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ABSTRACT
We consider Location-based Service (LBS) settings, where a LBS
provider logs the requests sent by mobile device users over a period
of time and later wants to publish/share these logs. Log sharing can
be extremely valuable for advertising, data mining research and
network management, but it poses a serious threat to the privacy
of LBS users. Sender anonymity solutions prevent a malicious at-
tacker from inferring the interests of LBS users by associating them
with their service requests after gaining access to the anonymized
logs. With the fast-increasing adoption of smartphones and the con-
cern that historic user trajectories are becoming more accessible, it
becomes necessary for any sender anonymity solution to protect
against attackers that are trajectory-aware (i.e. have access to his-
toric user trajectories) as well as policy-aware (i.e they know the
log anonymization policy). We call such attackers TP-aware.

This paper introduces a first privacy guarantee against TP-aware
attackers, called TP-aware sender k-anonymity. It turns out that
there are many possible TP-aware anonymizations for the same
LBS log, each with a different utility to the consumer of the anonym-
ized log. The problem of finding the optimal TP-aware anonymiza-
tion is investigated. We show that trajectory-awareness renders the
problem computationally harder than the trajectory-unaware vari-
ants found in the literature (NP-complete in the size of the log, ver-
sus PTIME). We describe a PTIME l-approximation algorithm for
trajectories of length l and empirically show that it scales to large
LBS logs (up to 2 million users).

1. INTRODUCTION
A Location-based service (LBS)[7] is an information or enter-

tainment service, accessible with mobile devices through the mo-
bile network and utilizing the geographic location of the mobile de-
vice (e.g. “find the nearest gas station”, “Thai restaurant”, “hospi-
tal”). Recently, the availability and usage of Location-based service
has increased significantly because the location of mobile devices
can be computed automatically (without any input from the user)
by the wireless network (via triangulation of mobile device signal)
or by the mobile devices themselves (via the embedded GPS chip).

Most of the popular Location-based services such as Facebook
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Places [2], FourSquare [3], Gowalla [5] and Loopt [6] log the LBS
requests sent by their users. The data retention policies of these
LBSs have provisions that describe this intent. An LBS request log
is of great value to advertisers and researchers as it can be used to
answer queries such as “find the requests sent by users that move
from location A to location B” or “requests sent by the same user
over a period of time”. But an LBS request log may also contain
sensitive requests that the user wishes to keep private (e.g. for the
local campaign headquarter of a given political party, spiritual cen-
ter for a given religion, etc.). In the event that an attacker gains
access to the LBS request log, the sender’s privacy is at risk.

In this paper we investigate how to anonymize the LBS request
log so as to protect the identity of the LBS request senders even if
the log falls in the hands of attackers who also gain access to a) the
sequence of location-timestamp pairs (a.k.a. trajectory) visited by
the mobile users for the duration the LBS requests are logged and b)
the anonymization policy used to provide this protection. Assump-
tion b) is based on a well-accepted principle of designing a private
and secure system - “The design is not a secret” [27]. Assumption
a) is a realization of the fact that an attacker can obtain the locations
visited by the users from many sources, including the wireless ser-
vice provider, or location computing servers such as SkyHook [8],
or user surveillance. A recent article in the Wall Street Journal [9]
and a joint study [17] by Intel Labs, Penn State, and Duke Univer-
sity provide evidence that advertisers are logging the trajectories
of the mobile device users. The attacker may gain access to this
information via hacking, financial agreement and subpoena.

In the LBS context, the best-studied identity protection measure
is known as sender k-anonymity [20, 19, 24, 20, 16], which is in-
tended to guarantee that the content of an LBS request and the pre-
cise location of the users are insufficient to distinguish among the
actual sender and k-1 other possible senders. This guarantee is tar-
geted towards the LBS request sent by the user at a given instant of
time. The underlying model does not consider the sequence of LBS
requests sent by the user over time. We refer to this privacy guar-
antee as snapshot sender k-anonymity, and any solution enforcing
it as snapshot k-anonymization. As shown below, snapshot sender
k-anonymity protects only against attackers who are unaware of the
user trajectories, i.e. treating requests at different instants as inde-
pendent even if they actually originate from the same user. Typical
snapshot anonymization algorithms [19, 24, 20, 16] are based on
hiding the sender’s precise location l in the request, substituting
instead a cloak, i.e. a region containing l. The cloak is usually
chosen from among regions of a pre-defined shape (circular, rect-
angular etc.), to include locations of at least k-1 other mobile users.
We refer to the cloak selection policy as snapshot k-anonymous
policy. We illustrate a snapshot 2-anonymous policy next.

EXAMPLE 1. Figure 1 and Figure 2 show the location of five
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Figure 1: User locations at t1
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Figure 2: User locations at t2

P1 1→ R2, 2→ R2, 3→ R2, 4→ R3, 5→ R3, · · ·
P2 1→ R3, 2→ R4, 3→ R4, 4→ R3, 5→ R3, · · ·

Table 1: Snapshot policy-aware 2-anonymous policies

users at two instants t1 and t2. Table 1 shows the cloak selection
policies P1 and P2 that select cloaks from the quadrants of a static
quad-tree based partitioning of the geographic space. Suppose at
instant t1, user 1 sends an LBS request L1. Policy P1 anonymizes
L1 by substituting the location in the request with the cloak R2

(shown in Figure 1). Note that R2 includes the location of users
1, 2, 3 and a request sent by any one them is anonymized by P1

using the same cloak R2. Thus when an attacker, who has access
to the user locations at t1 and policy P1, observes the anonymized
request with cloak R2, he cannot distinguish whether the sender is
user 1 or 2 or 3. Thus P1 provides snapshot sender 2-anonymity.

Suppose user 1 sends another LBS request L2 at instant t2. Pol-
icy P2 anonymizes L2 by substituting the locations in the request
with cloak R3 (shown in Figure 2). An attacker who has access to
user locations at t2 and policy P2 cannot distinguish the sender
among users 1, 4 and 5 since requests from all these users are
anonymized usingR3. ThusP2 provides snapshot sender 2-anonymity.
Note that policy P2 does not take into account the user locations
at instant t1 and their anonymizations using policy P1 (and vice
versa). 2

A natural first candidate solution to anonymizing LBS request logs
is to leverage previous work on snapshot k-anonymization [19, 24,
20, 16], anonymizing for each time instant t the snapshot of re-
quests at t (independently of how snapshots at other instants are
anonymized). Unfortunately snapshot-by-snapshot anonymization
of a request log does not provide sender k-anonymity against an
attacker who has access to the user trajectories for the period the
requests are logged. The next example illustrates this point.

EXAMPLE 2. Recall the setting in Example 1 and assume that
the LBS logs the user requests. To anonymize the log, the LBS uses
policies P1 and P2. Moreover, user ids are replaced with meaning-
less identifiers, however in order to preserve the linkage between
requests sent from the same trajectory, the same identifier is used
for all requests sent by the same user.

Assume the anonymized request log is observed by an attacker
who knows P1 and P2 and the user locations at t1 and t2. As in
Example 1, the attacker can use the knowledge of the policies to
limit the first request’s sender to one of {1, 2, 3} and the second
request’s sender to one of {1, 4, 5}. Next he uses the additional
knowledge that both requests where sent from the same user trajec-
tory: he intersects the two sets of potential senders and concludes
that user 1 must be the sender, breaching sender 2-anonymity! 2

In Example 2 the attacker is able to breach sender 2-anonymity
because the request log enables him to associate the two requests
to the same trajectory and the snapshot 2-anonymization policy P2

does not take into account the anonymization of request from user
1 at instant t1 using policy P1. Thus the above breach could have
been avoided if either the two requests were not linked with the
same trajectory in the anonymized log, or if instead of policy P2

we used a policy P ′
2 that anonymizes requests from users 1, 2 and

3 using the regionR3. While we are free to change the anonymiza-
tion policy to preserve sender k-anonymity, we do not wish to en-
tirely remove the association of requests with a trajectory in the
anonymized LBS request log since this is valuable information for
analytics. This poses an interesting challenge for the LBS: how can
it publish an anonymized LBS request log that includes some form
of linkage information between requests and trajectories, without
jeopardizing k-anonymity of the users?

The LBS needs to ensure anonymity against an attacker who
knows the user trajectories for the period the LBS requests are
logged (we call the attacker T-aware) and who knows the “design”
i.e. the policy used to pick cloaks for anonymizing requests (P-
aware attacker). We call this problem the offline TP-aware sender
k-anonymity problem since an LBS request r can be anonymized
taking into account all request in the log, including those sent after
r. We contrast this with the problem of online TP-aware sender k-
anonymity, in which (i) the LBS is not trusted, therefore an LBS
request is anonymized before it is sent to the LBS, and (ii) the
anonymization of an LBS request takes into account only the his-
tory of requests so far and cannot be altered after observing subse-
quent requests by the same user. We leave the problem of online
TP-aware sender k-anonymity for future work.

In this paper, we propose a solution to the offline TP-aware sender
k-anonymity problem. It consists of publishing a sequence of cloaks
to anonymize the sequence of LBS requests sent by a user over a
period of time. With each cloak in the sequence we associate a set
of LBS requests devoid of any location and sender identity infor-
mation. The LBS requests associated with a sequence S of cloaks
represents LBS requests by users whose trajectories pass through
S. We thus preserve some association between LBS requests and
the trajectories they were sent along (though we introduce some
uncertainty as requests are not tied to a single trajectory, but rather
to a “bundle” of trajectories compatible with S). To provide TP-
aware sender k-anonymity, we choose S such that at least k distinct
user trajectories are anonymized to S.

The technical challenge we need to solve is to find, among the
(exponentially) many possible ways of bundling user trajectories
together, the one that results in the maximum utility for the con-
sumer of the anonymized log. Intuitively, we are looking to mini-
mize the cloak sizes, so as to improve the precision of the anonymized
information.

Our contributions include the following:
[1] We identify and formulate the problem of offline sender k-

anonymization of LBS request logs, which protects against the class
of trajectory- and policy-aware attackers. We define a novel privacy
guarantee, TP-aware sender k-anonymity.

[2] We study the problem of finding, among all the offline poli-
cies that provide TP-aware sender k-anonymity, one with the op-
timum utility for the consumer of the anonymized LBS log. We
show that finding the optimum offline policy that uses cloaks cho-
sen among the quadrants of a quad-tree based partition of the map
is NP-Complete. This is significant, showing that guarding against
T-aware attackers is computationally harder than against T-unaware
attackers: it was shown in [16] that for such cloak types optimum
snapshot k-anonymization is in PTIME.

[3] We show that optimum TP-aware sender k-anonymity is PTIME-
approximable (i.e. one can always find, in polynomial time, an
anonymization whose utility is within well defined bounds rela-



tive to the optimum utility). In particular, we describe a novel l-
approximation algorithm to anonymize an LBS request log span-
ning user trajectories of length l.

[4] We implement and experimentally evaluate our anonymiza-
tion algorithm and show that it is practical and scales well with
the number of user trajectories: it takes less than 4 minutes to
anonymize 2 million trajectories of length 30 for users moving
around the San Francisco Bay area. This is a performant running
time for an offline algorithm, especially since we show that alter-
nate solutions are impractically slow and/or provide worse approx-
imations.

Paper outline. The remainder of the paper is organized as follows.
In Section 2, we describe a prevailing model of an LBS. We define
offline TP-aware sender k-anonymity in Section 3 and describe our
solution that uses a sequence of cloaks to preserve TP-aware sender
k-anonymity while publishing some linkage information between
anonymized requests and bundle of user trajectories. In Section 4
we show that finding the optimum offline policy that provides TP-
aware k-anonymity is NP-hard and hence in Section 4.1 we propose
a polynomial time approximation algorithm. In Section 4.1.3 we
describe optimizations and our implementation of the optimized
approximation algorithm. We report on the experimental evaluation
in Section 5, discuss related work in Section 6 and conclude in
Section 7.

2. LOCATION BASED SERVICES
This section introduces a prevailing model of location-based ser-

vices, based on automatic computation of the location of user mo-
bile devices. It describes various entities in the LBS ecosystem, the
data flow among these entities and the data logged by them.

As shown in Figure 3 there are four core elements in the delivery
of a location-based service: the user making a request, typically
called the sender, the (wireless) Communication Service Provider,
denoted as CSP, the location server that computes the location of
the mobile device, denoted as LS, and the Location Based Service
(LBS) provider, denoted as LBS. We view the CSP, Location Server
and LBS provider to be trusted agents and assume that the commu-
nication between them is secure.

To access an LBS, a sender uses an application on the mobile
device (typically provided by the LBS). The application fetches
the location from the run-time environment on the mobile device,
which in turn gets it from the location server. The location server
is a specialized network component in CSP’s network, known as
Mobile Positioning Center (MPC) in the CDMA standard, that pro-
vides access to device locations for E911 [1] and other location-
based services. The location can also be obtained from a service
that operates outside the CSPs network and can compute the lo-
cation of a mobile device using the signal strength of nearby cell-
towers and WiFi access points observed on the mobile device (e.g.
SkyHook [8] and Google Location Service [4]). The application
then sends a service request containing the location and the specifics
of information/operation requested by the sender (e.g. "car dealer-
ship in 5 mile radius from my location" or "notify me when a friend
is within 1 mile from my location"). The LBS provider responds to
the LBS request using the location sent with the request.

Henceforth we abstract from these details and focus on the treat-
ment of location data and the LBS service requests in the LBS
ecosystem. For simplicity of presentation (and without loss of gen-
erality), we model a geographic area as a 2-dimensional space and
user’s location as integer coordinates within this space.

As a mobile user moves and sends LBS requests from different
locations at different times, the LBS provider logs these requests.

Sender CSP 

LBS 

Server 

Location 
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Request 

Logs 

Location 
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Figure 3: LBS Model

Each logged request is associated with the identifier of the device
that sent the request (e.g. IP-address or MAC-address). This allows
the LBS provider to identify the requests sent by the same user in
the LBS request log and assemble a history of LBS requests for
each user. We represent a user history of length l as a triple

(uid, 〈loc1, loc2, . . . locl〉, 〈V1, V2, . . . Vl〉)

where uid is the userid of the user, loci is the location of the user
at instant i and Vi the request sent by the user at instant i. (For
presentation simplicity and without loss of generality, we abstract
away the actual timestamps, representing them as natural numbers.)
Each request is a set of name-value pairs containing the categories
and specifics of the sought services (e.g. {(poi, rest),(cat, ital),
(dist, 2mi)} represents “find Italian restaurants within 2 miles of
my location”). An LBS request log consists of a set of user histo-
ries. The snapshot at instant i contains for each user her location at
instant i and the request (if any) it made at i.

EXAMPLE 3. Consider an LBS request log containing the his-
tories ua, ub, uc, us, ut of users Alice, Bob, Carrol, Sam and Tom,
whose devices have IDs ida, idb,idc,ids and idt, respectively:

ua = (ida, 〈(1, 2), (1, 3)〉, 〈v1, v2〉)
ub = (idb, 〈(1, 2), (2, 2)〉, 〈v3, _〉)
uc = (idc, 〈(2, 2), (2, 2)〉, 〈_, v4〉)
us = (ids, 〈(2, 1), (4, 4)〉, 〈v5, _〉)
ut = (idt, 〈(3, 3), (3, 3)〉, 〈_, v6〉)

From this log we can read that at instant 1, the LBS logs the re-
quests v1, v3 and v5 sent by the users Alice, Bob and Sam (respec-
tively). Alice was at that time at location (1, 2), given as coor-
dinates in the 2-dimensional map. At instant 2, the LBS logs the
requests v2, v4 and v6 sent by Alice, Caroll and Tom (respectively).
Alice had by now moved to location (1, 3). _ stands for “no re-
quest” (Bob made no request at instant 2). 2

The set of user history objects contains very useful data for re-
searchers and advertisers since it can be used to answer queries
such as “the requests sent by users that move from location A to
location B”. As mentioned in Section 1, previous work on sender
anonymity in an LBS setting has focused on anonymizing snap-
shots independently of each other [20, 19, 24, 20, 16]. Example 2
showed that leveraging such work to user histories by anonymiz-
ing them snapshot-by-snapshot leads to privacy breach. A more
holistic anonymization is called for.

3. A NOVEL PRIVACY GUARANTEE
In this section we describe our approach for anonymizing the set

of user histories to provide sender k-anonymity against the class of
attackers who are aware of user trajectories and the anonymization
algorithm, in the sense that the attacker cannot reduce the set of
possible suspects to less than k. The anonymization preserves link-
age information between LBS requests and trajectories to an extent
that does not pose any risk to the sender k-anonymity of the users.

Bundle The key concept we introduce to model an anonymized
user history is called a “bundle”. Intuitively, a bundle object corre-
sponds to a set of user histories bundled together. It lists a sequence
of cloaks such that the cloak at instant i contains the locations at



instant i of all users in the bundle. The bundle also lists for each
instant i the set of requests issued at instant i by the bundled users.

More formally, a bundle is a tuple (bid, 〈r1, . . . , rl〉, 〈s1, . . . sl〉),
where bid is a unique bundle identifier, r1, . . . , rl is a sequence of
l cloaks, and s1, . . . , sl is a sequence of l sets of LBS requests. A
cloak is a 2-dimensional region (e.g. [(x1, y1), (x2, y2)] for axis-
parallel rectangles, where (x1, y1) and (x2, y2) are the coordinates
of the lower-left and upper-right corners of the rectangle). Recall
from Section 2 that a request is a set of name-value pairs devoid of
any identifier or location information.

EXAMPLE 4. The following are examples of bundles that use
the cloaks shown in Figure 1 and Figure 2 and the requests de-
scribed in Example 3.

b1 = (1, 〈R2, R3〉, 〈{v1, v3, v5}, {v2, v4}〉)
b2 = (2, 〈R3, R3〉, 〈{v1, v3, v5}, {v2, v4, v6}〉)
b3 = (3, 〈R2, R4〉, 〈{v3}, {v4}〉)
b4 = (4, 〈R3, R4〉, 〈{v3}, {v4}〉) 2

DEFINITION 1. [Masking] Given a user history
u = (uid, 〈loc1, loc2, . . . locl〉, 〈V1, V2, . . . Vl〉) and a bundle
b = (bid, 〈r1, · · · , rl〉, 〈s1 · · · sl〉), we say that b masks u if for
each i ∈ [1, . . . l], loci ∈ ri and Vi ∈ si.

EXAMPLE 5. Assuming unit length for the smallest squares in
Figure 1, bundle b1 in Example 4 masks the user histories ua, ub,
uc and us from Example 3. Similarly bundle b3 masks the user
histories ub and uc. 2

Instead of publishing the set of user histories, our proposal is that
the LBS publish a set of bundles that masks the user history objects
in its log. Note that within a bundle, the association of the LBS
requests with the trajectory of the actual sender is obfuscated since
for any two distinct instants i, j and any requests Vi, Vj the bundle
only states that their sender locations belong to the cloaks ri, rj ,
but not whether they were actually sent by the same user.

Insuring sender k-anonymity consists in choosing bundle objects
such for each request in the bundle, an attacker cannot limit the set
of potential senders to less than k. We formalize this next.

Anonymization Policy We define an anonymization policy as a
function P that, given a set of user history objects U , associates to
each user history object u a bundle object b (denoted P (U, u) = b)
such that b masks u. We sometimes write P (u) = b when the LBS
log U is clear from the context.

EXAMPLE 6. The following anonymization policyP3 anonymizes
the 5 user history objects in Example 3 using the bundle objects
shown in Example 4. P3(ua) = b1, P3(ub) = b3, P3(uc) = b3,
P3(us) = b1, P3(ut) = b2. 2

3.1 TP-aware Sender k-Anonymity
We next define our novel privacy guarantee. To do so we need to

formalize the class of attackers who are aware of user trajectories
and the anonymization policy.

Attacker Model We target a strong information-theoretic def-
inition of privacy therefore we model the attacker as a function
taking certain input to launch the attack, with no bounds on the
computational resources expended during the attack. The only as-
sumptions are on what input the function takes (intuitively, the in-
formation that the attacker sees). The input comprises:

• the anonymity degree k;
• the specific anonymization policy P used by the LBS;

• the trajectory of all the users (the first and second compo-
nents of each user history triple);
• the published bundles.

We refer to the class of such attackers as Trajectory-aware and
Policy-aware (in short, TP-aware) attackers. The attack function
models the following attack: starting from the observation of a set
B of bundle objects, the knowledge of trajectories of all the users
and the anonymization policy P , the attacker reverse engineers P
to obtain the possible user histories that are anonymized by P to
bundles in B.

We are now ready to define TP-aware sender k-anonymity. In-
tuitively, we consider it a breach of sender k-anonymity if for any
bundle b the attacker succeeds in reducing the number of candi-
date user histories that can possibly be anonymized to b, to less
than k. Therefore, our privacy guarantee ensures that for each ob-
served bundle object b there are at least k user histories that are
anonymized to b under the chosen policy.

DEFINITION 2. [TP-aware Sender k-anonymity] Let P be an
anonymization policy and U be a set of user histories. LetB be the
set of bundles obtained using the policy P . We say that B pro-
vides TP-aware sender k-anonymity for U if for each bundle b ∈ B
there are at least k distinct user histories in U that are anonymized
to b under P . We say that policy P provides TP-aware sender k-
anonymity, if for every set of user histories U , the set of bundles
{P (u)|u ∈ U} provides TP-aware sender k-anonymity to U .

Note that even with unlimited computational resources, the best
the attacker can hope to achieve is to exactly reverse engineer the
inverse image of the published bundles under P (as opposed to just
approximating it). Since P is defined such that the inverse image
contains at least k possible user histories for each bundle, even the
exact inversion of P does not breach privacy.

We next show a policy that breaks TP-aware sender 2-anonymity.

EXAMPLE 7. Policy P3 of Example 6 anonymizes the set of
user histories {ua, ub, uc, us, ut} shown in Example 3 to the set
of bundles {b1, b2, b3} shown in Example 4. When the TP-aware
attacker observes b1, he tries to reverse engineer the user-history
objects that could have anonymized to it. He finds two candidates,
ua and us, corresponding to users Alice and Sam. Similarly for
b3, there are 2 users ub and uc that could be anonymized to b3.
In contrast, when the attacker observes b2, there is only one user
history ut that is anonymized to b2 under P3. Thus P3 does not
provide TP-aware sender 2-anonymity.

We next illustrate a policy that does provide TP-aware sender
2-anonymity.

EXAMPLE 8. For the five user histories in Example 3, we de-
scribe the following anonymization policy P4 that uses the bundles
shown in Example 4. P4(ua) = b2, P4(ub) = b3, P4(uc) = b3,
P4(us) = b2, P4(ut) = b2. There are at least 2 user histories
anonymized by P4 to each one of the published bundles, b2 and b3.
When the attacker observes the published bundles, he tries to re-
verse engineer P4, but finds at least 2 users for each of b2 and b3.
Hence P2 provides TP-aware sender 2-anonymity. 2

4. OPTIMUM-COST ANONYMIZATION
For the same set of user-history objects there may exist several

anonymization policies that provide TP-aware sender k-anonymity,
raising the obvious question of which one to use. In this section we
address the problem of finding the k-anonymous policy of highest



utility to the consumers of the published log. Prior work [16, 20,
19, 24] on snapshot sender k-anonymity proposes that one way to
maximize utility is to minimize the area of the cloaks. For the log
of LBS requests, an analogous measure would be to minimize the
sum of the cloak areas used in the bundles.

Cost of a bundle. We introduce the cost of a bundle to quan-
titatively measure utility (maximum utility means minimum cost).
Given a bundle b = (bid, 〈r1 · · · rl〉, 〈s1 · · · sl〉), we define the cost
of bundle b as the sum of the areas of the cloaks in its cloak se-
quence: Cost(b) =

∑l
i=1 area(ri). Given a collection U of user

objects and an anonymizing policy P , we define the cost of P for
anonymizing U as Cost(P,U) =

∑
u∈U Cost(P (u)).

Optimum policy We next focus on the problem of finding the
optimum (minimum cost) policy that provides TP-aware sender k-
anonymity to a given set of user-history objects.

Notice that the TP-aware sender k-anonymity guarantee is at
least as computationally hard to enforce as its P-aware snapshot
(T-unaware) version (the latter is a special case of the former for
trajectory length 1). It is therefore natural to avoid settings in which
snapshot anonymization is already intractable. For P-aware snap-
shot k-anonymity, it was shown in [16] that the complexity of find-
ing the optimum policy depends crucially upon the type of cloaks
used for anonymization. For instance, finding the optimum policy
among all the policies that use circular cloaks is NP-hard (in the
number of users) [16], even if the cloak centers can be chosen only
from a given set of points (e.g. public landmarks such as libraries,
train stations or cell towers) and the only choice is on the length
of the cloak radius. In contrast, one can find an optimum snapshot
policy in polynomial time if the cloaks are chosen among the quad-
rants of a quad tree [16]. These results suggest that, for a chance
at practically feasible anonymization, our investigation would best
focus on quad-tree based cloaks. This is indeed the case as shown
in the next theorem.
Anonymization using Circular cloaks. Let U be a set of user-
history objects and SC be a set of points in the 2-dimensional space
that contains the trajectories of the users. We define circular cloak
sequence as a sequence of cloaks where each cloak is centered at
some point from SC, with no restriction on the radius. Let P be
the set of all those policies that use circular cloak sequence in the
bundles for anonymizing user-history objects. The problem of Op-
timum Offline TP-aware k-anonymization with Circular cloaks is to
find a policy in P that minimizes the cost of anonymizing U .

(Extended Version) Theorem 4. Optimum Offline TP-aware k-
anonymization with Circular cloaks is NP-hard.

The quad tree is a well-known structure for organizing spatial
data, and it has been used in a number of anonymization solu-
tions [19, 24, 16] for snapshot sender k-anonymity. More impor-
tant, this is the only cloak class for which optimum P-aware snap-
shot k-anonymization is known to be PTIME-computable [16].

Anonymization using Quad-cloaks For the remainder of the
paper, we consider policies that use cloaks picked from among the
quadrants of a quad-tree partitioning of the geographic region. The
root node of the quad-tree represents the entire region (assumed
square shaped, without loss of generality) which is then partitioned
into 4 equal square quadrants, each of whom represent a child node
of the root. Each quadrant is then again divided into 4 equal sub-
quadrants that correspond to grandchildren of the root. This four-
way splitting goes on recursively until the desired level of granu-
larity for the minimum region is reached. Figure 4 shows a part of
a quad-tree based partitioning: region R8 represents a quadrant in
the quad-tree that is divided into 4 equal sub-quadrants (e.g. R4).
The sub-quadrant R4 is further divided into R0, R1, R2, and R3.

Given a quad-tree representation Q of a region, we refer to a
sequence of cloaks, where each cloak is one of the quadrants of
Q, as a quad-cloak sequence. For instance, 〈R0, R3〉 is a quad-
cloak sequence of length 2 that uses the quadrants of the quad-
tree in Figure 4. A policy that anonymizes user histories using
bundles with quad-cloak sequence is referred to as a quad-cloak
policy (since we consider only such policies for the remainder of
the paper, we will drop the qualifier whenever convenient).

Optimum quad-cloak policy. Given a quad-tree Q and a set
U of user histories, there exist several quad-cloak policies that can
be used to anonymize U . We show that their number is exponen-
tial. Assume that U comprises n user histories, each of length l,
and the quad-tree Q is of height h. For any location in the trajec-
tory of a user history, there are h cloaks in Q that mask it (all the
cloaks from leaf to root in Q). Therefore, for a trajectory of length
l, there are hl different quad-cloak sequences masking it. There are
hence h(nl) different ways of anonymizing the n histories in U us-
ing quad-cloak sequences fromQ (although not all of them provide
TP-aware sender k-anonymity).

The problem of optimum offline TP-aware sender k-anonymity
with quad-cloaks is to find, given LBS log U , a quad-cloak bun-
dle B that has the minimum cost of anonymizing U . Clearly a
brute-force search among all h(nl) quad-tree policies would take
exponential time in the log size. As shown by our next result one
cannot hope for PTIME (unless P = NP).

THEOREM 1. Optimum offline TP-aware sender k-anonymity
with quad-cloaks is NP-complete (in the size of the LBS log).

The significance of this result is that it shows that providing op-
timum TP-aware sender k-anonymity is strictly a harder problem
than the optimum snapshot k-anonymity studied in prior work.

4.1 Approximation Algorithm
The next best thing in lieu of a polynomial-time optimum so-

lution is to find a polynomial time approximation algorithm with
bounded approximation factor. We show such an algorithm next.

At high level, we proceed as follows. We restrict the choices of
cloak sequences that a policy can use, to a subset of all the possi-
ble choices of quad-cloak sequences. This amounts to identifying a
subset S′ of the set S of all possible quad-cloak policies. The sub-
set S′ is chosen such that an optimum quad-cloak policy relative to
S′ can be found in polynomial time, and that this policy’s cost is
within a bounded factor of the optimum quad-cloak policy in S.

Our algorithm utilizes a structural relationship that exists be-
tween quad-cloak sequences of a given length l.

1-step Generalization and Generalization Graph Let Q be a
quad-tree and s be a quad-cloak sequence of length l that uses quad-
rants of Q. Let s′ be a quad-cloak sequence obtained by replacing
one of the cloaks in s with its parent in Q. We refer to s′ as 1-step
generalization of s. The 1-step generalization relation induces a
directed acyclic graph over all the quad-cloak sequences of a given
length l obtained using a quad-tree Q. We refer to this graph as
the Generalization Graph (G-graph for short). Figure 6 shows part
of the G-graph induced by 1-step generalization on the quad-cloak
sequences of length 2 that use quadrants of the quad-tree shown in
Figure 4.

In a G-graph of length l it is easy to observe that a trajectory
of length l masked by a quad-cloak sequence s is also masked by
the 1-step generalization of s. We refer to this property as the con-
tainment property. As an example, consider the trajectory of the
user a shown in Figure 5. This trajectory is masked not only by
the quad-cloak sequence 〈R0, R3〉 shown in Figure 6, but also by



the sequences corresponding to its ancestors in the G-graph (e.g.
〈R0, R4〉 and 〈R4, R4〉).

Our approach to finding a subset of quad-cloak policies reduces
to finding a tree-shaped subgraph of the G-graph: Given a G-graph
G of length l and an LBS log U , let PG be the set of all the policies
that use quad-cloak sequences from G. The problem of optimum
offline TP -aware sender k-anonymity with quad-cloaks is to find
the optimum policy in PG. Since this is NP -hard, we identify a
subspace T of the G, and find the optimum policy in the set PT of
all policies that use cloak sequences from T . The choice of T is
such that the optimum policy can be found in PTIME and its cost
is a bounded approximation of the optimum policy in PG.

G-tree of a G-graph Given a G-graph G, we define a Gener-
alization tree (G-tree) of G as a tree T in which every node has
bounded degree and that preserves the ancestor-descendant rela-
tionship of G. Formally: a) The nodes of T are a subset of the
nodes in G. b) If y is the parent of x in T , then y must be a ances-
tor of x in G. c) Each node in T has a finite bounded degree f (i.e.
each non-leaf node has at most f children).

Conditions a) and b) ensure that the set PT of all the policies
that use the cloak sequences in T is a subset of all the quad-cloak
policies PG. In addition, property b) above also preserves the G-
graph containment in the corresponding G-tree. As a result any
trajectory masked by a node in T is also masked by its parent in T .
As described next, this property along with condition c) is key in
finding a polynomial time approximation solution.

Note that using the above definition, one can obtain multiple G-
trees corresponding to a G-graph. The choice of a G-tree dictates
the bounded approximation factor and the complexity of the algo-
rithm that achieves the bound. We address the issue of identifying
a G-tree with bounded approximation factor in Section 4.1.2. We
first describe in Section 4.1.1 a generic algorithm that takes as input
a G-tree T and finds in PTIME the optimum policy w.r.t. to PT .

4.1.1 Min-Cost Policy in Any G-tree
The algorithm exploits two unique properties of the policies in
PT . Using the first property we define equivalence classes of poli-
cies such that all equivalent policies have the same cost and anon-
ymize the same number of trajectories to each quad-cloak sequence
in T . This allows us, instead of exploring a search space of policies,
to explore a smaller search space of policy equivalence classes.
Even though there are fewer equivalence classes than policies, the
total number of choices is still exponential (in the number of cloak
sequences in T ). The second property allows us to use a divide
and conquer strategy to prune and search in polynomial time the
exponential search space of equivalence classes and find the one
corresponding to the optimum policy.

Property 1: Cost of a policy is determined by the number of
trajectories anonymized to each node in T . For a policy in
PT , the property of being TP-aware sender k-anonymous and the
cost of the anonymization depends upon how many trajectories are
anonymized by each node n in T , being indifferent to which par-
ticular trajectories are anonymized to n.

EXAMPLE 9. Consider trajectories a and b shown in Figure 5.
Let P1 and P2 be two anonymization policies that anonymize tra-
jectories a and b as shown in Figure 7 and Figure 8. P1 anonymizes
a to cloak sequence 〈R0, R4〉 and b to 〈R4, R4〉, whereas P2 anon-
ymizes a to 〈R4, R4〉 and b to 〈R0, R4〉. Except for this differ-
ence, all the other trajectories are anonymized identically in P1

and P2. Since Cost(P1(a)) = Cost(P2(b)) and Cost(P1(b)) =
Cost(P2(a)), we haveCost(P1(a))+Cost(P1(b)) = Cost(P2(b))+
Cost(P2(a)) and the costs of P1 and P2 are identical. 2

R4R4 

R0R4 

R0R3 R0R0 

Figure 7: Policy P1

R4R4 

R0R4 
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Figure 8: Policy P2

We formalize this observation as an equivalence relation among
policies in PT that use quad-cloak sequences in G-tree T . Two
policies in PT are equivalent for a given set of trajectories if every
node in G-tree T anonymizes the same number of trajectories under
both policies.

LEMMA 1. If policies P1, P2 are equivalent for a G-tree T ,
then (a) P1 and P2 have the same cost; and (b) P1 provides TP-
aware sender k-anonymity on T if and only if so does P2.

We exploit equivalence to replace the search space of policies
in PT with the smaller space of equivalence classes. We represent
equivalence classes using a Configuration function.

Configuration The function Configuration is defined to keep
track of the number of trajectories anonymized by each node m in
a G-tree T . For technical convenience, this is done by equivalently
tracking for each nodem the number of trajectories that are masked
by m yet are not anonymized using m or any of its descendants.
We refer to these trajectories as passed up (the responsibility of
anonymizing them is passed up to m’s ancestors).

DEFINITION 3. [Configuration] Let U be a set of trajectories
and T be a G-tree rooted at r. Let d(m) denote the total number of
user trajectories that are masked by the cloak sequence represented
by node m. A Configuration C is a function from nodes of T to
natural numbers, such that (i) for every leaf node m, C(m) ≤
d(m); and (ii) for every internal node q, C(m) ≤

∑f
i=1 C(mi),

where m has f children m1, . . ., mf . We say that C is complete if
C(r) = 0.

Condition (i) in the above Definition 3 restricts a configuration
to represent only masking policies and (ii) represents the fact that a
trajectory can be anonymized to only one cloak sequence. Note that
by Lemma 1(a), all policies in the equivalence class represented by
a configuration C have the same cost. We call this the cost Costc
of the configuration C. We can compute this cost directly using
the configuration and without enumerating any policy: it is easy to
compute the number a(m) of trajectories anonymized by node m
of T , as the difference between the number of trajectories passed
up by m’s children and the number of trajectories passed up by
m itself; Costc simply multiplies a(m) with the area of the cloak
sequence represented by m, summing up over all m ∈ T .

DEFINITION 4. [Configuration cost] Let U be a set of trajec-
tories and C be a configuration of the G-tree T . We define the cost
of C for U , denoted Costc(C,U), as

Costc(C,U) :=
∑

m∈nodes(T )

f(m,C)× Cost(m)

where f(m,C) is given by

f(m,C) =

{
(d(m)− C(m)), If m is leaf
((
∑l

i=1 C(mi))− C(m)), If m is internal
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Figure 6: Trajectory Anonymization using Quad-tree

where m1 . . .ml are the children of m and Cost(m) is the sum of
areas of the cloaks in the sequence corresponding to node m. 2

We can show that the configuration cost is precisely the cost of
the represented policies:

(Extended Version) Lemma 4. Given a set U of n trajecto-
ries of length l, a G-tree T of quad-cloak sequences of length l, a
policy P that usees cloak sequences from T and a configuration
C representing P ’s equivalence class, we have Costc(C,U) =
Cost(P,U).

Thus finding the optimum quad-tree policy that uses cloak se-
quences from T to anonymize a set U of trajectories is equivalent
to finding the optimum configuration C of the tree T w.r.t. U . Our
algorithm does exactly that, i.e. we first find the minimum cost
configuration and then materialize a policy corresponding to it.

Checking Sender Anonymity from Configurations Since the
algorithm manipulates configurations instead of policies, we need
a check that a configuration corresponds to TP-aware sender k-
anonymous policies. By Lemma 1(b), either all represented poli-
cies qualify, or none does. It turns out that it suffices to check di-
rectly that the configuration satisfies a property we call k-summing.

DEFINITION 5. [k-summing] Let U be a set of trajectories
and C a configuration of the tree T rooted at r. C is a k-summing
configuration if

• for a leaf node m

(i) if d(m) < k, then C(m) = d(m).

(ii) if d(m) ≥ k, then either C(m) = d(m) or
C(m) ≤ (d(m)− k).

• for an internal node m let ∆ =
∑f

i=1 C(mi),
where m1 . . .mf are the children of m in T

(iii) if ∆ < k, then C(m) = ∆.

(iv) if ∆ ≥ k, then eitherC(m) = ∆ orC(m) ≤ (∆−k).

Intuitively, in Definition 5, clause (i) states that if the quad-cloak
sequence corresponding to node m masks less than k trajectories,

none of them can be anonymized by m lest k-anonymity be com-
promised. The responsibility of anonymizing all d(m) of them is
passed up to m’s ancestors (C(m) = d(m)). By clause (ii), if
there are at least k trajectories, then either all of them are passed
up, or at most d(m) − k (since at least k must be anonymized to
the same cloak sequence to preserve k-anonymity). For an internal
nodem, ∆ represents the number of trajectories whose anonymiza-
tion responsibility is passed up fromm’s children tom. If there are
too few of them (less than k) then they cannot be anonymized us-
ing the cloak sequence of m, who in turn passes the responsibility
to its ancestors (in clause (iii)). Otherwise, m has the choice of
either anonymizing none of them (C(m) = ∆ in clause (iv)), or
anonymizing at least k and passing up at most ∆− k.

LEMMA 2. Let T be a G-tree of quad-cloak sequences and U
be a set of trajectories. LetC be a configuration of T for anonymiz-
ing U , and P be a policy in the equivalence class C represents.
P provides TP-aware k-anonymity to U if and only if C is a k-
summing configuration.

Lemma 2 justifies an algorithm that explores the space of k-
summing configurations, in search for a complete minimum-cost
configuration. But for a set of n trajectories and a G-tree T with m
nodes there are O(nm) possible configurations. Next we describe
the second property of the policies in PT that enables a divide-and-
conquer approach to find the optimum k-summing configuration.

Property 2: Optimum cost of anonymizing a subset of tra-
jectories using a node in T can be computed locally Let C be a
k-summing configurationC of a G-tree T of quad-cloak sequences.
For a node m in T , C(m) represents the number of unanonymized
trajectories passed up by m. These trajectories are anonymized at
one of the ancestors of m and hence they do not affect how the
d(m) − C(m) trajectories are anonymized using m and its de-
scendants. Thus for a given value of C(m), one can optimize the
anonymization of d(m) − C(m) trajectories using m and its de-
scendants independently of the rest of the trajectories and the rest
of T . Before we describe how we compute this local optimum for
each m, we need to point out that at this stage we don’t know the
value of C(m) in the optimum configuration. For this reason we
compute the optimum costs of passing up 0, 1 . . . d(m) trajectories
at m i.e. all possible values of C(m). For each pair (m,u) such



that C(m) = u, the minimum cost is computed among all pos-
sible configurations of the subtree rooted at m (as there are many
possible configurations with C(m) = u).

Computing all local optimum costs To compute the (local) op-
timum value of passing up u trajectories at node m, the algorithm
considers all possible counts 〈0, 1 . . . d(m1)〉, 〈0, 1 . . . d(m2)〉, . . .,
〈0, 1, . . . , d(mf )〉 of trajectories passed bym’s childrenm1, . . . ,mf

respectively. Then it recursively computes the corresponding min-
imum cost for each (mi, ui) pair. Redundant cost re-computation
for m,u pairs is avoided by a memoization technique: i.e., by stor-
ing the result in the corresponding cell of a bi-dimensional matrix
M indexed by the nodes of T and values of u. To enable the easy
retrieval of the min-cost configuration fromM , the entries for node
m carry, besides the minimum cost, some bookkeeping information
relating to the configurations of the children of m.

This yields the following dynamic programming algorithm Traj-
anon that, given a set U of trajectories of length l and a G-tree T
with cloak sequences of length l, fills in a configuration matrix M
of dimension |T | × |U |, where |T | represents the number of nodes
in T and |U | the number of trajectories in U . Each entry M [m][u]
in the matrix is a tuple of the form 〈x, u1, u2, . . . , uf 〉, pertaining
to a configuration C such that C(m) = u, and where x is the min-
imum cost of passing up u trajectories, provided that the children
m1,m2, . . . ,mf of m pass up u1, u2, . . . , uf trajectories respec-
tively. The algorithm traverses the tree T bottom-up starting from
the leaf nodes, and for each node and 0 ≤ u ≤ d(m) fills in the
entry M [m][u] using the rows from child nodes m1,m2, . . .mf .

Algorithm 1 Traj-anon

1: for 1 ≤ m ≤ |T | do
2: for 1 ≤ u ≤ |U | do
3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: end for
5: end for
6: for all node m ∈ T do
7: if (m is a leaf node) and (d(m) < k) then
8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: else if (m is a leaf node) and (d(m) ≥ k) then

10: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
11: for 0 ≤ u ≤ d(m)− k do
12: M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
13: end for
14: else {m is a non-leaf node}
15: let m1,m2, . . . ,mf are children of m
16: for all u in F(m) do
17: pick u1 ∈ F (m1), u2 ∈ F (m2), . . ., uf ∈ F (mf )

that minimize the quantity
18: x :=

∑f
l=1M

1[ml][ul] + (area(m)× ((
∑f

l=1 ul)−
u))

19: where
F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the
tuple at M [i][j]

20: M[m][u] := 〈x, u1, u2, . . . , uf 〉
21: end for
22: end if
23: end for
24: return M

FunctionF (m) in line 16 limits the number of trajectories whose
anonymization responsibility can be passed up by m. Notice that it
rules out the values d(m) − k + 1 through d(m) − 1 since these
imply anonymizing less than k trajectories at m, which would im-

mediately compromise k-anonymity. Quantity x is the minimum
cost among all configurations C with C(m) = u and which sat-
isfies k-summation property. This is computed from the costs of
the configurations at the f children, and the number of trajecto-
ries anonymized by m (((

∑f
l=1 ul) − u)) multiplied by area(m)

(which denotes the sum of the cloak areas in the sequence repre-
sented by m). Recall that the cost is the first component of the
tuple stored in the matrix entry, whence the need for the projection
operation M1.

Notice how the algorithm mirrors Definition 5 to ensure that
only k-summing configurations are considered. By Lemma 2, these
configurations represent only TP-aware sender k-anonymous poli-
cies. For instance, line 8 corresponds to case (i) in Definition 5,
which prescribes that no trajectories are to be anonymized by m
(all d(m) trajectories inside the cloak sequence of m are passed
up, C(m) = d(m)). Thus by definition of Costc, the result-
ing cost is 0, which is what line 8 fills into the first component
of M [m][d(m)]. Similarly, line 10 gives the cost corresponding
to the case in the first disjunct of line (ii) of Definition 5; line 12
corresponds to the second disjunct. We can formally prove that:

LEMMA 3. Algorithm Traj-anon computes in each M [m][u]
= 〈x, u1, u2, . . . , uf 〉 the minimum cost x among all k-summing
configurations C such that C(m) = u and C(mi) = ui, with
m1, . . . ,mf the children of m.

Selecting the optimum configuration The information in M
suffices to retrieve in PTIME a minimum-cost configuration. The
optimum configuration is obtained when the optimum cost ofC(r) =
0 is computed, where r is the root node of T (the root cannot
pass up any trajectories as there is no larger cloak sequence to
anonymize them with). After that it is easy to retrieve the complete
configuration from M in polynomial time by a top-down traversal
of T . The minimum cost entry M [r][0] for root r lists for its each
childmi the valueC(mi) = ui leading to the minimum cost. Now
inspect for each mi the ui entry in M , picking again the minimum
cost entry for passing up ui trajectories at mi and continue recur-
sively until all leaf nodes are reached.

Complexity analysis The running time of Algorithm Traj-anon
is dominated by steps 16-18. For internal nodem, it ranges each of
u, u1, u2, . . . , uf over at most |U | values (since F (m) ≤ d(m) ≤
|U | for every m), resulting in O(|U |f+1) iterations where the de-
gree f represents the maximum number of children of a node m ∈
T . Summing up over all nodesm of the tree subspace T , we obtain
the complexity of Traj-anon in (O|T ||U |f+1). The exponent f of
the polynomial depends upon the chosen G-tree T of the G-graph.

Policy from Configuration We do not enumerate all the poli-
cies of the equivalence class corresponding to the optimum config-
uration. Note that a configuration C is exponentially more suc-
cinct than an explicit listing of the policies it represents; if we
focus on any node m alone, there are exponentially many ways
to pick C(m) trajectories among those occurring in m. Yet, we
can obtain one of the policies C represents in linear time by non-
deterministically selecting the C(m) trajectories for each node m.

4.1.2 Choosing the G-tree for l-Approximation
Our approach for finding an approximation solution to the prob-

lem of optimum TP-ware sender k-anonymity using quad-tree pol-
icy consists of a) identifying a subset S′ of all the possible quad-
cloak sequences and b) finding the optimum policy among those
policies that only uses the cloak sequences from S′.

In Section 4.1.1 we described an algorithm Traj-anon that can
find the optimum policy w.r.t. any G-tree of the G-graphG of quad-
cloak sequences. In this section we show how to choose a G-tree Tu



such that the optimum policy w.r.t. Tu is a bounded approximation
of the overall optimum policy w.r.t. G. Tu is obtained by limiting
the choice of cloak sequences to uniform cloak sequences.

Uniform Cloak-Sequence Tree Let D be a G-graph of quad-
cloak sequences of length l that use quadrants of a quad-tree Q.
Consider a quad-cloak sequence in D in which all cloaks have the
same size. We call such a cloak sequence uniform quad-cloak se-
quence. The cloak sequences 〈R0, R0〉, 〈R0, R3〉 and 〈R4, R4〉,
shown in Figure 6, are examples of uniform quad-cloak sequences.
Let s be a uniform quad-cloak sequence in D. Let sp be the cloak
sequence obtained by replacing each cloak in s with its parent in
Q. We refer to sp as the total 1-step generalization of s. The sub-
set of uniform quad-cloak sequences from D and the total 1-step
generalization function define a tree Tu as follows:

• each uniform quad-cloak sequence in D is a node in Tu.
• If sp is the total 1-step generalization of s ∈ Tu, then sp ∈
Tu and we set sp as the parent of s.

It is easy to check that Tu is a G-tree of G-graph D.
We refer to this tree as the Uniform Cloak-Sequence Tree (U-

Tree) since it includes only and all the uniform quad-cloak se-
quences of the G-graph. The root of the U-tree is the sequence
of quad-cloaks corresponding to the root of the quad tree Q. The
leaf nodes are the uniform cloak sequences where each cloak is
a quad-cloak corresponding to a leaf node of Q. The intermedi-
ate nodes are uniform quad-cloak sequences where each cloak is a
quad-cloak corresponding to a non-leaf node of Q. The height of
the U-tree is the same as that of Q i.e. h, since for each leaf uni-
form cloak sequence h − 1 successive total 1-step generalizations
lead to the root uniform cloak sequence.

EXAMPLE 10. For the G-graph G shown in Figure 6, the U-
tree Tu consists of the nodes on the bottom level (e.g. 〈R0, R0〉)
and the root 〈R4, R4〉 of G (missing G’s second level). The edges
in Tu connect all bottom level nodes to the root. Notice that the par-
ent node is obtained using total 1-step generalization of the child
nodes in Tu. Also the parent 〈R4, R4〉 and its child nodes are in
an ancestor-descendant relationship in G. Since the length of the
cloak sequences is l = 2, each node in Tu has 42 children. 2

Uniform policy A policy that only uses uniform quad-cloak se-
quences in the bundles is referred to as uniform quad-cloak policy.
Note that in a uniform quad-cloak policy, the cloaks are of the same
size within a bundle, but not necessarily across bundles.

THEOREM 2. Given a set U of trajectories of length l, a quad-
tree Q and degree of anonymity k, the cost of the optimum uniform
policy that provides TP-aware sender k-anonymity is at most l times
that of the overall optimum policy that provides TP-aware sender
k-anonymity.

To obtain the optimum uniform policy that anonymizes a setU of
trajectories of length l, we call the Traj-anon algorithm with U-tree
Tu of length l as input. For a U-tree Tu of length l, each non-leaf
node has 4l child nodes. Substituting this value for f in algorithm
Traj-anon, each entry M [m][u] needs to store 4l optimum costs
corresponding to 4l child nodes and the number of iterations (Step
17) needed to compute a matrix entry are bounded by O(|U |4

l+1).
The obtained configuration represents the equivalence class of poli-
cies that have the optimum cost among all the uniform policies, for
anonymizing U . By Lemma 3 and Theorem 2, we have:

THEOREM 3. When taking the U-tree as input, Algorithm Traj-
anon computes an l-approximation solution to the problem of opti-
mum offline TP -aware sender k-anonymity.

As described earlier the complexity of Algorithm Traj-anon de-
pends upon the maximum degree of a node in the input G-tree.
When the input is the U-tree, Traj-anon runs in (O|Tu||U |4

l+1).
Clearly, the exponent 4l + 1 is impractically high as we expect a
large number of trajectories. In the next section we describe our
optimization techniques to reduce the complexity of Traj-anon to
low-degree PTIME.

4.1.3 Optimizations
In this section we describe optimizations to reduce the complex-

ity of the Traj-anon algorithm without degrading the approximation
factor. Due to space limitations, we sketch the high-level ideas, rel-
egating details to Section 4.2.

Recall that the exponent in the complexity of the Traj-anon algo-
rithm is determined by the degree (branching factor) f of the input
tree, and that in the case of a U-tree, f = 4l (as each of the l cloaks
in a node n is split into 4 sub-quadrants in the children of n).

Our first optimization modifies the U-tree Tu (in a strategic way)
to guarantee a bounded degree f = 4, without eliminating any
nodes from Tu. This reduces the complexity of finding the opti-
mum configuration of the new tree structure using Traj-anon, with-
out affecting the approximation factor. To this end, we use another
type ofG-tree, called a US-tree, that splits “slower” than the U-tree.
The idea is to spread the original 4l-way split that a U-tree node un-
dergoes in a single level into l US-tree levels of 4-way splits. The
first-level node (i.e., the original node) splits only the quadrant at
the first snapshot, whereas the four second-level nodes split only
the quadrants at the second snapshot, and so on. After l levels in
the US-tree, the resulting 4l nodes become uniform quad-cloak se-
quences again and are exactly the 4l direct children of the original
node in the U-tree. Note that the US-tree has a constant degree
f = 4 and roughly half more nodes than the original U-tree.

The Traj-anon algorithm can be applied to the US-tree Tus, yield-
ing an improved time complexity O(|Tus||U |5) (just substitute 4
for f in the complexity analysis of Section 4.1.1). Furthermore,
since all nodes in the original U-tree Tu are included in the cor-
responding US-tree Tus, Traj-anon is guaranteed to find a policy
in Tus that is no worse than what it can find in Tu. In fact, the
optimal policy from a US-tree can have a potentially better cost
because there are more nodes (i.e., quad-cloak sequences) to be
chosen from.

While the above improvement leads to a polynomial time algo-
rithm with constant exponent 5, this is still impractically high given
the typical number of LBS users in a metro city (in the range of 1
million for a city like San Francisco).

We apply a second optimization idea: we adapt our algorithm
from quad-tree to binary-tree partitioning of the space, i.e. each
quadrant can be split into 2 semi-quadrants, rather than 4 sub-
quadrants. We construct Tusb, the binary tree built from Tus above
by extending it with nodes obtained by splitting quadrants into 2
semi-quadrants. This immediately lowers the node degree bound
from f = 4 to f = 2, yielding complexity O(|Tusb||U |3).

In the next section we describe a succession of additional opti-
mizations yielding the Smart Traj-anon algorithm that has reduced
complexity of O(|Tusb|(kh)2), where h is the height of Tusb and
k is the desired level of anonymity. As an additional optimization,
we do not materialize the complete binary semi-quad tree: instead,
we split a (semi-)quadrant only if one of its 2 children contains
at least k trajectories. Notice that due to this construction |Tusb|
depends on the spatial distribution of trajectories, but is bounded
in the worst case by the number of trajectories |U |. Therefore for
fixed k and h, Smart Traj-anon scales linearly with |U |.



4.2 Optimizations Details (Extended Version)

4.2.1 US-tree
Given a T-uniform tree Tu of uniform cloak sequences of length

l, we introduce intermediate nodes (cloak sequences of length l)
between a non-leaf node m ∈ Tu and it’s child nodes such that the
resulting structure has the following properties:

• it is a G-tree .
• has all the nodes of Tu (and some additional nodes).
• y is an ancestor of x in this G-tree, if y is parent of x in Tu.
• each non-leaf node in this G-tree has exactly 4 child nodes.

We refer to this G-tree as US-tree. The nodes that are inserted
between a node m ∈ T and its children are not uniform cloak
sequences and are obtained by ordered 1-step generalization, that
we describe next.

Ordered 1-step generalization. As described earlier, there are l
1-step generalizations of a cloak sequence of length l, one corre-
sponding to each cloak in the cloak sequence. Ordered 1-step gen-
eralization refers to the process of obtaining l sequence of cloaks
by l “successive” 1-step generalizations, such that the ith 1-step
generalization is obtained by replacing the ith cloaks in the cloak
sequences obtained by (i− 1)th 1-step generalization.

Given a T-uniform Tu of length l, we obtain the US-tree by in-
serting intermediate nodes, between node m and its 4l child nodes,
that are obtained by ordered 1-step generalizations of the child
nodes. For each child node, we obtain l cloak sequences using or-
dered 1-step generalization and during the computation of ordered
1-step generalization, the cloak sequence obtained by ith 1-step
generalization is made a parent of the (i − 1)th 1-step generaliza-
tion. Each each child node, we obtain the node m in the lth 1-step
generalization.

We use only one node to represent a cloak sequence even if is
obtained via total 1-step generalizations or two or more nodes. For
all the child nodes, consider the 1st 1-step generalization in the or-
dered 1-step generalization. Since each quadrant in Q has 4 child
nodes, there are 4 child nodes that have identical 1st 1-step gener-
alization. Thus each of these intermediate nodes has 4 child nodes.
Similarly each cloak sequence obtained in the ith 1-step gener-
alization is common for 4 intermediate nodes that were obtained
(i− 1)th 1-step generalization. In the lth 1-step generalization we
obtained the node m from the 4 intermediate nodes obtained by
(l − 1)th 1-step generalization.

Thus even after inserting the intermediate nodes, the resulting
structure is a US-tree, containing all the nodes of Tu, where each
non-leaf node has exactly 4 child nodes. Moreover since the par-
ent cloak sequences a 1-step generalization of its child, the parent
nodes in G-tree completely masks their child nodes.

Next we adapt the Traj-anon algorithm to find the optimum con-
figurationC for for a given US-tree Tus and a setU of users. C rep-
resents the equivalence class of policies that has the optimum cost
among policies that use cloak sequences from Tus to anonymize
the set U of user-history objects. Moreover the cost of these poli-
cies is never worse then the cost of optimum policy that uses only
uniform cloak sequences i.e. nodes in Tu.

Since Tus is a quad-tree the complexity of the above algorithm
dominated by the steps 16-18 is O(|Tus||U |5) where |Tus| repre-
sents the number of nodes in Tusand |U | represents the number of
user-history objects. Note that ordered 1-step generalization inserts
O(4l) nodes between a non-leaf node and its children in Tu, there-
fore the resulting US-tree Tus has O(m ∗ 4l) more nodes then Tu

but this number is independent of the number of trajectories hence

Algorithm 2 Modified Traj-anon

1: for 1 ≤ m ≤ |Tus| do
2: for 1 ≤ u ≤ |U | do
3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: end for
5: end for
6: for all node m ∈ Tus do
7: if (m is a leaf node) and (d(m) < k) then
8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: else if (m is a leaf node) and (d(m) ≥ k) then

10: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
11: for 0 ≤ u ≤ d(m)− k do
12: M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
13: end for
14: else {m is a non-leaf node}
15: let m1,m2, · · · ,m4 are children of m
16: for all u in F(m) do
17: pick u1 ∈ F (m1), u2 ∈ F (m2), · · · , u4 ∈ F (m4)

that minimize the quantity
18: x :=

∑4
l=1M

1[ml][ul] + (area(m)× ((
∑4

l=1 ul)−
u))

19: where
F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the
tuple at M [i][j]

20: M[m][u] := 〈x, u1, u2, · · · , u4〉
21: end for
22: end if
23: end for
24: return M

a constant factor. The reduced complexity results in reduced run-
ning time for finding the optimum configuration as observed in our
experiments.

Even though Traj-anon for a US-tree of length l has reduced
complexity in comparison to Traj-anon for a T-uniform of length
l, we do trade cost to achieve better complexity. This is shown by
the following result.

(Extended Version) Lemma 5. Given a US-tree Tus of length
l, T-uniform Tu of length l and a set U of user-history objects of
length l and the level of anonymity k, the cost of the optimum k-
summing configuration for Tus is never more than the cost of the
optimum k-summation configuration for Tu.

As a result the upper bound on the approximation ration i.e l still
holds for a US-tree. This follows directly from Lemma 5.

(Extended Version) Lemma 6. Algorithm Modified Traj-anon
computes the l-approximation solution to the problem of optimum
offline TP-aware sender k-anonymity.

Moreover the average case cost of optimum policy that uses Tus

is lower than the policy that uses Tu since when using Tus a policy
has more options for choosing a sequence of cloaks to anonymize
a user object.

While the above optimization leads to polynomial time algorithm
with constant exponent, the degree 5 is still high given the typical
number of LBS users in a metro city (in the range of 1 million
for city like San Francisco). Next we describe a pair of optimiza-
tions to further reduce the complexity of Traj-anon and run-time
optimizations to achieve practical running time, while guarantee-
ing to preserve the approximation bound. These optimizations are



similar in spirit to the optimizations for quad-tree based snapshot
policy-aware sender k-anonymity described in [16] with the differ-
ence that the tree in our study consists of a quad-tree of quad-cloak
sequences.

4.2.2 From Quad to Binary Tree
In the US-tree, if anonymizing a trajectory to a node does not

provide the desired k-anonymity, the next possible option is the
parent node. Since the parent node is 1-step generalization of the
child, the cost of the new cloak in the parent cloak sequence is 4
times that of the replaced cloak in the child cloak sequence. As
shown in [24] and [16], the granularity of this cost increase can be
reduced by converting a quad-tree into a binary tree by using semi-
quadrants as cloaks (where a semi-quadrant is obtained by splitting
a quadrant into two rectangles, either vertically or horizontally).
Use semi-quadrants in the uniform cloak sequences to anonymize
the trajectories leads to following:

• The Traj-anon algorithm finds the optimum policy among all
the policies that use uniform semi-quadrant cloak sequences.
• The policy obtained using Traj-anon is l-approximation of

the optimum policy that use semi-quadrant cloak sequences.
• Using total 1-step generalization we can obtain binary US-

tree that contains all the uniform semi-quadrant cloak se-
quences, and in which each node has exactly 2 child nodes.

As a result of this optimization, the complexity of the optimized
Traj-anon for a binary US-tree Tusb and a set of trajectories U , is
O(|Tusb||U |3). In addition, since the semi-quadrants are smaller
than the quadrants, this optimization also reduces the average cost
of anonymization.

4.2.3 Pruning Suboptimal Configurations
For any node m of the USeq-Btree, in the for loop of step 16,

Traj-anon inspects (d(m) − k + 1) configurations (all possible k-
summing configurations). We realize that some of these configu-
rations need not be considered, as they are guaranteed to be sub-
optimal. In fact we claim the following lemma:

(Extended Version) Lemma 7. For a nodemwith height h(m)
(where the height of the root is 0), any configuration in which m
passes up to its ancestors the cloaking responsibility of more than
k(h(m) + 1) but less than d(m) trajectories, is not optimal.

By Lemma 7, it suffices to compute k(h(m)+1) configurations,
by simply replacing function F in step 16 of algorithm Modified
Traj-anon with function F ′(m) = [0..(k(h(m) + 1))] ∪ {d(m)}.
Thus for a non-leaf nodem, the algorithm computesO(kh) config-
urations and to compute each such configuration, the “pick” action
iterates over O(kh) configurations of m’s two children. This leads
to a new upper bound of the overall running time, O(|Tusb|(kh)3).

4.2.4 Precomputation
Similar to Bulkdp, there is significant overlap in the compu-

tations across iterations of For loop in Step 16 of Modified Traj-
anon. For example, if one iteration works on the M entry for
(m,u), inspecting for instance (m1, u1) and (m2, u2) such that
u1 + u2 = u, then the next iteration (m,u + 1) will inspect the
cases (m1, u1 + 1), (m2, u2) and (m1, u1), (m2, u2 + 1), among
others. The idea is to reuse this computation across iterations.

To this end, we stage the computation in 2 parts. In the first
stage we iterate over the O(kh) configurations of both children to
compute a temporary matrix temp. There areO(kh) entries in this
matrix and the complexity of this stage is bounded byO((kh)2). In

the second stage, we create O(kh) configurations using the O(kh)
entries of temp. Thus the running time for the second stage is also
bounded by O((kh)2). Therefore the overall complexity of the
modified step 16 is O((kh)2) and the overall complexity of the
modified algorithm becomes O(|Tusb|(kh)2).

4.3 Runtime Pruning
We implement a runtime optimization to further reduce the run-

ning time of the modified Traj-anon. We create the binary US-
tree top-down by successively splitting the semi-quadrants, start-
ing from the root node. But we do not eagerly materialize all nodes
of the binary US-tree, instead, we split a (semi-)quadrant only if it
contains sufficient users to maintain anonymity.

5. EXPERIMENTS
In this section we describe a set of experiments to evaluate the ef-

fectiveness of our Smart (optimized) Traj-anon algorithm. We eval-
uate scalability and performance and compare the cost of anonymiza-
tion and execution time of Smart Traj-anon with a set of alter-
nate anonymization techniques. Since we focus exclusively on the
Smart version of Traj-anon, we will drop the qualifier in the re-
mainder of the section.

Our experiments show that Traj-anon scales linearly with the
number of trajectories and can anonymize up to 2 million trajecto-
ries of length 30 within 4 min. We show that the other anonymiza-
tion techniques either have higher anonymization cost (up to 100
times higher) or running time (up to 2000 times slower).

Trajectory Data. Due to legal hurdles we could not obtain
actual user trajectory data from LBS providers, but we were able
to resort to the Brinkhoff generator [14] to generate the trajectory
data for our experiments. The Brinkhoff generator has been widely
used to generate moving object data for studies in various fields,
including location-based services and beyond. It takes as input the
road network of a metro area and generates trajectories of various
classes of moving objects that are constrained by the road network.
The classes differ in number and speed with which the trajectories
move relative to each other (e.g. cars, bikes, pedestrians, etc.). We
generated a master data set of 2 million trajectories of length 30,
with 5 different classes of moving objects, using the actual road
network of the San Francisco Bay area. Then we drew random
samples of increasing number of trajectories (10k, 50k, 100k etc.)
of length 10 and 30.

Platform. Unless otherwise stated all our experiments run on
a Linux server with an Intel Xeon Processor (2.8GHz) and 32G
memory. In one experiment, we had to use a machine with Intel
Pentium Core2 Duo processor (2.4Ghz) with 2 GB RAM and run-
ning Cygwin on Windows XP because the binary we got from the
authors of [30] was compiled for that configuration.

Anonymity degree. In all experiments, k = 50.

5.1 Scalability
In the first set of experiments we evaluate the scalability of the

Traj-anon algorithm by increasing the number of trajectories to be
anonymized, from 10k to 2 million, for a fixed k=50 (we consider
both trajectory length 10 and 30). As shown in Figure 9, the al-
gorithm scales linearly with the number of trajectories. In partic-
ular, Traj-anon anonymizes 2 million trajectories of length 30 in
less than 4 min. Figure 10 breaks down the running time into a)
loading the user trajectories from a file to the main memory data
structures, b) obtaining the optimum configuration for the user tra-
jectories and, c) obtaining the policy from the configuration (as ex-
pected this time is negligible, under 1%).



5.2 Related anonymization techniques
We are unaware of any competing TP-aware sender anonymity

solutions. As detailed in Section 6, the previously proposed al-
gorithms for trajectory-aware sender k-anonymity do not defend
against policy-aware attackers, and as shown in Section 1 policy-
aware snapshot sender k-anonymizing algorithms [16] do not de-
fend against trajectory-aware attacks. Since we couldn’t find direct
competitors, we created some by leveraging existing work.

As a baseline approach we decided to extend an algorithm for
policy-aware snapshot sender k-anonymity to TP-aware sender k-
anonymity. We chose the Bulkdp algorithm in [16] since it pro-
vides the optimum anonymization for a snapshot and uses (semi-)-
quadrant cloaks (just like Traj-anon).

We also considered solutions proposed for trajectory anonymity,
a privacy problem orthogonal to sender anonymity. In trajectory
anonymization, the goal is to anonymize user trajectories such that
an attacker, who knows locations of users in certain snapshots (par-
tial trajectories), cannot infer whether a user’s trajectory passes
through a particular location. Trajectory anonymity tries to hide
the user’s whereabouts, while sender anonymity assumes them as
known and focuses instead on hiding the identity of request senders.
Due to the different goals and assumptions of the two privacy guar-
antees, some of the data transformation techniques employed in
trajectory anonymization (such as deletion of locations, addition of
locations, and shifting locations from a trajectory), do not apply to
sender anonymity. Despite the differences, we identified a class of
trajectory anonymization solutions whose techniques can in prin-
ciple be adapted to provider TP-aware sender k-anonymity. This
class of solutions use some clustering algorithm to partition user
trajectories into groups of k trajectories and then applies other data
transformations (described above) to preserve trajectory anonymity.
We realized that one can adapt the clustering techniques to obtain
the bundles used in offline TP-aware sender k-anonymization. We
borrowed the clustering techniques from state-of-the-art trajectory
anonymization solutions [25, 30] to obtain three different compet-
ing solutions for offline TP-aware sender k-anonymity.

Next we describe these three solutions along with the baseline
approach based on snapshot P-aware sender k-anonymity.

Baseline TP-aware is based on the P-aware snapshot anonymiza-
tion algorithm Bulkdp described in [16]. We format the input
trajectory data as a sequence of snapshots. We anonymize the
first snapshot of the input trajectory data using Bulkdp and group
together the trajectories whose locations in the first snapshot are
anonymized to the same cloak. Since Bulkdp provides policy-
aware sender k-anonymity each group must have at least k mem-
bers. For each group and for each snapshot, we find the smallest
quadrant that masks the locations of the trajectories in the group.
Thus for each group we obtain a sequence of quadrants that plays
the role of a bundle in the sense of Traj-anon. This anonymization
provides TP-aware sender k-anonymity since there are at least k
trajectories that are anonymized to the same sequence of cloaks.

Fast Clustering is based on the fast TGA algorithm in [25]. It
creates a cluster of k trajectories by first randomly selecting an
unanonymized trajectory as the center of the cluster and then adding
its k-1 nearest neighbor trajectories to the cluster. The distance be-
tween two trajectories is the sum of the “distances” between their
locations in each snapshot and the distance between two locations
is the logarithm of the area of the smallest axis-parallel minimum
bounding rectangle (rectangle whose sides are parallel to the x and
y axis of a 2-dimensional plane) that masks the two locations.

Slow Clustering is based on the multi TGA algorithm in [25].
To create a cluster of k trajectories, it first randomly selects an
unanonymized trajectory as the center of the cluster and adds k-1

additional trajectories one by one so as to minimize the cost of the
cluster. The cost of a cluster is the sum of the logarithms of areas
of axis-parallel MBRs, that masks the locations of the trajectories
in the cluster, in each snapshot.

Hilbert-based Clustering [30] uses an embedding of two-dimen-
sional into one-dimensional space, associating to each location a
Hilbert index which is then used to simplify the nearest-neighbor
computation used to cluster trajectories. The original approach re-
quires identification of certain locations in a trajectory as quasi-
identifiers (uniquely identifying the user). Since we assume that
the entire user trajectory is accessible to the attacker, every location
in his trajectory is a potential quasi-identifier. Thus in the input to
the Hilbert-based clustering algorithm we specify every location of
a trajectory as quasi-identifiers. As a result, the distance between
two trajectories is the sum of the absolute difference between the
Hilbert indexes of the locations in each snapshot. Since the algo-
rithm computes the clusters of k-1 nearest neighbors for each tra-
jectory independently, two clusters can have some trajectories in
common. Clusters with common trajectories are merged.

In the three clustering-based approaches, after computing the
clusters, all trajectories in a cluster are anonymized using the se-
quence of axis-parallel Minimum Bounding Rectangles (MBR) (rect-
angles whose sides are parallel to the x and y axis) that masks each
snapshot of the clustered trajectories. We compare the execution
time and cost of anonymization obtained using the four algorithms
described above with those of Traj-anon. To make a fair compari-
son, we modify the output of Traj-anon and replace the quadrants
in the cloak sequence with axis-parallel MBRs ensuring that the
MBR that replaces a quadrant must be included in the quadrant.

We implemented the Baseline, Fast and Slow Clustering algo-
rithms in C++ and obtained the Hilbert-based Clustering binaries
from the authors of [30] (compiled for Cygwin on Windows XP).

Figure 11 shows the cost of anonymizing an increasing num-
ber of trajectories (10k, 50k, 100k, 200k,600k and 1M) of length
30, using Traj-anon and the clustering-based algorithms described
above (results for length 10 are similar and not shown here; we
stopped at 1M trajectories as the other algorithms did not scale).

Comparison with snapshot-based Baseline. As shown in Fig-
ure 11 the Baseline approach has the highest cost among all the
anonymization algorithms. It is significantly more than Traj-anon.
For 600k trajectories and more the cost of anonymization with Base-
line is 100 times that of Traj-anon. This is because having optimum
cost for one snapshot leads to bigger cost for other snapshots when
the trajectories diverge (since the trajectories in a group must be
anonymized together in all the snapshots).

Comparison with Fast Clustering. As shown in Figure 11 the
cost of anonymizing trajectories using fast clustering is more than
that with Traj-anon and slow clustering. The difference between
the anonymization cost increases with the number of trajectories
and for 1 million trajectories of length 30, the anonymization cost
of fast clustering is 100 times more than that of Traj-anon. In terms
of execution time, as shown in Figure 12, the fast clustering takes
significantly longer in comparison with Traj-anon. For e.g. Traj-
anon takes less than 1.5 min to anonymize 1 million trajectories of
length 30 in comparison to 370 min by fast clustering.

Comparison with Slow Clustering. As shown in Figure 11
the cost of anonymizing trajectories using slow clustering is better
than that with Traj-anon, by a factor of roughly 4: for 600K (1M)
trajectories, Traj-anon obtains a cost of 20 × 1016(28.5 × 1016),
Slow clustering a cost of 5 × 1016(6.6 × 1016). But as shown
in Figure 12 Slow Clustering is the slowest of all anonymization
techniques. It takes over 3 days for the slow clustering algorithm to
anonymize 1 million trajectories of length 30, in comparison under
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Figure 14: Exec time: Hilbert vs Traj-anon

1.5 min with Traj-anon. The poor performance of Slow Clustering
is not just accidental (for this data set) but intrinsic to the algorithm
due to O(n2) distance computations between n trajectories.

Comparison with Hilbert-based Clustering. Figure 13 com-
pares the anonymization cost of Hilbert-based clustering with that
of Traj-anon. We could not process more than 50k trajectories be-
cause the Hilbert-based clustering implementation does not scale
beyond. The cost of Hilbert-based clustering is considerably higher
than Traj-anon. Even for 10k trajectories the cost of Hilbert-based
clustering is 30 times higher than that of Traj-anon and, reaching
50 times for 40k trajectories. A possible reason for the higher cost
of Hilbert-based clustering is the distortion introduced in mapping
the 2-dimensional space to a single dimension.

As shown in Figure 14 the Hilbert-based clustering is consider-
ably slower than Traj-anon. It takes over 11 hours to anonymize
50k trajectories of length 30 using Hilbert-based clustering in com-
parison to 12 sec by Traj-anon. Even though the Hilbert-based
clustering uses a simpler distance function, it is slower due to the
high number of comparisons to find the k nearest neighbors.

6. RELATED WORK
In the context of LBS, the two aspects of privacy that have re-

ceived most attention are trajectory anonymity and sender anonymity.
Trajectory anonymity. As detailed in Section 5.2, the line of

work on trajectory anonymity [25, 30, 28, 22] is complementary
to ours: its goal is to hide the user’s precise location over a period
of time (one is not required to hide the identity of the user), while
sender anonymity hides the identity of the user, assuming that the
trajectory data falls in the attacker’s hand. Even though the problem
of trajectory anonymity is orthogonal to the problem studied in this
paper, as described in Section 5 a class of clustering based solutions

can be adapted to provide offline TP-aware sender k-anonymity,
and we have compared against them in detail.

Classes of Attackers. The solutions for sender k-anonymity
in the context of location-based services can be classified into four
categories based on the class of attackers they prevent against:

Policy-unaware trajectory-unaware: The solutions [19, 24, 20]
in this class are also known as k-inside policies [16] as these solu-
tions use tightest cloak (of a pre-defined shape) that includes the
sender and k-1 other users. This class of solutions neither pre-
serve privacy against a policy-aware attacker (as shown in [16]) nor
against a trajectory-aware attacker (also shown in [12, 29, 15]).

Policy-aware trajectory-unaware: This class of solutions [11,
16] ensures that there are at least k users anonymized using the
same cloak. The privacy guarantee of these solutions is strictly
stronger than the policy-unaware solutions i.e. they also defend
against policy-unaware trajectory-unaware attackers but not con-
versely (for a formal proof see [16]). But as shown in Section 1
they fail to preserve privacy against a policy-aware attacker who is
also trajectory-aware.

Policy-unaware trajectory-aware: This class of solutions [29,
18, 15, 12] targets anonymity against the trajectory-aware attackers
using a sequence of cloaks that masks the user and the same k-
1 users for the entire duration of the user trajectory. [15] claims
policy-awareness as well, but the claim needs qualification, as it
isn’t clear what the attacker knows: a) the mapping from a given
set of user trajectories to the sequence of cloaks, or b) the algorithm
producing this mapping in addition to the mapping itself (this is
our sense of policy-awareness). We claim that [15] defends against
attacker class a) but not b), and thus gives a weaker guarantee than
the one we target here. We illustrate how the 2-sharing property
of [15] allows policy-aware attackers to breach privacy.
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Figure 15: 2-sharing policy

EXAMPLE 11. Consider the cloaking algorithm in [15] that
takes into account the requesting location to generate cloaking groups
(set of locations that are cloaked to the same region). For the loca-
tions in Figure 15, if the first request is made by C the algorithm
groups C with B whereas if the first request is made by B then B
and A end up in the same cloaking group to satisfy the 2-sharing
property. In the case when the first anonymized request contains
the cloak corresponding to {C,B}, a policy-aware attacker imme-
diately infers that the sender is C. 2

Policy-aware trajectory-aware: We are unaware of any work that
provides policy-aware and trajectory-aware sender k-anonymity and
therefore we propose the guarantee in this paper. As illustrated
in Section 1 even this privacy guarantee does not allow to com-
pletely publish the linkage between multiple requests sent by the
same user. It does allow to publish the requests made along a tra-
jectory bundle.

Trusted LBS. In the model used in this paper we assume that
the LBS provider is a trusted entity and responsible for anonymiz-
ing the user requests that it collects over a period of time. We
share this assumption with a line of work on trajectory anonymiza-
tion [25, 30, 28, 10, 23, 22] where the location provider (who logs
user trajectories) is trusted and is responsible for anonymization.

Online vs Offline. Another contrasting feature between pre-
vious trajectory-aware sender anonymity proposals and the one in
this paper is the mode of anonymization. In [29, 18, 15, 12] LBS
requests are anonymized as they are issued i.e. online while we
anonymize the request log i.e. offline. One can possibly use the
online solutions for the offline TP-aware sender anonymization but
with a necessarily sub-optimal cost since the future movement of
the users is not known by the online anonymizer. The cloak that
masks a group of k users can become arbitrarily large if their tra-
jectories diverge.

Beyond sender k-anonymity: l-diversity. In the setting of re-
lational table anonymization, k-anonymity is viewed as a classical
baseline, recently subsumed by stronger guarantees ranging from
l-diversity [21] to differential privacy. For the LBS context, this
raises the natural question of analogous guarantees that subsume
sender k-anonymity. We note that LBS sender privacy is a much
younger field, in which even such a fundamental guarantee as sender
k-anonymity (especially in its TP-aware form) hadn’t been solved
until now. We also note that in an LBS context, sender k-anomymity
is not weaker than sender l-diversity, actually coinciding with it.
To see why, consider an analogy to the “homogeneity attack” that
breaks classical k-anoymity but is foiled by l-diversity [21]: there
is a possibility that all user histories masked by a bundle send iden-
tical requests in a particular snapshot (possibly from different lo-
cations). But since a bundle associates a set of requests (no dupli-
cates) with a cloak, all the identical requests are represented by a
single request, thus precluding the homogeneity attack, and in fact
any attack based on the distribution of request values.

7. CONCLUSIONS
We introduce and study the problem of offline trajectory- and policy-
aware sender k-anonymity. We show that prior results for snapshot
k-anonymity do not apply and that trajectory-awareness leads to
strictly stronger attackers, calling for a stronger privacy guarantee.

We show that optimum TP-aware anonymization is computation-
ally harder than snapshot P-aware anonymization (NP-complete vs.
PTIME). We propose a PTIME l-approximation algorithm for tra-
jectories of length l and empirically show its effectiveness.
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APPENDIX
A. PROOFS

A.1 Lemma 1
PROOF. (a) Let U be a set of n trajectories and policies P1 and

P2 are equivalent for anonymizingU w.r.t. aG-tree T . We describe
the cost of anonymizing U using P1 as:

Cost(P1, U) = Cost(m1) + Cost(m2) + . . .+ Cost(mn)

where mi = P1(U, ui) ∈ T for 1 ≤ i ≤ n. Note, for i 6= j, mi

and mj can be the same node in T . Similarly we describe the cost
of anonymizing U using P2 as:

Cost(P2, U) = Cost(m′
1) + Cost(m′

2) + . . .+ Cost(m′
n)

wherem′
i = P2(U, ui) ∈ T for 1 ≤ i ≤ n. Note, for i 6= j,m′

i and
m′

j can be the same node in T . Since P1 and P2 are equivalent, if
a node m ∈ T is used by P1 to anonymize x trajectories in U then
m is also used by P2 to anonymize the same number of trajectories
in U . Therefore,

Cost(m1) + Cost(m2) + . . .+ Cost(mn)

= Cost(m′
1) + Cost(m′

2) + . . .+ Cost(m′
n) (1)

because each quadrant appears same number of times on both sides
of Equation 1. Hence we have:

Cost(P1, U) = Cost(P2, U)

(b) Suppose P1 provide TP -aware sender k-anonymity to U w.r.t.
T . Therefore, for each node m ∈ T , P1 either anonymizes none
or at least k trajectories using m. We are given that P1 and P2 are
equivalent for T , therefore they both anonymize the same number
of trajectories using m. Therefore, P2 either anonymizes none or
at least k trajectories using m. Thus, P2 also provides TP -aware
sender k-anonymity to U w.r.t. T . Similarly we can show that if P2

provides TP -aware sender k-aonymity to U , so does P1.

A.2 Lemma 2
PROOF. LetU be a set of trajectories and T be aG-tree of quad-

cloak sequences. Let P be a policy that uses the cloak sequences
from T andC be the configuration representing the class of policies
equivalent to P .

First we assume that P provides TP-aware sender k-anonymity
and show that C is k-summing configuration. Since P is TP-aware
sender k-anonymous, each quad-cloak sequence in T is used in P
to anonymize either none or at least k trajectories. Thus

• For a leaf node m ∈ T
(i) If d(m) < k, then P cannot anonymize any trajectory

using m, therefore C(m) = d(m).
(ii) if d(m) ≥ k, then P could either anonymize at least k

trajectories or none. In former caseC(m) ≤ (d(m)−k)
while in later case C(m) = d(m).

• For an internal node m ∈ T , let ∆ =
∑l

i=1 C(mi),
where m1 . . .ml are the children of m in T

(iii) if ∆ < k then there are less than k trajectories passed up
by children of m. Thus P cannot anonymize any trajec-
tory using m and therefore we have C(m) = ∆.

(iv) if ∆ ≥ k then the children of m passes up at least k
trajectories. Therefore, P could either anonymize at least
k trajectories or no trajectory using m. In former case
C(m) ≤ (∆− k) while in later case C(m) = ∆.

Thus C satisfies k-summing property.
Next we assume that C is k-summing configuration and show

that P provides TP-aware sender k-anonymity to U . Equivalently



we show that under C, each cloak of T is used to anonymize either
none or at least k trajectories. Since C is a k-summing configura-
tion, it implies that:

• for a leaf node m ∈ T
(i) if d(m) < k, then C(m) = d(m). Thus P does not

anonymize any trajectory using m.
(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m) − k). In the later case P anonymizes
at least k trajectory using m, while in former case none
trajectory at all.

• for an internal node m ∈ T let ∆ =
∑l

i=1 C(mi),
where m1 . . .ml are the children of m in T

(iii) if ∆ < k, then C(m) = ∆. Thus P does not anonymize
any trajectory using m.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆ −
k). In the later case P anonymizes at least k trajectories
using m, while in former case none trajectories.

Therefore P provides TP-aware sender k-anonymity.

A.3 Lemma 3
PROOF. The intuition behind Lemma 3 is that Traj-anon algo-

rithm exhausts the search space of all potential optimal k-summing
configurations by utilizing Property 2. To prove it formally, we use
structural induction to show that for each node m in the G-tree T
and an integer l such that l ≤ d(m), we have

costalg(m, l) = costmin(cset(m, l))

where costalg(m, l) represents the cost computed by Traj-
anon for passing up l (unanonymized) trajectories at m and
costmin(cset(m, l)) represents minimum cost of passing up l
trajectories at m among all such k-summing configurations.

Basis: For a leaf node m and an integer l ≤ d(m), it is obvious by
construction that costalg(m, l) = costmin(cset(m, l)).

Induction: Let m be a non-leaf node in the G-tree T and
m1,m2, · · ·mf be the children of m. Let l be an integer such
that l ≤ d(m) and cset(m, l) be the set of k-summing configura-
tion that passes up l (unanonymized) trajectories at node m. We
show that for each configuration g ∈ cset(m, l), costalg(m, l) ≤
cost(g(m)), where cost(g(m)) represents the cost of g at nodem.
If g(m1) = l1, g(m2) = l2, · · · and g(mf ) = lf , the cost of m in
g can be written as

cost(g(m)) := [cost(g(m1)) + cost(g(m2)) + · · ·+ cost(g(mf ))

+ cost(m)× (l1 + l2 + · · ·+ lf − l)]

By induction hypothesis we assume that costalg(m1, l1) ≤
cost(g(m1)), and similarly costalg(m2, l2) ≤ cost(g(m2)), · · · ,
costalg(mi, li) ≤ cost(g(mi)), · · · ,
costalg(mf , lf ) ≤ cost(g(mf )). Therefore

costalg(m1, l1) + costalg(m2, l2) + · · ·+ costalg(mf , lf )

≤ cost(g(m1)) + cost(g(m2)) + · · ·+ cost(g(mf ))

And by adding the constant value cost(m)×(l1+l2+· · ·+lf−l)
to both the sides we get

costalg(m, l) ≤ cost(g(m))

Similarly, for each node m and each integer l ≤ d(m),
and each configuration g ∈ cset(m, l), we can show that
costalg(m, l) ≤ cost(g(m)). Therefore costalg(m, l) =
costmin(cset(m, l)).

A.4 Lemma 4

PROOF. We describe the cost of anonymizing the set U of n
trajectories using policy P as:

Cost(P,U) =
∑
u∈U

Cost(P (U, u))

= Cost(m1) + Cost(m2) + . . .+ Cost(mn)

(2)

wheremi = P (U, ui) ∈ T for 1 ≤ i ≤ n. Since, for i 6= j,mi and
mj can be the same node in T , we can rewrite the above equation
as follows:

Cost(P,U) =
∑
m∈T

f ′(m,P )× Cost(m)

where f ′(m,P ) is the number of trajectories anonymized by P
using cloak sequence m. Since C represents the equivalence class
of P ,

∀m ∈ T, f ′(m,P ) = f(m,C)

where f(m,C) is as defined in Definition 4. Therefore the cost of
configuration C of T can be written as:

Costc(C,U) =
∑
m∈T

f(m,C)× Cost(m)

=
∑
m∈T

f ′(m,P )× Cost(m)

= Cost(P,U)

(3)

A.5 Lemma 5

PROOF. First we give the intuion of this proof. Let Cu be the
optimum k-summing configuration for Tu. Notice that every node
in Tu is also a node in the corresponding Tusq . Therefore Cu is
a valid but not necessarily optimal k-summing configuration for
Tusq . Consequently, the cost of the optimum k-summing configu-
ration for Tusq is not more than the cost of Cu.

To prove it formally, we can define a configuration C′ for Tusq

as follows

• C′(m) = C(m) for m ∈ Tusq and m ∈ Tu

• C′(m) =
∑4

l=1 C
′(mi) for m,m1 . . .m4 ∈ Tusq and m 6∈

Tu, where m1 . . .m4 are child nodes of m

The above conditions ensure that C′ only uses those nodes of Tusq

for anonymization that are also in Tu. Each node m that is not in
Tu pass-up all the trajectories that are passed up bym’s child nodes
to be anonymized by m’s ancestors. C′ is a valid configuration
since ∀m, C′(m) < d(m) and C′(m) ≤

∑4
l=1 C

′(mi). C′ is
k-summing since C is k-summing and Cost(C′) = Cost(C) since
the newly inserted nodes are not used for anonymization and the
nodes that are used for anonymization have the same cost in the
two G-trees.



A.6 Lemma 7
PROOF. Let U be a set of user trajectories, B a USeq-Btree, C

an optimal configuration of B, and P a policy it represents. Sup-
pose there is a node (cloak sequence of semi-quadrants) m ∈ B
such that k(h(m) + 1) < C(m) < d(m). Then by pigeonhold
principle, there is a set S of at least k trajectories such that (i) all
the trajectories in S are masked by m, and (ii) each trajectory in S
is anonymized by P using some of the h(m) ancestors of m, and
(iii) if all the trajectories in S are removed, the cloak sequence they
were mapped to under P continue to anonymize at least k trajecto-
ries. We then construct a policy P ′ that anonymize the trajectories
in S using m instead of its ancestors. P ′ continues to be TP-aware
sender k-anonymous, but has lower cost, contradicting the optimal-
ity of P .

A.7 Theorem 1
PROOF. We prove this by reducing the problem of optimum k-

anonymization of relational tables on binary alphabet, shown to
be NP-hard in [26, 13], to the optimum offline TP-aware sender
k-anonymity with quad-cloaks.

We first briefly describe the problem of optimum k-anonymization
of relational tables on binary alphabet with suppression. Let T be a
relational table withm columns where each tuple contains data cor-
responding to a unique user. The tuples of T can be considered to
be m-dimensional vectors vi drawn from Σm, where Σ = {0, 1}.
Thus T can also be represented as a subset T ⊆ Σm. Let ? be a
fresh symbol not in Σ. Suppression is defined as follows:

DEFINITION 6 (Suppressor). Let f be a map from T to (Σ∪
{?})m. We say f is a a suppressor of T if for all t ∈ T and
j = 1, . . . ,m it is the case that f(t)[j] ∈ {t[j], ?}.

Inuitively, a suppressor function replaces the values of certain
attributes in certain tuples with ?. The idea behind a suppressor
function is that by replacing values of certain attributes in a set of
tuples with ?, it can make all of them identical such that an attacker
cannot associate a tuple in that set to the actual user. This is for-
malized in the following definition.

DEFINITION 7 (k-Anonymity). Let T be a relational table
and f a suppressor function. The anonymized table f(T ) is said to
be k-anonymous if for any t ∈ T , there exist k distinct vectors in
T such that f(t1) = f(t2) = · · · = f(tk) = f(t).

Since there can be many possible suppressor functions, the goal
is to find one that minimizes the number of suppressed values i.e.
number of ∗ in the anonymized table. The problem of optimum
k-anonymization of relational tables on binary alphabets is defined
as follows.

DEFINITION 8 (Optimum k-anonymity). Given a relational
table T ⊆ Σm, and a positive integer c ∈ N, is there a suppressor
f such that f(T ) is k-anonymous, and the total number of vector
coordinates suppressed in f(T ) is at most c?

For ease of presentation we use k=3 and reduce the optimum 3-
anonymity of relational table on binary alphabet to optimum offline
TP-aware sender 3-anonymity. This particular relational problem
we reduce from is proved NP-hard in [26, 13]. Given a relational
table T with n m-dimensional tuples over binary alphabet {0, 1},
we create a set of n user-history objects with trajectories of length
m. For each tuple ti, we create a user-history object ui and set the
location at the j-th snapshot of the trajectory as

(0, 0) 

(2nr, 2nr) 

(2nr, 0) 

(0, 2nr) 

(nr, nr) 

locations 

corresponding  

to 0 

locations 

corresponding  

to 1 

Figure 16: Locations corresponding to the binary data in a Rela-
tional Table

• (i, i) if the j-th column in ti has the value 0.
• (nr + i, i) otherwise, where r = 2dlg

√
2mne.

We construct a quad-tree Q such that the root node represents
the square region (0, 0) (left-bottom coordinates) to (2nr, 2nr)
(right-top coordinates) as shown in Figure 16. The root quadrant
is divided into 4 equal square sub-quadrants. We show that the
cost of the optimal 3-ANONYMITY solution for T is at most c if
and only if the cost of the optimum policy that provides TP-aware
sender k-anonymity to the set of users U constructed above is at
most (4c+ 1)n2r2.

Suppose that there is a solution that finds the optimum quad-
cloak policy P of cost at most (4c + 1)n2r2. We construct a sup-
pressor f that k-anonymizes T as follows. For any 1 ≤ i ≤ n and
any 1 ≤ j ≤ m, if the j-th location in the trajectory of ui is masked
by the root node of Q in the cloak sequence used to anonymize ui,
then f(ti)[j] = ? and f(ti)[j] = ti[j] otherwise. Given the upper
bound on the cost of the policy there can be at most c such locations
in the trajectories of the users objects that are masked by the root
node of Q in the cloak sequences used to anonymize them. There-
fore the cost of f is at most c. Moreover, since P preserves sender
3-anonymity, there must be 3 trajectories that are anonymized to
the same cloak sequence and by construction these 3 trajectories
will be anonymized the same way by the suppressor f and hence f
is 3-anonymous.

Next let assume f is a suppressor that provides 3-anonymity to
T and whose cost is at most c. Using f we define a quad-cloak
policy P for the set U of user-history objects constructed above.
Policy P assigns a quadrant to the j-th position of user trajectory
Ti by looking up the value of f(Ti)[j]:

• If f(Ti)[j] = ?, then P uses the biggest quadrant (0, 0) to
(nr, nr).
• If f(Ti)[j] = 0, then P uses a cloak sequence with the quad-

rant (0, 0) to (n, n) at the jth position to anonymize user ui.
• If f(Ti)[j] = 1, then P uses a cloak sequence with the quad-

rant (nr, 0) to (nr + n, n) at the jth position to anonymize
user ui.

P is a valid policy as every cloak used masks the corresponding
location. For any two tuples ta and tb, f(ta) = f(tb) implies that
P uses the same cloak sequence to anonymize users-history objects
ua and ub. Given that f provides 3-anonymity to T there must be 3
users that are anonymized using the same cloak sequence hence P
provides TP-aware 3-anonymity to the set of usersU . Furthermore,
since the cost of f is at most c, there are at most c suppressions and
hence at most c locations in the trajectories of the users in U are



anonymized by P to the root node of Q. The sum of the area of
these cloaks is at most 4cn2r2. The remaining locations in the
trajectories of users of U are anonymized using cloaks of size n2.
Since there are at most mn such locations, the total cost of P is
4cn2r2 +mn3 ≤ 4cn2r2 + 2mn3 ≤ (4c+ 1)n2r2.

A.8 Theorem 2

q1 q2 qx ql - 1 ql … … 

size = R size ≤ R size ≤ R size ≤ R size ≤ R 

Figure 17: Quad-cloak policy P

q1 q2 qx ql - 1 ql … … 

size = R size = R size = R size = R size = R 

Figure 18: Uniform quad-cloak policy P ′

PROOF. We prove this theorem by showing that any quad-cloak
policy P that provides TP-aware sender k-anonymity can be trans-
formed to a uniform quad-cloak policy P ′ that provides the same
TP-aware sender k-anonymity guarantee, and for every input tra-
jectory u, its corresponding cloak sequence by P ′(u) has a cost
that is at most l times the cost of cloak sequence by P (u).

The policy P ′ is constructed as follows. For each user trajectory
u, let the cloak sequence of P (u) be s = 〈q1, q2, · · · , ql〉 as shown
in Figure 17. Let R be the size of the biggest cloak in s. Now
to construct P ′, we “expand” each qi in s to size R as shown in
Figure 18. More specifically, let fR(x) be the lowest ancestor of
x or x itself that has size R. Then P ′ will anonymize u using
sequence of cloaks s′ = 〈fR(q1), fR(q2), · · · , fR(ql)〉. In this
way, the cost of cloak sequence s is l × R, which is less than l ×
cost(s). It then follows that the overall cost of P ′ is at most l times
the overall cost of P .

The constructed P ′ also provides TP-aware sender k-anonymity
since all trajectories that were anonymized to the same cloak se-
quence by P will now be anonymized to the same cloak sequence
by P ′. Finally, since the above results apply to any quad-cloak
policy, they apply to the optimum quad-cloak policy Popt as well.
That is, there exists a uniform quad-cloak policy, which is not nec-
essarily the optimum among all uniform quad-cloak policies, that
has a cost at most l times the cost of Popt. Consequently, the cost
of the optimal uniform quad-cloak policy is bounded by l times the
cost of Popt as well.

A.9 Theorem 3
PROOF. Let U be a set of trajectories. Lemma 3 shows that

Traj-anon computes optimum uniform quad-tree policy for anon-
ymizing U . According to Theorem 2 this optimum solution is l-
approximation of the optimum quad-tree policy for anonymizing
U . Therefore, Traj-anon computes the l-approximation solution
to the problem of optimum TP-aware sender k-anonymity using
quad cloaks.

A.10 Theorem 4
PROOF. We prove this by reducing the decision version of opti-

mum policy-aware snapshot k-anonymization with circular cloaks
to the decision version optimum offline TP-aware k-anonymization
with circular cloaks. First we briefly describe the problem of policy-
aware snapshot k-anonymization with circular cloaks.

Let D be an instance of location database with schema S =
{userid, locx, locy} and SC be a set of points in 2-dimensional
space. A snapshot policy with circular cloaks is defined as a deter-
ministic function that maps locations in D to circular cloaks, each
centered at some point from SC, with no restriction on radius. The
cost of a snapshot policy with circular cloaks is computed as:

Costs(P,D) =
∑
l∈D

Cost(P (D, l))

where the cost of the cloak P (D, l) is the area of circular cloak.

DEFINITION 9 (Snapshot k-anonymity with circular cloaks).
Given an instance D of location database and SR be the set of
points in 2-dimensional space. Is there a snapshot policy P with
circular cloaks that provides policy-aware sender k-anonymity and
whose Costs(P,D) ≤ C.

We reduce an instance I of the above problem to an instance I ′

of the optimum offline TP-aware sender k-anonymity with circular
cloaks. For each tuple t ∈ D, we create an user-history object
u with trajectory of length 1 and set u.userid() = t.userid and
u.location(1) = (t.locx, t.locy). Let the resulting set of user-
history objects be U . We create an instance I ′ of optimum offline
TP-aware k-anonymization with circular cloaks using U and SR.
We prove that there is snapshot policy P with circular cloaks that
provides policy-aware snapshot sender k-anonymity w.r.t. D and
Costs(P,D) ≤ C, if and only if there is an anonymization policy
Pt that provides TP -aware sender k-anonymity solution w.r.t. U
and Cost(Pt, U) ≤ C.

Let Pt be an offline policy that uses circular cloaks and provides
TP-aware sender k-anonymity to the set U of user-history objects
(constructed above). Let the cost of Pt be Cost(Pt, U) ≤ U .
Since the user-objects in U are of length 1, the bundles obtained
with Pt are also of length 1. We use Pt to obtain a snapshot
policy Ps for D as follows. For each tuple t ∈ D, we define
Ps(D, (t.locx, t.locy)) = b.cloak(1) where b = Pt(U, u) for the
user-history object u such that u.userid() = t.userid. Since Pt

provides TP-aware sender k-anonymity, there exists at least k user-
history objects that are anonymized to a bundle b. Therefore the
policy Ps as defined above also anonymizes at least k locations
to the circular cloak in bundle b. Hence Ps provides policy-aware
snapshot k-anonymity. Moreover, since Cost(Pt, U) ≤ C and
Cost(Pt, U) = Costs(Ps, D), therefore Costs(Ps, D) ≤ C.

Suppose there exists an snapshot policy Ps with circular cloaks
that provides policy-aware sender k-anonymity to D and whose
cost Costs(Ps, D) ≤ C. We use Ps to obtain a policy Pt as
follows. For every user-history object u ∈ U corresponding to
the tuple t ∈ D such that u.userid() = t.userid, we define
Pt(U, u) = b where b is a bundle of length 1 and b.cloak(1) =
Ps(D, (t.locx, t.locy)). Since Ps provides policy-aware snapshot
sender k-anonymity, there exists at least k locations that are aonymized
to the same cloak. Therefore there are at least k user-history ob-
jects that are anonymized to the same bundle and Pt is TP-aware
sender k-anonymous. Moreover, since theCosts(Ps, D) ≤ C, and
Cost(Pt, U) = Costs(Ps, D), therefore Cost(Pt, U) ≤ C.


