
Holistic Data Access Optimization for Analytics Reports∗

ABSTRACT
Object-Relational Mappers (ORMs) enable single language
access to both the main memory data and the database data
of an application. Unfortunately, they also lead to perfor-
mance inefficiencies, especially in analytics applications with
information-rich reports involving nested and aggregated re-
sults over large data volumes.

Past database research suggests that a report over a database
can be modeled by a single semi-structured query, i.e. a
query involving nesting and heterogeneity. Thus, the re-
port’s data accesses can be holistically optimized through a
single query. Collage resolves important practical challenges
towards enabling the report-as-query approach and its holis-
tic optimization. In particular, the Collage middleware sys-
tem models a report page as a SQL++ query. SQL++ is
a superset of SQL by two extensions: (a) It provides dis-
tributed access to an SQL database and the in-memory ob-
jects of the web application programming language. (b) The
query output has the full generality needed by report tem-
plating engines built around HTML and JSON. Indeed, the
SQL++ data model is a superset of JSON. The Collage
implementation features its own report templating engine
but one can easily utilize Collage’s query processor in other
HTML and JSON-based templating engines.

On the query optimization side, Collage expands into an-
alytics queries. The following query optimization problems
emerge and are solved. (1) Novel rewritings guarantee the
compilation of any SQL++ query into an efficient set-at-
a-time query plan, assuming the objects of the application
programming language offer object id’s that can be com-
pared and be efficiently grouped. This guarantee includes
analytics queries, i.e., queries that involve aggregation and
top-k processing, which were unaddressed by prior works on
semi-structured queries. (2) Normalized and denormal-
ized set-at-a-time query plans are formulated and evaluated.
The evaluation validates the manyfold speedup over a main-

∗Supported by NSF III-1018961 and NSF III-1219263, PI’d
by Prof Papakonstantinou who is a shareholder of App2You
Inc, which commercializes outcomes of this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

stream ORM. It also shows that normalized-sets plans out-
perform denormalized-sets plans by manyfold for the case of
analytic reports, which was not the case in semistructured
queries without aggregation.

The Collage query processor has been integrated and de-
ployed as part of a complete web application development
framework, including a templating enegine. Using an online
IDE, one can build a wide class of web applications with
both the ease of single language access, and performance of
holistic optimization.

1. INTRODUCTION
It has been well-known since the 80s that the impedance

mismatch between the SQL database and the application
layer is a major time waste in application development [8]. A
developer has to use two languages (SQL and an application
programming language, such as Java, Ruby or Python) for
data access, and tediously convert between relational tables
and objects.

Best practices among practitioners to mitigate impedance
mismatch are to utilize Object-Relational Mappers (ORMs).
With ORMs, developers specify mappings from relational
tables into classes of the application programming language.
Consequently, the ORM automatically translates navigation
across objects of these classes into SQL queries, often involv-
ing joins. With this object navigation paradigm, ORMs offer
single language access to all data, be them native objects of
the application or tuples of the database. The pervasive
adoption of ORMs1, such as Hibernate, Active Record of
Ruby-on-Rails (RoR) and CakePHP is a testimony to the
importance of the impedance mismatch problem, and the
desire for single language access to database tuples and ap-
plication objects.

While ORMs provide single language unified access for
simple data access patterns, this ease of use often comes
at a performance cost of queries in very common reporting
applications, especially analytics applications that display
nested, aggregated data [18, 17]. As a running example, con-
sider the web application in Figure 1 that has a dashboard
page for visualizing and analyzing sales data of a TPC-H
[22] database. A user uses the checkboxes to select nations
to analyze, and the application stores the selections as in-
memory objects within the HTTP session of the application
server. The application then displays a HTML table of se-
lected nations, where each row comprises the nation name

1In this paper, code examples are presented in RoR, since
RoR is a widely used web framework, and Active Record, its
built-in ORM, supports many mainstream database engines.
Nevertheless, the discussion applies to other popular ORMs.

and the top 3 years of sales revenue.

Figure 1: Analytics application for TPC-
H data

!"#$%&'(#)
!"#$*+',)
-.$/%-*('0)
.11('##)

%(1'(#)
%(1'(*+',)
!"#$*('0)
%(1'(*1.$')
$%$.2*3(/!')

-.$/%-#)
-.$/%-*+',)
-.&')
!%&&'-$)

Figure 2:
TPC-H
schema

An ORM induces developers to decompose data access
into multiple object navigations (translated by the ORM
into multiple queries) that are interspersed among loops and
conditionals of imperative languages. This decomposition
reduces data access performance: Even though each individ-
ual query may be optimally executed by the database, the
set of queries collectively may not compute the report effi-
ciently. Such inefficiencies can be very large in analytics ap-
plications producing reports that involve nesting, joins and
aggregation. In particular, this paper focuses on the ineffi-
ciencies of tuple-at-a-time queries, where each outer context
tuple causes the execution of an inner query that produces
nested tuples.

!  "#$$%&'()*+,'%-./%01'023.4'5%$$6%
7  ",+3*'6%
8  %%"9%!"#$%&'"((')"*+',%-.&.-96%
:  %%%%"9%$/-0)00$%&120)()*#),3&"#$%&0241&'&"#$%&35)64-77-#89)-#+)&-96%
;  %%%%%%",/6%
<  %%%%%%%%",=6"9>%&'&":)%96"?,=6%
@  %%%%%%%%",=6%
A  %%%%%%%%%%"9%%";;8);"#)0-7-<8,)8-
B  %%%%%%%%%%%%%%%%'0)()*#=2,"#)3>"8#=?26)"8?2@-%8,)83,"#)A-"0-%8,)836)"8@--
!C  %%%%%%%%%%%%%%%%%%%%%%%%%09:=#%#"(3>8$*)A-"0-09:3>8$*)2A-
!!  %%%%%%%%%%%%%%%%'B%$&0=2*90#%:)82A-
!7  %%%%%%%%%%%%%%%%'C+)8)=2&"#$%&38)/-7-D2@-&'&"#$%&35)6A-
!8  %%%%%%%%%%%%%%%%';8%9>=2,"#)3>"8#=?26)"8?2@-%8,)83,"#)A-"0-%8,)836)"82A-
!:  %%%%%%%%%%%%%%%%'%8,)8=209:3>8$*)-EFGH2A-
!;  %%%%%%%%%%%%%%%%'($:$#=IA--96%
!<  %%%%%%%%%%"#$$%&'()*+,'%-./%3+/%01+/,%D+E+F0/G),%0.().H'H,%$$6%
!@  %%%%%%%%"?,=6%
!A  %%%%%%"?,/6%
!B  %%%%"9%)&,%96%
7C  %%"9%)&,%96%
7!  "?,+3*'6%

Figure 3: RoR page with tuple-at-a-time queries

For example, consider the RoR fragment in Figure 3 that
implements Figure 1, and operates over the TPC-H schema
in Figure 2. Data access code in the figure are denoted with
italics. Line 3 uses an each loop with variable n to iterate
through all nations, and Line 4 retains only nations that are
selected by the checkboxes.

Within the loop and conditional, Line 6 produces the na-
tion name, whereas Lines 7-17 produce the bar chart. Since
arbitrarily complex statements can occur within the loop
and conditional, RoR does not attempt to holistically opti-
mize multiple data access points into more efficient queries.
Instead, it simply executes statements in an imperative,
tuple-at-a-time fashion: For each selected Nation object n,
Lines 8-15 are translated into a SQL query that has a sin-
gle parameter for the nation key of n. Parameterizing the
inner queries causes k nations to require k queries, which

almost always incurs a manyfold performance penalty due
to extraneous sequential scans or repeated random accesses,
as will be demonstrated in our experiments. Worse still, the
performance penalty ratio increases with the amount of data
accessed and visualized, since the number of queries issued
is dependent on the number of nations.

A sophisticated developer who optimizes for performance
will re-implement tuple-at-a-time queries as set-at-a-time
queries. Two alternatives demonstrated in this paper are:

• Denormalized-sets queries: Queries that retrieve re-
sults as denormalized-sets. For example, a single query
that retrieves the join of nations and top sales.

• Normalized-sets queries: Queries that retrieve results
as normalized-sets. For example, a query that retrieves
nations, and a separate query that retrieves top sales with
corresponding nation ids.

!  "#$%&'#()*)+,)-#./,0%.#1)'(#23%4#4)4%3'#,%#-/,/5/()#,)4&%3/3'#,/5*)(#
6  7+,08)9)+%3-::;/()<+%..)+,0%.<)=)+>,)?#
@  ##A$9B7CB#CBDEF979G#C7;HB#()*)+,)-I./,0%.(#?./,0%.I3)2#JKCBLB9MA#M#
N  ()*)+,)-I./,0%.(<)/+O#-%#P.P#
Q  ##7+,08)9)+%3-::;/()<+%..)+,0%.<)=)+>,)?#
R  ####SJKTB9C#JKCF#()*)+,)-I./,0%.(?./,0%.I3)2M#U7HVBT#?A"W.XAMS#M#
Y ).-#

Z  "#T,%3)#+%44%.#(>5[)=&3)((0%.#2%3#()*)+,)-#./,0%.(#0.#,)4&%3/3'#,/5*)(#
\  7+,08)9)+%3-::;/()<+%..)+,0%.<)=)+>,)?]]T^H#
!_  ##$9B7CB#CBDEF979G#C7;HB#,)4&I./,0%.(#7T#
!!  ##TBHB$C#.<./,0%.I1)'`#.<./4)#
!6  ##a9FD###./,0%.(#7T#.#
!@  ##bFJK###()*)+,)-I./,0%.(#7T#(#FK#(<./,0%.I3)2#c#.<./,0%.I1)'#
!N  T^H#
!Q  M#

!R  "#T>5[d>)3'#,%#3),30)8)#-0(,0.+,#./,0%.#1)'(#
!Y  d!#c#ATBHB$C#eJTCJK$C#./,0%.I1)'#7T#./,0%.I1)'I6#a9FD#,)4&I./,0%.(A#

!Z  "#T>5[d>)3'#,%#3),30)8)#/ff3)f/,)(#).[4/(()#
!\  d6#c#73)*::C/5*)<.)g?:+>(,%4)3(M#
6_  ##<&3%h)+,?A,!<./,0%.I1)'I6`##
6!  ############-/,)I&/3,?iA')/3iA`#%<%3-)3I-/,)M#/(#%3-)3I')/3`##
66  ############TVD?%<,%,/*I&30+)M#7T#(>4I&30+)AM#
6@  ##<23%4?A+>(,%4)3(#/(#+AM#
6N  ##<h%0.(?AbFJK#%3-)3(#7T#%#FK#+<+>(,I1)'#c#%<+>(,I3)2#A#j#
6Q  #########SbFJK#?"Wd!XM#7T#,!#FK#+<./,0%.I3)2#c#,!<./,0%.I1)'I6SM#
6R  ##<f3%>&?A,!<./,0%.I1)'I6`##
6Y  ##########-/,)I&/3,?iA')/3iA`#%<%3-)3I-/,)MAM#

6Z  "#T>5[d>)3'#,%#&/3,0,0%.#/ff3)f/,)(#5'#./,0%.#1)'#
6\  d@#c#]]T^H#
@_  ##TBHB$C#,6<k`#3%gI.>45)3?M#FUB9?#
@!  #################E79CJCJFK#;G#,6<./,0%.I1)'I6#
@6  #################F9eB9#;G#,6<(>4I&30+)#
@@  ###############M#7T#3%gI0-#
@N  ##a9FD#?"Wd6<,%I(d*?MXM#7T#,6#
@Q  T^H#

@R  "#B=)+>,)#d>)3'#,O/,#3),30)8)(#,%&[@#/ff3)f/,)(#0.#)/+O#&/3,0,0%.#
@Y  ,%&I(/*)(#c#F3-)3#
@Z  ##<()*)+,?A,@<./,0%.I1)'I6`#,@<%3-)3I')/3`#,@<(>4I&30+)AM#
@\  ##<23%4?S?"Wd@XM#/(#,@SM#
N_  ##<gO)3)?A3%gI0-#]c#@AM#

N!  "#K)(,#/ff3)f/,)(#0.#3)(&)+,08)#./,0%.#1)'(#
N6  3)(>*,#c#l/(O<.)g#W#PO/(O`#1)'P#O/(Om1)'n#c#W#
N@  ####:./4)#######co#.0*`#
NN  ####:/ffI%3-)3(#co#mn#
NQ  X#X#
NR  ,%&I(/*)(<)/+O#-%#P,P#
NY  ####3)(>*,m,<./,0%.I1)'I6n</ff3)f/,)(#]]#W#
NZ  ########:%3-)3I')/3#co#,<%3-)3I')/3`#
N\  ########:(>4I&30+)##co#,<(>4I&30+)#
Q_  ####X#
Q! ).-#

Q6  "#b%0.#./,0%.#1)'(#g0,O#./,0%.#./4)(#
Q@  ./,0%.(#c#7+,08)9)+%3-::;/()#
QN  ##########<()*)+,?A./,0%.I1)'#`#./4)AM<23%4?A,)4&I./,0%.(AM#
QQ  ./,0%.(<)/+O#-%#P.P#
QR  ####3)(>*,m.<./,0%.I1)'n<./4)#c#.<./4)#
QY ).-#

Figure 4: RoR page with normalized-sets queries

For example, consider the RoR fragment for normalized-
sets queries in Figure 4, which is manyfold faster than the

tuple-at-a-time queries in Figure 3: our experiments show a
7x speedup on a 3GB TPC-H database.

While ORMs make it easy to write tuple-at-a-time queries,
they do not facilitate the significantly more efficient set-
at-a-time queries. A developer has to be a SQL expert
to understand that, since the nested query computes ag-
gregates and top-k results, retrieving en masse the top 3
sales years for each nation id requires partitions and win-
dow functions (OVER (PARTITION BY ... ORDER BY ...)
in Lines 16-40), which is an advanced and esoteric feature
in SQL 2003.

Worse, the developer is burdened with explicit distributed
programming: he has to (a) copy intermediate results across
the memory/database boundary while minimizing communi-
cation costs (Lines 2-7), (b) store common sub-expressions in
temporary tables (Lines 9-15), (c) write ad-hoc imperative
code to perform nesting and joins in the application layer
(Lines 42-51, 53-57) and (d) utilize different APIs based on
which source the data resides in (SQL commands in Lines 1-
15, ActiveRecord in Lines 16-40, object APIs in Lines 41-57).
Not only does this lack of location transparency fall short of
single language access, it may also result in performance in-
efficiencies since neither the programming language nor the
database can take advantage of optimization opportunities
in the integration code across the two systems.

To address these issues, the database community has pro-
posed many novel solutions that enable holistic optimization
of queries in reporting pages. Systems such as FERRY [18]
and SWITCH [17] compile imperative data access code into
an algebraic representation, thereafter apply holistic opti-
mization of nested queries. Separately, in declarative web
frameworks such as Strudel [11] and Hilda [24], pages are
modeled as nested queries, which is a first step towards holis-
tically optimization of the page.

In the same spirit, we present Collage [2, 3, 4], a declara-
tive framework for data-driven web applications that provide
novel holistic optimizations of reporting queries in analytics
applications. In the current implementation, a developer
declaratively specifies the reported data with a page query,
which executes over multiple data sources. The page query
is written in SQL++, which is backwards compatible with
SQL, captures the JSON data model, and easily integrates
the application programming language objects that are ac-
cessed by reports. Furthermore, the page query is distributed
over a persistent SQL database and in-memory application-
level objects of requests and sessions.

In its current implementation, Collage simultaneously pro-
vides ease of use for the developer through the SQL++ sin-
gle language access, as well as efficient performance through
holistic query optimization within its distributed query pro-
cessor. Thus, data access within analytics applications is
reduced to a special semi-structured and distributed query
processing problem.

Systems that compile imperative code into queries (like
FERRY and SWITCH) also stand to benefit from using Col-
lage’s query processor, as it provides a flexible data model
(both in terms of input and ouput) and novel optimizations
for complex reports that involve aggregation and topk.

1.1 Contributions
This paper focuses on the distributed query processor of

Collage, which builds upon existing techniques to introduce
novel query processing optimizations:

Optimizing tuple-at-a-time queries We show that all

SQL++ queries are set processable, and Collage utilizes novel
rewritings to holistically optimize naive and inefficient tuple-
at-a-time plans to efficient set-at-a-time plans (i.e. denormalized-
sets or normalized-sets plans). To the best of our knowledge,
these rewritings target the largest class of nested queries
among that considered by prior work: They (a) capture ag-
gregation and ranking, which are expensive and common in
modern analytics applications, (b) are applicable over multi-
ple levels of nesting (c) handle arbitrary types of correlation
between the enclosing query and the nested query. Our ex-
periments validate that the rewritings achieve a manyfold
speedup (e.g. 7x on a 3GB TPC-H database). Further-
more, larger databases and heavier visualizations result in
even greater speedups. We also observe that set-at-a-time
plans outperform tuple-at-a-time plans by a large margin
for heavy queries, and remain competitive for inexpensive
ones, which suggests that the rewritings should be applied
whenever possible.

Performance comparison of different optimizations
Our performance analysis and extensive experiments reveal
that rewriting to normalized-sets plans is highly superior
to denormalized-sets plans, especially for complex analytics
queries. The efficiency gains are attributable to both obvi-
ous reasons, such as data redundancies and communication
overhead incurred by denormalization, as well as surprising
ones, such as SQL database optimizations enabled through
the removal of outer-joins.

Lightweight integration of external objects Using
Collage as middleware, a developer can easily use SQL++
as the single language to access and integrate objects of ex-
ternal data sources, including SQL databases, JSON data
and Java objects. These objects can be defined in a different
programming language and type system (thus going beyond
object databases), and in contrast to conventional data in-
tegration systems, the developer does not incur the upfront
burden of mapping external classes into SQL++ schemas.
This is enabled by a novel SQL++ feature where query
paths navigate lazily into external objects, and each path
step dynamically bind to the next object reference returned
by a method call. Collage treats external objects as first-
class citizens, and extends query processing correspondingly
for heterogeneity and lenient type checking.

We have deployed Collage as a complete web application
framework made available on the cloud. A demo system,
which includes multiple sample queries such as the running
example of Figure 1, is online at http://ec2-54-244-248-12.
us-west-2.compute.amazonaws.com2. Furthermore, Collage
is currently deployed in real-world applications, including an
analytics application currently utilized by two pharmaceu-
tical companies.

This paper is structured as follows. Section 2 illustrates
the syntax and semantics of SQL++ through an example
Collage application. Sections 3 and 4 present the techni-
cal details of Collage, including the SQL++ data model,
SQL++ language extensions and optimizations for tuple-at-
a-time queries. Section 5 compares the performance gains of
Collage’s optimizations. Finally, Section 6 presents related
work in database and programming language research.

2The machine is hosted anonymously in the AWS cloud
service in compliance with SIGMOD’s double-blind require-
ments.

http://ec2-54-244-248-12.us-west-2.compute.amazonaws.com
http://ec2-54-244-248-12.us-west-2.compute.amazonaws.com

2. ARCHITECTURE, SYNTAX AND SEMAN-
TICS

Collage provides an efficient template engine [23] for web
frameworks that follow the Model-View-Controller (MVC)
architecture pattern, which is practically all web frameworks.
In MVC web frameworks, an application is modularized into
actions (Controllers) and pages (Views). A HTTP request
invokes an action, which is implemented in the native lan-
guage of the web framework (e.g. Ruby for RoR, Java for
Spring Web). The action reads and writes the application
state, which includes a persistent SQL database and tran-
sient in-memory objects stored in request and session scopes
of the application server. An action terminates by choosing a
page to be displayed next. To display the chosen page, the
web framework then uses a template engine to evaluate a
page template which, in adherence to MVC best practices,
should simply instantiate HTML markup without causing
side-effects on the application state. Web frameworks allow
different template engines to be installed as plugins. For ex-
ample, RoR works with template engines such as ERB (as
shown in Figure 3), Haml, and Slim.

Collage’s template engine can be used in Java-based3 MVC
web frameworks, such as Struts and Spring Web. Collage is
also available as a standalone web framework, which fur-
ther mitigates impedance mismatch in actions by specifying
them as PL/SQL statements [4]. However, in this paper we
focus on Collage’s template engine for pages that are ana-
lytics reports, and do not further discuss the use of Collage
for actions.

!  "#$%&'()
* ))"+,#-#.+/0)12'0345)
6 ))))!"#"$%&&&&'(')*+,'-./01&'(')2/&
7 ))))3456&&&&&&7/77+,'(7/8/9*/:-')*+,'7&;!&71&
8 )))))))))))))):<(')*+,'7&;!&'&
9 ))))=>"4"&&&&&7(')*+,'-?/@&A&'(')*+,'-./0&;BC&
: ))))))))))))))7(7/8/9*/:&A&*?D/&
; ))5()
< ))))"#0()
!= ))))))"#>()?)')2/)@)"A#>()
!! ))))))"#>()
!* ))))))))"+2BC#.%$0DEF$0#()
!6 ))))))))))"+,#-#.+/0)12'0345)
!7 ))))))))))))!"#"$%&&&&:<(:)*/-E)?*FG0/)?G1&,(,?:/?-:)*/H&;!&,?:/?-0/)?1&
!8 ))))))))))))))))))))))!I6F,(*,*)8-E?+9/H&;!&7D2-E?+9/&
!9 ))))))))))))3456&&&&&&:<(,?:/?7&;!&,1&
!: )))))))))))))))))))))):<(9D7*,2/?7&;!&9&
!; ))))))))))))=>"4"&&&&&,(9D7*-?/@&A&9(9D7*-./3&;BC&
!< ))))))))))))))))))))))9(')*+,'-?/@&A&')*+,'-./0))))))
= ))))))))))))J45IK&LM&&:<(:)/-E)?*FG0/)?G1&,(,?:/?-:)*/H&
*! ))))))))))))54C"4&LM&&72-DG0CE')
** ))))))))))))#N6N%&&&&&O&
*6 ))))))))))5()
*7 ))))))))))))"E/&2-B()
*8 ))))))))))))))"&$%'&()?),?:/?-0/)?)@)"A&$%'&()
*9 ))))))))))))))"H$&2'()?)7D2-E?+9/)@)"AH$&2'()
*: ))))))))))))"AE/&2-B()
*; ))))))))))"A+,#-#.+/0()
*< ))))))))"A+2BC#.%$0DEF$0#()
6= ))))))"A#>()
6! ))))"A#0()
6* ))"A+,#-#.+/0()
66  "A#$%&'()

Figure 5: Collage page that inlines queries within markup

In Collage, page templates (such as Figures 5 and 6) as-
semble the data of the page with SQL++ queries, which
are distributed over the database and in-memory objects.
The semi-structured query results are rendered via Collage’s
markup into HTML and JavaScript components, such as
maps, charts, and calendars. Therefore, report pages are

3The same fundamental principles can be used to integrate
Collage’s template engine with web frameworks of other lan-
guages such as Ruby or PHP.

!  "#$%&%'()%*+%,-./%01$*2(343,%)23$15+
6  ++!"#"$%&&'(')*+,'-./01&'(')2/1&3&
7  ++++++++++++!"#"$%&&&45(4)*/-6)7*380/)781&,(,74/7-4)*/9&:!&,74/7-0/)71&
8  +++++++++++++++++++++!;<3,(*,*)=-67+>/9&:!&?@2-67+>/&
9  ++++++++++++ABC<&&&&&45(,74/7?&:!&,1&
:  ++++++++++++&&&&&&&&&45(>@?*,2/7?&:!&>&
;  ++++++++++++DE"B"&&&&,(>@?*-7/F&G&>(>@?*-./0&:HI&
<  ++++++++++++&&&&&&&&&>(')*+,'-7/F&G&')*+,'-./0++++++
=  ++++++++++++JBC;K&LM&45(4)*/-6)7*380/)781&,(,74/7-4)*/9&
!>  ++++++++++++CBI"B&LM&?@2-67+>/&
!!  ++++++++++++#N<N%&&&&O&
!6  ++++++++++9&)?&)PP7/P)*/?&
!7  ++ABC<&&&&?/??+,'(?/=/>*/4-')*+,'?&:!&?1&
!8  ++&&&&&&&&45(')*+,'?&:!&'&
!9  ++DE"B"&&&?(')*+,'-7/F&G&'(')*+,'-./0&:HI&
!:  ++&&&&&&&&?(?/=/>*/4&G&*7@/&
!;  "?#$%&%'()%*5+

!<  "%,@A/5+
!=  ++"#$%&%'#2-+$2B-C/01?Q,R'-')*+,'?15+
6>  ++++"%-5+
6!  ++++++"%D5+E+')2/+F+"?%D5+
66  ++++++"%D5+
67  ++++++++"#B3)%'@,-4C*,-%5+
68  ++++++++++"#$%&%'#2-+$2B-C/01)PP7/P)*/?15+
69  ++++++++++++"C2AB&35+
6:  ++++++++++++++"A,@/A5+E+,74/7-0/)7+F+"?A,@/A5+
6;  ++++++++++++++"G,AB/5+E+?@2-67+>/+F+"?G,AB/5+
6<  ++++++++++++"?C2AB&35+
6=  ++++++++++"?#$%&%'#2-5+
7>  +++++++"?#B3)%'@,-4C*,-%5+
7!  ++++++"?%D5+
76  ++++"?%-5+
77  ++"?#$%&%'#2-5+
78  "?%,@A/5+

Figure 6: Collage page that splits queries from markup

easily specified using only semi-structured distributed queries
and template markup.

As with all template engines, the developer can combine
queries and markup by either inlining queries within the
markup (e.g. Figure 5, which is similarly inlined as the RoR
page of Figure 3) or modularizing them into two separate
parts (e.g. Figure 6). Typically inlining is preferred for sim-
ple pages, whereas modularizing is for pages with complex
data access and visualizations. In Figure 5, the semantics
of the fstmt:for statement (Lines 2-8) is that it evaluates
its query, and instantiates its body (Lines 9-31) for each tu-
ple in the result. For example, a tr element is output for
each nation. Expressions enclosed in “{” and “}” utilize at-
tributes of the enclosing query. Expressions within HTML
tags are output as strings (Line 10), whereas those within
visual unit tags such as funit:bar_chart (Lines 25-26) are
used as the model of JavaScript components. Collage is
responsible for efficiently and incrementally rendering both
HTML and JavaScript components [2].

Collage accepts SQL++ queries, which are a superset of
SQL queries and thus familiar to a large audience of SQL de-
velopers. Sections 3 and 4 provide details on these SQL++
extensions. Internally within the Collage framework, a page
compiler always compiles the fstmt:for queries of a page
into a single SQL++ query with nesting, as in Figure 6, so
that Collage can subsequently optimize the SQL++ query
by rewriting the initial tuple-at-a-time plan into a more ef-
ficient set-at-a-time plan (Section 4.2).

3. DATA MODEL
The input to the SQL++ queries is essentially a graph

of tuples. Formally, an SQL++ object is a pair of an id
and an SQL++ value. A named id can be explicitly written
in queries. An unnamed id cannot be explicitly written in
queries. An SQL++ value is either

1. a typed atomic value, such as the string ’abc’ or the
integer 7.

2. an object reference, which is either the id of an object or
the special constant null.

3. a tuple [a1 : v1, . . . , an : vn], where the attribute names
a1, . . . , an are strings and each attribute value vi is an
SQL++ value.

4. a collection {e1, . . . , en}, where each ei is recursively an
SQL++ value.

Since SQL++ is an extension of SQL, Collage easily mod-
els an SQL database as an SQL++ source. Given a stan-
dard SQL relation R, Collage models the SQL database as
an object identified by the named id R. The value of R is
a collection of tuple values, where the tuples have atomic
values.

Objects of programming languages (Java, Javascript, etc)
are also easily wrapped into SQL++. In the running ex-
ample, there is a session attribute selected_nations whose
value is a Java List of (references to) objects that have
a boolean property selected and an integer property na-
tion_ref. Collage models this session attribute and the
data accessible via it as an object identified by the name
selected_nations. The value of selected_nations is a
collection of object references to objects that have an un-
named id and a tuple value, where one of the attributes is
named selected and has boolean values.

DAG and cyclic structures are possible by having object
references that point to the same object. Notice that this
modeling is virtual, in the sense that no activity will take
place until a query needs to reach some of the reachable
data. Therefore, even if a huge amount of Java data are
accessible by navigations that follow object references, none
will be accessed until a query needs to.

Notice that SQL++ can also be seen as an extension of
JSON. JSON is particularly important because it is readily
consumed by the visualization components utilized in Col-
lage’s template engine and other template engines.

4. QUERY LANGUAGE
The SQL++ query language is backwards-compatible with

SQL, featuring extensions analogous to the extensions that
the SQL++ data model introduced over the SQL data model:
Nested value output Unlike SQL which restricts the SE-
LECT clause to only allow sub-queries producing scalars, in
SQL++ the SELECT clause can contain any SQL++ sub-
query. This extension enables creating nested values. For
example, the running example’s query (Figure 6, Lines 2-16)
creates a collection of tuples, where each tuple corresponds
to a nation and has an attribute aggregates whose value is
itself a collection of tuples.

The default SELECT-FROM query creates collections of tu-
ples - as in SQL. Minor syntactic variations of the SELECT
clause enable the creation of other types of collections, such
as collections of atomic values and collections of collections.
In any of their many incarnations, nested collections present
opportunity for performance optimization via the set-based
processing techniques described in this paper.
Heterogeneity In SQL the FROM clause introduces (tuple)
variables that range over the tuples of the relations. The
SQL++ FROM clause extends SQL’s FROM, by allowing vari-
ables to also range over any type of member that a collection
has.

Unlike SQL whose UNION requires both arguments to be
homogeneous (i.e. identical schema), SQL++ allows the ar-
guments to be heterogeneous (i.e. different schemas), there-

fore being able to creating output heterogeneous results even
when the input is homogenous.
Navigation in nested values and navigation through
object graphs In the spirit of XQuery and OQL, the SQL++
FROM allows clauses where a variable ranges over the collec-
tion that is bound to another variable, potentially involving
navigation through tuples. The navigations of SQL++ can
access nested values and can also access the nesting that is
created by object references, without making a distinction
between the two.
Location transparency A developer writes a SQL++ query
in a location-transparent fashion, even when it spans multi-
ple data sources. In the running example, the developer has
mapped (not shown) the db data source to a SQL database,
and the session data source to the in-memory HTTP ses-
sion object of the application server. In Figure 6, database
tables (Lines 5, 6, 14) and in-memory objects (Line 13) are
prefixed by respective data source names. Source-specific
functions (such as the db.date_part stored procedure, Line 3)
are similarly prefixed, whereas flexible functions (such as =
in Lines 7, 13, 14) that can be executed at any data source
are not prefixed.
Non-set results Unlike SQL where queries always output
tables, SQL++ queries can be simple expressions. For ex-
ample, 1 + 1 outputs a SQL++ scalar. This paper does
not further discuss such queries, since they do not present
set processing opportunities.

4.1 Plans and Algebra Overview
A logical plan p = T1 ← e1; . . . ;Tn ← en; e starts with a

list of zero or more assignments Ti ← ei, where each Ti is
a temporary result and each ei is a SQL++ algebra expres-
sion that may input the previously computed temporaries
T1, . . . , Ti−1. The result of p is the SQL++ table resulting
from the evaluation of the result expression e, which may
input any temporary T1, . . . , Tn.

The algebraic operators involved in SQL++ algebra ex-
pressions input and output tables, i.e., collections of ho-
mogenous tuples. Intuitively, each attribute of a table cor-
responds to a variable of the FROM clause or some value that
is reachable via the variables. Each tuple corresponds to a
binding of the variables. Therefore we will call them binding
attributes and binding tuples respectively.

The majority of SQL++ algebra operators are extensions
of operators well-known from conventional SQL processing
(e.g., see textbooks [15]). While conventional operators in-
put and output tables where the values of the binding at-
tributes are only atomic values, SQL++ extends the opera-
tors to allow the binding attribute values to also be collec-
tions, tuples and object references. The list of standard op-
erators comprises cartesian product ×, union ∪, intersection
∩, difference −, selection σc, join ./c, full outer-join ./ c, left
outer-join ./c, semi-join><c, anti-semi-join><c, projection
πL̄, sort τF̄ (where F̄ is the order-by list of terms, which ini-
tially appear in the SQL++ ORDER BY clause), top-k Topkk
(which returns the first k tuples of its input), duplicate elim-
ination δ, group-by γḠ;f1→N1,...,fm→Nm

(Ḡ is the terms that
appear in the GROUP BY clause and f1, . . . , fm are the aggre-
gate functions).

In the remainder, given a binding tuple t of a bindings
table, an attribute name a that is not already the name of
a binding attribute of t and a value v, the notation t#[a : v]
denotes the tuple that results from adding the attribute/value
pair a : v on the list of attribute/value pairs that t already

has.
The list of novel SQL++ operators, and their uses, are as

follows:
Translating the FROM clause with Ground, Scan and
Navigate operators The role of the ground (Ground) and
scan (Scan) operators is to provide the algebraic counterpart
of the FROM clause. The ground operator has no input table
(indeed it is the only operator with no input table) and
always returns {[]}, i.e., a table that has a single tuple with
no binding attribute.

The scan operator Scans7→a inputs a table. For each bind-
ing tuple t of the input table, the scan finds the collection
vc = {e1, . . . , en} identified by s,4 where either (a) s is a
named object id (e.g., customers, selected_nations), in
which case vc is the value of the named object, or (b) s is a
binding attribute of t and vc is its value. In either case, the
scan outputs binding tuples t#[a : e1], . . . , t#[a : en].

The navigate operator (Navs.p1.....pm 7→a) outputs exactly
one binding tuple t#[a : v] for each input binding tuple t.
The value v is non-null, when the binding tuple t has an
attribute s whose value is a tuple t1 or an object reference
pointing to a tuple t1. In either case, the tuple t1 has an
attribute p1 whose value is a tuple t2 with an attribute p2.
The navigation continues until a tuple tm is reached and tm
has an attribute pm whose value is v. If there is no such path
of tuples t1, . . . , tm with attributes p1, . . . , pm, the value v is
null. In the case that the value of s is a collection with a
single tuple (or single reference to a tuple), it is treated as
if it were a tuple or an object reference.

For notational brevity, this paper also uses the derived op-
erator scan-navigate (ScNa) that combines a scan operator
that produces a binding attribute a, with multiple navigate
operators that initiate their navigation from a. In particu-
lar, ScNas 7→a;a.p1 7→a1,...,a.pn 7→an ≡
Nava.p1 7→a1 . . .Nava.pn 7→an Scans 7→a. Furthermore, the out-
put attribute name can be omitted if it is identical to the
input attribute name.
Tuple-at-a-time nesting operator Nested queries are trans-
lated into SQL++ algebra using the apply-plan operator
αP→N . The α operator inputs a single table. In general,
P is a correlated plan, such that attributes of the input ta-
ble may appear in P wherever constants or named id’s can
appear in uncorrelated queries. Such correlated input at-
tributes are called parameters of P . The α operator outputs
one tuple t#[N : P/t] for each input tuple t, i.e., each out-
put tuple has all attributes of the respective input tuple t,
and an additional attribute N for the result of evaluating
the plan P/t, i.e. the non-correlated plan that results from
substituting each parameter with its respective binding in
the tuple t.
Nesting via grouping SQL++ allows aggregate functions
that produce non-scalar results. Of particular interest to the
optimizations presented in this paper is the
NEST(A1, . . . , At)→ N function whose output is a new table
N . Formally, the function is evaluated on each input sub-
collection I1, . . . , Il created by γG1,...,Gn;NEST(A1,...,At)→N ac-
cording to the group-by attributes G1 . . . Gn. For each input
sub-collection Ii, the function NEST performs the projection
πA1,...,An(Ii) and outputs the table attribute N .
Partition The partition operator χ enables support of the
SQL 2003 PARTITION feature and window functions. In ad-

4In case s identifies a non-collection value v and coercion is
enabled, the case is treated as if s had identified the collec-
tion {v}.

dition, χ is important for optimizing aggregation queries:
Section 4.2 shows that even if the SQL++ query has no
PARTITION, the apply-plan rewriter may introduce a χ. For-
mally, χG1...Gn;eX operates on an input table that has at-
tributes G1 . . . Gn. It groups the input tuples into input sub-
collections I1, . . . , Il according to the group-by attributes
G1 . . . Gn, such that each input sub-collection Ii has an as-
sociated group-by tuple (G1 : g1i , . . . , Gn : gni). For each
input sub-collection Ii, the operator derives an output sub-
collection Oi by replacing the parameter input X with Ii in
the expression eX. The operator’s result is
∪i=1,...,l{(g1i , . . . , gni) × Oi}, i.e., the union of the output
sub-collections after they are padded with their group-by
values. For example:

χnation;Topk2(τsales(X))

(nation name sales

USA Joe 6
China Chen 5
China Fu 8
China Zhao 4

)
=

nation name sales

USA Joe 6
China Fu 8
China Chen 5

Functions SQL++ allows functions over input attributes in
the SELECT, FROM, WHERE, ORDER BY, GROUP BY, JOIN, PARTI-
TION and LIMIT clauses. A flexible function can be executed
in both memory and database sources, whereas a source-
specific function can only be executed in one source. For
example, = is a flexible function, whereas db.date_part()
(Figure 6, Line 3) is a database-specific function.

In the final distributed plan, each operator is designated
to execute in a specific source. To handle the case where
a SELECT, WHERE, ORDER BY or LIMIT clause involves both
memory-specific and database-specific functions, the SQL++
operators πL̄, σc, τF̄ and Topkk are restricted from naming
functions in their parameters. Rather, the function operator
λf(A1,...,An)→N evaluates a single function f . For each input
tuple t with attributes A1, . . . , An, the λ operator outputs
an output tuple that has all the input attributes, and an ad-
ditional attribute N that is the result of evaluating f using
the A1, . . . , An values in t. For example, the SQL++ clause
ORDER BY g(X),f(Y,Z) is translated into:
τN1,N2(λf(Y,Z)→N2

(λg(X)→N1
)).

Plan p

! sum_price
!order_year;

SUM(total_price) ! sum_price

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

ScNasession
.selected_nations ! s;
s.nation_ref,
s.selected

! selected = true AND
nation_ref = nation_key

ScNadb.nations ! n;
n.nation_key,
n.name

!nation_key, name

!

ScNadb.orders ! o;
o.cust_ref, o.order_date, o.total_price

ScNadb.customers ! c;
c.cust_key, c.nation_ref

!date_part('year', order_date)
! order_year

! nation_ref = @nation_key AND
cust_ref = cust_key

p ! aggregates

!order_year, sum_price

Ground

Ground

Topk3

Figure 7: Initial plan from translation into algebra

Figure 7 shows the initial algebraic plan translated from
the SQL++ query of Figure 6. The Scansession.selected_nations

operator scans an in-memory Java collection object and out-
puts a tuple with attributes nation_ref and selected. The

α operator represents the SELECT clause nested query: the
correlated plan p (within the dotted box) corresponds to
Lines 3-11 of the SQL++ query. Notice the use of the pa-
rameter @nation_key in the correlated plan. According to
the semantics of α, for each nation input tuple t, the cor-
related plan is evaluated with the parameter @nation_key
substituted by the corresponding value in t. The set of tu-
ples resulting from the correlated plan evaluation becomes
the value of the new attribute aggregates. The function
date_part is evaluated in a λ operator.

4.2 Apply-plan Rewriter

!"#"$%&'&
&&(&
&&&&)*%+&$!!&,!&('-.&&
&&&&'.&&
&&&&)*%+&"#$&,!&('-&
&&&&!"#"$%&&
%%%%%%&!%'%&()%%
%%%%%%*!+,-%.#%.!%'%*/+,-%.#%./)%%
%%%%%%0!%.#%1!%'%02%.#%12%
&&&&/012&3%
&&&&)+"0"&4%
&&&&30145&67&5!%'%56%
&&&&+,8*93&7%
&&&&10:"0&67&8!%'%89%
&&&&#*2*%&:%
%%-&,!&9&
/012&;%

!P!N

!Pq!Nq

!P1!N1

!O1...Oo ,A1...Aa

Topkn

! T1...Tt

! h

! c

!
G1...Gk ; f1 (.)!A1... fa (.)!Aa

CSm ! Em

CS1! E1!"

!"

E

F

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

Figure 8: Pattern for Set-Processable Queries and Plans

The apply-plan rewriter inputs a plan (eg, see the pattern
of Figure 8) and replaces tuple-at-a-time α operators with
set-at-a-time operators, thereby producing plans as the one
shown in Figure 9.

The following case analysis proceeds in the following steps
of increasing complexity:

1. We first present the special case where the FROM clause
has no join or outerjoin expressions (called expression-
free FROM case) and the plans of the α operators
either do not involve or any aggregation or they in-
volve both a group-by clause and aggregation (called
no-total-aggregation case). The analysis will reveal the
potential requirements placed on the object references
and object id’s of the data.

2. Then we extend to FROM clauses that may involve ex-
pressions. This case encompasses the expression-free-
FROM case.

3. Finally, we present the total aggregation case where we
remove α operators whose plans involve aggregation
without grouping. For example, a total aggregation
case would be a modification of the running example
where the nested query involves no grouping and re-
turns the total sum of sales for its nation parameter.
The total aggregation case has a fundamentally differ-
ent rewriting from the no-total-aggregation case.

4.3 Expression-free FROM with no total ag-
gregation

!

X1 =V1!…!Xn =Vn

!V1...Vn ;
NEST (O1...Oo ,A1...Aa ,N1...Nq)
!N

!P1!N1

!Pq!Nq

!V1...Vn ,O1...Oo,A1...Aa

!V1...Vn ;Topkn ("T1...Tt)

! h

!V1...VnG1...Gk ;
f1
A (.)!A1... fa

A (.)!Aa

!
"

!"

!"#$%!"#%&'%()*%
)%
!"#$%!"$%&'%()*%
!"#$%%&%&'%(%
%'+,+-#%.%/012%+*%
%
'+,+-#%)%
/012%%&%%
,+/#%13#+0%41"5%(%
%'+,+-#%%
%%'#()('*6%%
%%5789(+#)+&,-#)-.,/#)/0*%&'%/(
%/012%%%(%
%%'+,+-#%%%
%%%'#()('*6% ((
(((+#()(+&,((
(((1#234(-"(-#()(1.234(-"(-,(
(((5#(-"(/#()(50(-"(/0(
%%/012%%&6%6(
%%!$+0+%7(
%%:013;%<=%'#)'*89#)9:(
%%$&>"5:%;(
%%10?+0%<=%%#()(%<(
%%,"2"#%@%
%*%A8%B@@7C%
%:013;%<=%'#()('*(
*%&'%@7897D%
15%=#>'#(A@D%)%A@D%=*>'*(

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

CSm ! Em

CS1! E1!"

Ground

ScNaT0!t
t.X1!V1…t.Xn!Vn

ScNaT0!t
t.X1!V1…t.Xn!Vn

! c

F

Ground

T0 ! E

Figure 9: Pattern output by apply-plan rewrite rule

Suppose attributes X1, . . . , Xn of expression E (i.e. the
input of α) are the parameters of the correlated plan P .
The rewriter replaces the α with the plan of Figure 9, which
intuitively proceeds in the following steps.5

First the input E of the α is evaluated and assigned to a
temporary T . In the running example, this means that na-
tion keys and names are computed. See in Figure 10, which
shows the rewritten plan of Figure 7, that the temporary T1
contains the nation keys and names. Notice that the nation
key would have to be computed even if it were not included
in the SELECT clause of the outer query. The reason is that
the nation key is necessarily an input of α since it is a pa-
rameter of its nested plan.

Second, the subplan of the right hand side of the outerjoin
of Figure 9 is computed. This subplan has one output tuple
t = [X1 : v1, . . . , Xn : vn, N : P/(X1 : v1, . . . , Xn : vn)
for each distinct tuple of parameters v1, . . . , vn. This tuple
also contains a binding attribute N , which carries the result
P/(X1 : v1, . . . , Xn : vn) , i.e., the result of the execution
of the nested plan P when its parameters are instantiated
to v1, . . . , vn. IN the running example, the right hand side
subplan has attributes nation_key and aggregates.

Notice that the subplan has emerged from rewriting the
ground of the original nested plan with a duplicate-eliminating
(δ) projection of the parameters in E. Conceptually, this
guarantees that the subplan will produce all combinations
of parameters with tuples from the FROM clause of the nested
plan P . (Again, we stress that one should think of this ex-
planaion purely “conceptually”, since subsequent optimiza-
tions will introduce various optimization efficiencies.)

A number of issues, pertaining to aggregation and top-k,
have to be taken care of by the rewriting. In particular, if
there were any grouping (γ) in the original plan, then its
grouping attributes have to also include the parameters. If
there were any ordering (τ) and top-K (Topk) they have

5Notice that the plan does not yet describe the fine details of
its execution, neither is optimized for execution yet. These
optimizations and details will be added later.

to be replaced by a partition (χ) operator. In the running
example, the top-3 sales dates computation is achieved by
partitioning the input by the nation_key parameter and
then keeping the top-3 of each partition.

Finally, the natural left outer-join ./ combines by join-
ing on the parameters, the temporary T (which intuitively
carries the result of the outer query, along with parameters)
with the right hand side subplan (which carries the result
of the inner query, also along with parameters). Simplifica-
tions of the rewrite rule are easy to produce for when one
or more of the assignments, π,Topk, τ , σ or γ operators are
absent.

In the case that the plan P of the α contained any as-
signments, these assignments would simply be set-processed
(by application of the exact same rewritings that we use to
rewrite the result expression) and would be computed before
the computation of the outerjoin.

Main plan

!
grid

system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

!nation_key, name

!nation_key, order_year;
SUM(total_price) ! sum_price

!nation_key;Topk3 ("sum_price)

!nation_key;
NEST(order_year, sum_price)
! aggregates

ScNaT1 ! t;
t.nation_key,
t.name

T1

!nation_key,
order_year, sum_price

ScNaT1 ! t;
t.nation_key

! selected = true AND
nation_ref = nation_key

Ground

! nation_ref = nation_key AND
cust_ref = cust_key

Ground

!date_part('year', order_date)
! order_year

ScNasession
.selected_nations ! s;
s.nation_ref,
s.selected

ScNadb.nations ! n;
n.nation_key,
n.name

ScNadb.orders ! o;
o.cust_ref, o.order_date,
o.total_price

ScNadb.customers ! c;
c.cust_key, c.nation_ref

Ground

Figure 10: Plan after apply-plan rewriting

We call this type of plan a normalized-sets plan, i.e. for
γG1,...,Gn;NEST, the grouping attributes includes only output
attributes from E that are in correlated attributesX1, . . . , Xn.
For example in Figure 10, the γNEST has only grouping at-
tribute nation_key which corresponds to the correlated at-
tribute, whereas the non-correlated name is deferred until af-
ter the ./. Section 4.8 explains why these plans are superior
than alternate denormalized-sets plans where the grouping
attributes of γNEST also includes non-correlated attributes,
i.e. the input of γNEST is denormalized with respect to the
correlated attributes.

When there are more than one α operator in a plan,
the rewriter eliminates them by repeated application of the
rewrite rule in a top-down manner: an α that appears in a
nested plan is eliminated after its parent α has been elimi-
nated.
Requirements of set processability on object id’s and
references Under certain circumstances described next, the
reduction of tuple-at-a-time processing to set-at-a-time pro-
cessing (set processability) is dependent on the availability
of object references and object-id’s at the source data. In
particular, consider a nested FROM clause “FROM 〈collection

parameter〉 v”, whereas the variable v ranges over the mem-
bers of a collection that is provided as a parameter from the
outer level. The algebraic counterpart will be a plan of the
form αP 7→NE, where the nested plan P is Scanc 7→v Ground
and the outer plan E produces a binding attribute c. Note
that we deliberately focus on the scan corresponding to the
nested query’s FROM. It will be obvious how the point below
applies even in the presence of selections, groupings, joins,
additional scans etc.

The elimination of α in this example requires that the pa-
rameter c appears in the group-by list. From an implemen-
tation point of view, this is efficient (and therefore worthy
of reducing tuple-at-a-time to set-at-a-time) only if c is a
directly or indirectly identifiable object. We call it directly
identifiable if c is an object. We call it indirectly identifiable
if it is only the collection value of an attribute of a tuple
that is an object (i.e., identifiable). In the indirect case, the
tuple’s id can effectively operate as a proxy for the missing
id of c itself.

In either case, the source has to either explicitly support
the export of id’s to Collage, so that the grouping according
to c is executed at Collage, or, the source needs to be able to
efficiently group according to object references/id’s, so that
Collage can defer to the source. The Java runtime is such a
source, in the sense that it enables an implementation where
Collage can group by object references.

As an example of the above case consider the following
query

SELECT c.name, (SELECT n.* FROM c.nations n) FROM session.countries c

This query is set processable only if c.nations is an object
(direct case) or c is an object (indirect case).

4.4 The total aggregation case
An extra challenge is introduced by nested queries that

feature aggregation but do not feature grouping. For exam-
ple, consider the following query that computes the sum of
sales per customer.

SELECT cust_key, (
SELECT SUM(o.total_price) AS sum_price
FROM db.orders o
WHERE c.cust_key = o.cust_ref

FROM db.customers c

Then consider a customer c that has made no order yet.
By following the provided α-removal rule we derive a plan
where the sum of sales is null, as opposed to the correct,
which is zero. In such cases where there are no grouping
attributes, any null that appears in lieu of the value of the
aggregate f should be replaced with the result of this func-
tion f when it is given an empty group We omit the algebraic
specifics of performing this change of value.

4.5 Unrestricted FROM clause
Next we consider FROM clauses that contain join and/or

outerjoin expressions. While joins can be rewritten away,
outerjoins cannot be rewritten away and therefore we will
focus on them. We will first consider the case where the
FROM clause of the nested query is solely a single outerjoin.
In particular, consider the expression αl./cr 7→NE, where the
left hand side l of the outerjoin involves parameters x̄l and
the right hand side r of the outerjoin involves parameters
x̄r.

If the right hand side r is uncorrelated, i.e., x̄r = ∅,
then the α removal proceeds similarly to the expression-
free FROM case. Namely, the temporary T = δπbarxl,x̄rE
is computed first. Then the ground of l is replaced with
T (the resulting expression denoted as l(T)) and the usual
combination of γNEST and outerjoin accomplishes the required
nesting. In summary, the rewritten plan is

T 7→ δπbarxl,x̄rE;
E ./ γx̄l;NEST(Ō)(l(T) ./c r)

where O is the list of binding attributes of l and r.
If the right hand side r is also correlated (i.e., x̄r 6= ∅) then

the ground of r is also replaced with T . Note however that in
order to avoid cardinality errors in the result, a tuple of l(T)
should match a tuple of r(T) only if they are derived from
the same tuple of T . Technically this intuition is captured by
changing accordingly the condition of the ./. In particular,
let us denote by r′ the plan r/(x̄r 7→ x̄′r), i.e., the plan
that results from the substitution of the parameters x̄r with
parameters with fresh names x̄r

′. Then the needed rewriting
is

T 7→ δπbarxl,x̄rE;
E ./ γx̄l;NEST(Ō)(l(T) ./x̄r=x̄′r∧c

r′(T))

It is straightforward to see how the above generalizes to
the case where the plan of α were not simply an outerjoin
but also included grouping, top-k etc.

4.6 Distributor

cust_key =
cust_ref

Main plan

!

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

! selected
= true

nation_ref =
nation_key

!nation_key, name

nation_ref =
nation_key

!nation_key, order_year;
SUM(total_price) ! sum_price

!nation_key;Topk3 ("sum_price)

!nation_key;
NEST(order_year, sum_price)
! aggregates

!nation_key,
order_year, sum_price

mem

db

db

db

db

mem

mem

mem

db

db

db

db

db

db

db

db

db

db

db

T1

Ground

Ground

Ground Ground Ground

db

mem

db

db

db

Ground
db

ScNasession
.selected_nations ! s;
s.nation_ref,
s.selected

ScNadb.nations
! n;
n.nation_key,
n.name

ScNaT1 ! t;
t.nation_key,
t.name

ScNadb.customers
! c;
c.cust_key,
c.nation_ref

ScNadb.orders ! o;
o.cust_ref,
o.order_date,
o.total_price

ScNaT1 ! t;
t.nation_key

!date_part('year', order_date)
! order_year

Figure 11: Plan after distributor’s source decisions

The distributor decides the source where each operator
will be executed, with the objective of outputting efficient
physical plans that limit the number of tuples transferred
between sources. Operators are either source-specific or
flexible. A source-specific operator is: (1) a ScNa (2) an
α (3) a λf where f is a source-specific function, or (4)
a γḠ;f1→N1,...,fm→Nm

where one or more of f1 . . . fm are
source-specific. All other operators are flexible. For each
operator, the distributor provides a source decision indicat-

ing whether it is executed in-memory or in-database.
The distributor is tuned for characteristics common to

most web applications: persistent data in the database data
are orders of magnitude larger than both (1) the transient
memory data input by the SQL++ query, and (2) the output
of the SQL++ query as displayed on the page. Therefore,
the source decision of an operator is determined through
bottom-up sub-plan maximization as follows: (i) If an oper-
ator is source-specific, it is decided to be executed in that
source. (ii) If an n-ary operator (i.e. join, ∪ and ∩, which are
all flexible) has children distributed across both sources, the
operator is decided to be in-database, and the in-memory
inputs are copied to the database. This is because copying
in-memory inputs to the database is much faster than the
opposite. (iii) Otherwise, the operator is flexible and has
children within a single source, therefore the operator is de-
cided to be in the same source as its children, in order to
recursively maximize the size of sub-plans.

Figure 11 shows the plan after the distributor has deter-
mined source decisions, as denoted with db or mem. Cuts (i.e.
data transfers) between a pair of adjacent in-memory and in-
database operators are denoted with dotted perpendicular
lines.

4.7 Plan-to-SQL Translation

T db
i ! Pi

mem

T db
j ! Pj

mem

Pj
mem

Pdb

Pk
mem

Pi
mem

Pk
mem

SendQuerymem

!P db

Figure 12: Translating Maximal Sub-plans to SQL

Figure 12 illustrates how the plan-to-SQL translator trans-
lates maximal sub-plans to SQL. Given source decisions on
each operator, the plan-to-SQL translator performs the fol-
lowing recursively: Each maximal in-database sub-plan P db

is replaced by a SendQuerymemS operator, where S is the SQL
statement translated from P db. As a special case, when
SendQuerymemS is the root operator of e in an T db ← e, a tem-
porary table T is created directly from the results of S with-
out any data transfer. Each maximal in-memory sub-plan
Qmem that is an input to P db is moved to a new Udb ← Qmem,
which creates a temporary table U in the database and bulk
copies the result of evaluating Q into U. U is subsequently
utilized by S. The final plan of the running example as
output by the plan-to-SQL translator is shown in Figure 13.

4.8 Alternate Denormalized-sets Plan
To illustrate an alternate rewrite rule for replacing α op-

erators, consider the denormalized-sets plan in Figure 14,
which is Figure 7 rewritten with the alternate rule, and aug-
mented with source decisions for ease of exposition. The
α operator is replaced, but with key differences from the
normalized-sets plan of Figure 10. As quantified by ex-
periments in Section 5.2, this denormalized-sets plan has
two inherent performance limitations as compared to the
normalized-sets plan.

Main plan

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

! selected
= true

SendQuery

!nation_key;
NEST(order_year, sum_price)
! aggregates

SendQuery

!"#"$%&&'()*+',-./0&+12.1,/.(10&345,61*7.&

89:;&&&&<&

&!"#"$%&,=>?0&

&&&&&&&&1+@,'45A.1&:B"9&<&

&&&&&&&&&&CD9%E%E:F&GH&,=>'()*+',-./&

&&&&&&&&&&:9I"9&GH&,=>345,61*7.&

&&&&&&&&J&D!&1+@,*2&

&89:;&&&<&

&&!"#"$%&&&'()*+',-./0&

&&&&&&&&&&&2().,6(1)<K/.(1K0+>+12.1,2().J&

&&&&&&&&&&&D!&+12.1,/.(10&

&&&&&&&&&&&!L;<+>)+)(M,61*7.J&D!&345,61*7.&

&&89:;&&&&&743)+5.13&D!&7&

&&N:EF&&&&&+12.13&D!&+&:F&7>743),-./&O&+>743),1.P&

&&N:EF&&&&&<&!"#"$%&IE!%EF$%&

&&&&&&&&&&&&&&&&&&&&'()*+',-./&

&&&&&&&&&&&&&89:;&&&%Q&J&D!&,Q&

&&&&&&&&&&&:F&7>'()*+',1.P&O&,Q>'()*+',-./&

&&R9:LC&GH&'()*+',-./0&

&&&&&&&&&&&2().,6(1)<K/.(1K0&+>+12.1,2().J&

&J&D!&,=&

J&D!&,S&

TU"9"&&&1+@,*2&VO&S&

!"#"$%&'()*+',-./0&&

&&&&&&&'(5.&

89:;&&&%Q&

!"#"$%&'()*+',-./0&&&

&&&&&&&'(5.&&

89:;&&&'()*+'3&D!&'&

N:EF&&&%=>'()*+',1.P&O&

&&&&&&&'>'()*+',-./&

mem
mem

mem

mem

mem

db

db

mem

T1

T2

Ground
mem

ScNasession
.selected_nations ! s;
s.nation_ref,
s.selected

Figure 13: Plan after translating in-database sub-plans to
SQL

cust_key = cust_ref

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

grid
system

! selected
= true

nation_ref =
nation_key

!nation_key, name

!date_part('year', order_date)
! order_year

!nation_key, name, order_year;
SUM(total_price) ! sum_price

!nation_key, name;Topk3 ("sum_price)

!nation_key, name;
NEST(order_year, sum_price) ! aggregates

nation_key =
nation_ref

!nation_key, name, order_year, sum_price
db

mem

mem

mem

db

db

db

db

db

db

db
db

db db

ScNasession
.selected_nations
! s;
s.nation_ref,
s.selected

ScNadb.nations
! n;
n.nation_key,
n.name

ScNadb.customers
! c;
c.cust_key,
c.nation_ref

ScNadb.orders ! o;
o.cust_ref,
o.order_date,
o.total_price

Ground

Ground

Ground
Ground

mem

db

db

Figure 14: Denormalized-sets plan by alternate rewrite rule

First, observe that for αP→N (E) where E has correlated
attributesX1, . . . , Xn, there is a functional dependency from
X1, . . . , Xn to the attributes of N . For example,
nation_key→ order_year,sum_price. In the denormalized-
sets plan, ./ denormalizes intermediate results by joining
on X1, . . . , Xn, thus introducing more non-correlated at-
tributes and/or tuples from its LHS. This creates two types
of performance penalties in Figure 14. (1) Horizontal redun-
dancy: ./ outputs wider tuples due to the additional name
attribute, which increases processing costs of the γSUM, χ, π
and γNEST operators above, as well as the data transfer cost
across the cut. (2) Vertical redundancy: ./ outputs more
tuples than its RHS. If the correlation attributes were other
than nation_key and have duplicate values in the LHS, each
RHS tuple will be copied once per duplicate value, and the

additional tuples will similarly increase subsequent process-
ing and data transfer costs. In contrast, the normalized-sets
plan avoids these redundancies by adding Scan and δ opera-
tors (which is reminiscent of the classical semi-join technique
in distributed query processing, and deferring ./ till after all
other operators.

Second, recall that ./ is not a commutative operator,
and thus restricts join reordering optimizations6. In the
denormalized-sets plans, ./ is decided to be in-database,
thus the resulting SQL query specifies (T3 ./ nations) ./
(customers ./ orders), where T3 (not shown in figure) is a
temporary table bulk loaded with session.selected_nations
tuples. Due to ./, no join reordering occurs, thus the database
first executes the expensive join between customers and
orders, which produces as many tuples as orders. In con-
trast, the normalized-sets plans places ./ above the memory-
specific γNEST, causing the distributor to decide ./ to be in-
memory. The resulting SQL query only has ./ operators, i.e.
a three-way join T1 ./ customers ./ orders, where T1 has
nation_keys of selected nations (Figure 13). The database
reorders joins and first executes T1 ./ customers, which is
an order of magnitude more selective than customers ./
orders, thus producing a substantially more efficient plan.

5. EXPERIMENTAL EVALUATION
We demonstrate the benefits of holistic optimization by

experimentally evaluating Collage’s performance speedup on
the running example of Figure 1. All experiments are run
with PostgreSQL 9.2 on Mac OS X 10.6, using 512 MB of
RAM for PostgreSQL’s memory buffers to cache random
disk accesses, and 1 GB of RAM for OS X’s disk cache
to cache sequential disk accesses. With a scale factor of
3 for the TPC-H benchmark [22], the data generator pro-
duces a database that contains 25 nations, 450,000 cus-
tomers and 4,500,000 orders. Running times are based on
warm buffers/caches.

Four queries/plans are evaluated: (1) RoR denotes the
tuple-at-a-time queries produced by the RoR code of Fig-
ure 3 (2) T denotes the initial tuple-at-a-time plan in Fig-
ure 7, (3) NS denotes the normalized-sets plan in Figure 10
as output by the apply-plan rewrite rule (4) DS denotes the
denormalized-sets plan in Figure 14 as output by the alter-
nate rewrite rule.

Section 5.1 shows the speedup of set-at-a-time over tuple-
at-a-time semantics by comparing the running time of the
rewritten NS against the initial T and mainstream RoR. Sec-
tion 5.2 validates our choice of rewrite rules by demonstrat-
ing the superiority of NS over the alternate DS.

5.1 Tuple-at-a-time vs Set-at-a-time plans
In Figure 15, the number of selected nations k is varied

from 5 to 25 to show the speedup of set-at-a-time versus
tuple-at-a-time semantics at different sizes of results dis-
played on pages. Due to their tuple-at-a-time semantics,
both RoR and T issue k queries, i.e. one query per selected
nation. The join between customers and orders, which is
an expensive operation in each query since the low join se-
lectivity causes Postgresql to scan both tables sequentially,
is evaluated k times in total. Not only do the running times

6While database researchers have shown that rewriting ./
and other join operators to a “generalized-join” operator can
enable further join reordering [12], we did not find a RDBMS
that implements this optimization.

! "# "! $# $!
$%&'() !"# $"! %&"' %(") %*"(
++,-%,'. &&"!)"(#!"! ''"* %+#"'
/0/ &)"()!"# !)"& $'"% %%#"(
1+))23+
45167(6/0/8 ("&)"$ *"' !"(!"#

, %+, %, &+, &*,
-.-, &)"(,)!"#, !)"&, $'"%, %%#"(,
/, &&"!,)*"(, #!"!, ''"*, %+#"',
01, !"#, $"!, %&"', %("), %*"(,
1233452,

601,78,-.-9, ("&,)"$, *"', !"(, !"#,

+,

&+,

)+,

#+,

'+,

%++,

%&+,

%)+,

9:
;
)6
4(
)<
0.

2(
86

=>653;?)@60A6(),)<B)26.'C0.(62:(+,'-)260.6+'D)6

Figure 15: Speedup at different number of selected nations
displayed on page

increase proportionally with k, the linear increase also dom-
inates the constant term. That is, the running time for 25
nations is almost 5 times that of 5 nations.

On the other hand, the running time of NS increases with
a much gentler slope. Since NS scans tables customers and
orders once respectively, it saves more scans over RoR and
T with increasing k: speedup of NS over RoR increases from
3.2x to 7.6x as k increases from 5 to 25. Note that NS in-
creases slightly with k as increasing selected nations will
also increase the number of intermediate result tuples input
by operators, in particular γSUM. These data points illustrate
that visualizations on pages that require more nested data to
be retrieved (such as the bar charts of Figure 1) will benefit
increasingly and dramatically from set-at-a-time optimiza-
tions.

!"#$%& '(()((*(+
,"&%-# .((+'((**/'(())*/'((
*01"23 !"# $ %% %&
4556706"& !"' (()(&)
8%8 !") (# *! ()
9533:-5
;!9<=2<8%8> !"* $"()"* &"#

+++++++++++++++,,-./0,*!"12-3415.6+78+12-3415.69+
+++++++++++++++,,-./0,*%"4,4:;.:;2-.+78+4,4:;.:;2-.9+
+++++++++++++++8<=>7??+,,-./0,*%"4,-4-2@0:3A.B+78+CD/,A2@@,,E&#
++++++++++++FGH=
++++++++++++++++++>
+++++++++++++++++++++8I?IJK+7??
++++++++++++++++++++++++,,02:2/,("1,12-3415.6+78+12-3415.6
+++++++++++++++++++++FGH=
++++++++++++++++++++++++,,02:2/,(+78+,,02:2/,(
++++++++++++++++++B+78+,,-./0,*!
++++++++++++++++++LMMIG+NHLM+
+++++++++++++++++++++>
++++++++++++++++++++++++8I?IJK+7??
+++++++++++++++++++++++++++4"4,ADC-5.6+78+4,ADC-5.69+
+++++++++++++++++++++++++++4"4,-4-2@0:3A.+78+4,-4-2@0:3A.9+
+++++++++++++++++++++++++++4"4,4:;.:;2-.+78+4,4:;.:;2-.
++++++++++++++++++++++++FGH=
+++++++++++++++++++++++++++0DO@3A"4:;.:C+78+4
+++++++++++++++++++++B+78+,,-./0,*%
+++++++++++++++++++++LMMIG+NHLM+
+++++++++++++++++++++>
++++++++++++++++++++++++8I?IJK+7??
+++++++++++++++++++++++++++A"A,ADC-5.6+78+A,ADC-5.69+
+++++++++++++++++++++++++++A"A,12-3415.6+78+A,12-3415.6
++++++++++++++++++++++++FGH=
+++++++++++++++++++++++++++0DO@3A"ADC-4/.:C,*!!+78+A

P!!+)*!!+ &&9*!!+ %%&9*!!+
G4G+ !")+ (#+ *!+ ()+
K+ !"'+ ((+)(+ &)+
M8+ !"#+ $+ %%+ %&+
80..;D0+

>M8+EC+G4GB+ !"*+ $"(+)"*+ &"#+

!+

%!+

&!+

(!+

)!+

*!+

$!+

?$
@
3<
;2
3A
%&

:2
><

,"&%-#B<!-@C3D<%E<A-2#%@3D2<53D<&"F%&<$&<:"#"C"23<

Figure 16: Speedup at different database join selectivities
(due to different number of nations in database)

Figure 16 shows how different join selectivities in the database
affects speedup. To vary join selectivities, different TPC-H
database instances are created by changing the total num-
ber of nations from 25 to 500, 100, 20 and 4 respectively.
The total number of customers and orders remain the same,
but customers are evenly re-distributed among the avail-
able nations. This produces a logarithmic scale of nation-
to-customer fanouts: 900, 4,500, 22,500 and 112,500. The
number of selected nations is fixed at 10, except in the
last fanout where only 4 nations can be displayed. Higher
nation-to-customer fanout corresponds to lower selectivity
for nation ./ customers.

At the high selectivity of fanout 900, PostgreSQL uses
index lookups against both customers and orders for all
of RoR, T and NS. In this case, NS does not increase perfor-
mance over RoR, and in fact incurs a 0.1s penalty over T

due to the added partition χ operator. However, at the low
selectivities of fanouts 4,500 and 22,500, RoR and T incurs
sequential scans of customers and index scans of orders,
whereas NS incurs sequential scans of both customers and
orders. This is a classical example of when low selectivity
leads to sequential scans being more efficient than multiple
index lookups, thus NS shows a speedup of 4.5-6.3x. At the
lowest selectivity of fanout 112,500, all plans incur sequential
scans for both tables, thus the reasons for speedup is iden-
tical to that of Figure 15. These data points illustrate that
when databases increase in size, the consequent increase in
fanouts (and hence lowering of selectivities) in aggregation
queries will lead to increased benefits from set-at-a-time op-
timizations. Furthermore, since NS wins by large margins
for expensive queries and remains competitive for inexpen-
sive ones, we believe that the apply-plan rewriting should
be applied whenever possible.

5.2 Denormalized-sets vs Normalized-sets plans

Fanout
900 4,500 22,500 112,500

Width
(bytes) DS (s) NS DS NS DS NS DS NS

4 0.8 0.9 12.4 6.4 15.0 11.1 16.2 11.9
20 0.8 0.9 17.3 6.4 18.0 11.1 18.0 12.4

100 0.9 0.9 17.0 6.4 19.2 11.2 22.2 12.0
500 1.0 0.9 25.8 6.4 21.0 11.2 25.5 12.0

2,500 2.6 0.9 65.7 6.4 41.6 11.1 58.0 12.0

Table 1: Speedup at different nation table widths and
database join selectivities

Table 1 compares the running times between DS and NS.
Two parameters are varied: (a) the width of a tuple in the
nation table along a logarithmic scale, by changing the char-
acter length of the name column (b) the fanout of customers
per nation, by using the identical methodology and fanout
values as in Section 5.1. The number of selected nations
is also fixed at 10. Both parameters respectively highlight
the two performance limitations of DS as explained in Sec-
tion 4.8.

From top-to-bottom for increasing tuple widths, the run-
ning time of DS increases proportionally to the tuple width,
whereas NS is unaffected. This illustrates the horizontal re-
dundancy experienced in DS, and the effectiveness of the
Scan and δ operators in NS for avoiding these redundan-
cies. Note that vertical redundancy is not demonstrated
here, since the correlated attribute nation_key is unique in
the LHS of ./, otherwise DS will have an even higher penalty.

From left-to-right for increasing fanouts (i.e. lower nation-
customer selectivities), the running times for both DS and
NS increase. Recall that DS executes (T3 ./ nations) ./
(customers ./ orders) without the benefit of any join re-
ordering. With a lower selectivity, the ./ on the large in-
termediate result customers ./ orders becomes more ex-
pensive, thus DS increases in running time. On the other
hand, NS executes (T1 ./ customers) ./ orders after join
reordering, thus it is affected to a lesser extent by the lower
selectivity since customers is an order of magnitude smaller
than customers ./ orders.

These data points illustrate that when tables become wider
and fanouts increase, NS will have increased benefits over
DS, thus providing empirical justification for Collage’s apply-
plan rewriting to output NS plans.

6. RELATED WORK

Database and programming language research work has
investigated the problem of efficient and/or single-language
access, both before and after the advent of ORMs.
Single access via semistructured query languages Strudel [11]
showed that content-publishing web pages can be conve-
niently specified using a semistructured XML query lan-
guage. Later, XPERANTO [21] and SilkRoute [10] ad-
dressed the optimization of XML queries that produce nested
results by accessing an SQL database. The semistructured
query is executed by emitting one or more SQL queries to
the database and consequently combining the results.

Unlike Collage, they do not consider analytics queries (i.e.,
queries with group-by, top-k), memory-database distribu-
tion or navigations into external objects (and the compli-
cations they introduce on the reduction of tuple-at-atime
to set-at-a-time). Due to the limited (with respect to Col-
lage) scope of their queries and the respective limited scope
of their optimization decisions, they do not need Collage’s
algebra rewriting-based query processing engine.

In the context of non-distributed select-join nested queries
(i.e., nested queries over just an SQL database, group-by and
top-k) XPERANTO, Silkroute and Collage still have differ-
ences. XPERANTO produces an SQL query qi for each col-
lection ci of the nested query (be it the top level connection
or a nested collection) by left outer-joining all the FROM-
WHERE clauses on the path to ci. Unlike Collage, each
sub-query inefficiently uses the entire table produced for the
parent collection although only the correlating attributes are
required.
Tuple-at-a-time to set-at-a-time reduction in SQL
WHERE

Many research efforts have been devoted to the sub-query
decorrelation in the WHERE clause since the 1980’s. Kim [19]
first developed the query transformation algorithms to rewrite
nested queries into equivalent, flat queries which can be
processed more efficiently. Dayal [9], Muralikrishna [20],
Ganski-Wong [14] extended the work to support subqueries
with aggregates and more than one level of nesting.

Galindo-Legaria and Joshi [13] represents the subqueries
in SQL Server using apply operator (as Collage does), and
then removing the correlations by transforming them into
joins,semi-joins, outer-joins, etc., according to a set of rules
built upon. Other works [1, 6, 5] consider the prob-
lem when correlated subqueries occur within positive and
negative existential (ANY, EXISTS, IN) or universal (ALL)
quantification. The techniques all involve extending the
standard relational algebra. We consider them as comple-
mentary to work ours.
Optimization of database-accessing application code
A second line of research adopts a conventional architecture,
where code written in a conventional application program-
ming language (e.g., Java) issues SQL statements directly
or indirectly through the use of an ORM. These works ana-
lyze the code and, consequently, they generally rewrite the
application code to improve data access performance.

Loop lifting [16] is a technique originally developed to
handle XQuery FLOWR construct using relational algebra
plans. Later, it was generalized and extended to the FERRY
compilation framework [18], with a richer data model and
more language constructs to handle queries in more general
programming languages.

Finally, StatusQuo [7] automatically partitions the ap-
plication computation between the application server and

database server.

7. REFERENCES
[1] M. O. Akinde and M. H. Böhlen. Efficient

computation of subqueries in complex olap. In ICDE,
pages 163–174, 2003.

[2] Anonymized due to double-blind requirements.

[3] Anonymized due to double-blind requirements.

[4] Anonymized due to double-blind requirements.

[5] A. Badia. Computing SQL queries with boolean
aggregates. In Data Warehousing and Knowledge
Discovery, pages 391–400. Springer, 2003.

[6] B. Cao and A. Badia. A nested relational approach to
processing SQL subqueries. In Proceedings of the 2005
ACM SIGMOD international conference on
Management of data, pages 191–202. ACM, 2005.

[7] A. Cheung, O. Arden, S. M. A. Solar-Lezama, and
A. C. Myers. Statusquo: Making familiar abstractions
perform using program analysis. CIDR, 2013.

[8] W. R. Cook and A. H. Ibrahim. Integrating
programming languages and databases: What is the
problem. In In ODBMS.ORG, Expert Article, 2005.

[9] U. Dayal. Of nests and trees: A unified approach to
processing queries that contain nested subqueries,
aggregates, and quantifiers. In VLDB, pages 197–208,
1987.

[10] M. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middle-ware queries. In ACM
SIGMOD Record, volume 30, pages 103–114. ACM,
2001.

[11] M. F. Fernández, D. Florescu, A. Y. Levy, and
D. Suciu. Declarative specification of web sites with
Strudel. VLDB J., 9(1):38–55, 2000.

[12] C. Galindo-Legaria and A. Rosenthal. Outerjoin
simplification and reordering for query optimization.
ACM Transactions on Database Systems (TODS),
22(1):43–74, 1997.

[13] C. A. Galindo-Legaria and M. Joshi. Orthogonal
optimization of subqueries and aggregation. In
SIGMOD Conference, pages 571–581, 2001.

[14] R. A. Ganski and H. K. T. Wong. Optimization of
nested SQL queries revisited. In SIGMOD Conference,
pages 23–33, 1987.

[15] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book, chapter 5,
pages 205–241. Prentice-Hall, 2009.

[16] T. Grust. Purely relational flwors. In XIME-P,
volume 37, 2005.

[17] T. Grust and M. Mayr. A deep embedding of queries
into Ruby. In ICDE Conference, 2012.

[18] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber.
Ferry: database-supported program execution. In
SIGMOD Conference, pages 1063–1066, 2009.

[19] W. Kim. On optimizing an SQL-like nested query.
ACM Trans. Database Syst., 7(3):443–469, 1982.

[20] M. Muralikrishna. Optimization and dataflow
algorithms for nested tree queries. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), volume 516, 1989.

[21] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. The
VLDB Journal, 10:133–154, 2001.

[22] Tpc-h homepage. http://www.tpc.org/tpch/.

[23] Wikipedia. Template processor, 2013. Accessed Aug
16 2013. http://en.wikipedia.org/w/index.php?
title=Template_processor&oldid=567590946.

[24] F. Yang, J. Shanmugasundaram, M. Riedewald, and
J. Gehrke. Hilda: A high-level language for
data-drivenweb applications. In ICDE, page 32, 2006.

http://www.tpc.org/tpch/
http://en.wikipedia.org/w/index.php?title=Template_processor&oldid=567590946
http://en.wikipedia.org/w/index.php?title=Template_processor&oldid=567590946

	Introduction
	Contributions

	Architecture, Syntax and Semantics
	Data Model
	Query Language
	Plans and Algebra Overview
	Apply-plan Rewriter
	Expression-free FROM with no total aggregation
	The total aggregation case
	Unrestricted FROM clause
	Distributor
	Plan-to-SQL Translation
	Alternate Denormalized-sets Plan

	Experimental Evaluation
	Tuple-at-a-time vs Set-at-a-time plans
	Denormalized-sets vs Normalized-sets plans

	Related Work
	References

