuple-based cost
ID-based cost ). A speedup ratio greater

than 1 signifies that the ID-based approach has a lower cost than
the tuple-based approach and thus is more efficient than the latter,
while a speedup ratio lower than 1 signifies the opposite.

To compute the speedup we first compute the individual cost
of each IVM approach. The cost of the ID-based/tuple-based ap-
proach is measured in the combined number of tuple accesses and
index lookups incurred by the ∆/D-script, generated by the cor-
responding approach. For the purposes of this analysis, we as-
sume that both approaches have access to view indices on the view
IDs and additionally the tuple-based IVM has access to appropri-
ate base table indices (which are not required by the ID-based ap-
proach). We also try to be as general as possible regarding the query
plan that the DBMS might choose to execute a particular ∆/D-
script. However, since DBMSs employ complex optimizations that
cannot be comprehensively accounted for in an analytical model,
the computed cost and the associated speedups reported in this Sec-
tion should only be used as rough estimates of the actual cost of
performing IVM that illustrate the difference in performance be-

7Base table key attributes do not need to be considered for updates
as they are immutable.

tween the two approaches. For an experimental comparison of the
two IVM approaches, please refer to Section 7.

We next present the speedup for two representative cases: (a)
SPJ views, which by default do not involve intermediate caches
and (b) Aggregate views involving grouping and associative func-
tions, which (by default) are supported by caches. For a detailed
analysis explaining how this speedup was computed, please refer
to Appendix A.

6.1 SPJ Views
Consider the SPJ view Vspj:

SELECT S̄ FROM R,R1, . . . , Rn WHERE c

whose FROM clause involves a single alias of a tableR, (b) a t-diff
DR on R and (c) a corresponding i-diff ∆R. 8

Parameters affecting speedup. The speedup of the ID-based
approach over the tuple-based approach can be expressed in terms
of two parameters: the i-diff compression factor p and the tuple-
based computation cost per base table diff tuple a. The i-diff com-
pression factor p = |DVspj |/|∆Vspj | is the ratio of the size of the
tuple-based diff to the size of the ID-based diff for the view. p
may be less than 1 (when i-diffs summarize the modifications to
the view in a more compact way than t-diffs, as shown in Figure 2)
but may also be greater than 1 (when i-diffs are overestimating and
trying to modify tuples that do not exist in Vspj). The second pa-
rameter is the number of accesses a that the tuple-based approach
has to perform on average to compute the t-diff tuples for the view
that result from a given t-diff tuple for the base table. This cost
will typically vary, depending on the plan chosen by the DBMS to
evaluate the tuple-based D-script.

Speedup ratio. The speedup ratio of the ID-based approach over
the tuple-based approach is given by the following formula:

(a) if ∆R/DR is an update i-diff/t-diff on attributes of R that are
not involved in selection or join conditions in Vspj, then

A: Speedup ratio = a+2p
1+p

(b) else (i.e., if ∆R/DR is any other update i-diff/t-diff or it is an
insert or delete i-diff/t-diff)

B: Speedup ratio ≥ min
(
a+2p
1+p

, 1
)

Discussion. Let us first explain why update diffs on attributes of R
that are non-conditional may lead to a different speedup ratio than
other types of diffs. Since the updates do not affect how a tuple
behaves w.r.t. selections or joins, they are guaranteed to lead to up-
dates (i.e., neither inserts, nor deletes) on the view. When this is
the case (case (a) above), the ID-based IVM algorithm can simply
propagate the base table i-diffs to the view without accessing the
base tables, leading to a speedup ratio of a+2p

1+p
. This speedup is in

most practical cases greater than 1 (meaning that the ID-based is
more efficient than the tuple-based approach). For the tuple-based
approach to perform better, it should be the case that a < 1 − p,
which can be satisfied only in the corner case when the following
conditions simultaneously hold: (a) the tuple-based approach in-
curs a < 1 tuple accesses for each tuple in DuR on average (which
can only happen if many tuples ofDuR share the same join attribute
values and thus the joined tuples can be retrieved once and reused
for all of them) and (b) the ID-based approach is severely overes-
timating (i.e., p � 1). We have experimentally verified that by
following this pattern it is possible to create contrived scenarios
in which the tuple-based IVM outperforms the ID-based approach.
8Recall that we use the symbols ∆ and D to represent i-diffs and
t-diffs, respectively.



However, in all other cases, the ID-based approach performs better
(with a difference that raises proportionally to p).

When the base table diffs are insert or delete diffs or they are up-
dates on attributes involved in conditions (case (b) above), then they
will lead in general to updates, inserts and/or deletes on the view.
If they lead to updates and deletes only, then the resulting speedup
is the same as in the first case (i.e., a+2p

1+p
) and thus the ID-based

approach is expected to perform better in most cases. However, if
they lead to inserts, then the two approaches will perform identi-
cally and hence exhibit a speedup of 1. Finally, if the base table
diffs lead to a combination of updates, deletes and inserts, then the
speedup will be a linear combination of the above two speedups
and thus will be greater than the smaller of the two (hence the use
of inequality and the min function in the above formula).

Thus for SPJ queries the ID-based IVM will always (up to the
corner case described above) perform at least as good as the tuple-
based IVM and in most cases better then the latter. The two ap-
proaches will only perform identically if the IVM workload is heavy
on modifications that lead to insertions to the view.

6.2 Aggregate Views
Consider the aggregate view Vagg:

SELECT Ḡ, f(X̄) AS g FROM R,R1, . . . , Rn
WHERE c GROUP BY Ḡ

whose FROM clause involves a single alias of R, and f is an asso-
ciative aggregation function such as sum (b) a t-diff DR on R and
(c) a corresponding i-diff ∆R.

To ease exposition, we isolate the aggregation operator of the
query, expressing it through the plan Vagg = γḠ,f(X̄)→gVspj, where
Vspj is the plan for the SPJ query presented in Section 6.1. We
study the interesting case, where the ID-based IVM has identified
that an intermediate cache storing the input of the aggregate opera-
tor, which is the result of the SPJ query, is beneficial (since without
cache both approaches would perform identically). The tuple-based
approach does not use a cache, since it cannot benefit from it.

Both approaches operate in two two stages: They first compute
the diff to maintain the SPJ subview Vspj and then use it to maintain
the final aggregate view Vagg. The second step is the same in both
cases. Thus the difference in performance comes from computing
the diff for the Vspj, which in the case of the ID-based approach is
also used to maintain the cache. Let a and p be defined as above
for the subview Vspj (i.e., let p = |DVspj |/|∆Vspj | and let a be the
average cost incurred by the tuple-based diff to compute for each
base table diff tuple the corresponding diff tuples for the view Vspj).

Speedup ratio. The speedup ratio of the ID-based approach over
the tuple-based approach is given by the following formula:

(a) if ∆R/DR is an update i-diff/t-diff on non-conditional at-
tributes of R, then

Speedup ratio = a+x
1+p+x

(b) else
Speedup ratio ≥ min

(
a+x

1+p+x
, a+x
a+k+x

)
where x is a cost related to grouping that is shared by both ap-
proaches and thus can be safely ignored for the purposes of our
discussion and k is a parameter concerning insert diffs that we will
explain later.

Discussion. Similarly to SPJ views, we differentiate between
cases where the base table diffs lead to update or delete diffs on the
view Vspj and cases where they lead to insert diffs on Vspj.

In the first case the speedup ratio is s1 = a+x
1+p+x

. This speedup is
always going to be at least 1, meaning that the tuple-based approach

Relation Tuples
User 1M
FriendList 100M
Microblog (i.e. tweets) 20M
Retweets 4M (#tweets × 10% × 2 retweets per tweet)
Mentions 8M (#tweets × 20% × 2 mentions per tweet)
Rel_Event_Microblog 16M (#tweets × 40% × 2 events per tweet)

(a) BSMA relation sizes

Query Description
Q7 Mentioned users within a time range
Q10 Users who are retweeted within a time range
Q11 Pair of retweeting users, grouped by retweeting times
Q15 Users talking about events within a time range
Q18 Pairwise count of mentions
Q*1 Aggregate of friends of friends within the same city
Q*2 Aggregate of retweeters for every user
Q*3 Aggregate of users who tweet about topics

(b) BSMA queries and additional Queries

Figure 9: Configuration of social analytics experiments

can never perform better than the ID-based approach. This happens
because the cost a incurred by the tuple-based approach for each
diff tuple in DR is at least 1 + p, since for each such tuple it will
have to incur at least one index access (to find the tuple of the other
relations it joins with) and p tuple accesses (to read the tuples it
joins with to create the corresponding p tuples in the view). Note
that these are lower bounds that apply when the view Vspj contains
only one join. If it contains more joins, the speedup ratio and thus
the performance benefit of ID-based IVM will be even higher.

On the other hand when base table diffs lead to insert diffs on
the view Vspj, the ID-based approach will be performing the same
plan with the tuple-based approach but will also be inserting tuples
into the cache. Thus if k is the number of tuples created in Vspj

on average as a result of a single diff in DR, then the speedup will
be s2 = a+x

a+k+x
. This speedup is less than 1 (meaning that the

tuple-based approach will be performing better), but now the loss
is bounded, as it is always 1 per tuple inserted into Vspj.

Similarly to SPJ views, when the base table diffs are updates on
non-conditional attributes (case (a) above), the generated diffs on
the view Vspj are guaranteed to be update or delete diffs and thus
the speedup ratio will be equal to s1. In any other case (case (b)),
the generated view diffs will in general be combinations of update,
delete, and insert diffs and thus the speedup will be a linear combi-
nation of s1 and s2 (and thus bounded by the smaller of them).

To summarize, for all base table diffs that do not lead to inserts
in the cache, the ID-based approach is guaranteed to perform not
worse (and the more complex the query the better) than the tuple-
based approach. It only performs worse in workloads heavy on
modifications that lead to insertions to the view, because it has to
maintain a cache, so that the update and delete diffs can benefit
from it. However, even this loss is bounded and we expect it to not
be significant in practice. Moreover, this loss will be balanced out
by the speedup on diffs that lead to deletes and updates in the view,
which benefit from the cache.

7. EXPERIMENTAL EVALUATION
To compare the performance of ID-based and tuple-based IVM,

we ran two sets of experiments. In our first set of experiments we
studied the performance of both approaches on a diverse workload
of views, by applying them on views commonly used in social net-
works. In our second set of experiments we studied the effect of
varying different parameters on both the view and the data (such as
selectivity, fanout, number of joins and base-table diff size).



ID#IVM#(sec) 0.07 0.07 0.09 0.73 0.16 14.24 0.64 0.43
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Figure 10: Speedup & IVM time for extended set of BSMA queries

In all cases we used idIVM to generate the ∆-script and D-
script (the latter was produced using our implementation of idIVM
with tuple-based diff propagation rules instead of the standard ID-
based propagation rules). We then measured the times to run each
script in PostgreSQL. All experiments were run using Ubuntu LTS
12.04, OpenJDK JRE 7 and PostgreSQL 9.1, on top of an Amazon
Web Services (AWS) m1.large dedicated instance configured with
1,200 input/output operations per sec (IOPS) for 16KB blocks. The
configured IOPS provide predictable throughput for random block
accesses. Each experiment was run with cold PostgreSQL page
buffers and Linux disk buffers, which is the common case when
large number of views need to be maintained.

7.1 IVM in social analytics
To study the relative performance of ID-based and tuple-based

IVM on a diverse set of real queries, we applied both IVM ap-
proaches to a workload of analytics views over social media. Main-
taining analytics over social media is a primary use case for IVM
techniques because: (a) large base tables are produced by social
media such as Twitter and Facebook, (b) rapid, frequent updates
occur on the base tables, and (c) analytic views that monitor met-
rics and trends need to be updated continuously.

To generate the workload, we utilized the Benchmark for Social
Media Analytics (BSMA) [26]. Figure 9a shows the size of the
relations generated, while Figure 9b provides a summary of the
workload, which comprises:

• 100 update diffs on the User table for attributes tweetsnum (i.e
number of tweets) and favornum (i.e. number of favorites)

• Views corresponding to queries Q7, Q10, Q11, Q15 and Q18
from BSMA, which exhibit join chains and aggregates, hence re-
sulting in high cost for view re-computation. These queries are
also minimally extended to: (a) extend the SELECT clause with
attributes tweetsnum and favornum (b) remove the ORDER
BY and LIMIT and the ID parameter in the WHERE clause in
order to create larger views where the benefit of the IVM be-
comes apparent.

• An additional 3 aggregate views over the BSMA schema, labeled
as Q*1, Q*2 and Q*3. Whereas queries Q7, Q10, Q11, Q15
and Q18 include aggregation, this aggregation is not affected by
the updated attributes. Since, as we have discussed in Section
6 the ID-based and tuple-based approaches behave differently in
the presence of aggregates affected by the updates, we designed
views Q*1, Q*2 and Q*3 to include such aggregates.

Figure 10 shows the speedup ratio of the ID-based over the tuple-
based approach for each of the views. The speedup varies widely
between the 8 different views and its value does not seem to be de-
termined by whether a view contains an aggregate affected by an
update or not. From the reported views, it is interesting to look
at the extreme cases with either very high or low speedup. Queries

Relation Tuples Size
parts 5M 170MB
devices 5M 170MB
devices_parts 50M 3GB

(a) Relation sizes

Parameter Defaults
d: Diff size 200
s: Selectivity 20%
f : Fanout 10
j: Joins 2

(b) Parameters

∆u
parts = Duparts(pid, pricepre, pricepost)

(c) Base-table Diff

Figure 11: Configuration of varying parameter experiments

Q10 and Q*1 create a huge benefit for the ID-based IVM due to the
fact that the tuple-based IVM has to incur a large number of data
accesses, which can be avoided by the ID-based IVM. Interestingly,
this need for data accesses is created in different ways by each of
the two queries. In Q10 it is created by a long join chain (Q10 joins
4 relations), while in Q*1 it is created by a combination of a long
join chain with a high selectivity that appears at the end of the join
chain (so that the tuple-based has to perform a lot of data accesses
before it can decide that a tuple will be dropped). Finally, Q15 dis-
plays a relatively low speedup because the resulting view and the
number of tuples that need to be updated in the view is very large.
This makes the view update time component (which is shared by
both the ID-based and the tuple-based approaches) dominate the
IVM cost, thus leading to a relatively small speedup. However, it
should be noted that even in this case the ID-based approach out-
performs the tuple-based approach by a factor of 4.

7.2 Effect of data & query parameters
To study in a more controlled fashion how the structure of the

view and the data affects the ID-based and tuple-based IVM, we
next ran a second set of experiments, in which we picked a single
view and measured the performance of both ID-based and tuple-
based IVM on maintaining the view, while varying different pa-
rameters of both the view definition and the underlying data. For
ease of exposition we employed the view used in our running ex-
ample and shown in Figure 5a.

Experimental setup. Figure 11 shows the properties of the
dataset and the view used in the experiments. Figure 11a shows
the sizes of the relations, Figure 11c presents the employed base-
table diff (which captures updates on the prices of parts) and Figure
11b lists the parameters that we varied in the experiments and their
default values. We varied four parameters: (a) The size d of the
base-table diff (i.e., the number of price updates that happened),
(b) the number of joins performed by the view (as we will explain
later we extended the view that by default performs two joins with
additional joins), (c) The selectivity s of the selection condition cat-
egory=“phone” (i.e., the percentage of devices tuples that satisfy
the condition), and (d) the fanout f from parts to devices_parts,
i.e. the number of parts for each device. (Note that the fanout from
association table devices_parts to entity table devices is always
1.) For each experiment varying a parameter, we used for all other
parameters their default values shown in Figure 11b.

Figure 12 shows the view maintenance times for ID-based IVM
versus tuple-based IVM and the resulting speedup of ID-based over
tuple-based IVM. The cost of each approach is broken down to its
components. Column A represents ID-based IVM, with the top
stack (diagonally striped) corresponding to cache update time (re-
call that the input of an aggregate is materialized as an intermediate
cache), and the bottom stack (solid colored) corresponding to view
update time. No stack is shown for the cache/view diff computation
time as both are negligible. Column B represents tuple-based IVM,
with the top stack (horizontally striped) corresponding to view diff
computation time, and the bottom stack (solid colored) correspond-
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Figure 12: View maintenance time of ID-based IVM vs tuple-based IVM and two DBToaster-inspired systems for varying parameters

ing to view update time. No stack is shown for cache update time,
since as we have explained the tuple-based approach does not use
a cache as it cannot benefit from it. Columns C and D correspond
to simulations of DBToaster [2], which we discuss in Section 7.3.
We next explain the effect of varying each of the parameters.

Varying the base-table diff size. Figure 12a illustrates the ef-
fects of varying the diff size d linearly from 100 to 500 tuples9. As
shown on the figure, the speedup stays within 4-5. The experiment
also shows a slight downward trend on the speedup. This is be-
cause as d increases, the chance also increases for reading a block
of the devices table (out of its 20k blocks) from PostgreSQL’s page
buffers. In the running example, this buffering benefits tuple-based
IVM, but not ID-based IVM.

Varying the number of joins. Figure 12b illustrates the effect
of joins on the speedup. For this experiment we consider more
complex views by augmenting the original view definition with j
additional joins as follows: (i) devices_parts is joined with tables
R1 . . . Rj , such that each join is 1-to-1 on (pid, did). This simu-
lates joins across vertically-decomposed tables, which is common
practice in data warehousing. (ii) The selection σcategory=“phone” is
disabled in order to focus on the effects of each additional join.
Figure 12b shows that the total running time of ID-based IVM is
unaffected by linearly varying j between 2 (i.e., the original view
with no additional joins) to 6 (the view with four additional joins).
On the other hand, the total running time of the tuple-based IVM in-
creases with each additional join, making the speedup of ID-based
IVM arbitrarily high, as the complexity of the query increases. This
happens due to the fact that tuple-based IVM has to perform all
joins in order to compute the entire view tuples that have to be
modified, in contrast to the ID-based IVM that can simply propa-
gate the base-table diff to the view and avoid performing any joins.

Varying the selectivity of the selection condition. Figure 12c
shows how the speedup is affected by the selectivity s (i.e., the
number of devices tuples that satisfy the condition). We vary s on
a log scale from 6% to 100%. Allowing more tuples to pass through
the selection adversely affects the performance of ID-based IVM.
The reason is that more tuples of the devices table join with the
other tables and thus the size of the intermediate cache employed
by the ID-based approach increases. This in turn leads to a higher
cost of updating the cache. It should be noted however that even
at 100% selectivity, ID-based IVM is faster than tuple-based IVM,

9Similar trends can be observed for diff sizes up to 15,000 tuples.
This is the point where it is beneficial to recompute the view rather
than apply IVM, as discussed in prior work [13].

albeit at a lower speedup of 1.2. Thus, ID-based IVM is at least on
par with tuple-based IVM, and performs better in the common case
where the selection filters a subset of the base table tuples.

Varying the fanout. Finally, Figure 12d illustrates the effects
of varying the fanout f of the join (parts, devices_parts) linearly
between 5 to 25. For all values of the fanout, the ID-based IVM
performs better than the tuple-based IVM by a factor of 4-5 times.

We highlight that the ID-based approach consistently outper-
forms the tuple-based approach. This is the case even though the
experimental conditions were designed to explicitly benefit the tuple-
based IVM. In particular, (a) we assumed the existence of appropri-
ate base table indices to speedup tuple-based joins (without count-
ing the associated index maintenance cost) and (b) we did not use
a cache for the tuple-based IVM, to avoid the cache maintenance
cost, since tuple-based maintenance of associative aggregate func-
tions does not benefit from caches. When these optimizations are
inadmissible, ID-based IVM will exhibit an even higher speedup.

7.3 Comparison to the state of the art
Finally, we compared idIVM to DBToaster [2]; the current state

of the art IVM system, which, while being essentially a tuple-based
system, has been shown to significantly outperform prior IVM ap-
proaches. DBToaster’s performance is the result of five major opti-
mizations: (a) performing IVM one diff tuple at a time (which leads
to reducingD-script joins with a diff table into selections), (b) com-
piling the D-script into code, instead of SQL statements, (c) utiliz-
ing an in-memory implementation, (d) aggressively pushing aggre-
gations down, and (e) materializing a large number of intermediate
views (i.e., caches) that are used to maintain the original view and
each other. On the other hand, idIVM benefits most from using (a)
ID-based diffs and (b) update diffs (in contrast to DBToaster, where
updates are simulated through inserts and deletes).

These differences make the two systems not directly compara-
ble. Since idIVM could in principle also benefit from DBToaster’s
optimizations a-d, we next focus on comparing idIVM to the inter-
mediate view materialization strategy used by DBToaster. To this
end, we designed a DBToaster-inspired implementation (denoted
as Simulated DBToaster or SDBT) that runs on top of a DBMS and
uses the same intermediate views as the original DBToaster imple-
mentation (up to aggregation push-down). We then executed SDBT
on all scenarios considered in Section 12. Since, in contrast to
idIVM, DBToaster creates different intermediate views depending
on the types of allowed base-table diffs, we ran two different ver-
sions of SDBT: one assuming that only diffs to the parts table are



possible (referred to as SDBT-fixed) and one assuming that all base
tables may change (referred to as SDBT-streams). Columns C and
D in Figure 12 show the times of SDBT-fixed and SDBT-streams,
respectively. We observe that idIVM in all cases significantly out-
performs SDBT-streams, while it is in most cases slightly slower
then SDBT-fixed. It should be noted however that we allowed
both SDBT-fixed and SDBT-streams to employ update t-diffs. Had
they simulated updates through inserts and deletes, as is the case in
DBToaster, their performance would have been worse.

Note that SDBT captures only one of the optimizations used
in DBToaster. Furthermore, SDBT (alike idIVM and tuple-based
IVM) operates on large data, residing in secondary storage and
managed via a database (PostgreSQL in this case). Due to the
mix of optimizations involved and its main memory orientation,
DBToaster behaves differently from SDBT. Experiments we con-
ducted with DBToaster showed for instance that the compilation
to code and in-memory implementation lead to 50-300 times faster
execution than the PostgreSQL-based SDBT-fixed. On the other
hand, the in-memory execution severely limits DBToaster’s scala-
bility (allowing it to scale only up to 2% of the data size used in
our experiments when diffs are allowed on all base tables). More-
over, the lack of set-processing makes DBToaster’s performance
deteriorate much faster than SDBT with increasing diff sizes (e.g,
DBToaster’s speedup over SDBT-fixed drops from 300x for a diff
size of 100 tuples to 50x when the diff size becomes 500).

8. RELATED WORK
IVM is a long studied problem with a lot of influential works [6,

5, 7, 21, 13]. idIVM falls under the category of IVM works that
employ the algebraic [21, 10, 22, 18] approach. Due to the vast
amount of related work in IVM, we focus next on approaches that
are particularly related to the main aspects of our work, which are:
(a) exploiting primary key information together with the associated
(b) overestimation and (c) caching. Note that we cover all works in
these areas, even if they do not follow the algebraic approach. For
comprehensive surveys on IVM, the reader is referred to [12, 8].

Exploiting primary key constraints. The idea of exploiting pri-
mary key constraints to speed up IVM was first presented in [11,
23]. However, in contrast to our work, [11, 23] study only self-
maintenance (potentially together with some auxiliary views) and
not general view maintenance where some data from the base re-
lations may be required to maintain the view. Furthermore, they
are limited to maintenance of SPJ (including outer-join) views and
their algorithms are not easily extensible to more general classes of
queries as they operate by looking holistically at the view defini-
tion, in contrast to our modular algebraic approach. The first work
that exploited primary keys in an extensible algebraic setting and
introduced the notion of partial diffs, is [16]. However, the par-
tial diffs of [16] always contain the entire primary key of the view.
Thus, they are not true ID-based diffs, but instead (relaxed) tuple-
based diffs, that may lack some of the (non-key) attributes of the
view but will still incur the same number of accesses as tuple-based
approaches. Finally, primary key information has also been used to
optimize the rules for maintaining the output of particular operators
(e.g., outer-join in [18]) within a tuple-based approach. However,
these approaches do not look at exploiting the keys to avoid tuple-
based diffs altogether, as done in this work.

Overestimation. Our definition of overestimation is similar to
safe overestimation described in [4] and ineffective updates in [16].
While overestimation in these works appears only because of se-
lection conditions, idIVM exploits also overestimation that arises
because of joins, which do not appear in the former, since they are
both (relaxed) tuple-based approaches.

Caching. Several works looked at the problem of materializing
additional results to speed up IVM. These can be classified into two

broad categories. The first category includes approaches where the
cached results are operator-specific. Examples of such works in-
clude the IVM of aggregation under the assumption that previous
aggregation results are available [22, 20] and of top-k results by
caching additional view tuples that are beyond the top k in order
to reduce the frequency of accessing the base tables [27]. These
caches correspond to our notion of operator caches and can thus
be incorporated in our framework as part of an operator definition.
The second category contains approaches where the cached results
are not tied to a particular operator, but are additional views that
are then exploited holistically during the IVM of the original view
[24, 19, 23, 2]. In contrast to our work that uses only caches that
correspond to subplans of the original plan, these works benefit by
employing caches that may not be subplans of a single plan. This
aggressive materialization allows more efficient IVM, though at the
cost of maintaining an increased number of intermediate views. A
prime example of such approaches is DBToaster [2], which is dis-
cussed extensively in Section 7.3. However, by not being ID-based
such approaches always access at least one materialized view, in
contrast to our approach, which in some cases can avoid accessing
base tables or cached views altogether. Finally, a related area to
caching in IVM is view selection, consisting of works that decide
which views to materialize to speed up query evaluation [1, 14].
Such approaches can be used in the context of idIVM to decide
which intermediate caches to materialize.

9. CONCLUSIONS AND FUTURE WORK
We have shown how to exploit IDs towards an IVM algorithm

that is more efficient than existing tuple-based approaches under
common assumptions. An extension of this work involves mini-
mizing base table accesses for insert i-diffs. Although in this work
insert i-diffs incur the same base table accesses as tuple-based ap-
proches, more elaborate rules for i-diff’s avoid base table accesses
by instead utilizing data that potentially already exist in the view.
However, in contrast to the current ID-based approach where one
can know statically based on the i-diff schema whether base table
accesses will be needed, the extended (for insert i-diff) version of
the algorithm has to find out dynamically at run-time whether ac-
cesses are needed, depending on the i-diff instance.
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APPENDIX
A. DETAILED PERFORMANCE ANALYSIS

We next describe the detailed performance analysis of the ID-
based and tuple-based approaches that led to the equations of Sec-
tion 6. The analysis covers two representative cases: (a) SPJ views,
which by default do not involve intermediate caches and (b) Aggre-
gate views involving grouping and associative functions, which (by
default) are supported by caches. In the following we assume that
both approaches have access to view indices on the view IDs and
additionally the tuple-based IVM has access to appropriate base ta-
ble indices (which are not required by the ID-based approach).

A.1 SPJ Views
Consider (a) the SPJ view Vspj:

SELECT S̄ FROM R,R1, . . . , Rn WHERE c

whose FROM clause involves a single alias of a tableR, (b) a t-diff
DR on R and (c) a corresponding i-diff ∆R on R. We distinguish
between two cases, depending on the type of the diff DR/∆R.

A.1.1 Update diffs on non-conditional attributes
We first study base table update diffs on attributes of R that do

not participate in any join or selection condition in Vspj. Consider
such an update t-diff/i-diff on attributes Ā′′ of R:

DuR = ∆u
R(Ī , Ā′pre, Ā′′post)

where Ī is the key of R.
Since we are interested in the IVM of an update onR, we decom-

pose the condition c into 3 subconditions cR, crest, cR−rest in con-
junctive normal form, s.t. every one of their conjuncts involves only
attributes of R, only attributes of R1, . . . , Rn and both attributes
of R and R1, . . . , Rn, respectively. It is easy to see that Vspj can
be computed through the algebraic expression πS(σcRR 1cR−rest

E), where E = σcrest(R1 × . . .×Rn).
In general, the i-diff ∆u

R (resp. t-diff DuR) will lead to ∆u
Vspj

,
∆+
Vspj

and ∆−Vspj
in the ID-based approach (resp. DuVspj

,D+
Vspj

and

D−Vspj
in the tuple-based approach). However, since the updated

attributes Ā′′ of R do not participate in the join condition cR−rest
or the selection condition cR, the update diff on R will only lead to
an update diff on Vspj. Furthermore, since the selection σcR simply
filters out tuples of DuR, it has the same effect as using a smaller
initial diff, and is therefore ignored in the rest of the analysis.
D/∆-script. The scripts returned by the IVM algorithms are:

ID-based approach Tuple-based approach
∆u
Vspj

= DuR DuVspj
= πS̄DuR 1cR−rest E

APPLY ∆u
Vspj

APPLY DuVspj

The ID-based approach simply propagates the base table diff by
exploiting the fact that no tuples need to be inserted or deleted from
the view, since the modified attributes Ā′′ do not participate in the
join condition.

Cost analysis. Both the ID-based IVM cost and the tuple-based
IVM cost are the sum of the diff computation cost of ∆u

Vspj
(respec-

tively DuVspj
) and the view modification cost, which is the cost of

applying the modifications dictated by ∆u
Vspj

(respectively DuVspj
)

on the materialized view. We measure both costs in terms of block
accesses to indices and tuples. Employing common assumptions
on the index structures10, the cost of retrieving (using an index) the
m tuples whose X̄ attributes have given x̄ values can be approxi-
mated by 1 + m (i.e., 1 index lookup and m tuple accesses). We
next analyze each of the cost components.

Diff computation cost. Since the ID-based approach simply
propagates ∆u

R to the view as is, its diff computation cost is zero.
On the other hand, the cost of the tuple-based IVM varies widely
depending on the computation of DuVspj

= πS̄DuR 1cR−rest E.
We consider the common case where the join condition cR−rest

is a conjunction of equalities of the form R.J = Ri.Ji. Further-
more, we assume that the database is optimized for tuple-based
IVM, having all necessary indices for the efficient computation of
DuVspj

= DuR 1cR−rest E. Since the diff-table DuR is considered
in the IVM literature to be smaller than the base tables, the DBMS
will typically execute the above query through a diff-driven loop
plan: For each tuple t of DuR it executes the subplan σc′

R−rest
E,

where c′R−rest is an instantiation of the cR−rest condition where
the attributes of R have been replaced with their values in t. Let
us name a the average number of accesses performed for each tu-
ple of DuR, i.e., the average number of accesses in each execution
of σc′

R−rest
E. Then the diff computation cost of the tuple-based

approach is |DuR|a. The DBMS may also choose to evaluate the

10 We assume that indices satisfy the following conditions:
1. An index is either a hash index, or a B-tree with leaf nodes in
secondary storage and non-leaf nodes in memory.
2. The retrieved tuples, if any, are not clustered together.
3. Caching of index leaves and/or tuples has minimal effects on the
overall cost, as the cache is significantly smaller than the database.



Costs ID-based Tuple-based
Diff-driven Other
loop plan plan

Diff computation 0 |DuR|a E
View index lookups |DuR| |DuR|p |DuR|p
View tuple accesses |DuR|p

Table 2: Costs of ID-based and tuple-based IVM on Vspj

query with a plan other than a diff-driven loop, but this is expected
to happen only when the diff tables are very large, when the use of
an IVM approach becomes questionable.

View modification cost. To apply ∆u
Vspj

(resp. DuVspj
) to the

view, the DBMS will typically utilize the view index to locate the
view tuples that need to be modified. In either of the approaches
there will be as many view index lookups as tuples in the view
diff (i.e., |∆u

Vspj
| = |DuR| lookups for the ID-based and |DuVspj

|
lookups for the tuple-based approach, respectively). Once the to-
be-modified view tuples have been identified (which are in both
cases equal to |DuVspj

|), both approaches will incur |DuVspj
| view tu-

ple accesses to update them. Table 2 shows the view index lookups
and view tuple accesses for each approach utilizing the i-diff com-
pression factor p = |DuVspj

|/|∆u
Vspj
|.11

Discussion. Table 2 summarizes the costs for the tuple-based
and ID-based approach. Combining them leads to the following
speedup ratio of the ID-based over the tuple-based approach (as-
suming a diff-driven loop plan for the tuple-based approach):

Speedup ratio for Vspj =
|Du

R|(a+p+p)

|Du
R
|(1+p)

= a+2p
1+p

(1)

The relative performance difference between the two approaches
varies depending on the value of the compression factor p. When
p ≥ 1, the ID-based approach is guaranteed to be more efficient
with its absolute gain (i.e., the difference of accesses from the tuple-
based approach) raising proportionally to p. When 0 < p < 1, the
ID-based approach is also more efficient in the typical case when
the tuple-based approach has to do at least one access for each tuple
in DuR (which means that a > 1). For the tuple-based approach to
perform better it should be the case that a < 1 − p, which can
be satisfied only if the following conditions simultaneously hold:
(a) the tuple-based approach incurs a < 1 tuple accesses for each
tuple in DuR on average (which can only happen if many tuples of
DuR share the same join attribute values and thus the joined tuples
can be retrieved once and reused for all of them) and (b) the ID-
based approach is severely overestimating (i.e., p� 1).

A.1.2 Other diffs
Consider now insert and delete i-diffs/t-diffs on the base rela-

tion R, as well as update i-diffs/t-diffs on attributes of R that are
involved in some join or selection condition in Vspj. Such base ta-
ble diffs will lead in general to a combination of ∆u

Vspj
, ∆+

Vspj
and

∆−Vspj
in the ID-based approach (resp. DuVspj

, D+
Vspj

and D−Vspj
in

the tuple-based approach). For the cases in which a base table diff
is translated into an update or delete i-diff/t-diff on the view, the
ID-based and tuple-based algorithms will behave as described in
Section A.1.1 and thus the speedup ratio will be a+2p

1+p
. On the other

hand, in the case when a base table diff is translated into an insert i-
diff/t-diff on the view, the ID-based and tuple-based algorithm will
produce identical scripts, leading to a speedup of 1 (i.e., the ID-

11In the unlikely case, where the DBMS chooses to identify the to-
be-modified tuples by performing a full scan of the view instead of
using the index, the view modification cost becomes the same for
both approaches. In this case, the difference between the two ap-
proaches reduces to the difference between their computation costs.

based algorithm will degenerate to the tuple-based algorithm but
will not behave worse than the latter).

A.2 Aggregate Views
Consider (a) the aggregate view Vagg:

SELECT Ḡ, f(X̄) AS g FROM R,R1, . . . , Rn
WHERE c GROUP BY Ḡ

whose FROM clause involves a single alias of a table R, and f is
an associative aggregation function such as sum, (b) a t-diffDR on
R and (c) a corresponding i-diff ∆R on R.

To ease exposition, we isolate the aggregation operator of the
query, expressing it through the plan Vagg = γḠ,f(X̄)→gVspj, where
Vspj is the algebraic plan for the SPJ query presented in Section A.1.

We consider the case where the ID-based algorithm has deter-
mined that it is beneficial to create an intermediate cache storing
the result of the SPJ subview Vspj, since otherwise both approaches
will be performing identically. The tuple-based does not employ a
cache, as it cannot benefit from it.

Similarly to the case of SPJ views, we distinguish between two
cases depending on the type of the base table diff DR/∆R.

A.2.1 Update diffs on non-conditional attributes
Consider an update t-diff/i-diff on attributes Ā′′ ofR that are not

involved in any condition in Vagg:

DuR = ∆u
R(Ī , Ā′pre, Ā′′post)

where Ī is the key of R.
Cache diff computation / modification cost. The ID-based

approach maintains an intermediate cache, which is equivalent to
Vspj. The cache incurs cache diff computation cost and cache mod-
ification cost, which are also equivalent to the diff computation and
view modification cost of Vspj. There is no intermediate cache for
the tuple-based approach.

View diff computation cost. We consider the case where f is
incrementally computable. That is, there is an incremental function
fD that inputs DuVspj

(S̄, X̄pre, X̄post) where S̄ is the key of Vspj,
and outputs DuVagg

(Ḡ, gpre, gpost). For example, when f is the
sum function, fD is also f , since sum is an associative aggregation
function. Given fD , the tuple-based approach computes DuVagg

=
γḠ,f∆(X̄)→gDuVspj

.
Given that |DuR| is much smaller than base tables, the number of

groups inDuVagg
will be smaller than the number of groups in Vagg.

The efficient implementation for γ is thus hash aggregation with
in-memory buckets, which can be pipelined. Due to pipelining, no
additional block accesses are incurred for γ. Thus, the tuple-based
approach has the same diff computation cost for Vspj and Vagg.

As an optimization, the ID-based approach uses the UPDATE
RETURNING statement to update the cache and return the result
of the update in a single step. Thus, ∆u

Vspj
is obtained without

additional accesses over cache modification costs. Similar to the
tuple-based approach, ∆u

Vagg
= γḠ,f∆(X̄)→g∆

u
Vspj

, and the γ uses
pipelined hash aggreation. Thus, the ID-based approach also has
the same diff computation cost for Vspj and Vagg.

View modification cost. To apply ∆u
Vagg

(resp. DuVagg
) to the

view, both approaches will incur an index lookup and a tuple access
per tuple in the i-diff (resp. t-diff). We denote the grouping com-
pression factor g = |DuVagg

|/|DuVspj
| in Table 3. Discussion. For

Vagg, Table 3 summarizes the costs for both ID-based and tuple-
based approaches. Combing them leads to the following speedup
ratio of the ID-based over the tuple-based approach (assuming a
diff-driven loop plan for the tuple-based approach):

Speedup ratio for Vagg = a+2pg
1+p+2pg

(2)



Costs ID-based Tuple-based
Diff-driven Other
loop plan plan

Cache diff computation 0 –
Cache index lookups |DuR| –
Cache tuple accesses |DuR|p –
View diff computation 0 |DuR|a E
View index lookups |DuR|pg
View tuple accesses |DuR|pg

Table 3: Costs of ID-based and tuple-based IVM on Vagg

For the tuple-based approach to perform better on Vagg, it should
be the case that a+2pg

1+p+2pg
< 1, which implies that a < 1 + p.

However, we will show that this is never possible. The average
cost a spent by the tuple-based IVM for each diff tuple in DuR will
always be at least 1+p, as for each such tuple t the algorithm would
have to perform (a) at least one index access to check whether t
joins with some of the other relations in the FROM clause and (b)
at least p tuple accesses to retrieve the tuples it joins with from the
other relations to create p diff tuples in DuVspj

. Note that these are
the lower bounds for a that happen when the query contains just a
single join R ./ R1. For longer join chains the tuple-based IVM
will have to perform additional index and tuple accesses, yielding
even worse performance compared to the ID-based approach.

Note that the above analysis exploits the absence of multivalued
dependencies in Vspj (which is a necessary condition for idIVM to
create a cache). If there was a multivalued dependency, multiple tu-
ples inDuR could share the same computation (and thus it would not
be the case that each of them would incur at least 1 + p accesses).

A.2.2 Other diffs
Similarly to the SPJ views, an insert and delete base table diff or

an update diff on an attribute of R involved in a condition, might
lead to insert, update and delete diffs on Vspj. For the cases that
lead to deletes and updates on Vspj the cost will be the same as the
one outlined in Section A.2.1.

On the other hand when base table diffs lead to insert diffs on
the view Vspj, the ID-based approach will be performing the same
plan with the tuple-based approach but will also be inserting tuples
into the cache. Let k be the number of tuples created in Vspj on
average as a result of a single diff in DR. Then the cost of the
tuple-based and ID-based approach is |DR|(a+2pg) and |DR|(k+
a + 2pg), respectively. Thus the speedup ratio is a+2pg

a+k+2pg
. This

speedup is less than 1 (meaning that the tuple-based approach will
be performing better). However, this loss is bounded, as it is always
1 per tuple inserted into Vspj.

B. I-DIFF PROPAGATION RULES
For ∆+

Inputl
(Ī , Ā′′post)

∆+
V = ∆+

Inputl
× Inputpostr

For ∆+
Inputr

(Ī , Ā′′post)

∆+
V = Inputpostl ×∆+

Inputr

For ∆−Inputl(Ī , Ā
′
pre)

(∆−Inputr is symmetric)
∆−V = ∆−Inputl
For ∆u

Inputl
(Ī , Ā′pre, Ā

′′
post)

(∆u
intpur

is symmetric)
∆u
V = ∆u

Inputl

Table 4: Rules for ×

For ∆+
Inputl

(Ī , Āpost)

(For ∆+
Inputr

replace 0 by 1)
∆+
V = π∗,b→0∆+

Inputl

For ∆−Inputl(Ī , Ā
′
pre)

(For ∆−Inputr replace 0 by 1)
∆−V = π∗,b→0∆−Inputl
For ∆u

Inputl
(Ī , Ā′pre, Ā

′′
post)

(For ∆u
Inputr replace 0 by 1)

∆−V = π∗,b→0∆u
Inputl

Table 5: Rules for ∪

For ∆+
Input(Ī , Āpost)

∆+
V = σφ(X̄)∆

+
Input

For ∆−Input(Ī , Ā
′
pre)

∆−V = σφ(X̄pre)∆
−
Input

For ∆u
Input(Ī , Ā

′
pre, Ā

′′
post)

if X̄ ⊆ Ī ∪ Ā′′post then
∆u
V = σφ(X̄pre)σφ(X̄)∆

u
Input

else
∆u
V = ∆−Input

if X̄ ∩ Ā′′post = ∅ then
∆+
V = not triggered

else if X̄ ⊆ Ī ∪ Ā′′post then
∆+
V = Inputpost nĪ σ¬φ(X̄pre)σφ(X̄)∆

u
Input

else
∆+
V = σ¬φ(X̄pre)σφ(X̄)(Input

post n ∆u
Input)

if X̄ ∩ Ā′′post = ∅ then
∆−V = not triggered

else if X̄ ⊆ Ī ∪ Ā′′post then
∆−V = πĪ,Ā′preσφ(X̄pre)σ¬φ(X̄)∆

u
Input

else
∆−V = πĪ,Ā′preσφ(X̄pre)σ¬φ(X̄)Input

post n ∆u
Input

Blue portion applies when pre-state attributes present.

Table 6: Rules for σφ(X̄)

For ∆−Input(Ī , Ā
′
pre) where Ī ⊆ Ḡ

∆−V = ∆−Input
For any ∆t

Input(Ī , Ā
′) and f , we can recompute groups

if Ḡ ⊆ (Ī ∪ Ā′) then
∆u
V = γḠ,f(X̄)→c(∆

t
Input oḠ Inputpost)

else
∆u
V = γḠ,f(X̄)→c(∆

t
Input oĪ Inputpost oḠ Inputpost)

(Do not handle group creation/deletion)

Table 7: Rules for γḠ,f(X̄)→c

For ∆+
Input(Ī , Āpost)

∆+
V = πD̄,f(X̄)→c,Ī∆

+
Input

For ∆−Input(Ī , Ā
′
pre)

if X̄ ⊆ Ī ∪ Ā′pre then
∆−V = π(D̄∩(Ī∪Ā′pre))∪f(X̄pre)→cpre,Ī∆

−
Input

else
∆−V = πD̄∩(Ī∪Ā′pre),Ī∆

−
Input

For ∆u
Input(Ī , Ā

′
pre, Ā

′′
post)

if (Ī ∪ Ā′′post) ∩ X̄ = ∅ then
∆u
V = σisupdπD̄′,Ī∆

u
Input

else if X̄ ⊆ Ī ∪ Ā′′post then
∆u
V = σisupdπD̄′,f(X̄)→cpost,f(X̄pre)→cpre,Ī∆

u
Input

else
∆u
V = σisupdπD̄′,f(X̄)→cpost,f(X̄pre)→cpre,Ī

(Inputpost nĪ ∆u
Input)

where σisupd selects tuples corresponding to actual
updates (i.e., where cpre 6= cpost or apre 6= apost for some
attribute a), D̄′ = (D̄ ∩ (Ī ∪ Ā′′post)) ∪ (D̄pre ∩ Ā′pre),
and D̄pre is the pre-state counterpart of D̄.
Blue portion applies when pre-state attributes present.

Table 8: Rules for πD̄,f(X̄)→c



For ∆u
Input(Ī , Ā

′
pre, Ā

′′
post), and Ḡ ∩ Ā′′post = ∅

∆i
1 = πĪ,xpost−xin→x∆

(∆u
Input 1 πx→xinInput

pre)

For ∆−Input(Ī , Ā
′
pre)

∆j
2 = πĪ,0−xin→x∆

(∆−Input 1 πx→xinInput
pre)

For ∆+
Input(Ī , Ā

′′
post)

∆k
3 = πĪ,x→x∆

(∆+
Inputn̄Input

pre)

For converting ∆ to output update i-diffs
Happens after all ∆i

1,∆
j
2,∆

k
3 are computed.

∆u
V = πḠ,c→cpre,c+c∆→cpost(Output 1

γḠ,sum(x∆)→c∆(∆i
1 ∪∆j

2 ∪∆k
3))

(Do not handle group creation/deletion)

Table 9: Rules for γḠ,sum(X̄)→c

For ∆+
Inputl

(Ī , Āpost)

∆+
V = ∆+

Inputl
1φ(X̄) Input

post
r

For ∆+
Inputr

(Ī , Āpost)

∆+
V = Inputpostl 1φ(X̄) ∆+

Inputr

For ∆−Inputl(Ī , Ā
′
pre) (∆−Inputr is symmetric)

∆−V = σφ(X̄pre)∆
−
Inputl

For ∆u
Inputl

(Ī , Ā′pre, Ā
′′
post) (∆u

Inputr is symmetric)
if X̄ ⊆ Ī ∪ Ā′′post then

∆u
V = σφ(X̄pre)σφ(X̄)∆

u
Inputl

else
∆u
V = ∆u

Inputl

if Ī ∩ Ā′′post = ∅ then
∆+
V = not triggered

else if X̄ ⊆ Ī ∪ Ā′′post then
∆+
V = (Inputpostl nĪ σ¬φ(X̄pre)σφ(X̄post)∆

u
Inputl

)

1φ(X̄) Input
post
r

else
∆+
V = πInputl,Inputrσ¬φ(X̄pre)σφ(X̄post)

(Inputpostl 1 ∆u
Inputl

1φ(X̄) Input
post
r )

if Ī ∩ Ā′′post = ∅ then
∆−V = not triggered

else if X̄ ⊆ Ī ∪ Ā′′post then
∆−V = πĪ,Ā′preσφ(X̄pre)σ¬φ(X̄post)∆

u
Inputl

else
∆−V = πĪ,Ā′preσφ(X̄pre)σ¬φ(X̄post)Input

post
l

1 ∆u
Inputl

1φ(X̄) Input
post
r

Blue portion applies when pre-state attributes present.

Table 10: Rules for 1φ(X̄)

For ∆u
R(Ī , Ā′pre, Ā

′′
post), and Ḡ ∩ Ā′′post = ∅

∆i
1 = ∅

For ∆−R(Ī , Ā′pre)

∆j
2 = πĪ,−1→x∆

(∆−R 1 πx→xinInput)

For ∆+
R(Ī , Ā′′post)

∆k
3 = πĪ,1→x∆

(∆+
Rn̄Input)

For converting ∆ to output update i-diffs
Happens after all ∆i

1,∆
j
2,∆

k
3 are computed.

∆u
V = πḠ,c→cpre,c+c∆→cpost(Output 1

γḠ,sum(x∆)→c∆(∆i
1 ∪∆j

2 ∪∆k
3))

(Do not handle group creation/deletion)

Table 11: Rules for γḠ,count(X̄)→c

Operator cache schemas:
Cachesum(Ḡ, csum), Cachecount(Ḡ, ccount)
Cache maintenance rules:
For ∆u

Cachesum
: Use rules of γḠ,sum(X̄)→c (Table 9)

For ∆u
Cachecount

: Use rules of γḠ,count(X̄)→c (Table 11)
i-diff propagation rules:
∆u
V = πḠ,csum

pre /ccount
pre →cpre,csum

post/c
count
post →cpost

(

∆u
Cachecount

1Ḡ ∆u
Cachesum

)

Table 12: Rules for γḠ,avg(X̄)→c

For ∆+
Inputl

(Ī , Ā′′post)

∆+
V = ∆+

Inputl
n̄φInputpostr

For ∆−Inputl(Ī , Ā
′
pre)

∆−V = ∆−Inputl
For ∆u

Inputl
(Ī , Ā′pre, Ā

′′
post)

∆u
V = ∆u

Inputl

if X̄ ∩ Ā′′post = ∅ then
∆+
V = not triggered

if X̄ ⊆ Ī ∪ Ā′′post then
∆+
V = Inputpostl nĪInputl

(∆u
Inputl

n̄φ(X̄post,Ȳ )Input
post
r )

else
∆+
V = (Inputpostl nĪInputl

∆u
Inputl

)n̄φ(X̄post,Ȳ )Input
post
r

if X̄ ∩ Ā′′post = ∅ then
∆−V = not triggered

if X̄ ⊆ Ī ∪ Ā′′post then
∆−V = πĪ(∆

u
Inputl

nφ(X̄post,Ȳ ) Input
post
r )

else
∆−V = πĪ((Input

post
l nĪInputl

∆u
Inputl

)

nφ(X̄post,Ȳ )Input
post
r )

For ∆+
Inputr

(Ī , Ā′′post)

∆−V = πĪ(Input
post
l nφ(X̄post,Ȳ ) ∆+

Inputr
)

For ∆−Inputr (Ī , Ā′pre)

if Ȳ ⊆ Ī ∪ Ā′pre then
∆+
V = (Inputpostl nφ(X̄pre,Ȳ ) ∆−Inputr )

n̄φ(X̄post,Ȳ )Input
post
r

else
∆+
V = (Inputpostl nφ(X̄pre,Ȳ ) (Inputprer n ∆−Inputr ))

n̄φ(X̄post,Ȳ )Input
post
r

For ∆u
Inputr (Ī , Ā′pre, Ā

′′
post)

Treat input update as combination of insert and delete
if Ȳ ∩ Ā′′post = ∅ then

∆−V = not triggered
else

∆−V = πĪ(Input
post
l nφ(X̄post,Ȳ ) (Inputpostr n ∆u

Inputr ))

if Ȳ ∩ Ā′′post = ∅ then
∆+
V = not triggered

else if Ȳ ⊆ Ī ∪ Ā′pre then
∆+
V = (Inputpostl nφ(X̄pre,Ȳ ) ∆−Inputr )

n̄φ(X̄post,Ȳ )Input
post
r

else
∆+
V = (Inputpostl nφ(X̄pre,Ȳ ) (Inputprer n ∆−Inputr ))

n̄φ(X̄post,Ȳ )Input
post
r

Table 13: Rules for n̄φ(Inputl.X̄,Inputr.Ȳ )
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