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Abstract— XML is commonly supported by SQL database
systems. However, existing mappings of XML to tables can only
deliver satisfactory query performance for limited use cases. In
this paper, we propose a novel mapping of XML data into
one wide table whose columns are sparsely populated. This
mapping provides good performance for document types and
queries that are observed in enterprise applications but are
not supported efficiently by existing work. XML queries are
evaluated by translating them into SQL queries over the wide
sparsely-populated table. We show how to translate full XPath
1.0 into SQL. Based on the characteristics of the new mapping,
we present rewriting optimizations that minimize the number of
joins. Experiments demonstrate that query evaluation over the
new mapping delivers considerable improvements over existing
techniques for the target use cases.

I. INTRODUCTION

XML is commonly supported by SQL database systems
[26]. XML documents are mapped into tables, and XML
queries are executed using the SQL query engine, possibly
extended to handle special XML data and query constructs.
This enables the reuse of mature relational technology and
infrastructure. Moreover, it integrates XML documents with
relational data and provides interoperability between SQL
queries and XML queries.

Mapping nested elements to flattened tables is the key prob-
lem for supporting XML on SQL databases. Many mapping
schemes have been proposed to decompose nested structures
into normalized tables. These existing mappings can be classi-
fied into two categories: normalization mappings [9], [14], [28]
and node-encoding mappings [10], [16], [17]. Normalization
mappings shred nested structures into normalized tables, where
each table corresponds to one or more elements/attributes. The
nested structure is captured by primary-foreign key relation-
ships, so hierarchical navigation in XML queries is evaluated
by primary-foreign key joins. Node-encoding mappings repre-
sent XML elements by numerical encodings of node locations
in the XML tree, e.g., Dewey ID or preorder/postorder [29].
Hierarchical relationships and document order are implicitly
captured by structural joins of the elements’ encodings.

Previous results have suggested that normalization map-
pings can achieve good query efficiency [21]. Two corner-
stones that enable such performance are schema and normal-
ization. Data normalization lies at the foundation of query
processing in relational database systems (RDBMSs). It not
only reduces redundancy and avoids update anomalies, but also
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co-locates entities with one-to-one relationships in the same
table, which minimizes the number of joins. Normalization
mappings follow the same philosophy, and ensure that the
number of physical joins is as few as if the original data were
modeled by the relational tables.

XML schemas, on the other hand, reduce the complexity
of some expensive query constructs specifically designed for
XML. One example is the wild card (*) in path expressions,
which represents all elements in a document. The expression
A/* is implemented as a structural join between the A elements
and all the elements in the database, which can be prohibitively
slow. As another example, the ancestor-descendant axis A//B
joins two elements without specifying a join sequence. Such
a join is more expensive than a primary-foreign key join,
because an unknown join sequence essentially implies a
“range” comparison to enumerate all possible satisfied paths.
In general, XML query languages contain unconventional
constructs that bring more challenges. With XML schemas,
the evaluation of such constructs can be greatly simplified:
queries can be pre-evaluated against XML schemas; the star in
A/* can be replaced by the elements appearing as A’s children
in the schema; and A//B can be translated into concrete paths.
For this reason, schemas are even more important for query
processing in XML than in RDBMSs, as some XML query
constructs hide schema information and put an additional
burden on the system.

Though normalization mappings provide schema- and
normalization-based optimizations, they can only support a
limited number of use cases. In particular, we identify three
use cases that are widely observed in enterprise applications
but cannot be supported by normalization mappings efficiently.
1) Flexible schema. XML’s schema-less property is one of its

major advantages over other schema-first data models. In
normalization mappings, schema design of primary keys
and foreign keys requires full knowledge of the XML
schema, and cannot be applied to this use case. While
the XML schema can be summarized from the initial
document set [14], later updates may cause expensive
schema evolution and table repartitioning.

2) Many small XML documents. Enterprise applications often
use many small XML documents rather than a few large
ones [5]. Normalization mappings typically shred one XML
document over many tables, which causes fragmentation
of small XML documents. As a consequence, the cost of
XML reconstruction can be very high.



3) Many optional elements/attributes [21]. By data normal-
ization, XML attributes are stored as additional columns in
the tables of their parent elements. This strategy, however,
results in many sparse tables and incurs storage overhead.

Node-encoding mappings are generic solutions for the three
use cases. Since nested structures can be reconstructed from
node encodings, conceptually, all elements and attributes can
be stored in a four-column table: (doc id, node encoding, tag
name, value). Given that the table schema and XML-to-SQL
query translation are independent of XML schemas, node-
encoding mappings are able to support XML with flexible
schemas. Also, since the table is always dense and elements
from the same XML document are stored consecutively, node-
encoding mappings do not suffer from the storage issues of
fragmentation and sparseness.

Unfortunately, query processing of node-encoding mappings
is usually expensive. The fundamental reason is that XML
query processing loses all of the aforementioned schema-
and normalization-based optimizations: without normalization,
traversing one step along every XPath axis requires a join, even
if two input elements present a one-to-one relationship; and
without schema simplification, expensive constructs must be
evaluated naively. A lot of effort has been made to compensate
for such deficiencies, e.g., path indexes and efficient struc-
tural joins. However, every solution has additional cost. For
example, since A/* may correspond to multiple expressions
(e.g., A/B and A/C), the path index lookup of A/* may need
to access multiple keys, and thus need to access scattered
disk pages; a structural join cannot compete with a selection
after normalization, no matter how efficient it is. In principle,
schema- and normalization-based optimizations are at the
core of query optimization; their absence cannot be fully
compensated for by other techniques.

In this paper, we propose a novel mapping that resembles
normalization and retains all schema- and normalization-based
optimizations for XML with flexible schemas. Conceptually,
individual XML documents are normalized, and all the tables
are concatenated into one wide table; physically, interpreted
storage is used to efficiently represent the wide table, whose
columns are often sparsely-populated. At query compile time,
a global inferred schema is used to simplify query constructs
and to apply the normalization principle to reduce joins.

Much existing work on query processing of XML with
flexible schemas adopts one or more heuristics of normaliza-
tion mappings. For example, optimizations based on structural
summaries can achieve simplifications of XML query con-
structs. However, our sparse mapping is the first work that
provides all schema- and normalization-based optimizations
for the target use cases. Our main contributions are:

1) A new XML-to-relational mapping that resembles nor-
malization.

2) An algorithm to translate XPath 1.0 into SQL over the
sparse representation of XML.

3) A translation framework that provides all schema- and
normalization-based optimizations for query processing.

4) Experiments that show the technique has good perfor-

mance for the target use cases.
The paper is organized as follows. Section II describes the

mapping rules. Section III shows how to translate XPath to
SQL under the new mapping. Section IV presents an opti-
mization framework that utilizes schema- and normalization-
based optimizations. Section V covers extensions. Section VI
reports on experimental results. Section VII covers related
work. Section VIII concludes the paper.

II. MAPPING XML TO A WIDE TABLE

In this section, we describe the mapping from XML to a
wide, sparsely-populated table. We start by introducing Data
Guides and a node encoding scheme. Then we elaborate the
mapping rules and physical representation of the mapping
table. Finally, we discuss optimizations on the mapping table.

A. Data Guide and Node Encoding

The Data Guide (DG) [18] of an XML corpus is a labelled
tree that summarizes all paths in XML documents. All nodes
that have the same root-to-node path are mapped into a
single node in the DG so that each distinctly-labelled path
appears exactly once. Figure 1(b) shows the DG for the XML
document in Figure 1(a), where capitalized letters denote
nodes in the DG and small letters denote elements in the XML
document. Since multiple instances of the same document-
label-path collapse to one path in the DG, the size of a DG is
usually much smaller than that of the original documents.
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Fig. 1. An XML document and its DG

The DG of an XML corpus captures only the hierarchical
tree structure, not the elements’ positions in a document. To
capture the latter, every element in a document is assigned an
ordpath [24] which is similar to a Dewey ID [29] but provides
efficient insertion and compression. Given the ordpaths of all
the elements in a document, the whole XML tree can be
reconstructed. Figure 1(a) shows one possible encoding of the
tree, where all elements are annotated with ordpaths.

In our mapping, to encode elements in XML documents, the
first step is to use ordpaths to encode DG nodes. In traditional
DG’s, there is no order among siblings. Here we enforce an
order in the DG by assigning ordpaths to the DG nodes, as
shown in Figure 2(a).

DEFINITION 1. The base ordpath of a DG node is the ordpath
assigned to it.

DEFINITION 2. The real ordpath of an XML element is the
ordpath assigned to that element.

The base ordpaths of the DG nodes are used as “boundaries”
for real ordpaths of XML elements. We will see how this
scheme can benefit storage efficiency later. Given the base
ordpaths, the real ordpath assigned to an XML element v in
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Fig. 2. Ordpaths of a DG and XML elements

a document is encoded as follows:
1) The real ordpath of v is its parent’s real ordpath plus the

index assigned to v, called the component of v.
2) For collection nodes—consecutive siblings with the same

element label—the component of the first element is the
same as the component of its corresponding DG node. The
components of the remaining elements in the collection fall
in the range between the current and the next DG node.
In Figure 2(b), c2, c3 are two collection nodes under b2.
c2 is the first element and thus its component is the same
as C in the DG, i.e., 1. c3 is the second element and its
component falls in the range between C (i.e., 1) and D
(i.e., 2), i.e., 1.1.

3) For a non-collection node—the element label is unique
among its siblings—its component is the same as the DG
node to which it is mapped. In Figure 2(b), d1 is a non-
collection node; its component is the same as D, i.e., 2.

In practice, the order enforced in the DG might violate the
document order of some XML documents. In Figure 2(b), c4
follows d1 as its sibling. It too is mapped to C in the DG. But
since its component does not fall in the range between C and
D, c4 is called an exception node. To achieve a full-fidelity
representation, the component of c4 must be constrained by
d1: greater than the d1’s component. Given that there is no
sibling following d1, the component of c4 is 2.1. So the real
ordpath of c4 is: /1/1.1/2.1. Appendix II discusses more on
how to map exception nodes.

B. Mapping rules

Given the DG of an XML corpus, each DG node is mapped
to a column. Each XML element (including attribute and text
nodes) is stored in the column to which its corresponding
DG node is mapped. Elements from the same document are
stored in one or more rows consecutively. For an element v,
its children are mapped as follows:

MAPPING RULE 1. The children that are not collection ele-
ments are stored in the same row as v.

MAPPING RULE 2. For the children that belong to a collec-
tion, only store the first element in the same row as v. Store
the other elements in separate rows.

MAPPING RULE 3. The children that are exception nodes are
always stored in separate rows.

Table I shows the result of applying the mapping rules to
the XML document in Figure 2(b). b1, b2 are two elements
of collection B. Since b1 is the first element under a1, it is
stored in the same row as a1 and b2 is stored in a separate
row. Similarly, since c2 is the first element in collection C

TABLE I
THE MAPPING TABLE OF THE XML IN FIGURE 2(B)

docid A B D C
5 a1:/1 b1:/1/1 c1:/1/1/1
5 b2:/1/1.1 d1:/1/1.1/2 c2:/1/1.1/1
5 c3:/1/1.1/1.1
5 c4:/1/1.1/2.1

(under b2), c2 is stored in the same row as its parent b2, and
c3 is stored in a separate row, as is the exception node c4.

This sparse mapping resembles normalization in the sense
that if two elements are in the same row of a table after
normalization, they are in the same row in this sparse-mapping
table as well. In Table I, dashed lines highlight three logical
sub-tables, T1(A), T2(B,D), T3(C), which are the tables we
would get by normalizing the schema. Unlike conventional
normalization, tuples in different sub-tables are connected by
structural joins of the elements’ ordpaths, rather than primary-
foreign keys. Furthermore, tuples that are in the same sub-table
but from different documents are not physically consecutive.

An important feature of this sparse mapping is that it mimics
normalization without knowing the schema, because the table
columns are specified by distinct paths (i.e., DG nodes) and the
mapping rules are applied to individual elements. Moreover,
updates and schema evolution do not require table reparti-
tioning. For example, if a new element d2 is inserted as d1’s
sibling, the link between B and D evolves to a one-to-many
relationship. The sparse mapping only needs to insert a new
row, whereas conventional relational storage would partition
T2(B,D) into two tables T4(B), T5(D). (Inserting a new row
does change logical sub-tables. As we will see in Section
IV-A, logical sub-tables are expressed as metadata, whose
maintenance cost is usually cheaper than table repartitioning.)
Appendix I gives details of mapping maintenance due to
updates.

C. Interpreted storage

The mapping table can be very wide, given the number of
possible columns generated. Moreover, due to many-to-one
relationships in XML documents, most columns are typically
null. A wide sparse table would cause a huge storage blow-
up in conventional RDBMSs, because conventional positional
storage pre-allocates storage for all attributes and a null value
usually takes at least one byte. The storage overhead would
be very high when every row has thousands of columns, only
a small fraction of which are not null.

Interpreted storage was proposed to handle wide sparse
tables in [7], and is implemented in SQL Server 2008 [1].
Conceptually, each row in the table is represented by attribute-
value pairs. Columns whose names do not appear in a row are
null valued. Since only non-null values are explicitly stored,
the space of a row is determined by the number of non-null
entries. This property is well-suited for XML data with a large
number of optional elements and attributes.

Given that our mapping maps every DG node to a column,
updates to XML documents may cause the addition or deletion
of DG nodes and hence the addition or deletion of columns.
Thus, these schema changes must be cheap. Interpreted stor-



age provides an efficient mechanism to make such changes,
since the attribute-value pairs maintain schema information
for individual rows. Adding a column to the table does not
affect existing rows. Removing a column requires changes
only to rows that store a value for that column. By contrast,
conventional positional storage may demand modifications to
all the rows when the schema changes (though most RDBMSs
implement schema updates lazily).

D. Optimizations

Compression We discuss the compression of the sparse rep-
resentation of the XML corpus in the following.

DEFINITION 3. The primary ordpath of a row is the longest
common prefix of the ordpaths of all elements in that row.

DEFINITION 4. The base ordpath of a column is the base
ordpath of the DG node that is mapped to that column.

We compress each row in Table I by storing only the
primary ordpath of the row. All of the other nonempty entries
in the row are stored as one bit, which is set to one for elements
that are present. The compressed table is shown in Table II
whose primary key is (docid, p ordpath).

TABLE II
COMPRESSED SPARSE MAPPING TABLE

docid p ordpath A(bit) B(bit) D(bit) C(bit)
5 /1/ 1 1 1
5 /1/1.1 1 1 1
5 /1/1.1/1.1 1
5 /1/1.1/2.1 1

Table II stores only one ordpath in a row, and thus improves
storage efficiency and access time. Given the primary ordpath
of row x and the base ordpath of column y, the real ordpath
of a non-null entry at (x, y) can be reconstructed as follows:
1) If the primary ordpath ordp(x) has the same length as the

base ordpath ordb(y), then since ordp(x) is the longest
common prefix of all the real ordpaths in row x, ordp(x)
is also the real ordpath of the entry (x, y).

2) If the primary ordpath ordp(x) is shorter than the base
ordpath ordb(y), the entry (x, y) must be the first element
in a collection or a non-collection element. Otherwise,
according to Mapping Rules 2 and 3, it would be stored
in a separate row. Therefore, the component assigned to
this element is the last component of ordb(y). The real
ordpath of this element is the real ordpath of its parent plus
its component, where its parent’s real ordpath is derived
recursively.
Algorithmically, this process can be summarized as a
single operation: ordp(x)||suf

(
ordb(y), |ordp(x)|

)
, where

|| denotes concatenation, and suf
(
ordb(y), |ordp(x)|

)
de-

notes the suffix of ordb(y) without the first |ordp(x)|
components.

EXAMPLE 1. Consider column C in the third row of Table II.
Since the primary ordpath (/1/1.1/1.1) has the same length as
the base ordpath of column C (/1/1/1), the real ordpath of the
entry is the primary ordpath /1/1.1/1.1. In the second row, the
primary ordpath is shorter than the base ordpath of column C

TABLE III
THE MAPPING TABLE OF THE XML IN FIGURE 1(A)

docid A B D C
5 a1:/1 b1:/1/1 c1:/1/1/1
5 b2:/1/2 d1:/1/2/2 c2:/1/2/1
5 c3:/1/2/3
5 c4:/1/2/4

(/1/1.1). Since suf
(
ordb(C), |ordp(2)|

)
= 1, the real ordpath

of the entry is /1/1.1/1.

The base ordpaths in the DG are fixed boundaries for all
values in a row, making the reconstruction of real ordpaths
easy. By comparison, mapping the encodings in Figure 1(b),
which do not use the base ordpaths as fixed boundaries, would
also give a full-fidelity representation of XML, as shown in
Table III. However, in that case, decoding the compressed
representation would require a more expensive algorithm. For
example, since the component assigned to d1 is not fixed
and determined by the number of elements in collection C,
reconstructing d1’s component would result in an expensive
COUNT aggregation on collection C.

A physical representation of table records after compression
is shown as follows, where thin bars separate fields of a record:

5
∣∣/1∣∣(A, 1)(B, 1)(C, 1) 5

∣∣/1/1.1
∣∣(B, 1)(D, 1)(C, 1) . . . . . .

The first two columns (docid, p ordpath) are stored as ordinary
columns, and no attribute names are attached. Parenthesized
entries after the second bar in each record are attribute-value
pairs. The pairs can be further compressed, e.g., represent
consecutive columns as a range. XML attribute values and
text nodes can be packed in attribute-value pairs too.
Secondary Indexes A number of secondary indexes can be
built on the mapping table. A filtered index [1] is an index
structure that uses a filter predicate to index a portion of rows
in the table. For the wide sparse table T , the statement

CREATE INDEX b index on T (B)
WHERE B IS NOT NULL

creates an index that provides fast accesses to rows that have
a non-null value in column B. Filtered indexes can also be
built on columns that represent XML attribute values and text
nodes.

III. XPATH-TO-SQL TRANSLATION

This section explains how to translate XPath to relational
algebra expressions over the wide sparse table. The trans-
lation described here focuses on expressiveness. Schema-
and normalization-based optimizations provided by the sparse
mapping will be incorporated in the next section.

We first define some notation. Let T denote the wide sparse
table to which an XML corpus is mapped. Without loss
of generality, assume the table is not compressed, and the
table entries represent real ordpaths. Let e denote an XPath
expression that returns a value of one of four types, namely
node set, number, string or boolean, which are represented
by R(e), num(e), str(e), bool(e) respectively. In the context
of relational algebra, R(e) is a set of elements returned by
e, represented by binary tuples 〈id, ord〉 where id is the



TABLE IV
JOIN CONDITIONS OF XPATH AXES

eχe0 Join condition Cχ
child R(e).id = R(e0).id∧

R(e).ord = R(e0).ord.anc(1)
parent R(e).id = R(e0).id∧

R(e).ord.anc(1) = R(e0).ord
descendant R(e).id = R(e0).id∧

R(e).ord is prefix of R(e0).ord
ancestor R(e).id = R(e0).id∧

R(e0).ord is prefix of R(e).ord
following R(e).id = R(e0).id ∧ R(e).ord < R(e0).ord
preceding R(e).id = R(e0).id ∧ R(e).ord > R(e0).ord
following-sibling R(e).id = R(e0).id ∧ R(e).ord < R(e0).ord

∧R(e).ord.anc(1) = R(e0).ord.anc(1)
preceding-sibling R(e).id = R(e0).id ∧ R(e).ord > R(e0).ord

∧R(e).ord.anc(1) = R(e0).ord.anc(1)

document ID and ord is its real ordpath. Given an ordpath
ord, ord.anc(k) returns the k-level higher ancestor of ord. For
example, ord.anc(1) returns the parent of ord and ord.anc(2)
returns its grandparent. For compactness, we use the rename
operator → in the projection list. For instance, πid,A→ord(T )
renames the projected attribute A to ord.
Base expression Let e0 be either a tag name A or the symbol
∗. Their relational algebra expressions are:

R(A) =
⋃
Ai∈A (πid,Ai→ord(σAi 6=nullT ))

R(∗) =
⋃
X (πid,X→ord(σX 6=nullT ))

where A is the set of columns whose tag names are A, and X
is any column in T . For example, the algebra expression of the
tag name B over Table I is: πid,B→ord(σB 6=nullT ), which re-
turns two binary tuples: 〈5, /1/1〉, 〈5, /1/1.1〉, corresponding
to elements b1 and b2 respectively.
XPath axes XPath location paths are expressed as eχe0 where
χ is one of the axes, e is an XPath expression, and e0 is one
of the base expressions. Each axis corresponds to a relational
algebra expression of the form:

πR(e0).id,R(e0).ord

(
R(e) onCχ R(e0)

)
where Cχ is a join condition. The conditions for all axes are
shown in Table IV.
Predicates A predicate filters a node set with respect to a
predicate expression pe, which also returns a value of one of
the four types. Consider the expression e[pe]. If pe returns a
node set, let pe be one or more relative location paths that
start from the projection node of e. The translation of pe is
the same as e except that R(pe) projects the starting node.
For example, for the expression /A[./B/C], R(pe) = R(A) on
R(B) on R(C) and projects R(A).ord. The algebra expression
for e[pe] is

πR(e).id,R(e).ord(R(e) nR(pe))

Notice that a semijoin is used, as e[pe] does not project any
node within pe.

If pe returns a boolean value, pe can be viewed as a function
such that for each tuple t in R(e), pe(t) returns a boolean
value. The algebra expression for e[pe] is

πR(e).id,R(e).ord(σpe(t∈R(e))=trueR(e))

For example, for the query /A/B/@attr[. ≤ 5], pe is a
comparison function that selects attribute nodes whose values
are at most 5. The algebra expression for the query is:

TABLE V
OTHER OPERATIONS IN XPATH

Operator Relational algebra
F [sum: nset→ num] (R(e)) Gsum(πto num(val)R(e))
F [sum: nset→ str] (R(e)) Gconcatenate str(π(val)R(e))
F [id : str → nset](str) ∪I (πid,realOP(I)(σI=strT ))
F [id : nset→ nset] (R(e)) ∪r∈R(e) F [id](r.val)
F [RelOp: nset× nset R(e1) onC R(e2) where C:
→ bool ] (R(e1), R(e2)) R(e1).id = R(e2).id ∧

R(e1).val RelOp R(e2).val
F [RelOp: nset× num σval RelOp v(R(e))
→ bool ] (R(e), v)

σattr≤5R(e) where e = /A/B/@attr.
XPath 1.0 includes four types of functions: node set func-

tions, string functions, boolean functions and number func-
tions. Functions that do not contain a node set as input or
output are trivial in algebra expressions. Thus, we summarize
only those functions that involve a node set. For the node set
R(e), we use R(e).val to denote string values of nodes in the
set: if the node is an element, val is its tag name; if the node
is a text or attribute element, val is its string value.
Position operator The function position() returns the position
of every input node within its context. The conventional
relational algebra operators only manipulate sets of tuples,
which have no order. Still it can be defined by a relational
algebraic operator that corresponds to operations that are
available in many RDBMSs. For example, the rank() function
in T-SQL in Microsoft SQL Server can be used to rank the
inputs and give the tuple positions in the sorted list, which
can reconstruct the position function. The relational algebraic
expression to calculate position() in the XPath expression is
position()Jeχe0K =R(e).ord Grank(R(e0).ord)(R(e) on R(e0))

where G is the grouping operator and rank() gives each
tuple’s position in each group. The left subscript of G defines
the group-by column, i.e., the set of rows with the same value
of this column. The right subscript is the function to apply
to each set defined by the left subscript, where the rows are
sorted by increasing value of ord. The expression returns
a set of triples 〈id, ord, rk〉 where id and ord identify the
element and rk is the rank of the element according to the
above expression. When position() is used in the predicate, a
selection on rk is added. For example, eχe0[position() = 7]
is translated to:
πid,ord(σrk=7(R(e).ordGrank(R(e0).ord)→rk(R(e) on R(e0))))

Aggregation The function count(e) returns the number of
nodes in a node set. Its algebra expression is:

count(e) = Gcount(R(e))

Other functions Table V lists other functions that involve
node sets. For similar functions, only one of them is listed.
In the third row, I is a list of columns corresponding to ID
attributes1 in the DG.

IV. TRANSLATION OPTIMIZATIONS

In this section, we incorporate schema- and normalization-
based optimizations in query translation. The DG is the struc-
tural summary of an XML corpus and mimics the underlying

1http://www.w3.org/TR/xpath/#unique-id



schema. Hence, the DG can be used to simplify XML query
constructs. The sparse-mapping table mimics normalization
through logical sub-tables. Though the algebra expressions
discussed previously operates on columns in a single wide
table, by identifying logical sub-tables, we can reduce joins to
selections, if the joins are on columns in the same sub-table.

A. Augmenting the DG

We first augment the DG definition to accommodate
normalization-based optimizations. The key to enable such op-
timizations is the identification of sub-tables—which columns
would form a logical sub-table if we normalized the schema.
To this end, each node in the DG is annotated by one of the
following symbols, indicating the number of occurrences of
this DG node under its parent in the XML corpus: (1) *: zero
or more; (2) +: at least one; (3) ?: zero or one; (4) !: exactly
one occurrence. Also, if exception nodes are mapped to a DG
node, this node is annotated with #.

In addition to the symbols, each DG node n is assigned an
alias of T with an integer subscript such that

1) If n is the root, assign T1 to it.
2) If n is annotated with *, + or #, assign a new alias to it.
3) Otherwise, assign its parent’s alias to it.

Figure 3 shows the annotated DG of the document in Figure
2(b).

A! (T1)

B+ (T2)

C+# (T3) D? (T2)

Fig. 3. The annotated DG

Aliases track one-to-one and many-to-one relationships in
the hierarchies of XML documents. According to normaliza-
tion, two entities with a one-to-one relationship can be stored
in the same table, without violating normal forms. Therefore,
aliases are identifications of sub-tables: columns with the same
aliases form a logical sub-table.

Since exception nodes are stored in separate rows than their
parents, mapping an exception node to a column is equivalent
to partitioning this column from the parent sub-table. Hence,
if a DG node is annotated with #, it has a new alias.
Maintenance of annotated DG The annotated DG is gener-
ated from the initial corpus. When the corpus is updated, the
corresponding DG nodes are updated. Inserting an element to
an existing document or adding a document to the corpus may
change a one-to-one relationship between a parent and child
DG node to a many-to-one relationship. This change demands
a new alias for the child, which requires re-numbering aliases
for the child’s descendants. Since the DG is typically small and
kept in main memory, these updates can be done instantly.

Deleting an element from a document or removing a docu-
ment from the corpus may change a many-to-one relationship
between a parent and child DG node to a one-to-one rela-
tionship. This change, however, cannot be completed until we
scan the corpus and check whether another document implies
a many-to-one relationship between these two DG nodes.

Such DG updates upon deletion are not necessary for
translation correctness. When an XML query is translated to
SQL, the annotations identify logical sub-tables, which are
used to eliminate joins. If we falsely annotate a many-to-
one relationship between two DG nodes that are supposed to
be related one-to-one, the translation is still correct but only
suboptimal. Therefore, updates of annotations due to deletion
can be deferred until indexes are rebuilt on the XML database.

In essence, DG annotations are metadata that maintain
normalization, i.e., identifications of logical sub-tables. Main-
taining metadata is usually much cheaper than manipulating
original data upon schema evolution. For example, in nor-
malization mappings, schema evolution often results in table
repartitioning, which is expensive when the table is large.

B. Framework

A high level representation of the translation framework is
shown in Figure 4. The evaluation module and the rewrit-
ing module perform the schema- and normalization-based
optimizations respectively. The evaluation module receives a
parsed query, evaluates it over the DG, and translates it into
an algebra tree. In the translation, a column selection uses
the table alias assigned to the corresponding DG node. For
example, the selection of column B is σB 6=null(T2) where T2

is the table alias of the B node in the DG in Figure 3. Query
constructs are simplified in two ways:
1) The algebra expressions of XPath axes only includes the

columns that potentially satisfy the query. Consider the
query /A/∗. By the translation of the base expression in
Section III, the algebra expression is a join between column
A and the union of all other columns. Evaluating the query
over the DG only keeps those columns that appear as A’s
children in the DG, i.e., σA6=null(T1) on σB 6=null(T2).

2) The join conditions of hierarchical axes are reduced to
equi-joins. For example, the original join condition of
A//C is: R(A).ord is a prefix of R(C).ord. Given that
C is a grandchild of A in the DG, the join condition can
be rewritten to R(A).ord = R(C).ord.anc(2). Recall that
tuples across sub-tables are connected through structural
joins. Translating to equi-joins simplifies the join condi-
tions, and simulates primary-foreign key joins (which are
equi-joins) across sub-tables.

When the query is evaluated over the DG, hierarchical
axes (i.e., child, descendant, etc.) can be matched precisely.
However, since the order between the DG nodes is enforced,
it may not fully reflect the actual order in the XML doc-
uments. To guarantee the correctness of the translation for
axes related to the document order (e.g., following-siblings),
all the DG nodes that might satisfy the condition must be
included in the algebra expression. For example, consider
the query //C/following-sibling::* over the DG in Figure
3. While D is the following sibling of C, the C node is
annotated by +, which means that multiple c nodes may
appear as siblings in an XML document. Therefore, in the
translation, column C should join both column D and itself.
Furthermore, exception nodes violate the order of the DG
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Fig. 4. Translation framework

nodes and their positions in the documents are not predictable
through the DG. Consequently, they should be considered as
well. Consider the query //D/following-sibling::C. In Figure
3, although C precedes D, since C is annotated with #, the
translated expression is σD 6=null(T2) on σC 6=null(T3), because
“exception” means that some c elements may follow a sibling
d element.

Given the algebra tree, the rewriting module rewrites the
algebra tree based on a set of rewriting rules. Annotations on
the DG are used as hints to infer if a join can be eliminated or
simplified to a selection. The simplified algebra tree is finally
translated into a SQL query.

C. Algebra Rewriting

Next, we discuss rewriting rules to minimize the number of
joins. The rewriting coincides with the normalization principle
and leverages characteristics of XML query languages.

REWRITING RULE 1. σs1(T1) on σs2(T1)→ σs1∧s2(T1), if
(1) the join is an equi-join.
(2) s2 does not contain a position predicate.

Equi-joins correspond to hierarchical axes in XPath, e.g.,
child, descendant, etc. Columns with the same alias are in the
same logical sub-table. Therefore, the join can be simplified
by merging the two selection predicates.

In XPath, elements’ positions are dependent on context
nodes. When s2 contains position predicates, T1 specifies the
context nodes. Hence, the join cannot be simplified.

REWRITING RULE 2. σs1(T1) on σs2(T2)→ σs2(T2), if
(1) the join is an equi-join.
(2) s1 is a single “not-null” predicate.
(3) s2 does not contain a position predicate.

XPath axes only project on the target node. For example,
for the query //B/C, when there is no predicate on B, all
the elements in column C satisfy the query and are projected.
Therefore, the join can be eliminated. However, if there is a
predicate on B, e.g., //B[@attr = 5]/C, in Table I, b1 or b2
may be filtered out and some elements in column C will not
match a b element any more. In such a case, a join is required
to associate c elements with satisfied b elements.

REWRITING RULE 3. σs1(T1) n σs2(T1)→ σs1∧s2(T1), if

(1) the semijoin is an equi-semijoin.
(2) s2 does not contain a position predicate.

Semijoins correspond to path expressions within predicates.
Similar to Rewriting Rule 1, the semijoin satisfying the
conditions can also be simplified by merging the selection
predicates of the input relations.

REWRITING RULE 4. σs1(T1) n σs2(T2)→ σs1∧s2(T1), if
(1) the semijoin is an equi-semijoin.
(2) s2 is a single not-null selection condition.
(3) in the path between the two projected DG nodes of T1

and T2, either (a) no +/* node is followed by a */? node,
and no node is annotated by #, or (b) there are only +/!
nodes (and # can co-occur).

The semantics of the path expression within a predicate
is “existence”. That is: as long as one such path exists, the
context node survives. In the translation, if it is guaranteed
that every element in T1 can be joined with an element in T2,
the join can be eliminated. Consider the query /A[./B] where
B is annotated by + in Figure 3, i.e., one or more b elements
under an a element. According to Mapping Rule 2 in Section
II, if the B collection has at least one element, a b element
must appear in the same row as a. Therefore, the join can be
simplified to a selection σA 6=null∧B 6=null(T1).

This property is transitive only within DG nodes annotated
by + or !. Consider the query A[.//D]. In Table I, d1 and a1

are in separate rows, though d1 is still a descendant of a1.
More formally, if either * or ? follows * or + (not necessarily
consecutively) in the path from A to D in the DG, then the
only a − d path in an XML document might have endpoints
that do not appear in the same row. Likewise, if there exists
an exception in the path, the two endpoints of the path may
not be in the same row, unless there are only + and !, which
guarantees a path in that row.

Similar to Rewriting Rule 2, if T2 contains additional
predicates, e.g., /A[./B[@attr = 1]], then the b node that
is in the same row as a may be filtered out. However, there
may be another row that associates a to a surviving b node.
Hence, the join cannot be simplified to a selection.

EXAMPLE 2. Let ⊥ denote the null value. Consider the XPath
query /A/B[./C and @attr>5]/D over the DG in Figure 3. The
original algebra tree of the query is shown in Figure 5(a).
(a) The semijoin

σB 6=⊥∧attr>5(T2) n σC 6=⊥(T3)

is rewritten using Rewriting Rule 4. Since the input relations
correspond to B and C in the DG and there are only + and
! between them (even though # co-occurs), this semijoin can
be eliminated, as shown in Figure 5(b).
(b) The join

σA6=⊥(T1) on σB 6=⊥∧attr>5(T2)

is further simplified by Rewriting Rule 2, yielding Figure 5(c).
(c) Finally, the join expression in Figure 5(c) is simplified into
a single selection by Rewriting Rule 1:

σB 6=⊥∧attr>5∧D 6=⊥(T2)
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Fig. 5. Algebra rewriting for the example query

Rewriting queries using indexes There is only one table
in the sparse mapping. An index on one column may also
provide fast access for another column. For example, consider
a selection on one column, e.g., σA 6=null(T ), a frequent
operation in translated algebra expressions. If there is no index
on column A, the selection requires a full table scan. If the
table has an index on column B and the DG indicates that
every row with an a value must have a b value, then rewriting
the query into σA 6=null∧B 6=null(T ) utilizes the index on B to
first filter out unrelated rows and avoid a full scan of the table.

In general, DG nodes with the same alias can use the same
filtered index for column selections. Since these columns form
a logical sub-table, such a filtered index essentially provides
fast accesses to the sub-table, even though tuples from the
sub-table are not consecutive in physical storage.

V. EXTENSIONS

Applicability for XML with a static schema While the
sparse mapping was designed for the target use cases, it also
has great potential for XML data with static schema. Physical
storage of documents in the sparse mapping follows the same
principle of normalization. With the annotated DG, query
rewriting can reduce all unnecessary joins. Therefore, for XML
data with static schema, the execution plan of a query in the
sparse mapping has at most the same number of joins as a
normalization mapping (the Rewriting Rule 4 may cause fewer
joins). For this reason, we believe that the sparse mapping
would be competitive on standard benchmarks—a few large
XML documents conforming to a static schema; further testing
will be required to confirm this conclusion.

The extra cost of the sparse mapping, compared with
normalization mappings, is the storage overhead of each row,
because interpreted storage maintains schema information for
individual rows. In addition, rows have variable length in the
sparse mapping. Some may even be very long. This increases
the row-access cost.
Extending to XQuery Until now we have discussed XPath
translation over the sparse mapping. The translation algorithm
can be extended to XQuery as well. In the literature, several
papers have studied comprehensive translation from XQuery
to SQL, e.g., [13], [19], in which relational algebra is based
on the node-encoding mapping table. In our mapping, the
output table of a translated algebra expression has the same
semantics as the algebra expressions under the node-encoding
mapping. That is: for an XPath expression e that represents a
node set, R(e) represents a binary relation 〈docid, ordpath〉,
which is the same as algebra expressions in the node-encoding
mapping. After XPath expressions are translated into algebra
expressions under the sparse mapping, techniques discussed in

TABLE VI
REAL-LIFE DATA SET PARAMETERS

Table doc # Document size (KB)
average min max DG

T1 21,875 2.02 1.84 2.4 5.59
T2 152,303 0.94 0.19 1.33 6.52
T3 50,000 18.47 17.36 19.71 58.65
T4 130,528 1.76 1.04 48.24 2.97

[13], [19] can be used to translate the other XQuery constructs.

VI. EXPERIMENTAL RESULTS

We experimentally evaluate the new mapping and the trans-
lation algorithm in this section. Several XML benchmarks
have been designed for XML processing, e.g., XMark [27]
for analytical queries and TPoX [23] for transactional queries.
However, none of them capture our target use cases, i.e., many
small XML documents with flexible schemas. Characterizing
such cases is not trivial. At one extreme, all XML documents
in the database have the same static schema; at the other
extreme, every XML document has its own schema and
distinct tag names. An ideal benchmark should identify a small
range of middle cases that capture the needs of most enterprise
applications and quantify the data characteristics.

We use two data sets to measure performance. The first
data set and its query workloads are from real-life customer
verticals, such as banking, insurance and life sciences. The
data set is characterized in Table VI, where the “DG size”
is the size of the XML document to which DG is serialized.
The schemas of T1-T4 are [ID varchar(200) primary key,
doc xml], where ID denotes the document id, and doc is a
column declared as the xml type. As we can see, average
document sizes from three document sets are smaller than 4
KB, which means that most documents fit in a single disk page.
Furthermore, DG sizes are 1.6-7 times larger than the average
document sizes. This indicates that schemas of individual
documents are much smaller than the global schemas of the
document sets. These documents must have many optional
elements/attributes, and their schemas are very flexible.

The second data set is derived from XMark. Although the
original XMark document does not satisfy the properties of
the use cases we target, its query workloads have been well
studied. To simulate the desired properties, we implement
a data generator that inputs one large XMark document
and randomly strips it down to a much smaller document.
Specifically, for every many-to-one relationship in XMark, the
generator randomly picks a small number (at most three) of
elements in the “many” side. The generator is run repeatedly to
generate 40,000 documents. The total space of the documents
is 424MB. XMark’s schema is assumed to be unavailable.
Query workloads of the two data sets are shown in Table VII.

XML query specifications, e.g., XQuery and SQL/XML,
include functions to retrieve and construct XML data. An
XML query can return document IDs, full documents, or
fragments constructed from elements selected by the query.
XML reconstruction involves a number of joins to connect
retrieved elements. EXRT [11], a recent benchmark, has
revealed that XML reconstruction can be cheap or fairly



TABLE VII
QUERY WORKLOADS

Real-life
R1 FROM T1 WHERE doc.exist(‘/row/E2[./text()=“AB”]’) = 1 and doc.exist(‘/row /E1

[./text()=19991031] ’) = 1
R2 FROM T1 WHERE doc.exist(‘/row/E10[contains(.,“1 NAME”)]’) = 1
R3 FROM T2 WHERE doc.exist(‘/row//E6’)=1
R4 FROM T2 WHERE doc.exist(‘/row/E6[./text()]’)=1
R5 FROM T2 WHERE doc.exist(‘/row[./E6/text()=20061130 and ./E5/text()=60]’)=1
R6 FROM T2 WHERE doc.exist(‘/row/descendant::E7/text()’)=1
R7 FROM T2 WHERE doc.exist(‘/row[descendant::E7]’)=1
R8 FROM T2 WHERE doc.exist(‘/row/E7[.=21]’)=1
R9 FROM T2 WHERE doc.exist(‘/row[./E8/text()=./E9/text()]’)=1
R10 FROM T2 WHERE doc.exist(‘/row/E6[@A1 = “3”][. = “ 20080213 ”] ’)=1
R11 FROM T3 WHERE doc.exist(‘//E12/text()[.≥ “20051001” and .≤ “20051031”]’) = 1
R12 FROM T3 WHERE doc.exist(‘//E13[E14/text() = (“HENRY”)]’) = 1
R13 FROM T3 WHERE doc.exist(‘//E13[E15/text() = “JAMES”]’) = 1
R14 FROM T4 WHERE doc.exist(‘E16/E17[@A2=“N”]/E19[.=“ABC (DEF, 3GH)”]’)=1
R15 FROM T4 WHERE doc.exist(‘E16/E17[@A2=“IJKLMN”]/E18[. = 4]’) = 1
R16 FROM T4 WHERE doc.exist(‘//E18[ .≥ 30 and .≤ 60]’) = 1

XMark
X1 FROM Xmark WHERE doc.exist(‘/site/closed auctions / closed auction / annotation /

description / parlist / listitem’) = 1
X2 FROM Xmark WHERE doc.exist(‘/site//europe//mail’) = 1
X3 FROM Xmark WHERE doc.exist(‘/site/regions/*/item’) = 1
X4 FROM Xmark WHERE doc.exist(‘/site/regions/*/item[parent :: namerica]’) = 1
X5 FROM Xmark WHERE doc.exist(‘/site/people/person[./address and (./phone or ./home-

page)]’) = 1
X6 FROM Xmark WHERE doc.exist(‘/site/regions/*/item[@id = “item0” and ((./mail-

box/mail/from) or (./mailbox/mail/to))]’) = 1
X7 FROM Xmark WHERE doc.exist(‘/site/people/person[./profile/ education/ text() =

“Graduate School” and ./ address/ country/ text() = “United States”]/ name’) = 1
X8 FROM Xmark WHERE doc.exist(‘/site//closed auction/annotation [./happiness/text() =

‘1’]//parlist’) = 1
X9 FROM Xmark WHERE doc.exist(‘/site//person//province [contains(., “Virginia”)]’) = 1
X10 FROM Xmark WHERE doc.exist(‘/site/open auctions/ open auction / bidder[position()

< 3]’) = 1

expensive, depending on the “width” of the touched data. In
our experiments, XML queries only project document IDs.
This eliminates the effect of XML reconstruction, and helps
us focus on the performance of XML query evaluation.

In the future, we plan to explore reconstruction techniques
and study their performance under the new mapping. In-
tuitively, the sparse mapping can benefit the reconstruction
in two respects. First, the sparse mapping provides efficient
storage representations of individual documents. Structural
joins of the reconstruction do not need to access many pages.
Second, the mapping stores in one row elements that have
one-to-one relationships. With the annotated DG, connecting
such elements does not need to perform joins.

We implemented the new mapper and translation framework
on top of Microsoft SQL Server. Columns in the sparse-
mapping table are declared as sparse columns in SQL Server
2008. Filtered indexes are created on the mapping tables of T3,
T4 and the XMark table, for the XML elements that appear in
the query workloads (Recall that columns from a sub-table can
share the same filtered index.) T1 and T2 have no secondary
indexes on the sparse-mapping table, as their data sizes are
small. Translated SQL queries are evaluated by the relational
engine. All the experiments are performed on a server with
an Intel Core2 Quad CPU 2.5GHz, 4G RAM, and Windows
Server 2008 R2.

A. Baseline

To evaluate query performance under the new mapping, we
compare the sparse mapping with node-encoding mappings.
As discussed in the introduction, the latter are the only alter-

natives for the target use cases in SQL-based XML databases.
The node-encoding mapping is implemented in SQL Server

as a primary XML index [25]. A simple representation of the
mapping table is (docid, ordpath, tag name, value, path).
Every XML element is mapped to a row in the table. For
XML elements that have no value, the value column is null.
The path column materializes root-to-node paths for elements,
which is the key to improving query performance.

A number of secondary indexes can be built on the node-
encoding mapping table. In particular, with indexes on the
path column, path expressions in XML queries can be evalu-
ated by index lookups, which reduces the number of structural
joins significantly. We explore three indexes, and compare
them with the sparse mapping.
• The PATH index is built on (path, value) of the mapping

table. It locates an element first by its path, then by its value.
• The VALUE index is build on (value, path), which indexes

the same columns as the PATH index, but in reverse order.
• The PROPERTY index is built on (docid, ordpath, path,

value). Since it contains the primary key of the mapping
table, it helps search multi-valued properties in the same
XML document.
The performance differences of the three indexes are

determined by predicate selectivities. Consider the query
/A/B/@attr[. < 5]. If the attribute predicate is highly selec-
tive, using the VALUE index leads to the best performance. If
the path expression /A/B/@attr is much more selective than
the attribute predicate, then using the PATH index is more
efficient.

B. Results

We measure two metrics in the experiments: query execution
time and logical reads. The number of logical reads is a
measure of the total data requested by the database engine in
the process of query evaluation. A logical read occurs every
time the database engine requests a page from the buffer cache.
A physical read is triggered to read a disk page into the buffer
cache, when the requested page does not reside in the cache.
All numbers from the two data sets are shown in Figures 6
and 7, in which the x-axis represents the query ID. Queries on
the x-axis are classified into two groups, separated by a white
space. The first group are pure path queries, including wild
card * and //. The second group are the remaining queries,
including predicates, tree patterns, and other query constructs.
Path queries We first examine path queries. As expected, the
PATH index outperforms the other two indexes in both data
sets, as it indexes the elements’ paths directly. Evaluating a
path query over the sparse mapping consists of two steps: (1)
matching the path over the DG, which locates the columns
containing the result elements; and (2) column selections.

In both data sets, the sparse mapping outperforms the PATH
index by a factor of three or more, with only one exception:
X1. Query X1 consists of only parent-child axes. Its execution
only needs to locate a single key in the PATH index, and thus
can be very efficient. The other path queries, however, include
wild card * or ancestor-descendant axes. Such expressions



may correspond to multiple paths. For example, A/∗ can be
A/B, A/C, . . . , and A//B can be A/B,A/X/B,A/X/Y/B,
. . . . Evaluating such expressions must access multiple index
keys to locate all satisfied paths. Although there are not many
distinct keys in the index (i.e., distinct paths), every key
indexes a list of elements, which is too large to fit in main
memory. PATH index lookups then need to access scattered
disk pages.

The sparse mapping, on the other hand, simplifies query
constructs using the DG and translates them to column
selections. Since the DG is kept in main memory, query
simplification incurs no disk access. If a column has no filtered
index, its selection is evaluated by a table scan; otherwise,
the filtered index directly points to the rows to access. By
comparison, path indexes mix various paths in one index tree,
a great portion of which must be traversed at runtime.

In short, though path-based indexes can reduce some query
expressions to index lookups, they still have significant over-
head, compared with schema-based simplifications.
Queries with predicates and tree patterns Next, we examine
queries with predicates and tree patterns, which include all
queries from the second group except X10. Execution plans
of these queries under the node-encoding mapping are more
complicated. It is not straightforward to determine which index
will have the best performance for each query. In fact, index
selection is a difficult problem for query processing of the
node-encoding mapping.

Compared with the best performance of the three indexes,
the sparse mapping is 1.1 to 63 times faster. The speedup
is due to schema-based simplification and normalization-
based join reductions. Schema-based simplifications reduces
the complexity of query constructs at compile time, yielding
much fewer data accesses at runtime, as demonstrated by the
number of logical reads. The join reduction reduces CPU
cycles, as selections are much cheaper than joins.

Queries R11-R13 over T3 present limited improvements
(1.1-3 times faster) of the sparse mapping. This is because
the three queries include value predicates on text, all of which
are highly selective. The cost of I/O and CPU computation is
very low, after the predicate pruning.
Position function Query X10 contains a position predicate.
The sparse mapping does not show advantages over the three
indexes. The position predicate prevents join reduction. Its
physical plan includes three operators: join, grouping and
sorting in each group. The cost of these operators dominates
the overall performance of X10.
Further analysis of join reduction Though query processing
in databases is I/O bound in most cases, some queries here
show the opposite. For example, for queries R2-R8 and R10
from the real-life data set, the sparse mapping accesses about
the same amount of data (in terms of logical reads) as the three
indexes, though its query efficiency consistently outperforms
them. It even accesses more data than the PATH index for R7.

Data access pattern is one reason that could lead to this
result. To access the same amount of data, sequential reads
are much faster than random reads. Query evaluation under

the node-encoding mapping relies heavily on index lookups,
which are mainly random reads. Query translation under
the sparse mapping compiles path and tree expressions into
columns selections. Given that T1 and T2 have no secondary
indexes on the sparse-mapping tables, these queries are eval-
uated by sequential reads.

Another reason that explains the result is join reduction.
Recall that most documents from T1 and T2 are smaller than
4 KB. A single document can even fit in the on-chip cache.
Query evaluation on a document is CPU-bound once it is
loaded into the on-chip cache. The sparse mapping resembles
normalization and reduces unnecessary joins to selections,
which are much cheaper than structural joins.

VII. RELATED WORK

Our work is related to building XML databases on top of
relational engines. Most such efforts were discussed in the
introduction. In this section, we discuss other related work,
e.g., native XML databases, from two viewpoints: schema-
and normalization-based optimizations.

Using schemas to simplify query constructs is a straightfor-
ward optimization. Query minimization [2], [12] aims to use
schemas and constraints to minimize tree patterns at query
compile time. This idea can be extended by the integration of
structural summaries (in case the schema is not available) and
indexes, in which XML elements are linked to the correspond-
ing summary nodes [18], [6], [15]. This enables the engine to
simplify query patterns at compile time and to quickly access
instances at execution time.

However, structure indexes are not the only schema-based
optimizations. Schemas or structural summaries can be cou-
pled with underlying storage as well, i.e., schema-driven
storage. To understand the difference, consider node-encoding
mappings in which all XML elements are stored in a single
pivot table. In those systems, even if queries are simplified,
locating the matched elements cannot avoid accessing many
irrelevant elements, because those elements are not physically
separated.

Schema-driven XML storage techniques proposed in the
literature are based on document partition, e.g., by tag names
[17] or by paths [4]. The benefit is that once a query expression
is simplified to concrete paths, only corresponding elements
need to be scanned. Moreover, such techniques facilitate com-
pression [3], [20], as it has been observed that values under the
same root-to-node paths are similar. A more popular category
of native XML storage aims at locality-oriented partition [22],
[8]: XML trees are partitioned into physical records, in a
depth-first or breadth-first way, so that a query expression may
only need to touch a few records.

While schema-based optimizations have been adopted in
many systems, normalization-based optimizations have never
been achieved for flexible schemas. The partition schemes of
existing XML storages do not consider one-to-one relation-
ships, and evidently incur many joins in query execution. In
fact, path-partitioned storage can be viewed as a column store
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Fig. 7. Number of logical reads (smaller is better)

of the sparse-mapping table: elements from one column have
the same path. Analogous to relational column stores, path-
partitioned storage facilitates value compression, but intro-
duces more joins. From this perspective, the sparse-mapping
table can be vertically partitioned as well, as long as logical
sub-tables are kept holistically. Each partitioned wide table
then evolves separately.

VIII. CONCLUSION

Schema and normalization have a profound impact on
query processing in database systems. While XML is an ideal
model for applications with flexible schemas, conventional
query processing for such XML data loses all schema- and
normalization-based optimizations. In this paper, we proposed
a novel mapping that resembles normalization for XML with
flexible schemas. The key is to retain normalization through
logical sub-tables in one wide sparse table, which is physically
represented by interpreted storage. Logical sub-tables are
maintained as metadata—the annotated DG—to minimize the
cost of schema evolution. At query compilation time, the
annotated DG is used to eliminate joins. Experimental results
demonstrate significant improvements of query performance
under the new mapping.

The sparse mapping can have many variations. For example,
instead of mapping an entire XML document, the system
could map only parts of the document that are queried. As
future work, it would be useful to study which combinations
of documents and workload this mapping is and is not well
suited. Even more useful would be a system that automatically
select a mapping and translate queries with minimum user
input (sample documents, sample query workload).
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xquery to sql translation using dynamic interval encoding. In SIGMOD,
2003.

[14] A. Deutsch, M. F. Fernández, and D. Suciu. Storing semistructured data
with stored. In SIGMOD, 1999.

[15] G. H. L. Fletcher, D. V. Gucht, Y. Wu, M. Gyssens, S. Brenes, and
J. Paredaens. A methodology for coupling fragments of xpath with
structural indexes for xml documents. Inf. Syst., 34(7), 2009.

[16] D. Florescu and D. Kossmann. Storing and querying xml data using an
rdmbs. IEEE Data Eng. Bull., 1999.

[17] H. Georgiadis and V. Vassalos. Xpath on steroids: exploiting relational
engines for xpath performance. In SIGMOD, 2007.

[18] R. Goldman and J. Widom. Dataguides: Enabling query formulation
and optimization in semistructured databases. In VLDB, 1997.

[19] T. Grust, S. Sakr, and J. Teubner. Xquery on sql hosts. In VLDB, 2004.
[20] H. Liefke and D. Suciu. Xmill: An efficient compressor for xml data.

In SIGMOD Conference, 2000.



[21] Z. H. Liu and R. Murthy. A decade of xml data management: An
industrial experience report from oracle. In ICDE, 2009.

[22] R. Murthy, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar, A.-T. Tran,
E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal, V. Arora, and
V. Krishnamurthy. Towards an enterprise xml architecture. In SIGMOD,
2005.

[23] M. Nicola, I. Kogan, and B. Schiefer. An xml transaction processing
benchmark. In SIGMOD, 2007.

[24] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury.
Ordpaths: Insert-friendly xml node labels. In SIGMOD, 2004.

[25] S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoumakis, and V. V.
Zolotov. Indexing xml data stored in a relational database. In VLDB,
2004.

[26] M. Rys, D. D. Chamberlin, and D. Florescu. Xml and relational database
management systems: the inside story. In SIGMOD, 2005.

[27] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. Xmark: A benchmark for xml data management. In VLDB,
2002.

[28] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational databases for querying xml documents:
Limitations and opportunities. In VLDB, 1999.

[29] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita,
and C. Zhang. Storing and querying ordered xml using a relational
database system. In SIGMOD, 2002.

APPENDIX I
MAPPING TABLE MAINTENANCE

This section explains the maintenance of a compressed
mapping table. Updating the mapping table when a document
is added or removed is trivial: the corresponding rows are
inserted or deleted. We focus on inserting/deleting an element
v to/from an existing XML document whose id is docid0.
Non-collection node If v is mapped to a non-collection node,
it should be stored in the same row as its parent. Insertion
(deletion) requires adding (removing) a column to (from) its
parent’s row. Let V be the DG node to which v is mapped, and
ordp(parent(v)) be the primary ordpath of the row containing
v’s parent. The corresponding SQL queries are shown in the
first half of Table VIII.
Collection node If v is mapped to a collection node, two
cases need to be considered: (1) if v is not the first element
in the collection, v is in a separate row from its parent.
Inserting/deleting v to/from the document is equivalent to
inserting/deleting one row to/from the table. (2) If v is the
first element in the collection, inserting v will first move the
former first element v̌ plus v̌’s descendants in that row to a
new row, and then store v in the parent’s row; deleting v will
first replace the v entry by null, and move the entries in the
row of the new first element (if there is one) to the parent’s
corresponding entries.

Let realOP () be a function that computes the real ordpath
of a node. If v is not the first element in the collection and
is stored in a separate row, realOP (v) is also the primary
ordpath of that row. If v is the first element in the collection,
let v̌ be the first element in the collection before v’s addition,
v̂ be the first element in the collection after v’s deletion, and
Vd1 , . . . , Vdm be the descendants of V in the DG. The SQL
queries that correspond to the update of a collection node are
shown in the second half of Table VIII.

TABLE VIII
SQL QUERIES FOR MAPPING MAINTENANCE

Inserting/deleting a non-collection node
Insertion:
UPDATE T SET V = ’1’
WHERE docid = docid0 AND ordpath=ordp(parent(v))

Deletion:
UPDATE T SET V = NULL
WHERE docid = docid0 AND ordpath=ordp(parent(v))

Inserting/deleting a collection node
Insertion (non-first):
INSERT INTO T (docid, ordpath, V ) VALUES
(docid0, realord(v), ‘1’)

Deletion (non-first):
DELETE FROM T
WHERE docid = docid0 AND ordpath = realOP (v)

Insertion (first):
INSERT INTO T
SELECT docid, realOP (v̌), Vd1 , . . . , Vdm FROM T
WHERE docid = docid0 AND ordpath = ordp(parent(v));
UPDATE T SET V = ‘1’
WHERE docid = docid0 AND ordpath = ordp(parent(v));

Deletion (first)
UPDATE T
SET V = E.V, Vd1 = E.Vd1 , . . . , Vdm = E.Vdm
FROM

(
SELECT V, Vd1 , . . . , Vdm

FROM T
WHERE docid = docid0 AND ordpath = realOP (v̂)

)
AS E

WHERE docid = docid0 AND ordpath = ordp(parent(v));

APPENDIX II
MAPPING EXCEPTION NODES

There can be different ways to map ordered siblings in
XML documents to ordered DG nodes, which may result in
different exception nodes. For example, c and d elements are
interleaved in the document fragment in Figure 8(b) whose DG
is Figure 8(a). Thus, some nodes will be mapped to exception
nodes. Mapping c1, c2 to C as normal nodes causes d1 to be an
exception node, while mapping d1, d2 to D as normal nodes
causes c1, c2 to be exception nodes.

B

C D

(a) A DG fragment

c1

b1

c2 d2d1

(b) A document fragment

Fig. 8. A document that contains exception nodes

When c1, c2 are mapped to C as normal nodes, d1 will be
mapped to an exception node, and d2 can still be mapped to a
normal node. However, notice that storing d2 in the same row
as its parent b1 contradicts Mapping Rule 2, because d1 is the
first element in the D collection. Therefore, both d1 and d2 are
stored in separate rows in such a case. In general, when the
first element in a collection is mapped to an exception node,
all the elements in the collection are identified as exception
nodes and are stored in separate rows.

In theory, mapping ordered siblings in a document to or-
dered DG nodes can be a combinatorial optimization problem:
find a mapping that minimizes the number of rows that
represent siblings. Our current mapper implements a naive
algorithm: siblings are traversed in document order. Earlier
visited nodes are mapped to normal nodes if possible. In the
above example, d1 is visited first, and is mapped to D as a
normal node. Thereafter, c1, c2 are mapped to exception nodes.


