
FORWARD: Data-Centric UIs using Declarative Templates
that Efficiently Wrap Third-Party JavaScript Components∗

Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, Erick Zamora
{y4fu,kianwin,yannis}@cs.ucsd.edu, ezamora@ucsd.edu

UC San Diego

ABSTRACT
While Ajax programming and the plethora of JavaScript
component libraries enable high-quality UIs in web appli-
cations, integrating them with page data is laborious and
error-prone as a developer has to handcode incremental
modifications with trigger-based programming and manual
coordination of data dependencies. The FORWARD web
framework simplifies the development of Ajax applications
through declarative, state-based templates. This declara-
tive, data-centric approach is characterized by the principle
of logical/physical independence, which the database com-
munity has often deployed successfully. It enables FOR-
WARD to leverage database techniques, such as incremental
view maintenance, updatable views, capability-based com-
ponent wrappers and cost-based optimization to automate
efficient live visualizations. We demonstrate an end-to-end
system implementation, including a web-based IDE (itself
built in FORWARD), academic and commercial applications
built in FORWARD and a wide variety of JavaScript com-
ponents supported by the declarative templates.

1. INTRODUCTION
Ajax programming and JavaScript component libraries

have led to a new generation of modern web applications,
which are characterized by user interfaces commensurate
with desktop applications. This is achieved by the devel-
oper handcoding performance optimizations for incremental
modifications from the old page to the new page [4].

Consider the running example in Figure 1, which shows a
web application providing faceted browsing over earthquake
data. The page shows a summary of total earthquakes dis-
played, a table of earthquake details, and a map where each
marker represents the earthquake’s location and magnitude.
In response to the user selecting/deselecting checkboxes for

∗Supported by NSF III-1018961 and NSF III-1219263, PI’d
by Prof Papakonstantinou who is a shareholder of App2you
Inc, which commercializes outcomes of this research.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Figure 1: Running Example:
Faceted Browsing of Earthquakes

{
 quakes: [
 {
 _key: 456,
 mag : 2.5,
 lat : -150.3,
 lng : 63.2,
 loc : '74km..',
 time: 'Mar..'
 }, ...
],
 filter: [
 {
 _key : 1,
 range: '>= 7.0',
 selected: true
 }, ...
]
}

Figure 2: Page
State

magnitude ranges, the page displays only earthquakes that
satisfy the magnitude filter.

Using mainstream web frameworks such as Ruby-on-Rails
and Backbone, developers already modularize code follow-
ing the Model-View-Controller (MVC) architectural pat-
tern. The model (or page state) is an abstraction that rep-
resents the logical data used by user interfaces. For ex-
ample, Figure 2 shows the example’s page state in JSON
format. Notice that the page state stores earthquake data
once in quakes, even though the data is utilized thrice in
the summary, table and map. Furthermore, the page state
also contains the results of user interaction: filter stores
user input on whether a range is selected, whereas quakes

stores earthquakes that satisfy the filter.
Despite the page state abstraction, incremental modifi-

cations still occur in tedious and error-prone ways: (1)
JavaScript components (maps, calendars, tabbed dialogs
etc.) encapsulate their complex state by exporting program-
matic APIs comprising methods and event handlers. When
page state changes (e.g. displaying more earthquakes), call-
ing a method (e.g. adding a particular marker on the
map) incrementally re-renders the component as a side-
effect. Conversely, when user interaction changes a compo-
nent’s state (e.g. deselecting a checkbox), an event handler
fires and triggers code to change the page state. Effectively,
a developer engages in event-driven / trigger-based pro-
gramming to laboriously translate from page state changes
to component state changes, and vice versa. (2) Due to
trigger-based programming, the developer has to manually
assess data flow dependencies on the page, in order to cor-
rectly transition the application from one consistent state
to another. For example, when page state changes with
the addition of earthquakes, calling methods to refresh the

!"#$"%&%'(
)'*'&(

+%,'(
)'*'&(

-*.&(
)'*'&(

!"#"$%&%'()$"*+,-./%'-0/1%/+-

!"//&0'"12(3&%4&1&12(

+%,'(51*$$&12(

.#,"'"$&+-2%+3-

6&0/*1*78&(
9&#$/*'&(

4+5#&"'+-0/1%/+-

!*$*:,/,';(),#</*7"%(

!"2'=:*2&4(>$7#,?&1(

Figure 3: Architecture of Template Engine

map/table, but not the summary, results in a buggy page
that is inconsistent. Such data dependencies cause incre-
mental modifications to be very error-prone. (3) Vibrant
activity among commercial vendors and open-source com-
munities has led to numerous JavaScript libraries. As a data
point, popularity tracker JSDB.io lists over 600 libraries.
Since these libraries are varied and do not utilize the same
API conventions (unlike HTML/DOM, which has been stan-
dardized), developers who integrate multiple libraries have
to familiarize themselves with subtly different syntax and
semantics for incremental modifications.

The database community has emphasized new opportu-
nities in applying data-centric approaches, including data
independence and declarative programming to other emerg-
ing language platforms [1]. In the same spirit, we present the
FORWARD web framework [4, 5], which provides a declar-
ative, state-based language for developers to create web ap-
plications. Declarative programming enables the system
to leverage database techniques, such as updatable views,
capability-based wrappers [6] and cost-based optimization to
automatically propagate incremental modifications between
page state and component state, and vice-versa. FOR-
WARD thus extends prior declarative web frameworks such
as Strudel [3] and Hilda [8], which have focused on mod-
eling page state as queries, but do not perform incremen-
tal modifications. More recently, Model-View-ViewModel
(MVVM) web frameworks such as AngularJS [2] and Knock-
out [7] have also employed declarativeness in utilizing HTML
templates to automate incremental modifications of the
browser DOM. FORWARD’s novel template language sup-
ports HTML too, but goes beyond to also integrate the rich
functionality of third-party JavaScript component libraries.

2. TEMPLATE ENGINE OVERVIEW
In this paper, we focus on the template engine of the FOR-

WARD web framework, which automatically propagates
changes between page state and component state, and vice-
versa. The template engine is independent of the modules
which output page state: FORWARD currently computes
page state through a middleware query processor which eval-
uates SQL++ queries over a virtual database [5], but details
of the query processor are beyond the scope of this paper.

Figure 3 presents the architecture of the template engine,
where shaded blue boxes denote inputs by the developer,
and white boxes denote data structures and modules pro-
vided by the template engine. In particular, a capability-
based unit wrapper adapts a third-party JavaScript compo-
nent into the template engine architecture, and is key in
establishing independence between logical state and phys-
ical methods/event handlers. Section 2.1 shows examples

<% unit google.map.Maps %>
 {
 markers : [
 <% for q in quakes %>
 {
 position: {
 lat: <%= q.lat %>,
 lng: <%= q.lng %>
 },
 size : <%= siz(q.mag) %>,
 color: <%= col(q.mag) %>
 }
 <% end for %>
]
 }
<% end unit %>

Figure 4: Template for Map

{
 markers : [
 {
 _key : 456,
 position: {
 lat : -150.3,
 lng : 63.2,
 },
 size : 3.5,
 color : '#FDD49E'
 }, ...
]
}

Figure 5: Unit State for Map

<% bind filter each f %>
 <% unit html.Checkbox %>
 {
 checked:
 <% bind f.selected %>,
 label: <%= f.range %>
 }
 <% end unit %>
<% end bind %>

Figure 6: Template for
Checkboxes

{
 _key : 456,
 checked: true,
 label : '>= 7.0'
}

Figure 7: Unit State for
Checkbox

of the declarative template language, and illustrates its up-
datable view semantics for bidirectional synchronization be-
tween the page state and unit state. Section 2.2 presents
how capability-based unit wrappers perform bidirectional
synchronization between unit state and component state.
Section 2.3 presents how the logical/physical independence
between the unit state and component state enables the tem-
plate engine to simulate missing capabilities and perform
cost-based optimizations. Section 2.4 illustrates how devel-
opers can specify renderers and collectors directly within a
declarative template, thus enabling more lightweight inte-
gration than implementing fully-capable unit wrappers.

2.1 Declarative Templates as Updatable Views
Figure 3 shows that the template engine takes two inputs:

(1) the page state, which is represented in the JSON data
model. For efficiency of propagating changes bidirectionally
across page state, unit state and component state, it is rec-
ommended (but not required) that each element of an array
is identified by a key that remains immutable across page
refreshes. A common and simple solution is to generate such
keys from the primary keys of data stored within databases.
For example, keys are encoded as special key attributes in
Figure 2. (2) the declarative template, which specifies how
the page should be displayed in the browser. For exam-
ple, Figure 4 and 6 show the declarative templates for the
map and checkboxes respectively. Notably, a declarative
template allows JavaScript components to be used without
writing any integration JavaScript code.

The unit state represents the state of a unit wrapper. For
example, Figure 5 shows the unit state instantiated by the
declarative template of Figure 4, using the page state of
Figure 2. Analogously, Figure 7 for Figure 6. Using the
SQL++ query language which inputs and outputs JSON
data [5], the semantics of the declarative template specifies
the unit state as a SQL++ updatable view over the page
state. Intuitively, instantiation of the unit state is easily ex-
pressed as a view: the for directive iterates over elements of
an array (e.g. quakes), and for each element instantiates the
value enclosed within the directive’s body (e.g {...}); the =

directive instantiates the result of an expression. More sub-
tly, a bind directive specifies a one-to-one mapping between
a pair of values in the page state and unit state, such that
an update on one value is propagated to the other. For ex-
ample, deselecting a checkbox updates its checked attribute
to false in the unit state (Figure 7), which in turn updates
the corresponding selected attribute to false in the page
state (Figure 2). A complete listing of template directives is
presented as part of FORWARD’s programming model [5].

2.2 Capability-based Unit Wrappers
Whereas a declarative template utilizes state, the pro-

grammatic API of a component utilizes incremental modifi-
cations. A unit wrapper translates between these two fun-
damentally different programming models through logical
capabilities as follows.

Changes in the unit state are represented by a list of diffs
on JSON data. Each diff is described by (1) an op which de-
scribes how data is changed: insert, update or delete (2)
a context path which describes where the data is changed (3)
a payload which describes the replacement data. For exam-
ple, when an updated filter condition causes the map marker
with key 456 to be removed from the map, the diff has op
delete, context path ^.markers#456#, and no payload.
^ denotes the root of the unit state, and #...# denotes keys.
Notably, the context path navigates into array elements with
keys if they are present, and ordinal positions otherwise.

A unit wrapper contains renderers and collectors (Fig-
ure 3). A renderer has (1) a diff signature comprising an
op and context path. For example, the diff signature which
matches the diff mentioned above has op delete and con-
text path ^.markers#*#, where * is a wildcard matched by
any key value. Special ops are also allowed in diff signa-
tures: construct/destruct to create/destroy a unit, and
attach/detach for a parent unit to attach/detach a child
unit. (2) a rendering function which inputs a diff matching
the signature, and calls the incremental rendering method of
the underlying component. For example, the renderer men-
tioned above has a rendering function that calls the map
component’s method to remove a particular marker. Thus,
a renderer’s rendering function propagates changes of the
unit state into the component state. In addition to bridging
the gap between the two programming models, a renderer
effectively provides logical/physical independence: the diff
signature describes its logical capabilities, while the function
performs the physical rendering. Section 2.3 presents further
optimizations arising from this logical/physical separation.

Conversely, a collector propagates changes of the compo-
nent state into the unit state: it provides an event handler
function, and when a component event fires, the function
applies a corresponding diff on the unit state.

2.3 Simulating for Missing Capabilities and
Cost-based Optimizations

A unit wrapper is required to handle all possible diffs on
its unit state, but its underlying component may not sup-
port incremental rendering functions that are sufficiently
fine-grained. For example, the Google Maps API offers a
setPosition method for updating the position, but there is
no method for updating only latitude or longitude.

As a result of renderer capabilities being described logi-
cally with diff signatures, the unit engine supports simula-
tion of missing capabilities (Figure 3) as follows. Each ren-

1.  <script src="https://maps.googleapis.com/..” />
2.  <script src="my-maps.js" />
3.  <% unit custom
4.  render
5.  construct using constructMap,
6.  destruct using destructMap
7.  collect using collectMap
8.  %>
9.  {
10.  <% render
11.  insert using insertMarker,
12.  update using updateMarker,
13.  delete using deleteMarker
14.  %>
15.  markers : [...]
16.  <% end render %>
17.  }
18.  <% end unit %>

Figure 11: Template for Lightweight Integration

derer is required to declare the maximally applicable diff sig-
nature that is supported by its rendering function. Or equiv-
alently, the diff signature with the fewest steps in its context
path. For example, the renderer which calls setPosition

has diff signature update and ^.markers#*#.position.
Given a diff, the unit engine uses simulation rules to find
one or more renderers with the most specific diff signa-
tures. Any renderer can be simulated by an update ren-
derer of an ancestor attribute, while an update renderer of
an array element can also be simulated by a combination
of insert and delete renderers on the same array element.
For example, an update diff on the lat attribute is simu-
lated with the setPosition renderer. As another example,
if the setPosition renderer were not supported by the unit
wrapper, the diff is simulated with two renderers: removing
the marker, and re-adding the marker. Since a unit wrapper
supports at least two renderers for constructing and destruc-
ting the component, any diff can always be simulated by the
base case of re-constructing the component.

Besides supporting missing capabilities, simulation also
provides optimizations based on a cost model that considers
the number of diffs and rendering time. For example, sup-
pose many markers are added and removed from the map.
Given a sufficiently large number of additions/removals,
re-constructing the map is more efficient than separately
adding/removing each marker.

For the cost model, each renderer in a unit wrapper is
optionally specified with a rendering cost (defaults to 1),
which indicates its cost relative to other renderers within the
same unit wrapper. The implementor of a unit wrapper is
responsible for empirically determining the respective costs.

2.4 Lightweight Integration
A unit wrapper encapsulates renderers and collectors for

code reuse across applications. For cases where code reuse
is not necessary, such as one-use infographics implemented
using vector libraries such as D3 and Three.js, a template
supports lightweight integration of custom JavaScript code.
Suppose a unit wrapper for Google Maps has not been imple-
mented. Figure 11 shows an example of integrating a map
component inline within the template. The Google Maps
library is included via a conventional HTML script tag
(line 1). Custom JavaScript code for rendering and collect-
ing functions are included via my-maps.js (line 2). The spe-
cial custom unit wrapper (line 3) accepts a render parame-
ter for specifying construct/destruct rendering functions
(lines 5-6), and an optional collect parameter for specify-

Figure 8: IDE Application for Cloud-
based FORWARD

Figure 9: Example Application:
Groupon + Google Maps

Figure 10: Interactive Debugger for
Unit Wrappers

ing a single collecting function. The collecting function is
invoked whenever user interaction occurs, and outputs the
entirety of the unit state.

For ease of development, it is sufficient to specify only
construct/destruct rendering functions, as the template
engine simulates missing capabilities. For visualizing a large
number of data points, a developer can optimize render-
ing time by specifying additional rendering functions using
render directives. For example, lines 10-14 specify functions
for inserting, updating and deleting a particular marker.

3. DEMONSTRATION
The demo showcases a full implementation of the tem-

plate engine within the FORWARD web framework, which
includes a library of 20 pre-built unit wrappers. 14 commer-
cial and academic applications have also been built using
the web framework, of which 3 representative ones will be
shown. We present the demo proposal below, and highlight
how the demo elucidates the template engine architecture.

Applications Figure 8 shows the IDE application (itself
built in FORWARD), which is used to edit, compile and
execute FORWARD applications that are hosted in a cloud-
based service. The IDE application is used to present the
declarative template (about 300 lines) needed to create the
entirety of the example application in Figure 9. The ex-
ample application retrieves current deals from Groupon’s
REST web service, and visualizes them on a Google Map
component. We invite the audience to make changes to
the example application, thereafter compile it and see the
new application deployed immediately. We also explain the
underlying updatable view semantics using the declarative
template as a concrete example.

To validate the real-world practicality of the system, we
also demo BioHeatMap, an analytics application currently
utilized by two pharmateutical companies. BioHeatMap
provides a dashboard for users to pose analytic queries over
20M PubMed articles, and displays results with rich visual-
izations such as time series charts and heat maps.

Unit Wrappers To demonstrate the wide applicability
of unit wrappers, we present 20 unit wrappers from a va-
riety of mainstream JavaScript libraries: (1) Standard UI
component libraries, in particular Bootstrap, which provides
general-purpose components such as dialogs, tabs, menus,
progress bars and sliders. (2) Charting libraries, in partic-
ular Highcharts and Highstock, which provide chart com-
ponents such as pie/line/bar/column charts, polar charts,
scatter/bubble plots and box-and-whisker plots. (3) Map
libraries, in particular Google Maps and Leaflet, which pro-

vide geographical and street maps. (4) Editor libraries, in
particular Ace and CodeMirror, which provide customiz-
able code editors supporting syntax highlighting, undo/redo,
code folding and code completion.

The unit wrappers are presented using two interfaces: (i)
a gallery of examples, which illustrates the wide range of
unit wrappers (ii) an interactive debugger, as shown in Fig-
ure 10, which illustrates how renderers/collectors synchro-
nize the component state and unit state. When the user
changes in the editor a JSON value that represents the unit
state (bottom pane), the component is refreshed (top pane).
Conversely, when user input occurs in the component (e.g.
showing/hiding a data series by clicking on the legend), the
JSON value in the editor changes correspondingly.

Lightweight Integration To demonstrate the
lightweight integration of arbitrary JavaScript compo-
nents, we showcase declarative templates that incorporate
custom D3 visualizations. An initial template contains only
construct and destruct renderers, thus simulation results
in the entire visualization being re-drawn whenever the page
state changes. Then, we progressively enable other insert,
update and delete renderers, thereby optimizing the
rendering performance. Through this demo, we illustrate
how simulation enables the developer to tradeoff coding
time and runtime performance in a flexible manner.

4. REFERENCES
[1] R. Agrawal et al. The claremont report on database

research. Commun. ACM, 52(6):56–65, 2009.

[2] Angularjs. http://angularjs.org/.

[3] M. F. Fernández, D. Florescu, A. Y. Levy, and
D. Suciu. Declarative specification of web sites with
Strudel. VLDB J., 9(1):38–55, 2000.

[4] Y. Fu, K. Kowalczykowski, K. W. Ong,
Y. Papakonstantinou, and K. K. Zhao. Ajax-based
report pages as incrementally rendered views. In
SIGMOD Conference, 2010.

[5] Y. Fu, K. W. Ong, and Y. Papakonstantinou.
Declarative ajax web applications through sql++ on a
unified application state. In DBPL, 2013.

[6] L. M. Haas, D. Kossmann, E. L. Wimmers, and
J. Yang. Optimizing queries across diverse data sources.
In VLDB, pages 276–285, 1997.

[7] Knockout. http://knockoutjs.com/.

[8] F. Yang, J. Shanmugasundaram, M. Riedewald, and
J. Gehrke. Hilda: A high-level language for data-driven
web applications. In ICDE, page 32, 2006.

http://angularjs.org/
http://knockoutjs.com/

	Introduction
	Template Engine Overview
	Declarative Templates as Updatable Views
	Capability-based Unit Wrappers
	Simulating for Missing Capabilities and Cost-based Optimizations
	Lightweight Integration

	Demonstration
	References

