
Collaborative Data-Driven Workflows:
Think Global, Act Local∗

Serge Abiteboul
INRIA Saclay & ENS Cachan

94235 CACHAN Cedex, France
serge.abiteboul@inria.fr

Victor Vianu†

UC San Diego & INRIA Saclay
La Jolla, CA 92093

vianu@cs.ucsd.edu

ABSTRACT
We introduce and study a model of collaborative data-driven
workflows. In a local-as-view style, each peer has a partial
view of a global instance that remains purely virtual. Local
updates have side effects on other peers’ data, defined via
the global instance. We also assume that the peers provide
(an abstraction of) their specifications, so that each peer
can actually see and reason on the specification of the entire
system.

We study the ability of a peer to carry out runtime rea-
soning about the global run of the system, and in particular
about actions of other peers, based on its own local ob-
servations. A main contribution is to show that, under a
reasonable restriction (namely, key-visibility), one can con-
struct a finite symbolic representation of the infinite set of
global runs consistent with given local observations. Using
the symbolic representation, we show that we can evaluate
in pspace a large class of properties over global runs, ex-
pressed in an extension of first-order logic with past linear-
time temporal operators, PLTL-FO. We also provide a vari-
ant of the algorithm allowing to incrementally monitor a
statically defined property, and then develop an extension
allowing to monitor an infinite class of properties sharing
the same temporal structure, defined dynamically as the run
unfolds. Finally, we consider an extension of the language,
that permits workflow control with PLTL-FO formulas. We
prove that this does not increase the power of the workflow
specification language, thereby showing that the language is
closed under such introspective reasoning.
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1. INTRODUCTION
Process-centric workflows focus on control flow, often ab-

stracting away data almost entirely. In contrast, recently
proposed data-driven workflows treat data as first-class cit-
izens, e.g., the business artifact model pioneered in [21] and
deployed by IBM in commercial products. Data-driven work-
flows have become ubiquitous in a wide array of application
domains. Their system architecture may range from totally
centralized to fully distributed. While multiple-peer work-
flows have been extensively studied in the process-centric
case using finite-state models, little formal research has been
done on collaborative workflows centered around a database,
which have infinitely many states (see related work). In this
paper, we introduce a simple model for collaborative data-
driven workflows and provide techniques that enable a peer
to reason about runs of the global workflow based on its
local observations.

In our model, peers modify local data using condition/up-
date actions. The connection between the data at different
peers is specified using a local-as-view approach, in which
the data at each peer is an exact view of a virtual global
database. We impose restrictions (using the presence of
keys) to guarantee that peer updates can be propagated in
an unambiguous manner to other peers. We assume that
update propagation is instantaneous, i.e., we assume some
underlying synchronization mechanism to support update
propagation.

Our goal is to enable peers to reason, based on local ob-
servations, about the global state of the system and about
actions occurring at other peers. This can serve as the ba-
sis for a wealth of runtime tools for monitoring the global
run, detecting and diagnosing anomalous behavior, balanc-
ing load to improve efficiency, or analyzing the current run
to derive competitive advantage over other peers.

Consider a peer p in such a system. We assume p knows
the specification of all the other peers. (In fact, p is likely
to only be given an abstraction of these specifications, hid-
ing details and confidential behavior of the peers.) Peer p
only sees a local view of the global run. Note that there
are generally infinitely many global runs that are consistent
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with p’s observations. Based on this local view, one would
like to evaluate queries over the global run, specified by an
extension of first-order logic (FO) with temporal operators
(PLTL-FO), referring to the entire history of the run. In
particular, we would like to decide whether a formula in this
language is possibly or certainly true in the global runs that
correspond to what p sees locally. Deciding such properties
is at the heart of the paper.

More precisely, our main contributions are the following:

• developing a finite symbolic representation system for
the infinite set of global runs consistent with local ob-
servations;

• using the representation system to provide a pspace
algorithm for evaluating PLTL-FO properties of the
global runs consistent with the local observations, with
respect to both possible and certain world semantics;

• developing an incremental variant of the algorithm suit-
able for monitoring some properties specified before-
hand; and extending this variant to monitor an infinite
class of properties sharing the same temporal struc-
ture, so that properties can be chosen in this class
while the run unfolds.

Finally, we consider the effect of integrating the reasoning
previously described into the control of the workflow itself.
This allows a peer to guide its actions based on properties of
the global run that can be monitored, detecting some other
peer actions that are not visible locally. We show, some-
what surprisingly, that adding such control features does
not increase the expressiveness of the workflow specification
language. Intuitively, this shows that the workflow specifi-
cation language is closed under such introspective reasoning.

Related work. Although not focused explicitly on work-
flows, Dedalus [8, 16] and Webdamlog [4, 2] are systems sup-
porting distributed data processing based on condition/action
rules. Local-as-view approaches are considered in a number
of P2P data management systems, e.g., Piazza [22] that also
consider richer mappings to specify views. Update propaga-
tion between views is considered in a number of systems,
e.g., based on ECA rules in Hyperion [9].

Finite-state workflows with multiple peers have been for-
malized and extensively studied using communicating finite-
state systems (called CFSMs in [1, 10], and e-compositions in
the context of Web services, as surveyed in [17, 18]). Formal
research on infinite-state, data-driven collaborative work-
flows is still in an early stage. The business artifact model
[21] has pioneered data-driven workflows, but formal stud-
ies have focused on the single-user scenario. Compositions
of data-driven web services are studied in [12], focusing on
automatic verification. Active XML [3] provides distributed
data-driven workflows manipulating XML data.

A collaborative system for distributed data sharing geared
towards life sciences applications is provided by the Orches-
tra project [15, 20]. The underlying update propagation
model among peers is based on schema mappings and is
similar to our local-as-view approach. However, Orchestra
does not address the kind of analysis problems studied here.

Organization. After some preliminaries, we introduce the
model of collaborative workflows. We then develop in Sec-
tion 3 the representation system for the infinite set of global
runs consistent with given peer observations. In Section 4,

we show how the representation system can be used to eval-
uate PLTL-FO properties of global runs. We also consider
incremental and preemptive evaluation, and discuss the ex-
pressiveness of introspection in workflow control.

2. THE MODEL
In this section, we introduce the model of collaborative

workflows. We begin with some preliminaries, then intro-
duce collaborative workflows.

Preliminaries. We assume an infinite data domain dom
with one distinguished element ⊥ (representing undefined
data values). We also assume an infinite countable domain
of variables var disjoint from dom. We denote variables by
x, y, z, possibly with subscripts. A relation schema is a rela-
tion symbol together with a sequence of distinct attributes
(whose length is the arity of the relation). We denote the set
of attributes of R by att(R). A database schema is a finite
set of relation schemas. An instance of a database schema is
a mapping I associating to each relation schema R a finite
relation I(R) over dom, of the same arity as R. An instance
(or tuple) containing ⊥ is called partial, and otherwise total.

We assume that each relation schema R is equipped with
a unique key K, consisting of a non-empty subset of its
attributes. We say that an instance I over R is valid if I
satisfies the key constraint and all tuples in I are total on
the key attributes.

We recall the notion of conjunctive query with safe nega-
tion (CQ¬ query for short). A term is a variable or a con-
stant. A literal is of the form R(x̄), ¬R(x̄), x = y, x �= y,
where x̄ is a sequence of terms of appropriate arity, x is
a variable, and y a term. A CQ¬ query is an expression
A1 ∧ ... ∧ An (for n ≥ 0) where each Ai is a literal and
each variable x occurs in a positive relational literal or in an
equality x = c where c ∈ dom (i.e., x is bound).

Collaborative schema and instance. A collaborative sche-
ma S consists of:

1. A database schema D, the global schema, in which each
relation is equipped with a key.

2. A finite set of peer names {pi | 1 ≤ i ≤ m}.
3. For each peer pi, the local schema Di consisting of a set

of relation schemas R@pi, where R ∈ D, att(R@pi) ⊆
att(R), and att(R@pi) contains the key of R.

4. For each R ∈ D, att(R) = ∪{att(R@pi) | R@pi ∈
Di, 1 ≤ i ≤ m}.

The main motivation for (4) is to guarantee that the global
instance (which is purely virtual) can be computed from the
peer instances. Consider for instance some relation R in the
global schema. Note that R may be “invisible” from some
particular pi, i.e., R@pi is not in Di. However because of
(4) and the key constraints, I(R) can be reconstructed from
its projections on the peer schemas.

Let S be a collaborative schema with global schema D
and peers {pi | 1 ≤ i ≤ m}. A global instance of S is a valid
instance I over D. The peer view of I at pi, denoted I@pi,
is the instance over Di defined by: for each R@pi ∈ Di,
I@pi(R@pi) = πatt(R@pi)(I(R)). Observe that this intro-
duces a constraint on the instances I@pi: they are projec-
tions of the same global instance. Note also that the peer
views of an instance I uniquely determine the global instance
because of the key constraints and condition (4). More pre-
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cisely, for each R in D, I(R) = �� {I@pi(R) | R@pi ∈ Di}.
In particular, this induces a connection between the local in-
stances {I@pi}1≤i≤m that can be stated without reference
to the global instance I (which is purely virtual and never
materialized):

for each j and R@pj ∈ Dj ,I@pj(R@pj) =
πatt(R@pj)(�� {I@pi(R@pi) | R@pi ∈ Di, 1 ≤ i ≤ m})

Remark 2.1. The views we consider are limited to simple
projections. However, more complex views can be provided
using actions performed by peers. For instance, consider a
selection query σ over a relation R. A peer pi that sees a
relation R can maintain in another relation, say Rσ, the
result of σ(R). Then any peer pj that sees Rσ will see the
result of that selection even if pj does not have access to R.

Example 2.2 We use as a running example a very simpli-
fied workflow to process travel expenses in a research insti-
tute. The workflow involves the following peers: researchers,
e.g., Alice, who can initiate trip requests; a travel agency
that provides expense estimates; and admin services that
approve or deny trip expenses. The global schema has 3 re-
lations (each with key Id): Submitted(Id, Person, Date, Lo-
cation), Processing(Id, Person, Expense, Comment, Status)
and Web(Id, Person, Date, Conference, Domain). If Do-
main=“inter”, the information is published on the Internet.
If Domain=“intra”, it is only published on the Intranet of
the institute. The peers’ schemas (with the obvious associ-
ated view definitions) are the following (as noted in Remark
2.1, selections in view definitions can be simulated and are
used for convenience):
Alice (and similarly for all other researchers):

Submitted(Id, “Alice”, Date, Location)
Processing(Id, “Alice”)
Web(Id, Person, Date, Conference, Domain)

Travel agency schema:

Submitted(Id, Person, Date, Location)
Processing(Id, Person, Expense)
Web(Id, Person, Date, Conference, “inter”)

Admin services schema: same as global schema. �

An update to a peer’s local data can be propagated to the
other peers so that the local instances remain the views of
a valid global instance. We assume here that propagation
of updates is instantaneous, which can be ensured by the
underlying system with a protocol involving asynchronous
communication. We do not address this aspect here.

Formally, we define the effect on a global instance I of
performing a tuple insertion and deletion at peer pi. The
semantics will guarantee that the resulting global instance
remains valid.

Consider the deletion of a tuple t from I(R@pi). The
resulting global instance J is obtained by deleting from I(R)
the tuple whose projection on att(R@pi) equals t, if such a
tuple exists (note that there is at most one such tuple per
relation).

Now consider the insertion of a tuple t in I(R@pi) (the
more interesting case). Let t̄ be the tuple over att(R) ex-
tending t with ⊥ for all attributes in att(R) − att(R@pi).

Let J be the result of inserting into I the tuple t̄, then chas-
ing with respect to the key K of R. Specifically, the chase
consists of the following. If there is another tuple u agreeing
with t̄ on K, and an attribute A for which one of u(A) and
t̄(A) is defined and the other is not (i.e. equals ⊥), replace
⊥ by the defined value of A in the other tuple. The insertion
is said to be consistent if J is valid (the update is rejected
otherwise).

We next illustrate the semantics of updates.

Example 2.3 Suppose we have a relation R over ABCD
with key A, R@p1 is over ABD and R@p2 over ACD. The
insertion of (0, 0, 0) and (1, 1, 1) in R@p1 propagates to the
insertion of (0,⊥, 0) and (1,⊥, 1) in R@p2. Then the dele-
tion of (0,⊥, 0) from R@p2 propagates to the deletion of
(0, 0, 0) from R@p1. And the insertion of (1, 2, 2) in R@p2

is refused. A subtlety is that we cannot consistently modify
attributes of tuples with a given key across peers without
losing information. For instance, suppose we wish to mod-
ify the D column of the tuple (1,⊥, 1) in R@p2 from 1 to
2. This is done by deleting (1,⊥, 1) and inserting (1,⊥, 2).
However, this does not propagate to a modification of D
from 1 to 2 in R@p1. Indeed, the previous deletion and in-
sertion first delete (1, 1, 1) from R@p1, then insert the tuple
(1,⊥, 2). Thus, the B column was lost as a side effect. It
is not hard to extend the model with explicit modifications
circumventing this problem. �

Collaborative workflow. A collaborative workflow specifi-
cation (in short workflow spec) W consists of a collaborative
schema S and a finite set of actions for each peer pi of W.
An action at peer pi is an expression
Update :- Condition where:

• Condition is a CQ¬ query over Di.
• Update is a non-empty sequence of positive and nega-

tive relational literals over Di such that each variable
occurring in a negative literal also occurs in Condition.

Intuitively, positive literals in the update are interpreted
as insertions, and negative literals as deletions. Note that
positive literals may use variables that do not occur in the
condition. As we shall see, these are assigned new values,
not in the current active domain.

Example 2.4 Continuing with Example 2.2, we next show
some of the actions of the travel expense processing work-
flow. For readability, we use attribute names for variables,
and underline those occurring only in insertions of actions,
generating new values. The workflow proceeds as follows.

1. Alice initiates a new trip request

Submitted(Id, “Alice”, Date, Location) :-

2. Alice publishes the trip on the Intranet

Web(Id, “Alice”, Date, Conference, “intra”) :-
Submitted(Id, “Alice”, Date, Location)

3. Travel agency inserts an estimate of the cost

Processing(Id, Person, Expense) :-
Submitted(Id, Person, Date, Location)
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4. Admin inserts comments

¬ Processing(Id, Person, Expense, Comment, ⊥),
Processing(Id, Person, Expense, Comment, ⊥) :-
Processing(Id, Person, Expense, Comment, ⊥)

5. Admin approves or rejects

Processing(Id, Person, Expense, Comment, “approve”)
:- Processing(Id, Person, Expense, Comment, ⊥)
Processing(Id, Person, Expense, Comment, “reject”) :-
Processing(Id, Person, Expense, Comment, ⊥)

6. Admin deletes rejected trip from the Intranet

¬ Web(Id, Person, Date, Conference, “intra”) :-
Web(Id, Person, Date, Conference, “intra”),
Processing(Id, Person, Expense, Comment, “reject”)

7. Admin publishes approved trip on the Internet

¬ Web(Id, Person, Date, Conference, “intra”),
Web(Id, Person, Date, Conference, “inter”) :-
Web(Id, Person, Date, Conference, “intra”),
Processing(Id, Person, Expense, Comment, “approve”)

Note that the workflow imposes a number of constraints
on the actions of participants. For instance, an admin can
modify a comment as many times as wished before a deci-
sion is made, but once a trip has been approved or rejected,
the comment cannot be modified, because the condition of
Rule (4) requires the status to be undefined (⊥). Rules (6,7)
are internal computations of peer Admin: deletion of a re-
jected trip from the Intranet, and posting of an approved
trip on the Internet. We may prefer that rules such as these
be triggered automatically once a decision is made, and we
could easily extend the model with immediate triggers. Ob-
serve the underlined variables in Rules (1-4), not bound in
the body. Such unbound values have to be supplied either
by the user or by the system; in which case, we will assume
the system chooses new values outside the active domain.
To simplify the presentation, we will ignore in the paper the
differences between user and system actions, and assume
that unbound variables are always assigned values outside
the active domain. This assumption can be easily relaxed
and does not affect our results. �

Workflow runs. Intuitively, the semantics of a workflow
spec consists of runs of consecutive global instances. (Clearly,
one could also consider trees of runs.) Note that this also
determines the runs of the corresponding peer views. Each
transition is caused by one application of one instantiation
of one action at one peer.

A run starts at an initial global instance of W, i.e. a
valid instance over D. In practice, one may wish to impose
some conditions on initial global instances. For instance, it
may make sense to require that some relations be initially
total, or initially empty (for relations recording tasks to be
performed). To simplify, we ignore here this aspect, which
does not affect the results.

The transition relation 
 is defined using the auxiliary
notion of instantiation of an action at peer pi for a global
instance I . We use the notion of active domain. First, the
active domain of W, denoted adom(W), consists of the con-
stants used in W, and ⊥. The active domain of an instance
I , denoted adom(I), is the set of constants occurring in I to-
gether with adom(W). Let α = Update(x̄, ȳ) :- Condition(x̄)
be an action at pi where x̄ are the variables occurring in
Condition and ȳ are the variables in Update other than

x̄. Let ν be a valuation of x̄ in dom such that I@pi |=
Condition(ν(x̄)). Let ν̄ be an extension of ν mapping vari-
ables in ȳ to distinct values in dom outside the active domain
of I . Then ν̄α is an instantiation of this action at peer pi

for the global instance I .
For two global instances I and J over D, I 
e J if the

following holds:

(†) There is a peer pi, an instantiation ν̄α of an
action at peer pi for I such that J is obtained
from I by applying the sequence of insertions and
deletions in Update(ν̄(x̄, ȳ)), in the specified or-
der, and all insertions are consistent.

The label e, referred to as the event causing the transi-
tion, consists of the triple (peer(e), action(e), val(e)) where
peer(e) = pi, action(e) = α and val(e) = ν̄. We denote by
a special symbol init the vacuous event creating the initial
instance in a run, needed for technical reasons. From the
definition, it follows that if I is valid and I 
e J , then J is
valid.

Note a subtlety in the active domain semantics we use.
In the definition, the active domain refers to the current
snapshot I . However, in some applications, it is desirable
for new values to be outside the active domain of the entire
run leading to I . For instance, new values may represent
task IDs, and we may wish for them to be unique in each
run. Such a semantics can be easily simulated with the one
adopted here, simply by keeping in a designated relation the
values that may not be reused.

We next define runs of workflow specs.
A run of W is a finite sequence {(Ii, ei)}0≤i≤n, such that:

• e0 = init and I0 is a valid instance over D,
• for each 0 < i ≤ n, Ii−1 
ei Ii

Note that the sequence {Ii}0≤i≤n of instances in a run
does not generally determine the events causing each transi-
tion. However, if desired, the actions of W can be modified
so that events are explicitly recorded in designated relations.
When this is the case, the sequence of instances is sufficient
to uniquely identify the events.

Remark 2.5. Although left implicit, it is easy to see that
our collaborative workflows provide an expressive model that
can simulate the execution of sets of tasks and can capture
hierarchical tasks of arbitrary depth, making use of keys and
invented values. In particular, our collaborative workflows
subsume the popular business artifact model [21]. This can
be formalized using the framework developed in [5] for com-
paring the expressiveness of workflow languages.

3. SYMBOLIC RUNS
We next develop a symbolic representation for the set of

global runs consistent with given local observations at a peer.
This will be used in the next section to carry out reasoning
about the global runs, given such local observations. As
we will see, it will be necessary to impose some simple re-
strictions on workflow specifications in order to render such
reasoning feasible.

Consider a global run of a workflow spec W. Let p be a
peer of W. The information about the run as observed by p is
captured by the notion of p-trace, defined next. Intuitively,
a p-trace retains only transitions caused by actions of p, or
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by actions of other peers that have visible side effects at p.
In this latter case, p does not know which action actually
took place. We use the symbol � to denote such an unknown
action. Also, some transitions are completely invisible to p,
so do not participate to the p-trace. Formally:

Definition 3.1. Let ρ = {(Ii, ei)}0≤i≤n be a run of some
workflow spec W, and let p be a peer of W. Let ρ@p =
{(Ii@p, fi)}0≤i≤n where fi = ei if peer(ei) = p and fi = �
otherwise, where � is a new symbol. The p-trace of ρ, de-
noted νp(ρ), is the sequence obtained from ρ@p by recursively
deleting all (Ij@p, fj) such that Ij@p = Ij−1@p and fj = �.

Suppose that p observes a p-trace τ in the course of the
run of W. We would like to describe and reason about the
set of all runs ρ of W that are consistent with τ , i.e., such
that νp(ρ) = τ . We denote this set by ν−1

p (τ ). Note that,
because of silent transitions, the set ν−1

p (τ ) may contain runs
of unbounded length and is generally infinite. Unfortunately,
even basic properties of such runs are generally undecidable.
To illustrate, we mention a few such properties.

Theorem 3.2. The following are undecidable, for a work-
flow spec W and a p-trace τ :

current Is it possible/certain that the current local instance
at some peer satisfies some first-order (FO) property
ϕ?

past Is it possible/certain that some local instance at a peer
satisfied some FO property ϕ during the run?

event Is it possible/certain that some peer q performed some
particular action α during the run?

validation Is a sequence {(Ii@p, fi)}0≤i≤n that is syntac-
tically a p-trace an actual p-trace of a global run?

The proofs are by reduction from the undecidability of FO
satisfiability (see [6]), using the fact that workflow compu-
tations can compute the answer to an FO query.

The above undecidability results are not surprising. A
main contribution of the paper is to demonstrate decidabil-
ity of a wide range of properties (including the previous ones)
for a large class of workflow specs. The restriction we im-
pose, called key visibility, is often reasonable in practice and
is an acceptable price to pay for the ability to perform useful
reasoning tasks. Key visibility requires that peer p sees at
least some projection view of each global relation (which by
definition includes its key). Formally (with Dp denoting the
schema of peer p):

Definition 3.3. A workflow spec W with schema D is
key-visible at p if R@p ∈ Dp for each relation R ∈ D.

For instance, the workflow of Example 2.2 is key-visible
at all peers. While key visibility is a strong restriction for
arbitrary specifications, it is reasonable in the likely event
that the specification available to p is an abstraction of the
actual specification, provided to p as a surrogate (or expla-
nation) for it. In actual specifications, peers q will generally
use relations not revealed to p, that determine their precise
behavior. The abstraction available to p can be expected
to provide an approximation of the actual behavior of other
peers on relations they share, in some sense a contract be-
tween p and such peers. This enables reasoning by p while
ignoring the full details of other peers’ specification.

Even for a workflow that is key-visible at p, the set of
global runs consistent with a given p-trace may be infinite.
However, we are able to provide a symbolic representation
for runs of key-visible workflows given a trace. We do this
next. The representation is based on a variant of the classic
conditional tables, a formalism introduced to capture in-
complete information [19]. Intuitively, we capture a set of
possible global instances of the system using a table. We
then consider “transitions” between such tables to represent
possible moves. So the set of global runs consistent with a
p-trace can be described by a transition system over a set of
tables.

Incomplete instances. We use the following auxiliary no-
tions. An atomic constraint is an expression x = ( �=) t where
x ∈ var and t ∈ var∪dom. An atomic constraint is trivial if
it is x = x for some x ∈ var. A constraint is a Boolean com-
bination of atomic constraints and a conjunctive constraint
is a conjunction of atomic constraints, with no repetition of
the same atom. As a shorthand, if x̄ and ȳ are tuples of
the same arity, we denote by x̄ = ȳ the conjunction of the
componentwise equalities, and by x̄ �= ȳ the disjunction of
the componentwise inequalities. The closure ϕ∗

V of a con-
junctive constraint ϕ on a subset V of its variables is the
conjunction of all non-trivial atomic constraints implied by
ϕ, whose variables are in V . If V consists of all variables in
ϕ, we simply write ϕ∗ instead of ϕ∗

V .
We can now define the notion of incomplete instance, I-

instance for short. Intuitively, it includes some unknown
values (not to be confused with the ⊥ values) denoted by
variables, and a global constraint on these variables.

An I-instance over D is a pair (I, ϕ), where:

• I is a mapping associating to each R ∈ D a finite
relation over R using values in dom ∪ var.

• ϕ is a satisfiable conjunctive constraint using variables
in I and a finite set of constants.

• ϕ |= ϕkey where ϕkey is a constraint stating that no
distinct tuples in I(R) agree on the key attributes of
R, for every R ∈ D.

An I-instance represents a set of possible instances as fol-
lows. For an I-instance (I, ϕ), we denote by var(I) the set of
variables occurring in tuples of I. Given an I-instance (I, ϕ)
over D, the set of instances over D represented by (I, ϕ) is

rep(I, ϕ) = {v(I) | v is a valuation of var(I)
into dom satisfying ϕ}

It is clear that, by definition, every I ∈ rep(I,ϕ) is a valid
instance. Note also that (because of the completeness of the
keys) the number of rows in I(R) is the same as the number
of rows in I(R) for each I ∈ rep(I, ϕ) and R ∈ D.

Symbolic transitions. As noted earlier, given a p-trace,
there are infinitely many corresponding runs, which renders
the analysis nontrivial. However, we will see that we can rep-
resent such runs by “symbolic runs”, essentially by consider-
ing I-instances and abstract actions on such I-instances. In-
tuitively, when applying an abstract action to an I-instance,
we obtain another I-instance by applying symbolically the
peer action to the original I-instance. Such a transition from
one I-instance to another generates additional constraints
on the original I-instance, akin to preconditions, and tran-
sitions are labeled by these constraints. We next describe
these transitions.
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Intuitively, a symbolic transition (S-transition) (I, ϕ) 
f,γ

(J, ψ) captures how an action f updates instances in rep(I, ϕ)
to instances in rep(J, ψ) assuming that the transition con-
straint γ (to be defined) is satisfied. We will define S-
transitions and prove that they provide a complete repre-
sentation for actual transitions (Lemma 3.4).

We first describe symbolic transitions informally, then pro-
vide more details. It will be useful to consider a normal
form for actions Update(x̄, ȳ) :- Condition(x̄). The normal
form requires that each variable occurs at most once in the
relational atoms of the rule. It is easy to see that all spec-
ifications can be rewritten in normal form by introducing
additional variables and equalities between variables result-
ing from repeated occurrences. In the following, we assume
the actions are all in normal form.

Consider an I-instance (I, ϕ). Let q be a peer. We de-
fine the local I-instance at peer q by (I, ϕ)@q = (I@q,ϕ@q)
where I@q is the projection view of I at peer q, and ϕ@q is
the closure of ϕ on the variables in I@q.

Consider an action Update(x̄, ȳ) :- Condition(x̄) at peer
q (assumed to be in normal form). Intuitively, the action is
applied to a local I-instance in two stages: first find a valu-
ation v of x̄ into the I-instance. The valuation transfers the
constraints from Condition(x̄) to v(x̄), and imposes ”new
value” constraints on ȳ. These become part of the transi-
tion constraints. Next, the updates in Update(v(x̄), v(ȳ))
are applied for the valuation v. When a tuple is inserted,
this may yield several transitions, depending on agreement
with already existing tuples on the key. In each case, the re-
sulting I-instance is obtained by chasing with the key. When
a tuple is deleted, the result depends once again on the pos-
sible equalities of the deleted tuple with existing tuples in
the instance. Each such equality is captured by a constraint
and generates a separate transition. If the final transition
constraint is γ, the resulting I-instance is (J, ψ) where J is
obtained by applying a sequence of updates to I correspond-
ing to Update(v(x̄), v(ȳ)), and ψ is the closure of ϕ∧γ on the
variables of J. The transition constraint γ involves variables
from both I and J, so cannot be absorbed into the static
I-instance constraints.

We next present the construction of S-transitions in more
detail. For convenience, we first define transition constraints
that are not necessarily conjunctive. Subsequently, each
such transition is replaced with a set of transitions, one for
each disjunct in the disjunctive normal form (DNF) of the
constraint, yielding conjunctive transition constraints.

We will need the notion of active domain of (I, ϕ), denoted
adom(I, ϕ). This consists of the set of constants c in dom
that

• occur explicitly in some tuple of I; or
• occur in a conjunct x = c of ϕ; or
• occur in W or {⊥}.

Consider, as above, an I-instance (I, ϕ), a peer q and an
action Update(x̄, ȳ) :- Condition(x̄) at peer q. A valuation
for the variables of the action into I@q is a mapping v from
x̄ ∪ ȳ (extended with the identity on constants) such that:

• v maps x̄ to variables and constants in I@q, and ȳ to
the first |ȳ| distinct variables in var− var(I) with the
smallest index1.

• for each R@q(z̄) of Condition(x̄), R@q(v(z̄)) is a tuple
in I@q.

1This is done to use variables economically, which is needed
for technical reasons explained further.

The transition constraint γv induced by v is the conjunc-
tion of the following:

• v(x) = ( �=) v(y) where x = ( �=) y is an (in)equality in
Condition(x̄)

• for each ¬R@q(z̄) in Condition(x̄) and tuple R@q(w̄)
in I@q, the constraint v(z̄) �= w̄.

• v(y) �= t where y ∈ ȳ and t is a variable in I or a
constant in the active domain of (I, ϕ).

Note that the above is not a conjunctive constraint because
of the tuple inequality in the second item. Next, fix a val-
uation v as above and consider Update(v(x̄), v(ȳ)). We de-
scribe the effect of tuple insertions and deletions, with the
associated transition constraints. Consider first a tuple in-
sertion R@q(v(z̄)). Let R(v(z̄) ⊥∗) be the extension of
R@q(v(z̄)) to att(R) obtained by padding the missing at-
tributes with ⊥. For each tuple R(w̄), denote by w̄K the
subsequence of w̄ corresponding to the key K of R. Simi-
larly, let z̄K consist of the subsequence of z̄ correponding to
K. If z̄K contains some variable in ȳ then the result of the
insertion consists of adding R(v(z̄) ⊥∗) to R. Otherwise,
the result depends on whether R(v(z̄) ⊥∗) agrees with an
existing tuple on the key. More precisely, the transitions
generated by the insertion are as follows:

• For each tuple R(w̄) in I, the result of the insertion un-
der the transition constraint v(z̄K) = w̄K is obtained
by chasing R(w̄) as follows. Let A be an non-key at-
tribute of R and zA, wA be the values of R(v(z̄) ⊥∗)
and R(w̄) for attribute A. If zA, wA ∈ dom−{⊥}, the
chase fails and there is no transition. If wA =⊥ then
it is replaced by zA. If wA and zA are both variables,
then wA = zA is added to the transition constraint.

• Finally, one transition occurs for each disjunct in the
DNF of the constraint consisting of the conjunction
of w̄K �= v(z̄K) for all tuples R(w̄) in I, yielding the
instance obtained by inserting the tuple R(v(z̄) ⊥∗)
into I.

Consider now a tuple deletion ¬R@q(v(z̄)). The result de-
pends again on agreement with existing tuples on the key
attributes. Recall that deleted tuples contain no ”new” vari-
ables among ȳ. There is one possible transition for each
tuple R(w̄) in I, consisting of deleting the tuple under the
transition constraint w̄K = z̄K . In addition there are tran-
sitions leaving I unchanged, for the constraint consisting of
the conjunction of all inequalities z̄K �= w̄K for all tuples
R(w̄) in I. As earlier, each disjunct in the DNF of the con-
straint generates a separate transition.

Finally, the transitions caused by the sequence of updates
in Update(x̄, ȳ) are the compositions of the transitions for
each update. Each transition constraint is the conjunction
of the constraints for the composed transitions. Note that,
by construction, these are conjunctive constraints. The local
constraint ψ for each resulting I-instance (J, ψ) consists of
the closure of ϕ ∧ γ on the variables of J, where γ is the
corresponding transition constraint. Note that this again
yields a conjunctive constraint.

If (J, ψ) is obtained from (I, ϕ) by an S-transition with
transition constraint γ, action α at peer q and valuation v,
we say that e = (q, α, v) is the event of the transition. If
furthermore ψ ∧ γ is satisfiable, we write (I, ϕ) 
e,γ (J, ψ).
It is easy to see that, by construction, ψ |= ϕkey , so (J, ψ) is
an I-instance. This defines the S-transition relation among
I-instances over D.
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Similarly to I-instances, the purpose of S-transitions is to
represent a set of actual transitions among global instances.
Let (I, ϕ) 
e,γ (J, ψ) be an S-transition, where e is the event
(q, α, v). The set of transitions represented by the above
S-transition is

rep((I,ϕ) 
e,γ (J, ψ)) = {(ν(I) 
ν(e) ν(J)) | ν is a
valuation of the variables in I ∪ J into dom
satisfying ϕ ∧ γ ∧ ψ and ν(e) = (q, α, v ◦ ν)}

The following key lemma says that, starting from some
I-instance, the S-transitions capture all possible actual tran-
sitions from instances represented by the I-instance. Thus,
S-transitions are a complete representation of actual transi-
tions.

Lemma 3.4. For each I-instance (I, ϕ),

{(I 
e J) | I ∈ rep(I,ϕ), e is an event} =
{(I 
e J) | there exists (I, ϕ) 
f,γ (J, ψ) such that

(I 
e J) ∈ rep((I,ϕ) 
f,γ (J, ψ))}
Lemma 3.4 follows from the construction of S-transitions.

The fact that I-instances satisfy ϕkey is critical, because it
guarantees that no distinct tuples in (I, ϕ) may represent the
same tuple in some I ∈ rep(I, ϕ). The construction would
not be correct otherwise.

Symbolic runs. We now turn to the notion of symbolic run,
and to the connection between symbolic runs and actual
runs. A symbolic run (S-run) of W is a sequence

{((Ii, ϕi), (ei, γi))}0≤i≤n

such that

• e0 = init and γ0 = true
• for each 0 < i ≤ n, (Ii−1, ϕi−1) 
ei,γi (Ii, ϕi)

Thus, an S-run is a finite sequence of consecutive symbolic
transitions. Let s be an S-run {((Ii, ϕi), (ei, γi))}0≤i≤n. The
set of actual runs represented by s, denoted rep(s), con-
sists of all runs {(Ii, gi)}0≤i≤n for which (Ii−1 
gi Ii) ∈
rep((Ii−1, ϕi−1) 
ei,γi (Ii, ϕi)) for all 0 < i ≤ n.

As a consequence of Lemma 3.4, S-runs provide a complete
representation of actual runs.

Symbolic runs constrained by traces. Next, consider a
p-trace τ . We wish to use S-runs to represent precisely the
global runs in ν−1(τ ). To this end, we need to constrain
symbolic runs by p’s observations as given by τ . Since all
relations in D are key-visible at p, we need to only con-
sider I-instances that are fully instantiated on the attributes
visible at p (which include all key attributes). Therefore,
we need to compute specializations of transitions limited to
such instances.

Let Ip be an instance over Dp (at peer p). We say that
an I-instance (I, ϕ) is Ip-instantiated if I@p = Ip for every
I ∈ rep(I, ϕ). Now consider an Ip-instantiated I-instance
(I, ϕ) and let Jp be another instance of Dp (which may
equal Ip, as allowed in a p-trace). We wish to find represen-
tations of transitions from (I, ϕ) constrained to produce Jp-
instantiated instances. Such constrained transitions define a
new relation among I-instances, that we call Jp-constrained
transition relation, denoted 
Jp . The relation 
Jp is ob-
tained by specializing the unrestricted transition relation

 as follows. Consider an I-transition (I, ϕ) 
e,γ (J, ψ).
Let V be the set of valuations ν mapping variables in J@p

into values in Jp such that ν satisfies ψ and ν(J@p) = Jp.
Let θν be the constraint consisting of the conjunction of
all equalities x = ν(x). The set of Jp-constrained transi-
tions generated by (I, ϕ) 
e,γ (J, ψ) consists of all expres-

sions (I, ϕ) 
Jp

e,(γ∧θν ) (J, ψ ∧ θν) for ν ∈ V. The seman-

tics of Jp-constrained transitions is the same as for uncon-

strained transitions. More precisely, rep((I, ϕ) 
Jp
e,π (J, ξ)) =

{ν(I) 
ν(e) ν(J) | ν is a valuation from the variables of I ∪ J

into dom satisfying ϕ ∧ π ∧ ξ}.
The next result follows easily by construction.

Lemma 3.5. There is a ptime nondeterministic algorithm
that, given (I, ϕ) and Jp, outputs each Jp-constrained tran-
sition from (I, ϕ).

Next, consider a p-trace τ = {(Pi, fi)}0≤i≤k. Let us first
ignore the order of the local instances and the operations fi.
So, let Pτ = {Pi | 0 ≤ i ≤ k}. Recall that each instance in
ν−1(τ ) is Pj-instantiated for some Pj ∈ Pτ . We are therefore
interested in runs in which each transition is Pj-constrained
for some Pj ∈ Pτ . We call such runs Pτ -constrained.

Definition 3.6. A Pτ -constrained run is a finite sequence
{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n such that

(i) e0 = init, τ0 = true, J0@p = Pj0 , and var(J0) =
{x1, . . . , xm} for some m ≥ 0.

(ii) for each 0 < i ≤ n, (Ii−1, ϕi−1) 
Pji
ei,γi (Ii, ϕi)

Note that, in the initial instance of a Pτ -constrained run,
there are no variables occurring in the attributes visible at
p. Moreover, the variables occurring in J0 are picked among
those of smallest index. This is a harmless assumption use-
ful for technical reasons. In particular, we can show the
following.

Lemma 3.7. For each finite Pτ , the set of I-instances reach-
able by Pτ -constrained runs is finite.

Proof. First note that there exists M > 0 so that for
every Pτ -constrained run {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n, the
set of variables occurring in Ij is included in {x1, . . . , xM}
for each j. This is due to the following:

• there is a fixed bound on the number of tuples (and
therefore variables) in a P -instantiated I-instance for
P ∈ Pτ ,

• the variables in J0 are {x1, . . . , xm} for some m ≥ 0,
and

• by construction of S-transitions, new variables intro-
duced by transitions are picked among those of small-
est index that are currently unused.

Finally, there are finitely many conjunctive constraints using
the variables {x1, . . . , xM} and constants occurring in Pτ ,
W, or {⊥}.

We are close to our goal. The Pτ -constrained runs we
defined produce p-traces using only instances in the p-trace
τ = {(Pi, fi)}0≤i≤k, but not necessarily in the correct order
nor with proper fi. In order to define precisely ν−1(τ ) we
need to further constrain the runs. We do this using a non-
deterministic finite-state automaton Aτ defined as follows:

the set of states of Aτ is {p0} ∪ {qi | 0 ≤ i ≤ k}, with
initial state p0 and final state qk.
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the alphabet consists of the finite set of all ((I, ϕ), (e, γ, P ))
occurring in Pτ -constrained runs of W.

the transition mapping δ is defined as follows:

start δ(p0, ((I, ϕ), (e, γ, P ))) = q0 if ((I, ϕ), (e, γ, P ))
is the initial instance of a Pτ -constrained run and
P = P0,

visible for 0 ≤ i < k, δ(qi, ((I, ϕ), (e, γ, P ))) = qi+1 if
P = Pi+1, and (nonlocal) fi+1 = � and peer(e) �=
p, or (local) fi+1 = p and peer(e) = p.

silent for 0 ≤ i ≤ k, δ(qi, ((I, ϕ), (e, γ, P ))) = qi if
P = Pi and peer(e) �= p,

LetAτ (Pτ ) denote the set of Pτ -constrained runs accepted
by Aτ . We have the following.

Theorem 3.8. Let τ be a p-trace for a peer p of W. Then
ν−1(τ ) = ∪{rep(s) | s ∈ Aτ (Pτ )}.

Proof. We use the following property, that considers
partial instantiations of S-transitions. Let (I, ϕ) 
e,γ (J, ψ)
be an S-transition and ν a partial valuation of the variables
of I∪J into dom. For a constraint β, let ν(β) denote the con-
straint obtained by replacing in β each variable x ∈ dom(ν)
by ν(x). For an event e = (p,α, v), we denote by ν(e) the
event (p,α, v◦ν). The following is shown similarly to Lemma
3.4.

(†) Let (I, ϕ) 
e,γ (J, ψ) be an S-transition and ν a partial
valuation of the variables of I ∪ J into dom such that
ν(ϕ ∧ γ ∧ ψ) is satisfiable. Then (ν(I), ν(ϕ)) 
ν(e),ν(γ)

(ν(J), ν(ψ)) is also an S-transition.

Lemma 3.4 together with (†) shows the following com-
pleteness result.

(‡) For each I-instance (I, ϕ) and instance Jp at peer p,

{(I 
e J) | I ∈ rep(I, ϕ), e is an event, , J@p = Jp} =

{(I 
e J) | there exists (I, ϕ) 
Jp
e,γ (J, ψ) such that

(I 
e J) ∈ rep((I, ϕ) 
Jp
e,γ (J, ψ))}

Theorem 3.8 now follows from (‡) and the construction of
Aτ .

Thus, Aτ together with our transition system on Pτ -con-
strained instances provide a finite representation of the infi-
nite set of runs in ν−1(τ ).

Remark 3.9. It is easy to see that the size of Aτ (Pτ )
is exponential in τ . However, the evaluation algorithm of
the next section never materializes the full Aτ (Pτ ). Instead,
the S-runs in Aτ (Pτ ) are explored lazily, one transition at a
time. As we shall see, this yields an algorithm of complexity
pspace in τ .

4. PEER REASONING
We next formalize the properties of global runs that we

focus on, and show how they can be evaluated using the
representation system developed in the previous section.

Temporal properties of runs. Recall that we are inter-
ested in verifying and monitoring properties of global runs
based on local observations at a given peer. We specify the
properties of interest in an extension of Past Linear-Time
Temporal Logic (PLTL). The language, denoted PLTL-FO,

is obtained from propositional PLTL with past operators
(e.g., see [13]) by interpreting each proposition as an FO
formula.

We first recall the language PLTL that is obtained by aug-
menting propositional logic with: past temporal operators
Z (initially), X−1 (previously), S (since) and G−1 (always
previously) as follows. If φ and φ′ are formulas, then so are
Zφ, X−1φ, φ S φ′ and G−1φ. A PLTL formula is evalu-
ated on finite sequences σ0 . . . σn of truth assignments to its
propositions. The semantics is defined as follows (we omit
the standard definition of ∧ and ¬).

• σ0 . . . σn |= r for a proposition r if σn(r) = 1.
• σ0 . . . σn |= Zφ if n = 0 and σ0 |= φ.
• σ0 . . . σn |= X−1φ iff n > 0 and σ0 . . . σn−1 |= φ.
• σ0 . . . σn |= φ S φ′ iff σ0 . . . σj |= φ′ for some j ≤ n

and σ0 . . . σk |= φ for every h, j < h ≤ n.
• σ0 . . . σn |= G−1φ iff σ0 . . . σj |= φ for each j ∈ [0, n].

Consider a PLTL formula φ, the set P of propositions oc-
curring in φ and the set of sequences of truth assignments
over P satisfying φ. It is straightforward to construct a
finite-state alternating automaton with alphabet 2P that ac-
cepts precisely this set of sequences, with a number of states
linear in φ. This alternating automaton can then be con-
verted to a nondeterministic automaton Aφ with a number
of states exponential in φ. Moreover, there is a nondeter-
ministic pspace algorithm (w.r.t. φ) that, given a state q
of Aφ and a truth assignment σ, outputs the successors of q
under input σ (see [23, 11]).

We next define the extension PLTL-FO. A PLTL-FO for-
mula over W is an expression φf = (φ, f) where φ is a propo-
sitional PLTL formula and f maps each proposition r of φ
to an FO formula f(r). Each FO formula f(r) is called an
FO component of φf . FO components are formulas over
the global schema D, extended as follows: for each action
α = Update(x̄, ȳ):-Condition(x̄) at peer q, we add to D an
action-relation αq of arity |x̄|+ |ȳ| (with the semantics that
αq(ā, b̄) holds at some step if the corresponding action is
taken with valuation ν(x̄) = ā and ν(ȳ) = b̄ ). Note that
FO components may contain free variables. In particular,
the same free variable may appear in different FO compo-
nents, allowing to refer to the same value across different
instances in the run.

In addition, FO components may use constants in adom(W).
(It is always possible, if desired, to introduce any fixed set
of constants considered significant to the active domain).

In a run {(Ii, ei)}0≤i≤n, an FO component f(r) with no
free variables holds in (Ii, ei), denoted (Ii, ei) |= f(r), if f(r)
is true in the structure Ii extended to the action relations
as above.

The semantics of φf is defined as follows. Consider a
run ρ = {(Ii, ei)}0≤i≤n of W. For each i, let σi be the
truth assignment to propositions in φ defined by σi(r) = 1
iff (Ii, ei) |= f(r). The run ρ satisfies φf iff σ0 . . . σn |=
φ. Clearly, checking that ρ |= φf can be done in pspace
by nondeterministically running the automaton Aφ on the
sequence of truth assignments σ0 . . . σn computed on ρ.

In the presence of incomplete information on runs, we are
interested in giving possible and certain world semantics to
PLTL-FO formulas. Let φf (x̄) be a PLTL-FO formula and
R a set of runs of W. We say that poss(φf(x̄)) holds in R if
there exists a run ρ ∈ R and there exists a valuation ν for
x̄ in the active domain of ρ, such that ρ satisfies φf (ν(x̄)).
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Likewise, cert(φf (x̄)) holds in R if φf (ν(x̄) holds for each
run ρ ∈ R and each valuation ν of x̄ into the active domain
of ρ. Thus, the free variables are quantified existentially
in possible world semantics and universally in certain world
semantics. Note that certain world semantics is analogous
to that of the modal operator Kiφ (agent i knows φ) in the
context of reasoning about the knowledge of multiple agents
[14].

Example 4.1 Consider the rules in Example 2.4. Suppose
that a researcher, say Bob, would like to know if Alice’s trip
Id455 has been rejected. Bob does not have direct access
to this information. However, he does see the trips that are
inserted and deleted from the Intranet and Internet. Based
on these local observations, he can infer, once Alice’s trip is
posted on the Internet, that the trip has been approved; and,
if the trip is first posted on the Intranet and then deleted,
Bob can infer that it has been rejected. On the other hand,
if the trip is posted on the Intranet but not (yet) deleted, the
trip may or may not have been rejected. Clearly, the accep-
tance/rejection of Alice’s trip can be expressed in PLTL-FO
(with certain or possible semantics). We will see next how
such properties can be evaluated using the local observa-
tions. �

Evaluating PLTL-FO properties. Given a p-trace τ , we
are interested in evaluating poss(φf (x̄)) and cert(φf (x̄)) on
the set of global runs of W compatible with τ , that is,
ν−1(τ ). We now show how this can be done using the frame-
work developed earlier. To simplify the presentation, we
assume without loss of generality that FO components of
PLTL-FO formulas are over the schema D, without the ex-
tension to action relations defined above. (Intuitively, one
can simulate the reasoning in the extended global schema
by considering a schema with additional “normal” relations
carrying the extra information.)

We next show how to use this to evaluate and monitor
temporal properties of runs in ν−1(τ ).

Let us fix a PLTL-FO property φf we wish to evaluate
under possible and certain semantics on ν−1(τ ). Suppose
for the moment that φf has no free variables. In order
to evaluate FO components of φf we will use I-instances
in which the equality type of all variables and constants
is completely specified. More precisely, let (I, ϕ) be an I-
instance. We call (I, ϕ) complete if for each x ∈ var(I) and
t ∈ var(I) ∪ adom(I, ϕ), ϕ |= x = t or ϕ |= x �= t. A
Pτ -constrained run is complete if each of its I-instances is
complete.

Observe the following.

Lemma 4.2. (i) Let (I, ϕ) be a complete I-instance and
f(r) an FO component of φf . Then f(r) has the same truth
value in every I ∈ rep(I, ϕ). (ii) If

{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n

is a Pτ -constrained run and (I0, ϕ0) is a complete I-instance,
then (Ii, ϕi) is a complete I-instance for every i > 0.

Proof. (i) Consider Ji ∈ rep(I, ϕ), such that Ji = νi(I),
i = 1, 2. Define the mapping h from J1 to J2 by h(ν1(t)) =
ν2(t) for t ∈ var(I) ∪ adom(I, ϕ). It is easy to see that,
because of completeness of (I, ϕ), h is well defined and an
isomorphism from J1 to J2 fixing adom(W). Since f(r) uses
only constants in adom(W), it has the same truth value on J1

and J2. (ii) The preservation of completeness by transitions
is due to the fact that all newly introduced variables in a
transition are constrained to differ from all variables and
constants in the active domain of the current I-instance.

Because of (i), complete runs are convenient in order to
evaluate φf , because the truth value of each FO component
is well defined on each I-instance of the run. More precisely,
given a complete Pτ -constrained run

s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n,

the truth value of an FO component f(r) at (Ii, ϕi) can be
defined as its truth value on any instance Ii ∈ rep(Ii, ϕi),
and can clearly be computed in pspace.

We are now ready to show the following main result.

Theorem 4.3. Let W be a workflow spec, p a peer of
W, τ a p-trace of W and φf (x̄) a PLTL-FO property over
W. Then poss(φf (x̄)) and cert(φf (x̄)) can be evaluated in
pspace with respect to φf and τ .

Proof. Since cert(φf (x̄)) is equivalent to ¬poss(¬φf (x̄)),
it is enough to consider the possible world semantics. We
outline a nondeterministic algorithm for evaluating
poss(φf (x̄)) given a p-trace τ , of complexity pspace w.r.t.
φf and τ . Consider first the case when φf has no free
variables x̄. We need to check whether there exists a run
ρ ∈ ν−1(τ ) such that ρ |= φf . The algorithm consists of non-
deterministically generating a complete Pτ -constrained run
together with computations of Aτ (Pτ ) and Aφ on the run.
The algorithm outputs YES if both automata accept. To
make sure the Pτ -constrained run is complete, it is enough,
as noted in Lemma 4.2, that its initial I-instance be com-
plete. Note that the size of each generated I-instance in the
run is polynomial in the number of constants occurring in
previous I-instances in the run or in W. By Lemma 3.5, the
Pτ -constrained transitions from an I-instance (I, ϕ) can be
computed nondeterministically in ptime w.r.t. (I, ϕ) and
Pτ . Also recall that each transition of Aφ can be computed
nondeterministically in pspace w.r.t. φ, and each transition
of Aτ (Pτ ) can clearly be computed in ptime with respect
to τ . Thus, the algorithm has complexity pspace w.r.t. φf

and τ , for fixed W. If W is not fixed, then the algorithm is
expspace (with the maximum arity of relations in D in the
exponent). The correctness of the algorithm follows from
Theorem 3.8 and Lemma 4.2.

Now consider the case when φf has free variables x̄. We
need to check whether there exists a run ρ ∈ ν−1(τ ) and
a valuation v of x̄ into the active domain of ρ such that
ρ |= φf (v(x̄)). To verify this, we augment the previous al-
gorithm generating a complete Pτ -constrained run accepted
by Aφ and Aτ (Pτ ) by guessing a consistent connection be-
tween the variables in x̄ and the variables or constants in
the I-instances in the run, and evaluating the FO compo-
nents of φf (x̄) according to that guess. More precisely, this
is done as follows. Let s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n be
a complete Pτ -constrained run generated as in the earlier al-
gorithm. As the run is generated, an additional conjunctive
constraint ψi(x̄) over x̄ is computed nondeterministically for
every i. The formula ψi(x̄) is of the form βi(x̄)∧γi(x̄). Intu-
itively, βi(x̄) guesses the connection of x̄ with variables and
constants in the current I-instance, and γi(x̄) consists of the
constraints on x̄ inherited from previous guesses. Specifi-
cally, ψi(x̄) = βi(x̄)∧ γi(x̄) is defined inductively as follows.

99



For i = 0, β0(x̄) consists, for each z ∈ x̄, of an equality
z = t for some t ∈ var(I0) ∪ adom(I0, ϕ0), or the conjunc-
tion of all inequalities z �= t for all such t. The constraint
γ0(x̄) = true. For i > 0, γi(x̄) = (ϕi−1∧ψi−1(x̄))

∗
x̄ and βi(x̄)

consists, as for the base case, of a nondeterministically cho-
sen conjunction consisting, for each z ∈ x̄, of an equality
z = t for some t ∈ var(Ii)∪ adom(Ii, ϕi), or the conjunction
of all inequalities z �= t for all such t, such that ϕi ∧ψi(x̄) is
satisfiable.

We can show the following:

(†) Let s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n be a Pτ -
constrained run. There exists a sequence {ψi(x̄)}0≤i≤n

computed as above for s iff there exists a run
ρ = {(Ii, gi)}0≤i≤n in rep(s), and a valuation v
of x̄ into adom(ρ) such that the following holds
for every i (0 ≤ i ≤ n), z ∈ x̄, t ∈ var(Ii) ∪
adom(Ii, ϕi), and the unique valuation vi such
that Ii = vi(Ii): βi(x̄) |= z = t iff v(z) = vi(t).

Intuitively, (†) says that each equality type induced by βi(x̄)
w.r.t. the constants and variables in Ii is realizable in a run
ρ ∈ rep(s) for some fixed valuation of x̄ in the adom(ρ).
Furthemore, the sequence of formulas {ψi(x̄)}0≤i≤n can be
computed successfully for s iff such a run ρ and valuation
v exists. We define the following extension of our notion of
Pτ -constrained run. A parameterized Pτ -constrained run is
a sequence s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n where
{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n is a Pτ -constrained run and the
sequence {ψi(x̄)}0≤i≤n is computed as above. Also, we refer
to each (Ii, ϕi, ψi(x̄)) as a parameterized I-instance.

We will use the following notion of isomorphic parame-
terized I-instances. Given (I, ϕ, ψ(x̄)), let ∼ be the equiva-
lence relation on variables and constants in var(I) ∪ {x̄} ∪
adom(I, ϕ) defined by z ∼ t iff ϕ ∧ ψ(x̄) |= z = t, and let [z]
be the equivalence class of z w.r.t. ∼. Let I/∼ be obtained
by replacing in I each variable z by the unique constant in
[z], if it exists, or otherwise by the variable of smallest index
in [z]. We say that (I1, ϕ1, ψ1(x̄)) and (I2, ϕ2, ψ2(x̄)) are
isomorphic if I1/∼ and I2/∼ are isomorphic when variables
are frozen as distinct constants. The isomorphism type of
h = (I, ϕ, ψ(x̄)) is its equivalence class under isomorphism,

denoted ĥ.
Let s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n be a Pτ -

constrained parameterized run. Consider the evaluation of
φf (x̄). Clearly, for each i ≥ 0, ϕi ∧ ψi(x̄) completely de-
termines the isomorphism type of (Ii, ϕi, ψi(x̄)). Thus, the
truth value of each FO component f(r)(x̄) of φf (x̄) is well
defined and can be evaluated at each (Ii, ϕi, ψi(x̄)). As be-
fore, the algorithm outputs YES if a Pτ -constrained param-
eterized run s(x̄) can be generated that is accepted by both
Aφ and A(Pτ ). The complexity remains pspace w.r.t. φf (x̄)
and τ .

Remark 4.4. As stated in Theorem 4.3, the algorithm
described above has complexity pspace w.r.t. φf (x̄) and τ .
It is of interest to note the impact of the length of τ on
complexity. It is easy to see that, if adom(τ ) and ϕf (x̄) are
fixed, the algorithm is in NL (nondeterministic logarithmic
space) in the length of τ .

Remark 4.5. Theorem 3.2 provided examples of useful
properties that are undecidable without the key-visible re-
striction. As a consequence of Theorem 4.3, all questions
of Theorem 3.2 become decidable for key-visible specs.

Incremental monitoring. We next adapt the algorithm de-
scribed in the proof of Theorem 4.3 in order to incremen-
tally monitor PLTL-FO properties. The goal is to avoid
re-evaluating the formula after each move. We will present
an incremental algorithm that avoids computations that de-
pend on the entire trace. However, as we will see, this is
at the cost of maintaining a possibly very large auxiliary
structure.

Consider a PLTL-FO property φf (x̄) to be monitored.
An incremental algorithm for evaluating poss(φf (x̄)) on a p-
trace τ uses two functions, aux and incaux. As we shall see,
aux(τ ) provides enough information to answer poss(φf (x̄)),
and provides additional information needed to incrementally
maintain its own value using the second function incaux.
More precisely, for a new observation (J, f) at peer p, aux(τ ·
(J, f)) = incaux(aux(τ ), (J, f)).

The functions aux and incaux are defined as follows. Con-
sider first aux. Intuitively, aux(τ ) consists of all I-instances
(I, ϕ) with associated formula ψ(x̄) reachable by complete
runs in ν−1(τ ), together with the set of states of Aφ reach-
able on such runs. More precisely, aux(τ ) consists of the set
of tuples (I, ϕ, ψ(x̄), Q) where:

• there exists a complete Pτ -constrained parameterized
run s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n accepted
by Aτ , defined as in the proof of Theorem 4.3, for
which (I, ϕ) = (In, ϕn), and ψ(x̄) = ψn(x̄),

• Q is the set of states of Aφ reachable from the initial
state on some run s as above.

Clearly, poss(φf (x̄)) is true on τ iff there exists
(I, ϕ, ψ(x̄), Q) in aux(τ ) for which Q contains an accepting
state of Aφ.

Next, consider the function incaux. Given aux(τ ) as above,
and a new observation (J, f) at peer p, incaux(aux(τ ), (J, f))
consists of all (I′, ϕ′, ψ′(x̄), Q′) such that, for some
(I, ϕ, ψ(x̄), Q) in aux(τ ):

• there exists a J-constrained parameterized run suffix
s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, J))}0≤i≤n, where:

(i) (I′, ϕ′) = (In, ϕn) and ψ′(x̄) = ψn(x̄),
(ii) (I, ϕ) 
J

e0,γ0 (I0, ϕ0), peer(e0) = p if f = p and
peer(e0) �= p if f = �, and peer(ei) �= p for i > 0,

(iii) ψ0(x̄) is computed from ψ(x̄) and the initial tran-
sition (I, ϕ) 
J

e0,γ0 (I0, ϕ0)

• Q′ is the set of states of Aφ reachable from some q ∈ Q
on runs s as above.

Clearly, incaux(aux(τ ), (J, f)) = aux(τ · (J, f)), as desired.
Since cert(φf (x̄)) = ¬poss(¬φf (x̄)), the incremental eval-

uation algorithm for poss(¬φf (x̄)) also provides an incre-
mental evaluation algorithm for cert(φf (x̄)).

Clearly, the size of aux(τ ) is exponential in adom(τ ) and
φ (for W fixed). The function incaux can be computed in
exptime w.r.t. adom(τ ) and φ. In terms of complexity, the
main advantage of incremental evaluation over re-evaluation
on the entire run is that the complexity w.r.t. τ depends only
on the size adom(τ ) and not on the length of τ . However,
this has to be balanced against the need to create interme-
diate results of exponential size w.r.t. adom(τ ) and φ.

Pre-emptive monitoring. We have so far considered the
incremental monitoring of statically specified properties. Sup-
pose that the properties to be monitored are not known
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ahead of time but instead may be specified dynamically as
the run unfolds. Is some form of incremental evaluation still
possible? We provide here a partially affirmative answer.
Indeed, we show that large classes of properties can be pre-
emptively monitored, as long as partial information is avail-
able on the type of temporal property they specify. More
precisely, the temporal type of a PLTL-FO property φf (x̄) is
the propositional formula φ. For example, commonly aris-
ing types include G−1r, or F−1r, or G−1(r1 → F−1r2). In
addition to the temporal type, we also need to know the
maximum number of free variables |x̄|.

Definition 4.6. A PLTL-FO property type is a pair
(Φ, m), where Φ is a finite set of PLTL formulas and m ≥ 0.
A PLTL-FO formula φf (x̄) for W is of type (Φ,m) if φ ∈ Φ
and |x̄| ≤ m.

For example, ({G−1r, F−1r, G−1(r1 → F−1r2)}, 10) is
a PLTL-FO type.

We next outline an incremental algorithm that allows to
evaluate all formulas of a given type (Φ,m). Note that there
are infinitely many such formulas. Let PΦ be the set of
propositions occuring in Φ. The main idea of the algorithm
is to modify the incremental algorithm for monitoring φf (x̄)
described in the previous section as follows. Recall that
the algorithm generates constrained parameterized runs and
produces the tuples (I, ϕ, ψ(x̄), Q) of reachable I-instances,
constraint ψ(x̄) on the free variables x̄, and the set Q of
corresponding states reachable in the automaton Aφ. The
input of Aφ at each transition consists of the truth value to
the propositions of φ induced by the FO components f(r).
In our case, the FO components are unknown. Instead of
evaluating each f(r), the new algorithm simply guesses the
truth assignments σ for the propositions in φ, for the isomor-
phism types of all reachable I-instances and free variables x̄.

Let τ be a p-trace. Let S(τ ) be the set of all isomorphism
types2 of (I, ϕ, ψ(x̄)) such that there is a Pτ -constrained pa-
rameterized run s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n

accepted by Aτ , with I = Ij , ϕ = ϕj , ψ(x̄) = ψj(x̄) for some
j ∈ [0, n]. A truth assignment mapping for S(τ ) is a map-
ping Σ from S(τ ) to truth assignments of PΦ.

The auxiliary information aux(τ ) computed by the incre-
mental algorithm now consists of the set of all pairs (Σ,H)
where Σ is a truth assignment mapping for S(τ ) and H is
the set of tuples (I, ϕ, ψ(x̄), {Qπ | π ∈ Φ}) where:

• there exists a complete Pτ -constrained parameterized
run s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n accepted
by Aτ , for which (I, ϕ) = (In, ϕn), and ψ(x̄) = ψn(x̄),

• for each π ∈ Φ, Qπ is the set of states of Aπ reachable
from the initial state on some run s(x̄) as above, where
the truth assignment for PΦ at the i-th transition is
Σ(ĥ), for h = (Ii, ϕi, ψi(x̄)).

The function aux(τ ) can be maintained incrementally by
a function incaux similar to the previous section. The set Σ
of truth assignment mappings is maintained by augmenting
it with truth assignments for isomorphism types of newly
reached instances in the run suffixes generated when a new
observation (J, f) is added (we ommit the straightforward
details).

Now suppose that we wish evaluate poss(φf (x̄)) for a PLTL-
FO formula φf (x̄) of type (Φ, m), for the p-trace τ . Let

2Recall the definition in the proof of Theorem 4.3.

aux(τ ) be as defined above. Let Σ be such that for each

proposition r of φ and every ĥ ∈ S(τ ), f(r) holds in ĥ iff

Σ(ĥ)(r) = 1. Let H be such that (Σ,H) ∈ aux(τ ). Then
poss(φf (x̄)) holds iff there exists (I, ϕ, ψ(x̄), {Qπ | π ∈ Φ}) ∈
H such that Qφ contains an accepting state of Aφ.

To evaluate the size of aux(τ ), note that the number of
isomorphism types in S(τ ) is exponential in the maximum
size of an I-instance in τ (and independent of its active do-
main). Thus, the number of truth assignment mappings Σ is
double exponential in the same (single exponential for fixed
type (Φ,m)). For each Σ, the size of H is exponential in
(Φ, m) and adom(τ ). Finally, the evaluation of a PLTL-FO
property φf (x̄) of type (Φ,m) on aux(τ ) is in pspace.

Clearly, the use of preemptive incremental monitoring be-
comes beneficial compared to direct evaluation over the en-
tire p-trace τ only under certain conditions, including the
following: (i) adom(τ ) is small relative to the length of τ ,
(ii) the number of isomorphism types of parameterized I-
instances in runs of Aτ (Pτ ) is small relative to adom(τ ), and
(iii) the number of formulas of type (Φ, m) to be evaluated
is large.

Introspective closure. We showed how a peer can reason
about temporal properties of global runs based on its local
observations. In many cases, it would be desirable for a peer
to be able to use the information gained by such reasoning
to make decisions on the actions it takes in the workflow.
A natural question is whether the specification language we
defined would need to be extended or whether it is already
closed under such introspective reasoning. We next show
that it is closed under introspective reasoning, for a natural
definition of simulation.

We can straightforwardly define an extension of workflow
specs allowing the use in conditions of atoms of the form
poss(φf (x̄)) and cert(φf (x̄)), that we refer to as introspec-
tive atoms. The semantics of these atoms (that refer to the
global run) is as previously defined. Specifically, poss(φf (x̄))
is evaluated on the p-trace of the run leading to the current
application of the action. We refer to specs that allow intro-
spective atoms in the actions of peers p for which the spec
is key-visible, as introspective specs.

In order to compare the expressiveness of introspective
and regular specs, we define a natural notion of simulation.
Intuitively, a spec simulating W is allowed to use additional
relations and actions, but its restriction to the relations and
actions of W must yield exactly the runs of W. We make
this more precise. First, consider a spec W, let D0 be a
subset of its schema and A0 a subset of its actions. For
each run ρ of W, the projection of ρ = {(Ii, ei)}0≤i≤n on
D0 and A0, denoted πD0,A0(ρ), is the sequence obtained by
removing from ρ all terms (Ii, ei) for which action(ei) �∈ A0

and restricting each instance in the remaining sequence to
D0.

Let W1 and W2 be specs with the same set of peers, both
key-visible at p. We denote by Di the schema of Wi. We
say that W2 simulates W1 if: (i) D1 ⊆ D2, (ii) each action
α of W1 has a corresponding action ᾱ in W2 at the same
peer (we denote Ā1 = {ᾱ | α ∈ A1}), and

(iii) {πD1,Ā1
(ρ2) | ρ2 is a run of W2} =

{{(Ii, ēi)}0≤i≤n | {(Ii, ei)}0≤i≤n is a run of W1,
peer(ei) = peer(ēi), action(ēi) = action(ei),
val(ēi) = val(ei), i ∈ [0, n]}

We can show the following.
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Theorem 4.7. For every introspective workflow spec W1

there exists a workflow spec W2 that simulates W1.

Proof. Let W1 be an introspective workflow. Let p be
a peer such as W1 is key-visible at p. The simulation by
W2 of introspective atoms used in actions of p has two main
aspects. First, W2 uses additional relations to store the p-
trace of the current run. This is done by copying, at each
transition caused by p or with side-effects at p, the corre-
sponding observation in the p-trace. Moreover, each copy is
timestamped by a new value created using a variable occur-
ring only in the updates of an action, and the timestamps
are ordered. Doing this at each transition requires additional
control, which is enforced using additonal propositions. Sec-
ond, peer p must evaluate introspective atoms poss(φf (x̄))
or cert(φf (x̄)) on the currently stored p-trace. This can
be done because sets of actions at p, with appropriate con-
trol provided by propositions, are computationally complete.
Once again, this is due to the ability to create new values
using variables occurring only in the updates of actions. The
proof is similar to the query completeness of nondeterminis-
tic Datalog¬ with value invention (using variables occurring
only in heads of rules), see [7].

5. CONCLUSIONS
We conclude with several directions for future work. It

is clearly of interest to relax some of the restrictions im-
posed to obtain our positive results. This includes the key-
visibility condition as well as the limitation to projection
views. Another issue requiring further investigation is the
assumption that each peer has available a specification of
the entire collaborative workflow. We argued that this is
reasonable because peers are likely to be provided with an
abstraction of the actual specification in order to understand
the global workflow, while hiding private or irrelevant infor-
mation. It remains open how such abstractions can be ob-
tained, what faithfulness conditions they should satisfy with
respect to the full specification, and whether such conditions
can be statically checked. Finally, our model assumes an un-
derlying synchronization mechanism ensuring instantaneous
propagation of local updates to all peers. It is of interest to
consider a model allowing for asynchronous communication
among peers, and efficient protocols to ensure consistency of
runs.
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