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1. INTRODUCTION

There has recently been a proliferation of workflow specification languages, notably
data-centric, in response to the need to support increasingly ubiquitous processes cen-
tered around databases. Prominent examples include e-commerce systems, enterprise
business processes, health-care and scientific workflows. Comparing workflow speci-
fication languages is intrinsically difficult because of the diversity of formalisms and
the lack of a standard yardstick for expressiveness. In this article, we develop a flex-
ible framework for comparing workflow specification languages, in which the perti-
nent aspects to be taken into account are defined by views. We use it to compare
the expressiveness of several workflow specification mechanisms based on automata,
pre/postconditions, and temporal constraints.
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Consider a system that evolves in time as a result of internal computations or in-
teractions with the rest of the world. Fundamentally, a workflow specification imposes
constraints on this evolution. There are numerous approaches for specifying such con-
straints. Perhaps the most popular consists of specifying a set of abstract states of
the system and imposing state transition constraints, in the spirit of a BPEL program
[BPEL 2012]. Another, more declarative approach is to define a set of tasks equipped
with pre/postconditions, such as IBM’s Business Artifact model (see Related Work).
Artifact systems may also impose constraints by temporal formulas on the history of
the run [Hull 2009].

The richness and variety of these approaches renders their comparison difficult. In
particular, little is known of their relative expressive power. This is the main focus of
the present article.

We argue that a very useful approach for comparing workflow specification languages
is provided by the notion of workflow view. More broadly, the notion of view is essential
in the context of workflows, and the need to provide different views of workflows is
pervasive. For example, views can be used to explain a workflow or provide customized
interfaces for different classes of stakeholders, for convenience or privacy considera-
tions. The interaction of workflows and contractual obligations are also conveniently
specified by views. The design of complex workflows naturally proceeds by refinement
of abstracted views. Views can be used at runtime for surveillance, error detection,
diagnosis, or to capture continuous query subscriptions. The abstraction mechanism
provided by views is also essential in static analysis and verification.

Depending on the specific needs, a workflow view might retain information about
some abstract state of the system and its evolution, about some particular events and
their sequencing, about the entire history of the system so far, or a combination of these
and other aspects. Even if not made explicit, a view is often the starting point in the
design of workflow specifications. This further motivates using views to bridge the gap
between different specification languages. To see how this might be done, consider a
workflow W specified by tasks and pre/postconditions and another workflow W ′ spec-
ified as a state transition system, both pertaining to the same application. One way
to render the two workflows comparable is to define a view of W as a state transition
system compatible with W ′. This can be done by defining states using queries on the
current instance and state transitions induced by the tasks. To make the comparison
meaningful, the view of W should retain in states the information relevant to the se-
mantics of the application, restructured to make it compatible with the representation
used in W ′. More generally, views may be used to map given workflow models to an
entirely different model appropriate for the comparison. We will formalize the general
notion of view and introduce a form of bisimulation over views to capture the fact that
one workflow simulates another.

In our formal development, we mostly use the Active XML model [Abiteboul et al.
2008a], which provides seamless integration of complex data and processes. To describe
system evolution (in the absence of workflow constraints), we use a core model called
Basic Active XML (BAXML for short). BAXML documents are abstractions of XML
with embedded service calls. A BAXML document is a forest of unordered, unranked
trees, whose internal nodes are labeled with tags from a finite alphabet and whose
leaves are labeled with tags, data values, or function symbols. The document evolves
as a result of function calls that initiate new subtasks, and returns results of function
calls (using some local rewritings). The functions can be internal or external, the
latter modeling interaction with the environment. For example, a BAXML document
is shown in Figure 1. Documents are subject to static constraints specified by a DTD
and a Boolean combination of tree patterns. Note that this already provides some
form of control on the execution flow, since a function call can be activated, or its
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result returned, only if the resulting instance does not violate the static constraints.
Indeed, we will see that this already provides very powerful means to enforce workflow
constraints.

BAXML provides a very natural framework for specifying runs of systems in which
tasks correspond to evolving documents, and function calls are seen as requests to carry
out subtasks. With the core model in place, we consider three ways of augmenting
BAXML with explicit workflow control, corresponding to three important workflow
specification paradigms

—Automata. The automata are nondeterministic finite-state transition systems, in
which states have associated tree pattern formulas with free variables acting as
parameters. A transition into a state can only occur if its associated formula is true.
In addition, the automaton may constrain the values of the parameters in consecutive
states.

—Guards. These are preconditions controlling the firing of function calls and the return
of their answers. This control mechanism was introduced in Abiteboul et al. [2008b],
where the results concern verification of temporal properties of such systems.

—Temporal properties. These are expressed in a temporal logic with tree patterns and
Past LTL operators. A temporal formula constrains the next instance based on the
history of the run.

Although presented here in the context of BAXML, these extensions capture the es-
sential aspects of the three specification paradigms regardless of the specific underlying
data model.

Our main results concern the relative power of BAXML and its extensions as work-
flow specification languages. When we insist that they generate exactly the same runs,
the three extensions turn out to be incomparable. More interestingly, we then consider
a more permissive and realistic notion of equivalence in which a view allows to hide por-
tions of the data and some of the functions, thus providing more leeway in simulating
one workflow by another. Surprisingly, we show that the core BAXML alone is largely
capable to simulate the three specification mechanisms based on guards, automata,
and temporal properties. This indicates the considerable power of static constraints
to simulate apparently much richer workflow control mechanisms. Of course, speci-
fications using guards, automata, and temporal properties are typically much more
readable than their equivalent specifications in BAXML using hidden functions and
static constraints.

The preceding results show the usefulness of seeing a workflow abstractly as a
constraint on the runs of an underlying system, decoupled from the specific approach
for defining the constraint. It also demonstrates the effectiveness of views in comparing
workflows and workflow specification languages. Although the previous languages are
formalized in a specific Active XML context, we believe that the results demonstrate
the wide applicability of the approach beyond this particular setting. In particular, the
proofs provide general insight into when and how specifications based on automata,
guards, and temporal constraints can simulate each other.

After settling the relative expressiveness of the languages using BAXML as a
common core, we finally consider IBM’s business artifact model, which uses a different
paradigm based on the relational model and services equipped with first-order
pre/postconditions. Relying once again on the views framework, we compare BAXML
to the business artifact model, as formalized in Deutsch et al. [2009]. We prove that
BAXML can simulate artifacts, but the converse is false. The first result uses views
mapping XML to relations and functions to services, so that artifacts become views
of BAXML systems. For the negative result we use views retaining just the trace
of function and service calls from the BAXML and the artifact system. This is a
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powerful result, since it extends to any views exposing more information than the
function/service traces. The latter results demonstrate once again the flexibility and
power of the views approach to comparing workflows.

Related Work. Workflow modeling and specification has traditionally been process-
centric (e.g., Georgakopoulos et al. [1995] and van der Aalst [2004]). This has been
captured in the workflows community by flowcharts, Petri nets [van der Aalst 1998;
van der Aalst and ter Hofstede 2002; Adam et al. 1998], and state charts [Harel 1987;
Mok and Paper 2002]. The comparison of such systems using the notion of bisimu-
lation is considered in Milner [1989] and van Benthem [1976]. More recently, data-
centric workflows have been considered in Wang and Kumar [2005], and in particular
the artifact model of IBM [Nigam and Caswell 2003]. Verification for such models is
considered in Gerede et al. [2007], Gerede and Su [2007], Bhattacharya et al. [2007],
Deutsch et al. [2009], and Fritz et al. [2009]. The comparison of such systems is con-
sidered in Calvanese et al. [2009] using the notion of dominance, which focuses on the
input/output pairs of the workflows. Other models in the same spirit include the Vortex
workflow framework [Hull et al. 1999, 2000; Dong et al. 1999], the OWL-S proposal
[McIlraith et al. 2001; Martin et al. 2003] as well as some work on semantic Web ser-
vices [Narayanan and McIlraith 2002]. The article Deutsch et al. [2007] (building on
Spielmann [2003] and Abiteboul et al. [2000]) considers the verification of properties
of data-centric workflows specified in LTL-FO, first-order logic extended with linear-
time temporal logic operators. Similar extensions have been previously used in various
contexts [Emerson 1990; Abiteboul et al. 1996; Spielmann 2003]. Apart from the work
on verification of BAXML with guards mentioned before [Abiteboul et al. 2008b], most
other work on static analysis on XML (with data values) deals with documents that do
not evolve in time, for example, Fan and Libkin [2001], Arenas et al. [2002], and Alon
et al. [2003]. This motivated studies of automata and logics on strings and trees over
infinite alphabets [Neven et al. 2004; Demri and Lazić 2009; Bojanczyk et al. 2006].
See Segoufin [2007] for a survey on related issues.

A survey on Active XML may be found in Abiteboul et al. [2008a]. In Abiteboul et al.
[2009], active XML documents are used to capture data and workflow management
activities in distributed settings, in the spirit of the artifact approach. The study of
the interplay between queries and sequencing in the artifact approach was the driving
motivation of the present work.

This article is the extended version of the conference article [Abiteboul et al. 2011]. It
differs from the latter by including the full technical development, including the proofs.

Organization. The article is organized as follows. We introduce the view-based frame-
work for comparing workflow languages in Section 2. The BAXML model and the work-
flow languages are presented in Sections 3 and 4. Their expressive power with respect
to different views is compared in Section 5. In Section 6 we compare BAXML with a
variant of IBM’s business artifacts, and show that BAXML can simulate artifacts, but
the converse is false. We end with brief conclusions.

2. VIEWS AND SIMULATIONS

In this section, we introduce an abstract framework for workflows and views of work-
flows. We then use it to compare workflows.

Workflow Systems and Languages. The model for workflows we consider is quite
general. Intuitively, a workflow system describes the infinite tree of the possible runs
of a particular system. More formally, the nodes of a workflow system are labeled
by states from an infinite set Q∞ and the edges by events from an infinite set E∞
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(Q∞ ∩ E∞ = ∅). For example, a state of a workflow system may be an instance of a
relational database or an XML document. It may also include various other relevant
information such as the state of an automaton controlling the workflow, or historical
information such as the prefix of the run leading up to it. A typical event may consist
of the activation of a task, including its parameters. The presence of data explains why
the sets Q∞ and E∞ are taken to be infinite.

The workflow systems we consider include two particular events, namely block and
ε, both in E∞, whose role we explain briefly. First consider block. For uniformity, it is
convenient to assume that all runs are infinite. To this end, we use the distinguished
event block to signal that the system has reached a terminal state that repeats forever
(so once a system blocks, it remains blocked).

On the other hand, the ε event corresponds to the classical notion of silent transition.
Its meaning is best explained in the context of a view (to be formally defined further),
which defines the observable portion of states and events. In particular, it may hide
information about states as well as events in the source system. For a transition in
the source system, if the event is (even partially) visible in the view or if the state of
the view changes, the transition is observable in the view. On the other hand, it may
be the case that both the event and the state change are invisible in the view. So,
although there has been a transition in the workflow system, nothing can be observed
in the view. This is modeled by a silent transition, indicated by the special event ε.
Observe that, unlike for blocking transitions, an ε transition may be followed in the
view by non-ε (visible) transitions, in which the state may change.

More formally, we have the following.

Definition 2.1 (Workflow System). A workflow system is a tuple WS = (N, n0, δ, q0,
λN, λδ) where:

—(N, n0, δ) is a tree with root n0, nodes N, edges δ.
—all maximal paths from n0 are infinite.
—λN is a function from N to Q∞, and λN(n0) = q0.
—λδ is a function from δ to E∞.
—for each (n, n′) ∈ δ, if λδ((n, n′)) = ε then λN(n) = λN(n′).
—for each (n, n′) ∈ δ, if λδ((n, n′)) = block then n′ is the only child of n and λN(n) = λN(n′).

Moreover, n′ has only one outgoing edge also labeled block.

The edges in δ are also called transitions of the workflow, and q0 is called its initial
state.

Finally, a workflow language W consists of an infinite set of expressions, called work-
flow specifications. For example, BAXML, and its extensions with guards, automata,
and temporal constraints, defined in Section 4, are all workflow languages. Given a
workflow language W and W ∈ W, the semantics of W is a workflow system (i.e., the
tree of runs defined by W) and is denoted by [W]W , or [W] when W is understood.

Views of Workflow Systems. We next formalize the notion of view of a workflow
system. We will argue that this is an essential unifying tool for understanding diverse
workflow models. In the present article, we rely heavily on the notion of view in order
to compare workflow languages.

A view V is a mapping on Q∞ ∪ E∞, such that V (Q∞) ⊆ Q∞, V (E∞) ⊆ E∞, V (ε) = ε,
and V (e) = block iff e = block. This mapping is extended to workflow systems as
follows. Let WS = (N, n0, δ, q0, λN, λδ) and V be a view. Then V (WS) is defined1 as
(N, n0, δ, V (q0), λN ◦ V, λδ ◦ V ). We say that the view V is well-defined for WS if V (WS)
is a workflow system.

1Composition is applied left-to-right.
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Note that, by definition of the mapping, the properties of blocking transitions are
automatically preserved. Note also that, by definition of well-defined workflow systems,
for each (n, n′) ∈ δ, if V (λδ((n, n′))) = ε then V (λN(n)) = V (λN(n′)).

Simulation of Workflows

We next consider the comparison of workflow systems and workflow languages based
on the concept of view. We use a variant of bisimulation [Milner 1989] (that we call w-
bisimulation). Of course, many other semantics for comparison are possible. We refrain
from attempting a taxonomy of such semantics, and instead settle on one definition
that is quite general and adequate for our purposes.

In our semantics, we wish to be able to capture silent transitions as well as infinite
branches of such transitions. Given a workflow system as before, for each e ∈ E − {ε},
we define the relation

e→ on nodes by n
e→ m if there is a sequence of transitions from

n to m, all of which are silent except for the last one, which is labeled e.
Informally, the silent transitions are seen as partial internal computation that do

not have impact on the possible observable reachable events. The choices made during
the internal computation may be different, but the visible transitions at the end of
sequences of silent transitions are the same.

Definition 2.2 (w-Bisimulation). Let WSi = (Ni, ni
0, δ

i, q0, λ
i
N, λi

δ), i ∈ {1, 2}, be two
workflow systems (with the same initial state). A relation B from N1 to N2 is a w-
bisimulation of WS1 and WS2 if B(n1

0, n2
0) and for each n1, n2 such that B(n1, n2) the

following hold:

—λ1
N(n1) = λ2

N(n2).
—For each event e �= ε, if there exists n′

1 such that n1
e→ n′

1 in WS1 then there exists n′
2

such that n2
e→ n′

2 in WS2 and B(n′
1, n′

2),
—For each event e �= ε, if there exists n′

2 such that n2
e→ n′

2 in WS2 then there exists n′
1

such that n1
e→ n′

1 in WS1 and B(n′
1, n′

2).
—There is an infinite path of silent transitions from n1 in WS1 iff there is an infinite

path of silent transitions from n2 in WS2.

We denote by WS1 ∼ WS2 the fact that there exists a w-bisimulation of WS1 and WS2.

The last condition captures the intuition that progress from a given state along
a path in the simulated system must imply progress from the corresponding state
along a path in the simulating system, where progress means the occurrence of a
nonsilent event. We note that there are well-known notions of bisimulation related
to ours, such as weak bisimulation and observation congruence equivalence, moti-
vated by distributed algebra [Milner 1989]. These differ from w-bisimulation in their
treatment of silent transitions. For example, infinite paths of silent transitions are
relevant to w-simulation but are ignored in weak bisimulation. It can be seen that ob-
servation congruence equivalence implies w-bisimulation, but weak bisimulation and
w-bisimulation are incomparable.

Clearly, ∼ is an equivalence relation. Observe that views preserve w-bisimulation.
More precisely, let WS1 ∼ WS2. Then for each view V ,

(*) V (WS1) is well-defined iff V (WS2) is well-defined, in which case V (WS1) ∼ V (WS2).

Equivalence of workflow systems as previously defined essentially requires the two
systems to have the same set of states and events. However, in general we wish to
compare workflow systems whose states and events may be very different. In order to
make them comparable, we use views mapping the states and events of each system to a
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common, possibly new set of states and events. Intuitively, these represent abstractions
extracting the observable information relevant to the comparison. The views may also
involve substantial restructuring, thus extending classical database views.

Suppose we wish to compare languages W1 and W2. To compare workflow specifica-
tions in W1 and W2, we use sets of views V1 and V2 that map the states and events of
W1 and W2 to a common set.

Definition 2.3 (Simulation). Let W1,W2 be workflow languages and V1,V2 be sets of
views. The language W2 simulates W1 with respect to (V1,V2), denoted by W1 ↪→(V1,V2)
W2, if for each W1 ∈ W1 and V1 ∈ V1 such that V1(W1) is well-defined, there exist
W2 ∈ W2 and V2 ∈ V2 such V2(W2) is well-defined and V1(W1) ∼ V2(W2).

Remark 2.4. Note that the definition of simulation does not require effective con-
struction of the simulating workflow specification. However, all our positive simulation
results are constructive. The negative result in Theorem 6.9 also concerns effective
simulation.

For sets of views V,V ′, we define V ◦V ′ = {V ◦ V ′ | V ∈ V, V ′ ∈ V ′}. Intuitively, a view
V ◦ V ′ is coarser than V (or equivalently, V is more refined than V ◦ V ′).

The following key lemma is a straightforward consequence of (*). It states that the
relation ↪→ is stable under composition of views.

LEMMA 2.5 (COMPOSITION LEMMA). Let W1 and W2 be workflow languages and V1,V2
and V be sets of views. If W1 ↪→(V1,V2) W2 then W1 ↪→(V1◦V,V2◦V) W2.

The Composition Lemma allows to relate simulations relative to different classes of
views. It says that simulation relative to given views implies simulation relative to any
coarser views. This provides a tool for proving both positive and negative simulation
results.

A useful version of the preceding lemma is the following, combining composition and
transitivity.

LEMMA 2.6. Let W1,W2,W3 be workflow languages, and V1,V2,V3 and V be sets of
views. If W1 ↪→(V1,V2◦V) W2 and W2 ↪→(V2,V3) W3, then W1 ↪→(V1,V3◦V) W3.

As we will see, the version of transitivity provided by the preceding is routinely used
in proofs that combine multiple stages of simulation.

3. THE BASIC AXML MODEL

In this section we present BAXML, the Basic AXML model. This is essentially a sim-
plified version of the GAXML model of Abiteboul et al. [2008b], obtained by stripping it
of the control provided by call and return guards of functions (all such guards are set to
true). We consider such control later as one of the workflow specification mechanisms.
The section may be skipped by readers familiar with the GAXML model.

We begin with an informal overview of the model, then provide more details. To
illustrate our definitions, we use a simplified version of the Mail Order example of
Abiteboul et al. [2008b]. The purpose of the Mail Order system is to fetch and process
individual mail orders. The system accesses a catalog subtree providing the price for
each product. Each order follows a simple workflow whereby a customer is first billed,
a payment is received and, if the payment is in the right amount, the ordered product
is delivered.

BAXML documents are abstractions of XML with embedded service calls. A BAXML
document is a forest of unordered, unranked trees, whose internal nodes are labeled
with tags from a finite alphabet and whose leaves are labeled with tags, data values, or
function symbols. More precisely, a function symbol !f indicates a node where function
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Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Fig. 1. A BAXML document.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’

Y = Y’ or Z = Z’

(a)

Main

Product

Pname

X

MailOrder

Pname

X

self

(b)

Fig. 2. Two patterns.

f can be called, and a function symbol ?f indicates that a call to f has been made but
the answer has not yet been returned. For example, a BAXML document is shown in
Figure 1. The BAXML document may be subject to static constraints specified by a
DTD, as well as Boolean combinations of tree patterns. For example, the negation of
the pattern in Figure 2(a) says that an Order ID uniquely determines the product and
customer names. In patterns, double edges denote descendant and single edges the
child relation.

A BAXML document evolves as a result of making function calls and receiving their
results. A call can be made and an answer can be returned at any point, as long as the
resulting instance satisfies the static constraints. The argument of the call is specified
by a query on the document, producing a forest. The query may refer to the node at
which the call is made (denoted by self ), so the location of the call in the document is
important. When a call is made at node x labeled !f, its label changes from !f to ?f.
The result of a call consists of another BAXML document, so a forest, whose trees are
added as siblings of the node x where the call was made. After the answer of the call
at node x is returned, x may be kept (in which case its label reverts to !f) or x may be
deleted. This is specified by the schema, for each function f. If calls to !f are kept, f is
called continuous, otherwise it is noncontinuous (this is specified in the schema).

For example, consider the MailOrder function in Figure 1. Intuitively, its role is to
fetch new mail orders from customers. For instance, one result of a call to !MailOrder
may consist of the subtree with root MailOrder in Figure 1. Since the function is
processed externally, the semantics of its evaluation is not known. We call such a
function external. Its specification consists of its input query and a DTD constraining
the allowed answers. In addition to external functions, there are functions processed
internally by the BAXML system. These are called internal. For example, Bill is such
a function. When a call to Bill is made at a node x labeled !Bill, the label of x turns
to ?Bill (to indicate that a call has been made whose answer is still pending) and the
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call is processed internally. Specifically, the call generates a new BAXML document (a
workspace) that evolves under function calls and returns. The answer can be returned
at any point when the workspace contains no running calls (i.e., no nodes labeled ?g
for some g) and the resulting instance satisfies the static constraints. The contents of
the result is specified by a return query that applies to the workspace. For example, the
answer to a call to Bill can be returned once payment has been received. The answer,
specified by the return query, provides the product paid for and amount of payment
(see Example 3.1).

Once the result of a call has been returned, the BAXML document of the correspond-
ing workspace is removed. In order for the result to be returned at the correct location
(next to node x), a mapping called eval is maintained between nodes where calls have
been made and BAXML document corresponding to the workspaces (e.g., see Figure 5).
The system evolves by repeated function calls and answer returns, occurring one at a
time nondeterministically. This may reach a blocking instance in which no function can
be called and no result can be returned, or may continue forever, leading to an infinite
run. For example, runs of the Mail Order system are always infinite since new mail
orders can always be fetched. For uniformity, we make all runs infinite by repeating
blocking instances forever.

We now describe the BAXML model in more detail. We assume given the following
disjoint infinite sets: nodes N (denoted by n, m), tags � (denoted by a, b, c, . . .), function
names F , data values D (denoted by α, β, . . .) data variables V (denoted by X, Y, Z, . . .),
possibly with subscripts. In the model, trees are unranked and unordered.

For each function name f, we also use the symbols !f and ?f, called function symbols,
and denote by F ! the set {!f | f ∈ F} and by F ? the set {?f | f ∈ F}. As described
earlier, !f labels a node where a call to function f can be made (possible call), and ?f
labels a node where a call to f has been made and some result is expected (running
call). When a call to f is made at a node x labeled !f, the label changes from !f to
?f. After the answer of the call at node x is returned, the node x may be kept or the
node x may be deleted. If x is kept, its label changes from ?f back to !f. If calls to !f
are kept, f is called continuous, otherwise it is noncontinuous. For example, the role
of the MailOrder function in Figure 1 is to indefinitely fetch new mail orders from
customers, so MailOrder is specified to be continuous. On the other hand, the function
!Bill occurring in a MailOrder is meant to be called only once, in order to carry out
the billing task. Once the task is finished, the call can be removed. Therefore, Bill is
specified to be noncontinuous.

A BAXML document is a tree whose internal nodes are labeled with tags in � and
whose leaves are labeled by either tags, function symbols, or data values. A BAXML
forest is a set of BAXML trees. An example of BAXML document is given in Figure 1.

To avoid repetitions of isomorphic sibling subtrees, we define the notion of reduced
tree. A tree is reduced if it contains no distinct isomorphic sibling subtrees without
running calls ?f. We henceforth assume that all trees considered are reduced, unless
stated otherwise. However, note that the forest of an instance may generally contain
multiple isomorphic trees.

Patterns. We use patterns as the basis for our query language, and later in the
specification of workflow constraints and temporal properties. A pattern is a forest of
tree patterns. A tree pattern is a tree whose edges are labeled by child (/) or descendant
(//) where descendant is reflexive. Nodes are labeled by tags if they are internal, and
by tags, function symbols, or variables if they are leafs. In addition, nodes may be
labeled by wildcard (*), which can map to any tag. A constraint consisting of a Boolean
combination of (in)equalities between the variables and/or data constants may also be
given. In particular, we can specify joins (equality of data values). A tree pattern is
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Fig. 3. Example of a relative query.

evaluated over a tree in the straightforward way. The definition of the evaluation of
patterns over forests extends the preceding in the natural way. An example is given in
Figure 2(a). The pattern shown there expresses the fact that the value Order-Id is not
a key. It does not hold on the BAXML document of Figure 1. (Indeed, it is natural to
require that Order-Id be a key).

We sometimes use patterns that are evaluated relative to a specified node in the
tree. More precisely, a relative pattern is a pair (P, self ) where P is a pattern and self
is a node of P. A relative pattern (P, self ) is evaluated on a pair (F, n) where F is a
forest and n is a node of F. Such a pattern forces the node self in the pattern to be
mapped to n. Figure 2(b) provides an example of a relative pattern. The pattern shown
there checks that a product that has been ordered occurs in the catalog. It holds in the
BAXML document of Figure 1 when evaluated at the unique node labeled !Bill.

We also consider Boolean combinations of (relative) patterns. The (relative) patterns
are matched independently of each other and the Boolean operators have their standard
meaning. If a variable X occurs in two different patterns P and P ′ of the Boolean
combination then it is quantified existentially in P and P ′, independently of each
other.

It will be useful to occasionally consider parameterized patterns, in which some
variables are designated as free. Let P(X̄) be a pattern with free variables X̄, and ν

an assignment of data values to X̄. A BAXML forest I satisfies P(X̄) for assignment ν,
denoted by I, ν |= P(X̄), if I satisfies the pattern P(ν(X̄)) obtained by replacing each
variable in X̄ by its value under ν.

For convenience, we sometimes use a self-explanatory XPath-like notation to specify
simple patterns.

Queries. As previously mentioned, patterns are used in queries, as shown next. A
query is a finite union of rules of the form, Body → Head, where Body and Head are
patterns and Head contains no descendant edges and no constants, and all its variables
occur in Body. In each tree of Head, all variables occur under a designated constructor
node, specifying a form of nesting. When evaluated on a forest, the matchings of Body
define a set of valuations of the variables. The answer for the rule is obtained by
replacing, in each tree of Head, the subtree rooted at the constructor node with the
forest obtained by instantiating the variables in the subtree with all their matchings
provided by the Body. The answer to the query is the union of the answers for each
rule. As for patterns, we may consider queries evaluated relative to a specified node
in the input tree. A relative query is defined like a query, except that the bodies of its
rules are relative patterns (P, self ). An example of a relative query (with a single rule)
is given in Figure 3 (the notation self :!Bill means that the node self must be labeled
!Bill). The label of the constructor node (indicated by brackets) is Process-bill.

Consider the evaluation of the query of Figure 3 on the BAXML document of Figure 1
at the unique node labeled !Bill. There is a unique matching of the Body pattern and
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the result is the Head pattern of the query with X replaced by Nikon and Y by 199
(without brackets for Process-bill).

DTD. Trees used by a BAXML system may be constrained using DTDs and Boolean
combinations of patterns. For DTDs, we use a typing mechanism that restricts, for each
tag a ∈ �, the labels of children that a-nodes may have. As our trees are unordered we
use Boolean combinations of statements of the form |b| ≥ k for b ∈ � ∪F ! ∪F ? ∪ {dom},
k a nonnegative integer, and dom a symbol indicating the presence of a data value.
Validity of trees and of forests relative to a DTD is defined in the standard way.

Schemas and Instances. A BAXML schema S is a tuple (
int,
ext,�) where: (i) the
set 
int contains a finite set of internal function specifications, (ii) the set 
ext contains a
finite set of external function specifications, and (iii) � consists of a DTD and a Boolean
combination of patterns providing static constraints on instances of the schema. For
instance, the negation of the pattern in Figure 2(a) states that Order-Id uniquely
determines the mail order.

We next detail 
int and 
ext. For each f ∈ F , let af be a new distinct label in
�. Intuitively, af labels the roots of all workspaces resulting from calls to f. The
specification of a function f of 
int indicates whether f is continuous or not, provides
its argument query, and return query. The role of the argument query is to define the
initial state of the workspace generated by the call to f. The argument query is a
relative query. When the query is evaluated, self binds to the node at which the call !f
is made. The return query applies to the current state of the workspace corresponding
to the call. Thus, it is a query in which every tree pattern occurring in the body of a
rule is rooted at af.

Example 3.1. We continue with our running example. The function Bill used in
Figure 1 is specified as follows. It is internal and noncontinuous. The argument query
is the query in Figure 3. The return query of Bill is as follows

Intuitively, this makes sense assuming that the function Invoice returns a tree of
the form

where p is the product name and a the amount of payment.

Each function f in 
ext is specified similarly, except that the return query is missing.
In addition, a DTD �f constrains the answers returned by f (the DTD assumes a
virtual root under which the answer forest is placed). Intuitively, an external call can
return any answer satisfying �f at any time, as long as the resulting instance also
satisfies the global static constraints �. For example, MailOrder is external, since its
role is to fetch orders from an external user.

An instance I over a BAXML schema S = (
int,
ext,�) is a pair (T , eval), where T
is a BAXML forest and eval an injective function over the set of nodes in T labeled
with ?f for some f ∈ 
int such that: (i) for each n with label ?f, eval(n) is a tree in T
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with root label af (its workspace), and (ii) every tree in T with root label af is eval(n)
for some n labeled ?f. An instance of S is valid if it satisfies �. More precisely, each
tree in the forest making up the instance satisfies the DTD of �, and the instance as a
whole satisfies the Boolean combination of patterns of �.

Runs. Let I = (T , eval) and I′ = (T ′, eval′) be instances of a BAXML schema S =
(
int,
ext,�). The instance I′ is a possible next instance of I iff I′ is obtained from I by
making a function call or by receiving the answer to an existing call. We refer to the
latter as an event. More precisely, an event is an expression of the form !f(F) or ?f(G),
where:

—f is a function;
—F is the forest consisting of the result of applying the argument query of f to T , at

some node labeled !f;
—G is the forest consisting of the answer to a running call ?f at some node n. More

precisely, if f is internal, G is the result of applying the return query of f to eval(n).
If f is external, G is any forest satisfying the DTD � f for answers of f.

For technical reasons, we also use two special events, init that only generates the
initial instance, and block, whose use will be clear shortly. Initial instances of BAXML
schemas are defined shortly. We denote by I �e I′ the fact that I′ is a possible next
instance of I caused by event e.

We now provide more details. Consider I = (T , eval) and an event !f(F), resulting
from a call to !f at some node n of T . The next instance, if it exists, is the instance
I′ = (T ′, eval′) satisfying �, obtained as follows.

—change the label of n to ?f
—if f is internal, add to the graph of eval the pair (n, T ′) where T ′ is a tree consisting

of a root af connected to all trees in F (the result of evaluating the argument query
of f on input (T , n)).

If the resulting instance does not satisfy �, there is no next instance under the event
!f(F).

Now consider an event ?f(G), resulting from returning the answer G of a running
call ?f at some node n of T . Recall that, if f is internal and eval(n) contains no running
function calls, G is the result of applying the return query of f to eval(n). If f is external,
G is any forest satisfying �f. Then the instance I′ is obtained as follows.

—add all trees in G as siblings to n
—if f is internal, remove (n, eval(n)) from the graph of eval and the tree eval(n) from T
—if f is noncontinuous, remove the node n from T
—if f is continuous, change the label of n from ?f to !f.

If the resulting instance does not satisfy �, then there is no next instance under the
event ? f (G).

Figure 5 shows a possible next instance for the instance of Figure 1 after an internal
call has been made to !Bill. The node associated with this internal call is denoted by
n. Recall the specification of Bill from Example 3.1. The argument query of Bill is
the query in Figure 3. For each homomorphism from the body (left pattern) of Figure 3
to the document such that the node labeled sel f is associated with n, a valuation of the
variables is defined. In this example, there is one homomorphism defining the following
valuation: X = Nikon and Y = 199. The answer of the query is built by applying the
previous valuation to the variable in the head of the query (the right part). The answer
is described in Figure 4. The workspace of the function Bill is built by placing the
answer from Figure 4 under a new root n′ labeled aBill. This workspace is added to the
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Fig. 4. Answer of the query in Figure 3 applied to the instance in Figure 1.
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Fig. 5. An instance with an eval link.

current instance and the function eval is updated by setting eval(n) = n′. The resulting
instance is shown in Figure 5, where the dotted arrow represents the function eval.

We will typically be interested in runs of such systems. An initial instance of schema
S is an instance of S consisting of a single tree whose root is not a function call and for
which there is no running call. For runs, we use a variation of the model of Abiteboul
et al. [2008b]. A prerun of a schema S is a finite sequence {(Ii, ei)}0≤i≤n, such that:
(i) for each i, Ii satisfies the static constraints �, (ii) e0 = init, and (iii) for each i > 0,
Ii−1 �ei Ii. Intuitively, e0 generates the initial instance I0. A run is an infinite sequence
ρ = {(Ii, ei)}i≥0 such that each finite prefix of ρ is a prerun of S, or there is a finite prefix
(I0, e0), . . . , (In, en) of ρ that is a maximal prerun2 of S; and for each i > n, Ii = In and
ei = block. In the first case the run is called nonblocking; in the second case it is called
blocking.

Thus, we force all runs to be infinite by repeating forever a blocking instance from
which no legal transition is possible, if such an instance is reached (the nonexistence
of a legal transition from the blocking instance is ensured by the maximality condition
in the definition).

Semantics with and without Aborts. We next discuss a subtle difference between the
semantics adopted here and that of Abiteboul et al. [2008b]. According to our semantics,
if a prerun reaches an instance from which every transition leads to a violation of the
static constraints, the prerun blocks forever in that instance, generating a blocking
run. In contrast, the semantics of Abiteboul et al. [2008b] allows blocking runs only
if no transition exists at all (whether leading to a valid instance or not). If there are
possible transitions but they all lead to constraint violations, the prerun is discarded.
Intuitively, this amounts to aborting the run. We refer to this as the semantics of runs
with aborts, and to the one we follow in this article as the semantics of runs (without
aborts). Note that in our semantics, every prerun is extensible to a (possibly blocking)
run, whereas this is not the case in the semantics with aborts. Furthermore, as shown
next, in the semantics with aborts it is undecidable if a given prerun can be extended to
an infinite run. This is a main motivation for our choice of the semantics without aborts.

THEOREM 3.2. Let S be a BAXML schema and ρ a prerun of S. Under the semantics
with aborts, it is undecidable whether ρ is the prefix of a run of S. Furthermore, this
remains undecidable even for nonrecursive3 DTDs.

2There is no (I′, e′) where (I0, e0), . . . , (In, en)(I′, e′) is a prerun of S.
3A DTD is recursive if there is a cycle in the graph that has an edge from tag a to b if the DTD allows b to
label a child of a node labeled a.
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R

T

A1 A2 . . . Ak !fτ

. . . . . . T

A1 A2 . . . Ak !fτ

Fig. 6. Relation adorned with some functions.

Fig. 7. (i) Pattern whose negation forbids two activated calls and (ii) ensuring satisfaction of [Ai] ⊆ [Aj ].

PROOF. The proof for arbitrary DTDs is trivial by the undecidability of satisfiability
of static constraints [David 2008]. The proof for nonrecursive DTDs is by reduction
of the implication problem for functional and inclusion dependencies (FDs and IDs),
known to be undecidable (see Abiteboul et al. [1995]).

Let R be a relation with k attributes, 
 a set of FDs and IDs over R, and F an FD
over R. We construct a BAXML schema S and an initial instance I0 such that 
 �|= F
iff there is a valid run from I0. We represent relation R with attributes A1 · · · Ak in the
standard way, as a tree rooted at R. Relation R, together with some additional functions
whose role will become apparent, is depicted in Figure 6. Clearly, this structure can be
enforced by the DTD.

Static constraints can easily require satisfaction of the FDs in 
 and violation of F.
In order to check that the inclusion dependencies of 
 are satisfied, we use one internal,
noncontinuous function fτ for each τ ∈ 
. One occurrence of each fτ is attached to each
tuple of R, as in Figure 6. The functions fτ always return the empty answer. Static
constraints require the following.

(i) There is at most one occurrence of ?fτ for each τ .
(ii) Whenever ?fτ occurs, the ID τ is satisfied for the tuple to which ?fτ is attached.

The constraint (i) is expressed by conjunctions of negations of patterns as in (i) of
Figure 7, and (ii) is enforced by the conjunction of patterns as in (ii) of the same figure,
illustrating the case when τ = R [Ai] ⊆ R [Aj].

Finally, the global DTD specifies a root r, under which one can find either a subtree
rooted at R of the shape above, or one external, noncontinuous function !h. Thus, the
instance I0 consisting of the root r with child !h is a possible initial instance. Note that
every valid run of S must end in a blocking instance, in which no function calls occur.
Clearly, there exists such a valid run from I0 iff the function h can return a tree R
witnessing that 
 �|= F.
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Fig. 8. Call guards of Reject and Deliver.

4. WORKFLOW CONSTRAINTS

In this section, we introduce three ways of enriching the BAXML model with workflow
constraints: (i) function call and return guards (yielding the GAXML model), (ii) an
automaton model (yielding the AAXML model), and (iii) temporal constraints (yielding
the TAXML model). Each corresponds to a very natural way of expressing constraints
on the evolution of a system. We study and compare these mechanisms in the next
sections.

We begin by considering an abstract notion of workflow constraint. A workflow con-
straint W over a BAXML schema S is a prefix-closed property of preruns of S. For a
prerun ρ of S, we denote by ρ |= W the fact that ρ satisfies W . We denote by S|W
the workflow specification defined by S constrained by W . A run of S|W is an infinite
sequence ρ = {(Ii, ei)}i≥0 such that: each finite prefix of ρ is a prerun of S that satisfies
W, or there is a finite prefix (I0, e0), . . . , (In, en) of ρ that is a maximal prerun of S sat-
isfying W; and for each i > n, Ii = In and ei = block. In the first case the run is called
nonblocking; in the second case it is called blocking.

Observe that nonblocking runs of S|W are particular nonblocking runs of S. Also, a
sequence {(Ii, ei)}i≥0 may be a blocking run of S|W but not a blocking run of S. (This is
because all transitions that are possible according to S are forbidden by W .) The set of
runs of S|W is denoted by runs(S|W).

A main goal of the article is to compare the descriptive power of different formalisms
for specifying workflow constraints. To this end, we consider the workflow languages G
(for call guards), A (for automata), and T (for temporal formulas), defined next.

Call and Return Guards

Recall the Mail Order example, in which processing an order requires executing some
tasks in a desired sequence (order, bill, pay, deliver). Since tasks in BAXML are initiated
by function calls, one convenient workflow specification mechanism is to attach guards
to function calls. For instance, the guard of !Deliver, shown in Figure 8, might require
that the ordered product must have been paid in the correct amount. Similarly, it is
useful to control when the answer of an internal function may be returned. This can
be done by providing return guards.

Let S = (
int,
ext,�) be a BAXML schema. A guard assignment over S is a pair
γ = (γc, γr), where:
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—γc, the call guard assignment, is a mapping from the functions of S to Boolean
combinations of relative patterns over S. A call to f can only be activated at node n
of instance I = (T , eval) if γc(f) holds on (T , n).

—γr, the return guard assignment, is a mapping from the functions of S which is true
for external functions and a Boolean combination of tree patterns rooted at af for
each internal function f. The result of a call to f at node n of instance I = (T , eval)
is returned only when γr(f) is satisfied on eval(n). Return guards constrain only
internal functions.

A prerun ρ = (I0, e0), . . . , (In, en) of S satisfies γ = (γc, γr), denoted ρ |= γ , if for each
transition Ii−1 �ei Ii, if the transition results from a function call to !f at node u the
guard γc(f) holds in (Ii−1, u), and if the transition results from the return of an internal
function call ?f at node u, γr(f) holds in evali−1(u). Observe that these constraints
involve consecutive instances only.

The set of all guard workflow constraints is denoted by G. A GAXML schema is an
expression S|γ , for some γ ∈ G.

Example 4.1. Figure 8 shows call guards for some functions in the Mail Order
example. The call guard of function Bill is given in Figure 2(b) (this checks that the
ordered product is available). The call guard of Invoice is true.

In the same example, the return guard of function Bill is

indicating that payment has been received, so billing is completed.

Pattern Automata

We next consider workflows based on automata. The states of the automaton are defined
using pattern queries. The automaton has no final states, since BAXML (like AXML)
does not have a built-in notion of successful computation.

A pattern automaton is a tuple (Q, qinit, δ, ϒ) where:

—Q is a finite set of states, qinit ∈ Q, and each q ∈ Q has an associated set of variables
Xq;

—for each q ∈ Q, ϒ(q) is a Boolean combination of parameterized patterns whose set
of free variables equals Xq;

—the transition function δ is a partial function from Q × Q such that δ(q, q′) is a
Boolean combination of equalities of variables among Xq and Xq′ .

To simplify the presentation, we assume without loss of generality that Xq and Xq′

have no variables in common.
Let A be the set of pattern automata. An AAXML schema is an expression S|A for

a BAXML schema S and A ∈ A. A prerun ρ = {(Ii, ei)}i≤n of S satisfies an automaton
constraint A, denoted by ρ |= A, if there exists a sequence {(qi, νi)}i≤n, where q0 = qinit
and νi is a valuation of Xqi , such that for each i ≤ n:

(1) Ii, νi |= ϒ(qi),
(2) νi(Xqi ) ∪ νi+1(Xqi+1 ) |= δ(qi, qi+1).

Intuitively, the state of such an automaton after reading a finite sequence ρ of in-
stances is a pair (q, ν) where ν is a valuation of the variables in Xq. Note that the
automaton is nondeterministic both with respect to the state and the valuation of its
variables.
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qinit p i ie pe

d de
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Fig. 9. Example of pattern automaton.

Example 4.2. An automaton for our running example is represented in Figure 9.
The edges represent the pairs for which δ is defined, and the patterns in ϒ check the
following:

—ϒ(qinit) checks nothing.
—ϒ(p) checks that the call to Bill has been activated and the product is in the catalog.

—ϒ(i) checks that the call to Invoice in the workspace of Bill has been activated.

—ϒ(ie) checks that the call to Invoice in the workspace of Bill has returned a
payment.

—ϒ(pe) checks that the call to Bill has returned a payment.

—ϒ(d) checks that the call to Deliver is activated and the amount brought by Bill is
the same as the price of the item that has been ordered.

—ϒ(de) checks that the call to Deliver has been returned.
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—ϒ(r) checks that the call to Reject is activated and the amount brought by !Bill is
different from the price of the item that has been ordered.

—ϒ(re) checks that the call to Reject has been returned for the MailOrder (there is no
active call to Reject).

We note that in some specification models, such as state-charts [Harel 1987], states
are defined in a hierarchical manner, that is, entering a state may trigger a more
refined state transition subsystem. Other systems further extend this with recursion
[Alur et al. 2005]. Although not done here, one could extend our formalism to capture
such hierarchical or recursive states.

Past-Tree-LTL

Finally, we consider workflow constraints specified using temporal formulas. Intu-
itively, these state, given a particular history, whether a given transition is allowed.
The language is a variant of Tree-LTL [Abiteboul et al. 2008b] using only past LTL
operators, that we call Past-Tree-LTL. It is obtained from classical propositional LTL
(e.g., see Emerson [1990]) by interpreting each proposition as a parameterized tree pat-
tern P(X̄) where X̄ is a subset of its variables, designated as global. All global variables
are treated as free in the patterns and are quantified existentially at the end. The past
temporal operators are X−1 (previously), S (since) and G−1 (always previously). The
semantics of the different operators is inductively defined as follows:

—(I0, e0), . . . , (In, en) |= ϕ, where ϕ is a pattern iff In satisfies ϕ.
—(I0, e0), . . . , (In, en) |= ϕ1 ∧ ϕ2 iff (I0, e0), . . . , (In, en) |= ϕ1 and (I0, e0), . . . , (In, en) |= ϕ2.
—(I0, e0), . . . , (In, en) |= ϕ1 ∨ ϕ2 iff (I0, e0), . . . , (In, en) |= ϕ1 or (I0, e0), . . . , (In, en) |= ϕ2.
—(I0, e0), . . . , (In, en) |= ¬ϕ iff (I0, e0), . . . , (In, en) �|= ϕ.
—(I0, e0), . . . , (In, en) |= X−1ϕ iff (I0, e0), . . . , (In−1, en−1) |= ϕ.
—(I0, e0), . . . , (In, en) |= ϕSψ iff (I0, e0), . . . , (Ij, e j) |= ψ for some j ≤ n and ϕ holds in

(I0, e0), . . . , (Ik, ek) for every k, j < k ≤ n.
—(I0, e0), . . . , (In, en) |= G−1

ϕ iff (I0, e0), . . . , (Ij, e j) |= ϕ for each j, 0 ≤ j ≤ n.

In summary, a Past-Tree-LTL formula is of the form ∃Xψ(X) where ψ uses only the
temporal operators X−1 and S, and X is the set of global variables of the parameterized
patterns interpreting the propositions. The set of Past-Tree-LTL formulas is denoted by
T . A TAXML schema is an expression S|θ for S a BAXML schema and θ ∈ T . A prerun
ρ satisfies ∃Xψ(X) if ρ satisfies ψ(ν(X)) for some valuation ν of the global variables X
in the active domain of ρ.

The choice to existentially quantify the global free variables appears natural for
specifying workflow transition constraints. Observe that such variables are quantified
universally in the language Tree-LTL of Abiteboul et al. [2008b], used to specify
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properties of all runs. However, the model checking approach of Abiteboul et al.
[2008b] is based on checking unsatisfiability of the negation of Tree-LTL formulas,
whose global variables then become existentially quantified.

Example 4.3. To illustrate Past-Tree-LTL constraints, consider the description of
valid transitions in the MailOrder example. This can be specified by a Past-Tree-LTL
conjunctive formula.

G−1(ψ?Bill ∧ X−1(ψ!Bill) =⇒ X−1(ψγc(Bill)))
∧ G−1(ψ?Invoice =⇒ X−1ψ?Bill)
∧ G−1(ψPayment =⇒ X−1ψ?Invoice)
∧ G−1(ψPaid ∧ ψ!Deliver,!Reject =⇒ X−1ψ?Payment)
∧ G−1(ψ?Deliver =⇒ X−1ψγc(Deliver))
∧ G−1(ψ?Reject =⇒ X−1ψγc(Reject))
∧ G−1(ψfinish-Deliver =⇒ X−1ψ?Deliver)
∧ G−1(ψfinish-Reject =⇒ X−1ψ?Reject)

We detail next the formulas used previously.

—The formula ψγc(Bill) checks that the call guard of Bill is true.

—The formula ψ!Bill checks that the call to Bill is not activated.

—The formula ψ?Bill checks that the function call to Bill is activated.

—The formula ψ?Invoice checks that the call to Invoice is activated.

—The formula ψPayment checks that the call to Bill has been returned.

—The formula ψPaid checks that the call to Bill has been returned.
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—The formula ψ!Deliver,!Reject checks that the calls to Deliver and Reject are not yet
activated.

—The formula ψ?Deliver checks that the call to Deliver is activated.

—The formula ψγc(Deliver) checks that the call guard of Deliver is true.

—The formula ψ?Reject checks that the call to Reject is activated.

—The formula ψγc(Reject) checks that the call guard of Reject is true.

—The formula ψfinish-Deliver checks that Deliver has returned by checking that the
function calls to Deliver and Bill no longer appear in the document.

—Finally, the formula ψfinish-Reject checks that Reject has returned by checking that the
function calls to Reject and Bill no longer appear in the document.

Checking Workflow Constraints

The following establishes the complexity of testing workflow constraints.

THEOREM 4.4. For a fixed BAXML schema S and a fixed W where W ∈ {G,A, T }, it
is decidable in PTIME whether a given prerun ρ of S satisfies W.
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PROOF. Let S|W be a workflow schema and ρ = (Ii), 1 ≤ i ≤ n be a prerun of S.
Note first that we can check that I0 verifies the constraints of S and those imposed on
initial instances by W in PTIME with respect to |I0|. For γ ∈ G, it is clear that one can
further check, for each i < n, whether the transition from Ii to Ii+1 satisfies γ in PTIME

with respect to |Ii| + |Ii+1|. Consider an automaton A = (Q, qinit, δ, ϒ). To check that ρ
satisfies A, we define by induction on i auxiliary relations Ri

q for each state q ∈ Q as
follows. For i = 0, all Rq are empty except Rqinit that contains all valuations ν of Xqinit

for which I0, ν |= ϒ(qinit). For i > 0, Ri
q contains all valuations ν of X̄q for which there

exists a sequence (qj, ν j), j ≤ i, where q0 = qinit, qi = q, ν = νi, and for each j < i, ν j is
a valuation of Xqj , such that:

(1) Ij, ν j |= ϒ(qj),
(2) ν j(Xqj ) ∪ ν j+1(Xqj+1 ) |= δ(qj, qj+1).

It is clear that for each i, the relations {Ri+1
q | q ∈ Q} can be computed from Ii+1

and {Ri
q | q ∈ Q} in polynomial time. Moreover, the size of the relations Ri+1

q remains
polynomial in the number of data values occurring in the entire prefix (Ij), 0 ≤ j ≤ i+1.
Therefore, the set of relations {Rn

q | q ∈ Q} can be constructed in time polynomial in
|ρ|. Finally, ρ satisfies A iff some relation Rn

q is nonempty for some q.
Finally, consider T . Let θ be a Past-Tree-LTL formula ∃Xψ(X). We must check that

for some valuation ν of X to data values in ρ, ρ satisfies θν = ψ(ν). Observe that θν

has no global variables. Let θ0
ν be a Past-LTL propositional formula from which θν is

obtained by interpreting the propositions by Boolean pattern formulas. To each truth
assignment of the propositions, one can assign a symbol. Let � be this set of symbols.
There exists an automaton A0 with alphabet �, that is equivalent to θ0

ν . From A0 it is
straightforward to construct a tree pattern automaton Aν such that S|θν and S|Aν have
the same runs. Using the earlier result for automata, we can check that ρ satisfies Aν in
polynomial time. Moreover, it can be seen that the polynomial bound is independent of
ν. Since there are polynomially many ν (for fixed ψ), it can be checked in PTIME whether
ρ satisfies ψ .

Remark 4.5. The complexity analysis in Theorem 4.4 assumes a fixed workflow
schema. It is easily seen that the combined complexity (with respect to both prerun
and schema) is upper-bounded by EXPTIME.

A more difficult decision problem is checking the existence of a valid transition ex-
tending the current prerun. Indeed, this is undecidable even for BAXML schemas with
no workflow constraints (with either flavor of the abort semantics). The difficulty arises
from the power of external functions. Indeed, without external functions it suffices to
test all possible call activations and returns. However, the problem becomes decidable
for bounded trees.

THEOREM 4.6.

(i) It is undecidable, given a BAXML schema S and a prerun ρ of S, whether ρ is
blocking.

(ii) It is undecidable, given a BAXML schema S with non-recursive DTD and a prerun
ρ of S, whether ρ is blocking.

PROOF.

(i) The undecidability is due to the external functions. We have to test whether
there is some returned data that would be valid for the static constraints. This
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is undecidable because of the undecidability of the satisfiability of Boolean
combinations of tree patterns under arbitrary DTDs [David 2008].

(ii) For each nonactivated function call !f, it is sufficient to test it directly, and similarly
for the return of an internal function call. Let ?f be an activated external function
call. The problem of the possible return of ?f can be reduced to the satisfiability of
a Boolean combination of patterns by an instance satisfying a nonrecursive DTD,
which is decidable [David 2008]. First, the DTD of the answer of the function f is
rewritten to take into account the sibling trees of the function call ?f and the DTD
of the schema. The rewritten DTD τ ′ ensures in particular that (∗) for a returned
forest F, there exists a forest F ′ having the same multiset of the labels of roots as F
and any tree of F ′ is isomorphic to a sibling of ?f. Intuitively, the construction of the
Boolean combination of patterns is done by looking for patterns that can extend pre-
fixes of patterns of the static constraints already mapped into the current instance.
The extraction of the Boolean combination ϕ′ from the static constraints is done as
follows: Each pattern P is rewritten as a disjunction ∨ϕP,P ′ (ν), where P ′ is a prefix of
P and ν a valuation of the variables of P ′. A formula ϕP,P ′ (ν) is in the disjunction iff
there is a mapping of P ′(ν) in the instance I that can be extended to each node n of P
not in P ′ but whose parent is in P ′, such that ncan be mapped to ?f. The definition of
ϕP,P ′ (ν) is the conjunction of subpatterns [n]P(ν). A pattern [n]P is defined as follows:
—If the incoming edge to n is a child edge, then [n]P is the subtree rooted at n.
—If the incoming edge to n is a descendant edge, then [n]P is a root labeled with

∗ and its only subtree is the subtree rooted at n. The edge between the root and
the subtree is a descendant edge.

If P and P ′ are equal then ϕP,P(ν) is set to true.
The formula ϕ′ is satisfiable for reduced trees under τ ′ iff the function ?f can
return.

5. EXPRESSIVENESS

In this section we compare the expressive power of BAXML, GAXML, AAXML, and
TAXML, using the framework developed in Section 2. We begin by comparing the
languages relative to views retaining full information about the current BAXML
document, that we refer to as identity views. We then consider a more permissive
version allowing to hide some of the data and functions, thus providing more leeway
for simulations.

Workflow System Semantics. We begin by casting the semantics of BAXML, GAXML,
AAXML, and TAXML in terms of the workflow systems described in Section 2. For each
specification S (for BAXML) or S|W (for GAXML, AAXML, and TAXML), the nodes of
the workflow system are the finite prefixes of runs of S or S|W . The root is the empty
prefix, and its state label is the empty instance. The state label for each node other
than the root is the last instance in the prefix. For each nonroot node ν, there is an
edge labeled e from ν to node ν ′ if ν ′ extends ν with a single instance by event e that
is a function call or the return of such a call. The root has an outgoing edge to each
node consisting of a prefix of length one, labeled by a distinguished event init. Thus,
transitions from the root simply provide the initial instances of runs, and the infinite
paths starting from children of the root correspond to the runs of S|W . Because of the
semantics of blocking runs, each path is extensible to an infinite path.

Note that there are alternative choices of workflow system semantics, and different
goals may require different choices. For example, for AAXML it may be natural to
retain, in the state, information on the current state of the associated automaton
together with the valuation of its parameters. This would simplify defining views
where such states are included in the observables.
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5.1. Comparison with Identity Views

We first compare BAXML, GAXML, AAXML, and TAXML relative to the identity
view on the states and events of the workflow system (denoted id), thus preserving
full information on the system. Observe that if a language W2 simulates W1 with
respect to (id, id), this means that for each W1 in W1, there exists W2 in W2, such
that W1 ∼ W2, that is, W1 and W2 have exactly the same runs. So, this is a very
strong requirement. Note also, that since id is the most refined possible view of a
workflow system, existence of simulation with respect to id would imply, by Lemma 2.5,
the existence of simulation with respect to any coarser view. Unfortunately (but not
surprisingly), the three extensions of BAXML models are incomparable relative to the
identity view.

Given workflow specifications W1 and W2, we denote by W1 ≡ W2 the fact that W1
and W2 have the same sets of runs.

THEOREM 5.1. The workflow languages GAXML, AAXML, and TAXML are incom-
parable relative to ↪→(id,id).

We prove the theorem by a sequence of lemmas. The first two state that GAXML
�↪→(id,id) {AAXML, TAXML} (by showing that there is a GAXML schema for which no
AAXML or TAXML schema has the same set of runs). In both cases, we use the fact
that, over data-free schemas (fixed vocabulary), the runs accepted by automata and by
Past-Tree-LTL formulas are closed under equivalence with respect to homomorphism
(homomorphisms apply here just to the forests of the instances and ignore the mappings
eval). Indeed, this follows from the fact that allowed transitions between instances
depend in both cases only on the patterns satisfied by the instances, and satisfaction
of patterns is preserved under homomorphism of data-free instances. Note that this is
not the case for GAXML, as illustrated by the example constructed in the proof of the
next lemma.

LEMMA 5.2. GAXML �↪→(id,id) AAXML. In other words, there exists a GAXML schema
S|γ for which there is no AAXML schema S′|A such that S|γ ≡ S′|A.

PROOF. We describe a GAXML schema S|γ for which no AAXML schema has the
same set of runs. The DTD of S imposes that its initial instance consists of a tree of
root r with five children labeled by function calls to some internal functions f1, . . . , f4
and end. The argument query of each fi yields f for some internal function f and its
return guard is false. The argument query of f produces some internal function g and
its return guard is also false. Function g returns the empty message (its return guard
is true). Function end has an empty argument query and a return guard that is false.
In γc, all call guards are true except for g that is: end must not be active.

Consider a prerun ρ0 of S|γ resulting from the following transitions.

(1) call all functions fi, 1 ≤ i ≤ 4;
(2) call all functions f in the workspaces of the fi;
(3) call 2 of the functions g in the workspaces of the functions f;
(4) call function end.

Clearly, this sequence of transitions is allowed by S|γ . Let I be the resulting instance.
Now consider two transitions from I.

(i) return one of the two running calls to g, yielding instance J;
(ii) activate one of the two calls !g, yielding instance K.

Note that transition (i) is allowed by S|γ whereas (ii) is not because the guard of g is
false in I. Let ρJ and ρK be the extensions of ρ0 with transition (i) and (ii), respectively.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 10, Publication date: May 2012.



10:24 S. Abiteboul et al.

Instance I Instance J Instance K
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Fig. 10. Instances I, J and K.

Note that ρJ and ρK are homomorphically equivalent. The instances I, J and K are
represented in Figure 10.

Now suppose that there is an AAXML schema S′|A equivalent to S|γ . Since ρJ is a
prerun of S|γ , it must also be a prerun of S′|A. Since runs satisfying AAXML schemas
are closed under homomorphic equivalence, ρK must also be a prerun of S′|A. This
contradicts the equivalence with S|γ , since ρK is not a prerun of S|γ .

Finally, note that it is necessary to have four initial functions f1, . . . , f4, yielding
four occurrences of g in I. Indeed, if there are only three initial functions (so three 3
g’s in I) , it is easy to see that the instances K and J are no longer guaranteed to be
homomorphically equivalent.

Observe that the proof does not use relative patterns in guards.

LEMMA 5.3. GAXML �↪→(id,id) TAXML. In other words, there exists a GAXML schema
S|γ for which there is no TAXML schema S′|θ such that S|γ ≡ S′|θ .

PROOF. This follows by a similar observation as earlier: the set of runs definable by
a Past-Tree-LTL formula is closed under equivalence with respect to homomorphism
(without data values). This is because the satisfaction of a Past-Tree-LTL formula by
a prerun is determined by the patterns satisfied by each instance in the prerun, and
homomorphic instances satisfy the same patterns. The details are straightforward and
omitted.

The next two lemmas state that GAXML cannot simulate AAXML or TAXML. In
both cases, we use the fact that the history of the computation is not recorded in the
current instance.

LEMMA 5.4. AAXML �↪→(id,id) GAXML. In other words, there exists an AAXML schema
S|A for which there is no GAXML schema S′|γ such that S|A ≡ S′|γ .

PROOF. Consider the following AAXML schema S|A. The DTD of S enforces that the
initial instance consists of one of the function calls !f or !g under the root, where f and
g are noncontinuous internal functions. There are no data values. A call to f returns
!g and a call to g never returns (so all runs are blocking). The automaton A enforces
that we start in a state qinit (with formula true), move to qcall- f (with formula stating
that ?f is a child of the root), move to qend (with formula true). This imposes that if
we start with f, we call f, receive !g, then call g and block; but if we start with g, we
immediately block. Now suppose towards a contradiction that there exists a schema S′
and a guard constraint γ so that S′|γ ≡ S|A. Observe that in the run starting from f
under the root, we reach an instance I that consists only of g under the root and then
g is called in I. Now use I as an initial instance. Then the guard of g allows calling g
from I, a contradiction.
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LEMMA 5.5. TAXML �↪→(id,id) GAXML. In other words, there exists a TAXML schema
S|θ for which there is no GAXML schema S′|γ such that S|θ ≡ S′|γ .

PROOF. The proof is the same as for AAXML �↪→(id,id) GAXML, where instead of the
automaton A we use a constraint θ ∈ T stating that the initial instance has !f under
the root.

LEMMA 5.6. TAXML �↪→(id,id) AAXML. In other words, there exists a TAXML schema
S|θ for which there is no AAXML schema S′|A such that S|θ ≡ S′|A.

PROOF. The proof is based on the fact that a Past-Tree-LTL formula can “remember” a
data value even after it disappears from the instance, using an existentially quantified
global variable, while this is not possible for an automaton (all parameters of a state
must occur in the present instance). Specifically, consider a TAXML schema S|θ whose
initial document consists of a single function call !f under root r. A call to f produces
a workspace consisting of an external function call !g that returns a single data value.
The function f returns a call to another external function !h that again returns a single
data value. The Past-Tree-LTL formula θ imposes the following sequence of calls and
returns:

(1) f is called
(2) g is called
(3) g returns a value u
(4) f returns !h
(5) h is called and returns the same value u returned in step (3).

Now suppose that there exists an AAXMLschema S′|Adescribing the same sequence.
The state of A after step (4) cannot have any parameters, since the current instance
has no data value. Then A cannot impose that the data value returned in step (5) is the
same as that in (3). Thus, no such automaton exists.

The next lemma uses the fact that LTL is weaker than automata on finite words
[Libkin 2004].

LEMMA 5.7. AAXML �↪→(id,id) TAXML. In other words, there exists an AAXML schema
S|A for which there is no TAXML schema S′|θ such that S|A ≡ S′|θ .

PROOF. We use the following AAXML schema S|A . The DTD states that the root is
r and it has two children, namely !f or ?f and !g or ?g. The function f is a continuous
internal function that returns an empty answer. The function g never returns. From
qinit, the automaton enforces that f is called, returns its answer, and is called again to
get to a state qchoice. In that state, one can either return f and go back to qinit or call
g and get to state qblock. Consider the four possible instances of S. We denote them by
the symbols a (children of r are !f, !g), b (they are ?f, !g), c (they are ?f, ?g), and d (they
are !f,?g). Observe that the set of preruns of S|A is the prefix-closure L of the language
{(ab)2nc | n ≥ 0}. Note that L cannot be expressed by FO on words because it is not
counter free [Diekert and Gastin 2008], so it can neither be expressed by LTL [Libkin
2004]. Now suppose, towards a contradiction, that there exists a Past-Tree-LTL schema
S′|θ equivalent to S|A. We show that we can construct from S′|θ an LTL formula ϕ that
defines L. Apart from θ itself, the formula ϕ must capture the valid transitions among
instances, as well as the DTD � of S′. Thus, ϕ is the conjunction of the following LTL
formulas:

ψθ obtained from θ by replacing each pattern p by the disjunction of the symbols
corresponding to the instances satisfying p (for example, for the pattern stating
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the existence of ?f, the disjunction is b∨ d), and replacing Past-LTL operators with
LTL ones;

ψ� is the conjunction of constraints on consecutive instances defining the transition
relation � (for example, one such constraint is G(a → X(b ∨ d)));

ψ� Note that � must allow instances a, b, c that appear in runs of S|A. Thus, � defines
either {a, b, c}, the set of instances of S′|θ , or {a, b, c, d}. If � defines {a, b, c}, then
ψ� is G(a ∨ b ∨ c). If � defines {a, b, c, d}, then ψ� is true.

Let ϕ = ψθ ∧ ψ� ∧ ψ�. It is easy to check that ϕ is an LTL formula defining L, contra-
diction.

This concludes the proof of Theorem 5.1.

5.2. Comparison with Projection Views

Given the negative result of Theorem 5.1, we next consider simulation relative to views
allowing more leeway in the simulating system. Specifically, the view remains the
identity on the simulated system, but allows the simulating system to use additional
data and functions. We refer to the latter as a projection view and denote the class of
projection views by π .

Specifically, let S be a BAXML schema and �0 (�0 ⊂ �) and F0 (F0 ⊂ F) be subsets of
the tags and functions of S (the visible symbols) such that, in every instance satisfying
the DTD of S, whenever a node has tag a �∈ �0, none of its descendants has a label in
�0 or in F0. Note that, since the view used for the simulated schema is the identity,
the visible tags and functions used in the simulation results are precisely those of that
schema.

The projection4 π�0,F0 ([S]) is defined as follows. For a state I of [S] (and for any
instance), the projection is obtained by removing all nodes whose label is a tag not
in �0 or a function not in F0 and their descendants. We also remove the workspaces
whose corresponding function calls have been projected out. The projection of an event
!f(F) is ε for f �∈ F0 and !f(π�0,F0 (F)) for f ∈ F0, and similarly for ?f(F). In addition, all
projections preserve the special events init and block. The projection view is defined
in the same way for BAXML augmented with constraints (GAXML, AAXML, and
TAXML).

Our main result is that, with projection views, the powerful control mechanisms of
GAXML can be simulated by BAXML alone. For AAXML and TAXML, we need a minor
restriction forbidding the presence of sibling calls to the same external function, that
is, the occurrence of two sibling nodes labeled ?f, for the same external function f (this
can be enforced by the DTD). We denote these restrictions by AAXMLsib and TAXMLsib.

THEOREM 5.8. W ↪→(id,π) BAXML for W ∈ {GAXML, TAXMLsib
, AAXMLsib}.

PROOF. We describe the three simulations needed to establish the result.

Simulation of GAXML by BAXML

We present the simulation in two stages: first, we demonstrate that the return guards
can be removed from the GAXML schema without losing expressiveness. Then, we
demonstrate that a GAXML schema where all return guards are true can be simulated
by a BAXML schema. We denote the set of GAXML schemas whose return guards are
set to true by GAXMLno-ret.

LEMMA 5.9. GAXML ↪→(id,π) GAXMLno-ret.

4Recall that [S] denotes the semantics of S, that is, the workflow system it defines.
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PROOF. We explain how we can remove the return guards of GAXML schemas.
Consider a GAXML schema S|γ . Due to Lemma 2.5 (Composition Lemma), and the

fact that the set π of views is closed under composition, it is sufficient to show how to
eliminate the return guards one function at a time.

Let f be an internal function of S|γ . Intuitively, we simulate the check of the return
guard of a workspace of ?f using a function call !check-rg f in the same workspace,
whose call guard checks the return guard of f. We wish to ensure the following property,
while maintaining the requirements of w-bisimulation:

(+) the call to ?f can return only if the call to !check-rg f has been activated in its
workspace (signaling satisfaction of the return guard) and no other transition vis-
ible in the workspace occurred in the meantime.

Enforcing (+) involves several subtleties, which we discuss in some detail in this first
simulation proof. The same subtleties are addressed implicitly in the other simulations.

We explain how (+) is enforced in several stages. We begin with a first attempt, that
will have to be refined in order to satisfy the requirements of w-bisimulation.

Recall that, by definition, the answer of a call to f cannot be returned as long as
the workspace of the call to f contains active function calls. Consider the following
modification of the GAXML schema S|γ :

(i) the set of functions is augmented with an internal, noncontinuous function
check-rg f with empty answer, whose call guard checks that the return guard
of f holds, and that the workspace of the call to f contains no active function
calls;

(ii) the argument query of f is modified so that its initial workspace contains a call to
!check-rg f ;

(iii) for every function g, its call guard γc(g) is replaced by γc(g)∧α where α checks that,
if !g occurs in a workspace of f, then !check-rg f also occurs in the same workspace
(this can be done with relative patterns);

(iv) the return query of f is augmented with the rule

af//!check-rg f −→ {error};
(v) the set of constraints of S is augmented to forbid the occurrence of error;

(vi) the return guard of f is set to true.

Let S1|γ1 be the resulting GAXMLno-ret schema. It easily seen that, whenever the
answer of a call to f is returned in S1|γ1, the return guard of f in S|γ is satisfied.
Indeed, (ii) ensures that !check-rg f occurs initially in the workspace of the call, (iv)
and (v) ensure that the answer cannot be returned before !check-rg f is activated, the
call guard of check-rg f ensures that the return guard of f in S|γ holds when check-rg f
is activated, and (iii) together with the call guard of check-rg f ensure that no transition
may occur in the workspace after check-rg f is activated.

While S1|γ1 seems to satisfy the intuition of the desired simulation, it is not quite
satisfactory. Consider the view V ∈ π for which the visible functions and tags are
those of S, and consider the workflow systems [S|γ ] and V ([S1|γ1]). We would like to
have a w-bisimulation relation B from [S|γ ] to V ([S1|γ1]). In particular, if [S|γ ] has
no blocking states, neither should V ([S1|γ1]). However, the preceding construction may
yield blocking states in [S1|γ1] (so also in V ([S1|γ1])), even if no such states occur in
[S|γ ]. This is due to the fact that the activation of !check-rg f nondeterministically
freezes the workspace in its current state. Although the return guard of f is satisfied
at that point, the constraints of S may prohibit the instance resulting from the return,
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thus inhibiting it. This may result in a blocking state in [S1|γ1], even if no such state
occurs in [S|γ ].

To deal with the issue of blocking states, we must allow unblocking a workspace in
which !check-rg f has been activated, and repeating the process. Note that we cannot
simply make !check-rg f continuous, because the presence of !check-rg f prevents the
return of the answer, by (iv). Instead, we can introduce an intermediate function, say
rg-ok f , that is returned by check-rg f and can in turn generate another call !check-rg f .
In more detail, let rg-ok f be an internal, noncontinuous function, and modify check-rg f
so that its answer returns the call !rg-ok f . The call guard of !rg-ok f is true and its
answer returns a call !check-rg f . Let S2|γ2 be the resulting schema. It is clear that
S2|γ2 prevents the undesired blocking encountered in S1|γ1.

However, we are not quite done, because the repeated trials yield in V ([S2|γ2]) in-
finite sequences of silent transitions. These are due to infinite alternations of calls
to !check-rg f and !rg-ok f , without any intermediate visible function call or return.
This violates the definition of w-bisimulation for [S|γ ] and V ([S2|γ2]), since no such
sequences exist in [S|γ ] (in fact [S|γ ] has no silent transitions at all). To circumvent
this problem, we wish to ensure that some visible transition occurs between each re-
turn of the answer to ?check-rg f (yielding !rg-ok f ) and the next call to !rg-ok f . Since
attempts at returning the answer to f need only be made when no visible active calls
exist in the workspace, it is sufficient to require the occurrence of at least one visible
function call return. To detect such returns, we use a new auxiliary function return,
and modify the answer queries of all visible functions so that every answer contains
a call to !return. To allow visible functions to be activated following the activation of
!check-rg f , we remove the requirement imposed by (iii) before that their call guards
require the presence of !check-rg f . However, now we must ensure that the answer of
f is not returned until !check-rg f is again activated, checking that the return guard of
f still holds. This can be done by inhibiting the return of the answer of f while !return
is present, similarly to (iv)–(v) earlier. In more detail, we modify S2|γ2 as follows.

(a) add the function return as an internal, noncontinuous function returning the empty
answer, and whose call guard requires the presence of !check-rg f ;

(b) modify the return queries of all visible functions so that their answer includes a
call !return;

(c) restore the original guards of visible functions (undo the previous (iii));
(d) modify the call guard of rg-ok f to require the presence of !return;
(e) augment the call guard of check-rg f to require the absence of !return or ?return.
(f) add to the answer query of f the following rule.

af//!return f −→ {error}
Let the resulting schema be S3|γ3. Note that, due to (b), the new function return affects
the entire instance, not just the workspaces of f. When it occurs outside a workspace
of f, its call guard cannot hold, so the call is never activated. Its presence is, however,
harmless because it does not cause transitions and is not visible in V ([S3|γ3]).

We claim that S|γ and V (S3|γ3) are now w-bisimilar. More precisely, let B be the
relation from the nodes of [S|γ ] to those of V ([S3|γ3]) defined as follows. Recall that
both [S|γ ] and V ([S3|γ3]) have as root the empty run, which we denote ρ∅. The relation
B is the smallest relation satisfying the following.

—B(ρ∅, ρ∅)
—if B(s1, q1) and s1

e→ s2, q1
e→ q2 for some visible event e, then B(s2, q2).
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From the previous discussion it follows that B is a w-bisimulation relation. This com-
pletes the proof.

Example 5.10. To illustrate the construction in the previous proof, we consider the
following simple example. Let S|γ be a GAXML schema, and suppose an instance I
is reached that contains an activated call to a function f. Suppose the workspace of f
consists of just one unactivated function call to a visible function, !g. We assume that
the return guard of f and the call guard of g are satisfied by I. Figure 11 gives an
overview of the possible sequences of function calls and returns in the simulation of
S|γ by S3|γ3.

We next show that GAXML without return guards can be simulated by BAXML.

LEMMA 5.11. GAXMLno-ret ↪→(id,π) BAXML.

PROOF. Let S|γ be a GAXMLno-ret schema. We construct a BAXML schema S′ that
simulates S|γ . Intuitively, we check the guard of f by adding to the argument query
of f additional rules that check satisfaction of each pattern of γc(f) and insert a cor-
responding tag in the workspace, signaling satisfaction of the pattern. Specifically, for
each pattern P of γc(f), we add to the argument query of f a rule P → {satP} where
satP is a new tag. Note that, if P is a relative pattern, self is mapped to the same node
when it is viewed as the body of a relative query. Finally, the DTD of the workspace is
modified to allow only subsets of tags satP corresponding to truth assignments satis-
fying γc(f). This ensures that !f can only be activated if γc(f) is satisfied. Remark that
this construction works only for internal functions, as external function calls do not
produce a workspace. To deal with external functions, the schema is first modified to
ensure that every new occurrence of an external call !f is accompanied by a sibling
!lock f . This is done using the DTDs (including those of answers to external functions),
as well as by modifying the answer queries of internal functions by adding to every
occurrence of !f a sibling !lock f .

The function !lock f is internal, noncontinuous, and returns the empty answer. It
has several roles:

—checking satisfaction of the guard of f; this is done as before, using the workspace of
lock f ;

—checking that the static constraints would be satisfied after the activation of !f. This
is done by rewriting the constraints in order to allow mapping ?f to ?f or to ?lock f
and !f to !lock f .

Static constraints require that !f can only be activated if it has a sibling ?lock f ,
ensuring that its guard and constraints are true. In addition, ?lock f acts as a lock
disallowing any action other than the activation of the sibling !f. Specifically, we must
prevent the following actions as long as ?lock f is present.

—Activation of another call !lockg for an external function g. This is prevented by
having the call guard of each function lockg prohibit the existence of any other
active call ?lockh in the instance.

—Activation of an internal function. To prevent this, we add a new, internal, nonconti-
nous function activated and modify the argument queries of all internal functions in
order to force the inclusion of a call !activated in their answer. A constraint prohibits
the simultaneous occurrence of !activated and ?lock f in the instance. The function
activated returns the empty answer.

—Return of a function call. Similarly to the proof of Lemma 5.9, we add a new internal,
noncontinuous function return and modify the return queries of internal functions
and the return DTD’s of external functions so that their answers contain a call
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!check-rgf , !g

?check-rgf , !g

!rg-okf ,!g

· · ·

return of f

!rg-okf , ?g

!return, !rg-okf

!return, ?rg-okf

!return, !check-rgf

?return, !check-rgf

!check-rgf

return of return

call of return

return of rg-okf

call of rg-okf

return of g

call of g

return of check-rgf

?g, ?check-rgf

! return, ?check-rgf

!return, !rg-okf

!return, ?rg-okf

!return, !check-rgf

?return, !check-rgf

!check-rgf

return of return

call of return

return of rg-okf

call of rg-okf

return of check-rgf

return of g

call of g

call of check-rgf

Fig. 11. Tree illustrating some of the possible actions in the simulation of the return of the function f in
Example 5.10.

!return. A constraint prevents ?lock f and !return from occurring simultaneously.
The function return returns the empty answer.

Let S′ be the resulting BAXML schema. Let V ∈ π be the projection view for which
the visible tags and events are those of S (and recall that init and block, are always
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visible). As in the proof of Lemma 5.9, let B be the smallest relation from the nodes of
[S|γ ] to those of V ([S′]) satisfying the following:

—B(ρ∅, ρ∅);
—if B(s1, q1) and s1

e→ s2, q1
e→ q2 for some visible event5 e, then B(s2, q2).

A straightforward case analysis shows that B is a w-bisimulation relation from [S|γ ]
to V ([S′]). The only nontrivial aspect of the simulation concerns the functions lock f .
It is critical to note that every activation of !lock f leads to a successful call to !f (so
a visible event). This ensures that no extraneous blocking occurs in S′, and also that
there are no infinite chains of silent transitions. Thus, B is indeed a w-bisimulation.

In summary, we have shown the following.

GAXML ↪→(id,π) GAXMLno-ret

and GAXMLno-ret
↪→(id,π) BAXML

By Lemma 2.6 it follows that GAXML ↪→(id,π) BAXML. Since this is the first application
of the lemma, we explain it in detail. The lemma is applied with V1 = V2 = id and V =
V3 = π . Since π = id◦π we have that GAXML ↪→(V1,V2◦V) GAXMLno-ret and GAXMLno-ret

↪→(V2,V3) BAXML. By Lemma 2.6, GAXML ↪→(V1,V3◦V) BAXML. Since π ◦π = π it follows
that GAXML ↪→(id,π) BAXML.

Simulation of AAXMLsib by BAXML

Let S|A be an AAXMLsib schema with functions F0 and tags �0. We outline the con-
struction of a GAXML schema S′|γ that simulates S|A relative to projection views.
Since GAXML can be simulated by BAXML relative to projection views, and since pro-
jection is coarser than the identity on GAXML, Lemma 2.6 implies that AAXMLsib can
be simulated by BAXML.

Without loss of generality, we can assume that the static constraints of S consist just
of a DTD. Indeed, the data constraints can be easily pushed into the pattern automa-
ton A. As described in the proof of Theorem 4.4, the satisfaction of an automaton A
by a prerun can be checked incrementally by maintaining the states of the automaton
reachable in the prerun, together with the valuations of their parameters. The simula-
tion by a GAXML schema essentially implements the same incremental check. Thus,
S′|γ must alternate the simulation of events of S|A (function calls and returns) with
validity checks and updates of the state and valuation information of A. The simulation
is quite intricate and we outline the main points, providing intuition on the more subtle
aspects.

The representation and maintenance of the state and valuation information for A is
straightforward. We use a subtree with root states, and one child !q for each state q of
A. Valuations of X̄q are kept in adjacent subtrees, each with root label Vq. The current
valuations are marked by a function !current (internal, noncontinuous, with empty
answer). An evaluation of !q returns a new set of valuations, also subtrees with root
Vq, but now marked with another function !new. The update is completed by having the
functions !current vanish and the functions !new turn into !current. One update round
is controlled by a function update whose activation enables the update and blocks all
transitions not involved in the update. Other locks ensure that update can be activated
only when the simulation of one transition of S is completed. We can also enforce that
the update round is performed only once between transitions.

5Recall that init and block are always visible events.
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The main difficulty in the simulation concerns the function calls and returns, and
their timing relative to the update round outlined earlier. Specifically, the following
raise technically intricate points:

(i) ensuring that validity of a function call or return is checked for each event (in par-
ticular, this requires preventing multiple transitions skipping intermediate validity
checks and state/valuation updates);

(ii) checking validity of a candidate event of S with respect to the DTD and A without
actually carrying out the event (in particular, one must prevent infinite branches
of ε-transitions caused by unsuccessful guesses of the next valid event)

The sequencing needed for (i) and (ii) is enforced by a locking mechanism imple-
mented by auxiliary functions. Before outlining the main aspects of the simulation, we
make some useful technical remarks.

Valid Automata Transitions vs. Static Constraints. Given the current state/valuation
information for A and a next instance I of S, validity with respect to A of the transition
to I can be expressed in S′ by a formula ϕnext. The formula ϕnext is the disjunction
∨q,q′ ψnext(q, q′), where q and q′ are states of A, and ψnext(q, q′) checks that q is a
current state, the formula ϒ(q′) holds, and the equality constraints between some
valuation of X̄q and a possible next valuation of X̄q′ provided by ϒ(q′) are satisfied.
Note that ϕnext is not directly expressible as a static constraint in S′, because these
are Boolean combination of independent patterns, whereas ϕnext uses parameterized
patterns sharing free variables. To overcome this gap, some preprocessing is needed
for each transition. Specifically, for a formula ϕnext with free variables X, candidate
valuations for X are generated and the patterns in ϕnext are augmented so that X is
bound in all patterns to the same valuation. The generation of the candidate valuations
depends on the action leading to the transition (we omit the details). This reduces
evaluation of ϕnext to evaluation of a Boolean combination of independent patterns, so
a static constraint of S′. In the following, we will use for simplicity ϕnext as a static
constraint, bearing in mind that its evaluation requires the preceding preprocessing
phase. Parameterized queries used in the automaton A yield another difficulty for
the initial state. To ensure that the initial document satisfies the parametrized query
of the initial state, we assume that there is only one valuation of the initial state
represented in the initial document. This way the parametrized query can be simulated
by a Boolean combination of patterns. The other valuations are built at the beginning
of the simulation by the activation and the return of a function call !init-valuation.

Rewriting Patterns. The patterns used in S|A have to be rewritten when used in
S′|γ . Indeed, since an instance I′ of S′ contains the corresponding instance I in S|A,
a pattern can be satisfied in I′ and not in I. The main problem is due to descendant
branches and the wildcard used in patterns. To resolve this, each tag in �0 used in I′
is adorned with a child labeled real. The patterns are rewritten using these markings,
to ensure that each pattern of S|A used in S′|γ is mapped to nodes in I rather than to
hidden nodes used in the simulation.

Rewriting Queries. The simulation introduces new data values in the trees. These
data values can be matched by patterns in the queries, such as q = ∗//$x. To avoid this,
we first ensure by static constraints that each node labeled by a tag appearing in the
projected trees has a child labeled real, as explained previously. Queries are rewritten
in order to access only data values accessible using nodes having a child labeled real.
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Extending GAXML with Global Return Guards. In our simulation, we allow return
guards that can check a global property of the instance. This is an extension of GAXML,
since in GAXML return guards of function calls are only able to check properties of
the workspace. In our context, we can simulate global return guards. This is done by
adding to the workspace of each function f using a global return guard γr(f) a function
check-return-guard f . The call guard of this function is γr(f). The new local return
guard of f simply checks that check-return-guard f has returned. This works in the
context of our simulation because we only use it on reachable instances I of S|γ in
which satisfaction of γr(f) implies that the return of the corresponding call to f leads to
the only valid transition. Note that otherwise, a reevaluation of check-return-guard
would have to be done after each other valid transition by using a mechanism like in
the proof of GAXML without return guard.

We next outline the simulation of the events of S|A, making use of the previous
observations. In all cases, the simulation involves the following steps.

(1) Acquire a lock for a function call or return. The lock initiates an attempt to carry
out the associated event.

(2) Check that the event corresponding to the lock would result in a valid transition of
S|A.

(3) In the affirmative, the locked event is carried out and the lock released. Otherwise,
the lock is also released, but in a manner that prevents another locking attempt
before a valid event occurs. This prevents infinite branches of ε-transitions.

We now describe the specific simulation used for the activation of a function call, the
return of an internal function call, and the return of an external function call.

Activation of a Function Call. The activation of an internal function !f is controlled
using a sibling function !lock f . As described before, this has a dual role: it acts as a
lock, and it checks whether the activation of !f would result in a transition allowed
by the automaton. If so, it returns a function call !activate-f. Otherwise, it returns
!notactivate-f. The call !f cannot be activated unless !activate-f occurs as a sibling.
The functions !lock f and !activate-f also prevent other transitions from occurring
during the attempt to activate !f. To this end, one can guarantee that there is at most
one node labeled ?lock f , (for some f) in an instance, that is, at most one lock. This
is enforced by the guard of lock f . Moreover, no active function call can return its
answer while ?lock f , !activate-f, or ?activate-f occur. As described in the proof of
Lemma 5.11, it is easy to ensure that every occurrence of !f is always accompanied by
a sibling !lock f following each visible transition.

To ensure that !f is activated whenever !activate-f is activated, the guard of
activate-f ensures that this function cannot be called while it still has a sibling
!f. The function call !notactivate-f ensures that !lock f cannot be called more than
once between two valid transitions. It is activated during the maintenance phase and
returns !lock f (needed for the next attempt to call !f, following another transition).
The constraints impose that activate-f handshakes with the lock for the maintenance
of the states and valuations.

Figure 12 summarizes the possible sequences of activations in the simulation of an
internal call to f. The role of the function w f,a will be explained shortly. The nodes
represent the functions that occur as siblings of the node labeled ?f or !f. The possible
sequences for an external call are the same except the function w f,a is replaced by
certificate f,a.
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!f !lockf

!f ?lockf

!f !wf,a !activate-f

?f !wf,a !activate-f

?f ?wf,a !activate-f

!f ?wf,a ?activate-f

!f ?wf,a

return of activate-f

call of activate-f

call of wf,a

call of f

return of lockf

!f !notactivate-f

return of lockf

call of lockf

Fig. 12. Some of the actions for the simulation of the activation of the call to f.

Return of an Internal Function Call. We describe the simulation in several stages.
The basic locking mechanism is simple. The lock initiating an attempted return of a
function call ?f is implemented using a function !lockw present in the workspace. If the
call return to ?f would result in a valid transition, the lock is released and the result
is returned. Otherwise, the lock is released and another function !wait is activated
in order to inhibit any locking attempt until another transition has been successfully
completed.

Checking validity of the call return is much more complex. It is carried out using the
workspace of an auxiliary function check f,a that is a sibling to ?f (here a is the tag of
the parent of ?f, needed to check the DTD). A difficulty is to make sure the activated
occurrence of check f,a is indeed a sibling of the call ?f whose workspace is locked (recall
that patterns cannot detect the link between a call and its workspace). Assume for the
moment that this is achieved. Then check f,a works as follows. First, it generates in
its workspace a copy of its sibling subtrees (these are “almost” isomorphic copies of
the originals, keeping sufficient information for checking validity; see what follows).
This copy is initiated by the activation of copy-sibling appearing in the workspace
of check f,a. Next, it generates in the same workspace the answer to the locked call ?f.
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In the following stage, four functions are used to test satisfaction or violation of the
DTD (ok-dtd and notok-dtd) and the automaton constraint (ok-A and notok-A) by the
result. Specifically, for the first two the test is done using the DTD of S′ and for the last
two using their guards. To test satisfaction of the automaton constraint using guards,
the formula ϕnext has to be rewritten into a disjunction of formulas, each of which de-
composes the patterns into a part that applies to the workspace of check f,a (mimicking
the subtree rooted at the parent of the call ?check f,a, labeled a) and another to the rest
of the instance. If the result is positive (the transition is valid) then a flag ok-return is
turned on in the workspace of ?f. The guards and constraints then force the answer to
the call ?f to be returned, and ?check f,a returns the empty answer. If the result is neg-
ative, the function !wait is activated in the workspace of ?f (see preceding), and these
functions are used to allow a new check of this function following a valid transition.

We next explain how to generate !check f,a as a sibling of the call ?f whose workspace
is locked. The process starts at the time when !f is activated. We ensure that each
function call !f has as a sibling a call !w f,a (where a is the tag of the parent of the
function call). When the call to !f is made, its workspace includes a function !init that
uniquely marks the most recent function call (and later vanishes). Additionally, a new
identifier α is generated in the workspace of ?f (more on this in the next paragraph).
Then the function !w f,a is called and copies the identifier α from the workspace of
?f marked by !init. Note that the only function call !w f,a without a sibling !f is the
sibling of the most recently activated call ?f. Once the simulation of the call to !f is
completed, !init vanishes but the workspaces of ?f and ?w f,a remain linked by the
identifier α. When the return of the call ?f is simulated, the call ?w f,a sharing the same
id α with the workspace of ?f returns as answer the desired function call !check f,a. If
due to a lock the return of f is disallowed, the call to !w f,a has to be activated again.
The function check f,a returns the function calls !w f,a and !reinitialize. The second
function ensures that its sibling !f has as sibling !w f,a after the reinitialization.

The identifier α in the previous paragraph can easily be generated by an external
function that returns a new value. If one wishes to avoid using external functions in the
simulation, the identifier can be represented by a chain of calls to two internal functions,
encoding the binary representation of an integer. The bookkeeping is more complicated
in this case, since comparing identifiers is no longer an atomic operation. In particular,
identifiers have to be destroyed and reconstructed (details omitted). Moreover, the
identifiers have to be refreshed after each valid transition to ensure that the size of
each instance of the simulation remains polynomial in the size of the current instance.

Recall that one of the roles of !check f,a is to copy the relevant sibling subtrees of ?f.
We explain briefly how this is done. We enforce that each tag of �0 has a child function
call !copy-to. As remarked earlier, the copy performed loses some information. The loss
concerns the exact number of sibling calls ?g to an internal function g. Indeed, it is not
possible to fully replicate this information because of the limitations of patterns. Fortu-
nately, multiple occurrences of sibling calls to the same function are not relevant when
they occur as internal nodes in sibling subtrees of ?f. Thus, only one representative of
such calls is copied. This does not affect the simulation, since trees with activated func-
tion calls cannot be merged, and patterns cannot count such occurrences. For calls ?g
occurring as siblings of ?f, their number is relevant to satisfaction of the DTD after the
call return, but only up to the maximum integer used in the DTD of S. The number of
occurrences up to this maximum can be signaled using additional function calls whose
activation is constrained by the DTD of S′. For example, the DTD may stipulate that a
function !eq(?g=m) may be activated iff the number of occurrences of siblings ?g is m.

Copying a tree is done by mutually recursive calls between functions residing in the
source tree (copy-to, in-progress, copy-values-to, done-to) and in the target tree
(copy-from, copy-values-from, done-from). The copy is done in a depth-first manner.
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The copy-to indicates the parent node to copy. The function call !copy-from copies
this node with child labeled !copy-from. The function call !in-progress indicates that
copying is in progress for the subtrees of the parent node of this call. The function call
copy-values-to indicates that the function calls and the sibling values of this function
have to be copied. It implies that the subtrees are entirely copied, which is signaled by
the function !done. The copy of the function calls is tricky, since copying the activated
function calls has to be done before the others (to guarantee that partially copied
subtrees are not merged). The function calls !done-from and !done-to are reinitialized
to !copy-to after each valid transition.

Figure 13 summarizes the tree of actions done to check the return of a call. At each
node, we represent the function call siblings of the call ?f, the function calls in the
workspace of ?f; and the function calls in the workspace of check f,a when it is in the
simulation.

Return of an External Function Call. This is the most subtle part of the simulation.
Observe first that it is not possible to take a lock using a marker returned by an
external function call ?f, because two calls to ?f at different locations in the document
may return exactly the same forest and be indistinguishable by the constraints of the
GAXML schema. Moreover, it is not possible to take a lock prior to the return of ?f,
because one cannot know if ?f can return an answer satisfying the constraints (recall
that this is undecidable; see proof of Theorem 4.6). If a lock is taken when ?f cannot
return, this leads to a blocking run in an instance of S′|γ whose projection in S|A
is not blocking, which violates the definition of simulation. Instead, the idea of our
simulation is to use, for every call ?f to an external function, an associated sibling call
to an internal function certificate f,a such that:

(i) if ?f may return, then ?certificate f,a may return a flag !return f . The function
!return f compels ?f to return and also acts as a lock preventing other transitions
until the next cleaning stage.

(ii) the call ?certificate f,a may remain activated until the next cleaning stage,
in which case ?f is not allowed to return. During the cleaning stage, the call
?certificate f,a returns and is reactivated.

Note that, even if ?f can return, ?certificate f,a does not necessarily return, unless
the return of ?f is the only possible next transition. Otherwise, the cleaning stage
may be reached without a return of ?certificate f,a or ?f, by simulating some other
transition. If ?certificate f,a does not return and the cleaning stage is not reached,
then the run is blocking, both in S|A and in S′|γ .

We next elaborate on (i). To mimick ?f, the function certificate f,a uses in its
workspace an external control function fake f . The workspace also contains additional
information so that ?fake f may return in the context of the workspace iff ?f may
return in the context of its original location. Specifically, the workspace contains a copy
of the sibling subtrees of ?f (this is done as in the previous simulation). In addition,
it contains information on the evaluation of the patterns in ϕnext on the portion of the
current instance excluding the siblings of ?f. The partial evaluations of the patterns
together with the siblings allow expressing within the workspace constraints on the
return of ?certificate f,a that are equivalent to those on the return of ?f (the DTD
and valid transition in A). This ensures that ?fake f may return iff ?f may return. If
?fake f returns, then ?certificate f,a returns the flag !return f as desired. To prevent
multiple returns to ?fake f at different locations in the document, the answer to ?fake f
contains a flag !return-fake-f that is not allowed to appear twice in the document.
To ensure this, the workspace of ?certificate f,a also contains a unique id (generated
by an external function). A constraint forbids two occurrences of !return-fake-f with
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(?f ?wf,a), (!lockw, !wait)

(?f ?wf,a), (?lockw,!wait)

(?f !checkf,a), (?lockw,!wait)

(?f ?checkf,a), (?lockw, !wait), (!ok-dtd, !notok-dtd, !ok-A, !notok-A)

(?f ?checkf,a), (?lockw, !wait),
(?ok-dtd, !notok-dtd, !ok-A,!notok-A)

(?f ?checkf,a), (?lockw, !wait),
(ok-dtd, !notok-dtd, !ok-A,!notok-A)

(?f ?checkf,a), (?lockw, !wait),
(ok-dtd, !notok-dtd, ?ok-A,!notok-A)

(?f ?checkf,a), (?lockw,!wait),
(ok-dtd, !notok-dtd, ok-A,!notok-A)

(?f ?checkf,a), (ok-return),
(ok-dtd, !notok-dtd, ok-A,!notok-A)

(?f ), (ok-return)

(!return)

return of f

return of checkf,a

return of lockw

return of ok-A

call of ok-A

(?f ?checkf,a), (?lockw, !wait),
(ok-dtd, !notok-dtd, !ok-A,?notok-A)

(?f ?checkf,a), (?lockw, !wait),
(ok-dtd, !notok-dtd, !ok-A,notok-A)

(?f ?checkf,a), (?lockw,?wait),
(ok-dtd, !notok-dtd, !ok-A,notok-A)

(?f !wf,a !reinitialize), (?lockw,?wait)

(?f ?wf,a !reinitialize), (?lockw,?wait)

(?f ?wf,a ?reinitialize), (?lockw,?wait)

(?f ?wf,a), (?lockw,?wait)

(?f ?wf,a ), (?wait)

return of lockw

return of reinitialize

call of reinitialize

call of wf,a

return of checkf,a

call of wait

return of notok-A

call of notok-A

return of ok-dtd

call of ok-dtd

(?f ?checkf,a), (?lockw, !wait),
(!ok-dtd, ?notok-dtd, !ok-A,!notok-A)

(?f ?checkf,a), (?lockw, !wait),
(!ok-dtd, notok-dtd, !ok-A,!notok-A)

(?f ?checkf,a), (?lockw, ?wait),
(!ok-dtd, notok-dtd, !ok-A,!notok-A)

call of wait

return of notok-dtd

call of notok-dtd

call of checkf,a

return of wf,a

call of lockw

return of checkf,a

28

Fig. 13. Some of the actions in the simulation of the return of the call to the internal function f.
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(?f, ?certificatef,a), (?fakef )

(?f, ?certificatef,a), (!return-fakef )

(?f, !returnf )

(!return, !returnf )

(!return, ?returnf )

(?return, ?returnf )

(?return)

...

return of return

return of returnf

call of return

call of returnf

return of f

return of certificatef,a

return of fakef

Fig. 14. Some of the actions for the simulation of the return of the call of the external function f.

distinct workspace ids. Note that the id technique could not be used to implement
directly a lock for the return of ?f, because such an id could not be erased from
the instance and this could lead to faulty simulations. Indeed, the ids could inhibit
merging of subtrees whose projections would otherwise be merged.

Finally, if ?certificate f,a does not return during the current round, its workspace
is reconstructed during the cleaning stage in order to reflect changes in the instance.

Figure 14 summarizes the tree of actions performed to check the return of an
external call. At each node, we represent the function calls occurring as sibling of the
call ?f, then the function calls in the workspace of certificate f,a when it exists.

Example 5.12. We illustrate the main elements of the preceding simulation using
a simple example. Consider the following AAXML schema S|A. Its static constraints
consist of the following DTD.

r −→ |b| = 1 ∧ |c| = 1
b −→ |a| = 1 ∨ |!f| = 1 ∨ |?f| = 1

S has one internal function f, whose argument and return queries always produce
a single node labeled a. The automaton A has three states, s0, s1, s2, with no associated
variables. The initial state is s0 and there are transitions from s0 to s1 and from s1 to s2.
The formula associated with the initial state s0 checks for the presence of !f, the formula
for s1 checks for the presence of ?f, and the formula for s2 checks for the absence of ?f.
Thus, the only possible sequence of events is the activation of !f and the return of ?f. We
describe how the two transitions are simulated by the GAXML schema S′|γ with global
return guards constructed in the proof. The initial AAXML instance is the following.
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The shape of the initial document for S|A is ensured by a pattern associated with
s0 (having the same tree representation as the earlier instance). The corresponding
initial instance for the GAXML schema S′|γ is the following: This is enforced by the
static constraints of S′. For readability, we omit in figures the function calls copy-to
introduced in the full proof to facilitate copying trees in the simulation (they should
appear under every visible node). Also, all visible nodes are circled.

The simulation consists of the following steps.

(1) Call and return of !init-valuation. This function returns the valuations for the
variables associated with s0. In this example, it returns the empty valuation,
since s0 has no associated variables.

(2) Call and return of !lock f . This function takes a lock on the system and checks
if the activation of !f is allowed by the constraints of S|A. In our example, the
activation is possible and the call to lock f returns !activate-f.

(3) Call of !f.
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(4) The next few steps prepare the return of the call ?f. First, a fresh identifier for
the workspace is created by a call to the external function identifier. For more
clarity, we use an integer to represent the identifier.

(5) A call of !w f,b copies the identifier of the workspace af using the fact that !init
occurs in it.

(6) The workspace of f is cleaned by activating and returning the function call !init.

(7) Call of activate-f. This internal function can return only if there is no function
call to current and there is some function call to new. This completes the
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simulation of the activation of f. It is followed by the simulation of the transition
of the automaton, from s0 to s1.

(8) In the general simulation, the function calls !s0, !s1, !s2 are activated and returned
to create new valuations for the associated variables. Since in our example there
are no variables associated to states, the empty valuation corresponding to the
state s1 is represented by the subtree Vs1 with the function call !new.

(9) The preceding valuations are marked as deleted. This is done by the call and
return of the function current. In the example, the only such call occurs under
the node labeled Vs0 .
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(10) ?activate-f can return only if there are no function calls to current but there is
some function call to new.

(11) The simulation of the first transition is completed by calling and returning the
function call !new in order to obtain a function call !current.

(12) The next steps simulate the return of ?f. The first step is the activation of !lockw

in the workspace of f.
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(13) The function call w f,b associated with f returns by using the identifier of the
workspace of f and the fact that the workspace of f has an activated function call
?lockw.

(14) The function call check f,b is activated to check that the return of f would be
compatible with the constraints given by S|A (the tag ā is an invisible clone of a).

(15) First, the sibling subtrees of check f,b are copied in its workspace using the function
copy-to under each visible tag and the function copy-forest in the workspace of
check f,b (recall that the functions copy-to are omitted in the figures for readability,
but are present under every visible node). In our example, the forest is empty.

(16) Using the copied subtrees, the siblings of check f,b and the return of f built from
the initial workspace, it is possible to check the correctness of the return of f
for the DTD and the transition constraints. In our example, both are satisfied

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 10, Publication date: May 2012.



10:44 S. Abiteboul et al.

after the return. Then, !ok-dtd and ok-A are called and return ok-dtd and ok-A,
respectively (details omitted).

(17) The function call ?lockw returns the tag ok-return because of the presence of the
labels ok-A and ok-DTD and using the common identifier found in the workspaces
of ?f and ?check f,b.

(18) The function call ?check f,b returns.

(19) The function call ?f returns because of the presence of the label ok-return in its
workspace and the absence of ?check f,b.

(20) The update of the state of the automaton begins as before. The function return
plays the role of activate-f previously. It can return only if there is a call to new
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but no call to current.

(21) The functions !s0, !s1, !s2 are called and returned to obtain an empty valuation of
s2. The previous valuation is removed by calling and returning !current.

(22) The function call ?return returns.

(23) The update of the state is completed by calling !new, which returns !current.

This completes the simulation of the two transitions.

Simulation of TAXMLsib by BAXML

This follows from the simulation of AAXMLsib by GAXML and from Theorem 5.14,
noting that the simulation of TAXML by AAXML does not introduce sibling calls to
the same external function.

This concludes the proof of Theorem 5.8.

Remark 5.13. Theorem 5.8 shows that BAXML and GAXML can simulate
AAXMLsib and TAXMLsib with respect to projection views. The converse is obviously
false. Indeed, to see that BAXML (or GAXML) cannot be simulated by AAXMLsib or
TAXMLsib, it is enough to consider a BAXML schema that produces an instance with
two sibling calls to the same external function. By definition, such a schema cannot be
simulated by AAXMLsib or TAXMLsib.

For AAXML and TAXML, we have the following.

THEOREM 5.14. AAXML ↪→(id,π) TAXML and TAXML ↪→(id,π) AAXML.

PROOF. We first show that AAXML ↪→(id,π) TAXML. Let S|A be an AAXML schema
with functions F0 and tags �0. The broad lines of the simulation of AAXML by TAXML
are similar to the simulation of AAXMLsib by GAXML. As in the latter case, the
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TAXML system must enforce an alternation of transitions and maintenance of the
state/valuation information for A. This is done by a locking mechanism enforced by
auxiliary functions, much like in the simulation by GAXML. We omit the similar de-
tails and focus on returns of external function calls.

Each function call notifies its return by a function call !safe-r that belongs to its
answer (this can be enforced for external functions by their DTD). The function !safe-r
works as a lock. To ensure that two sibling functions calls ?f do not return consecutively,
the TAXML formula imposes that no two consecutive instances contain a function call
!safe-r. In particular, this requires the activation of !safe-r f in the instance following
its first occurrence. The validity of the return with respect to A is checked, as in the
simulation by GAXML, by the constraint ϕnext, whenever !safe-r f occurs (note that
ϕnext can be used directly in the Past-Tree-LTL formula).

We next show that TAXML ↪→(id,π) AAXML. To this end, we use a variant of AAXML,
denoted by AAXML∗. The automaton model of AAXML∗ differs from AAXML as
follows:

(i) the automaton is equipped with final states, and a prerun must lead to some final
state in order to be accepted,

(ii) the state variables are the same for all states and remain unchanged in each
transition, and

(iii) the state variables range over the active domain of the entire prerun which is the
input to the automaton, rather than just the last instance leading to that state.

We first show that TAXML can be simulated by AAXML∗, then show how AAXML∗
can be simulated by AAXML.

From TAXML to AAXML∗. Let ξ = ∃X̄ϕ(X̄) be a Past-Tree-LTL formula. Recall that
each such formula is obtained from a propositional Past-LTL formula ϕ̄ with propo-
sitions P in which each proposition p ∈ P is replaced by a Boolean combination of
parameterized patterns ψp. Using a variant of the algorithm of Vardi [1996] for finite
words, one can construct a finite-state automaton Aϕ̄ whose alphabet consists of the
truth assignments to P, that is equivalent to ϕ̄. From this we can obtain an AAXML∗
automaton Aξ equivalent to ξ as follows.

—For each truth assignment σ to P, let γσ be the Boolean combination of tree patterns
obtained from the propositional formula ∧σ (p)=1 p ∧σ (p)=0 ¬p by replacing each p by
ψp.

—For each state q of Aϕ̄ , Aξ has one state (q, σ ) for each outgoing transition from q
labeled σ , and transitions are induced by those in Aϕ̄ . The state formula for (q, σ ) is
γσ . The state variables (which are all the same) equal X̄.

—The final states of Aξ are those of the form (q, σ ) where q is final in Aϕ̄ .

It is easily seen that the AAXML∗ automaton Aξ is equivalent to ξ .

From AAXML∗ to AAXML. We explain informally the main points in the simulation of
AAXML∗ by AAXML. Consider an AAXML∗ specification S∗|A∗. We describe an AAXML
specification S|A that simulates it. Recall the differences (i)–(iii) between the AAXML∗
and AAXML automata. The simulation by S|A is similar to the maintenance of the
set of reachable states and valuations, used in the simulation of AAXML by GAXML.
Dealing with (i) and (ii) is straightforward. To account for the final states, S|A must
check that at each transition, one of the reachable states is final. The fact that state
variables are the same and do not change in A∗ is easily enforced in A using equalities
among variables of consecutive states. The most delicate part of the simulation concerns
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(iii), that is, the difference in the active domain semantics for the two models. Indeed,
at any given transition in the prerun, state formulas are evaluated on the active
domain of the entire prerun. This includes values occurring in past instances and values
occurring in future instances (introduced by external functions). We discuss both in
turn.

Dealing with past values is fairly straighforward. It is sufficient to ensure that at
any point, the current active domain contains all values of previous instances in the
prerun. To this end, we use a new internal, continuous function collect, whose role is to
maintain the cumulative active domain of the instances in the prerun. More precisely,
the DTD of S∗ is modified so that !collect or ?collect must occur under a node labeled
values (a new tag) which in turn occurs under the root. The argument query of collect
produces all data values in the current instance, and the answer query returns all
data values in its workspace. The pattern automaton A∗ is modified as follows. For
each state p that has at least one outgoing edge, we introduce two new intermediate
states, p1 and p2, with the same number of associated variables as p. The role of p1
and p2 is to force an activation of !collect, followed by a return of ?collect, before
any other transition. The state formula of p1 is ϒ ′(p)(Xp/Xp1 )∧α1, where ϒ ′(p)(Xp/Xp1 )
is obtained from ϒ(p) by modfiying each pattern in order to force all matchings to
avoid the subtree rooted at values, and by replacing the variables Xp with Xp1 , and
α1 checks the existence of ?collect. There is an edge from p to p1 and δ(p, p1) makes
all variables Xp1 equal to Xp. Similarly, the state formula of p2 is ϒ ′(p)(Xp/Xp2 ) ∧ α2,
where α2 checks the existence of !collect (which means that the call to collect has
returned) and δ(p1, p2) makes all variables Xp1 equal to Xp2 . Finally, for each state q
of A∗ such that δ(p, q) is defined, δ(p2, q) is obtained from δ(p, q) by replacing Xp with
Xp2 . It is clear that the intermediate states ensure that the cumulative active domain
of the prerun up to the current instance is found under the node labeled values after
each visible transition is simulated.

It now remains to deal with new values introduced in future instances of the prerun,
relative to the current instance. These may arise from answers to external function
calls. We make use of the previous construction ensuring that the cumulative active
domain of the prerun up to the current instance is maintained under the distinguished
node labeled values. Handling future values is trickier, because the semantics requires
taking these into account in previous transitions. Dealing with this requires augment-
ing the state/valuation maintenance algorithm. Specifically, S|A must decide if the
current transition would be allowed had A∗ been run from the beginning on the ac-
tive domain extended with the new values. In order to do this incrementally (without
rerunning the automaton on the extended domain), A must maintain some additional
information summarizing the reachable states and valuations, where the latter include
values outside the current prerun. In order to do this, the key observation is that a
positive pattern with a free variable X cannot be satisfied for any value of X not in
the current instance. Let @ be a new data constant, representing an arbitrary value
outside the current active domain. Consider a valuation ν of the state variables X into
the cumulative active domain augmented with @. Let us call a valuation indefinite if it
maps at least one variable to @, and definite otherwise. We can define the satisfaction
of a tree pattern P(ν(Y )) in a BAXML instance, where Y ⊆ X, as follows: if ν(Y ) is
definite, then satisfaction is defined as usual; otherwise, P(ν(Y )) is not satisfied. This
extends to satisfaction of Boolean combinations of tree patterns, so of state formulas.
The maintenance algorithm is now be extended to keep states together with definite
and indefinite valuations. When a transition from instance I and state p to instance J
and state q is simulated, the following is done.
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Simulation Schema blowup Instance blowup Silent transitions
GAXML →(id,π ) BAXML exponential linear in instance linear in prerun
AAXMLsib →(id,π ) BAXML exponential polynomial in instance polynomial in prerun
TAXMLsib →(id,π ) BAXML exponential polynomial in prerun polynomial in prerun
TAXML →(id,π ) AAXML exponential polynomial in prerun polynomial in prerun
AAXML →(id,π ) TAXML polynomial polynomial in instance O(1)

Fig. 15. Cost of various simulations in Theorems 5.8 and 5.14.

(i) The set of definite valuations for p is augmented by adding, for each indefinite
valuation ν of Xp, all valuations ν ◦ ν ′, where ν ′ maps @ to any value in the active
domain of J that is not in the cumulative active domain up to I.

(ii) The maintenance algorithm computes in the usual way the set of possible definite
valuations for q, using the set of definite valuations computed in (i) for p.

(iii) A new set of indefinite valuations is computed for q, using J and ϒ(q)(Xq).

Let S|A be the AXML schema implementing the extended maintenance algorithm.
It is clear that S|A simulates S∗|A∗.

From the proof of Theorem 5.14 we have the following.

COROLLARY 5.15. TAXMLsib ↪→(id,π) AAXMLsib and TAXMLsib ↪→(id,π) AAXMLsib.

PROOF. It can be checked that the simulations described in the proof of Theorem 5.14
preserve the sibling restriction on external functions.

The proofs of the previous results provide insight into the simulations of the various
languages, and in particular highlight the power of imposing control using static con-
straints. In terms of the cost of each simulation, several parameters can be considered:
(i) the blowup in the schema size, (ii) the blowup in the instance size, (iii) the number
of silent transitions needed to simulate a single transition. For the simulations consid-
ered here, the blowup in the schema size varies from polynomial to exponential, the
blowup in the instance size from polynomial with respect to the instance to polynomial
with respect to the entire prerun, and the number of silent transitions from constant
to polynomial in the prerun (for fixed schemas). The costs for various simulations are
spelled out in more detail in Figure 15.

The difficulty of simulating AAXML and TAXML with sibling external function calls
by BAXML (or GAXML) lies in the fact that the constraints of AAXML and TAXML
must be checked after every transition, and GAXML cannot prevent multiple returns
from sibling external function calls that skip validity checks. Indeed, as shown shortly,
this difficulty cannot be circumvented.

THEOREM 5.16. W �↪→(id,π) GAXML for W ∈ {TAXML, AAXML}.
PROOF. We first show that there exists an AAXML schema with external functions

that cannot be simulated by a GAXML schema relative to a projection view. Intuitively,
if there are several sibling active function calls to the same external function, the
GAXML schema is not able to impose that only one function call returns before the
states of the automaton are updated and validity of the transition is ensured.

The AAXML schema S|A is the following. We describe the shape of a run. The initial
instance is a tree rooted at r with one child labeled by a continuous function !g. The
function !g returns an external, noncontinuous function call !f. Repeated calls to g and
f (in alternation) generate an unbounded number of sibling calls ?f. Each function f
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TAXMLsib AAXMLsib

BAXML GAXML

TAXML AAXML

Fig. 16. Summary of the simulation results.

returns a label a. The automaton further imposes that no more than one answer to ?f
be returned in a run.

We show that there is no GAXML schema simulating S|A. Assume towards a con-
tradiction that there exists such a schema S′|γ . Let M be the maximum integer used
in the DTD of S′. We exhibit a prerun that is valid for S′|γ , but whose projection is
not valid for S|A. First, let ρ = (I0, e0) · · · (Im, em) be a prerun for S|A in which Im has
M + 1 occurrences of ?f and em is the only return of a call ?f occurring in ρ. Let I
be the instance resulting from the return of another call ?f of Im (let e be this event).
Note that ρ is a valid prerun of S|A whereas ρ.(I, e) is not. Nonetheless, we show that
ρ.(I, e) is the projection of a prerun of S′|γ . Since S′|γ simulates S|A and ρ is a pre-
run of S|A, there exists a prerun of S′|γ with a subsequence (I′

i0, e′
i0 ) · · · (I′

im, e′
im) so that

i0 = 0, im = m and (Ij, e j) is the projection of (I′
i j
, e′

i j
), 0 ≤ j ≤ m. In particular, I′

im−1

contains M + 2 calls to ?f, I′
im contains M + 1 calls to ?f, and (since calls ?f are visible),

I′
im is obtained from I′

im−1 by the return of a call to ?f, consisting of some forest F. We
claim that S′|γ allows the transition from I′

im to I′ in which another call to ?f returns
the same forest F. Indeed, because in the BAXML semantics isomorphic subtrees are
reduced, the two occurrences of F are merged so the only difference between Iim and
I′ is that Iim has M + 1 calls ?f whereas I′ has M such calls. Since M is the maximum
integer used in the DTD of S′, and Iim satisfies the DTD, so does I′. Similarly, Iim and
I′ satisfy the same tree patterns because the two instances are homomorphic to each
other. Thus, I′ satisfies all static constraints of S′. Since external function returns have
no guards, the transition is valid in S′|γ . However, the projection of I′ is I and, as
we have seen, ρ.(I, e) is not a valid prerun of S|A. This contradicts the existence of
S′|γ .

The fact that TAXML cannot be simulated by GAXML follows from the fact that
AAXML can be simulated by TAXML (Theorem 5.14) and AAXML cannot be simulated
by GAXML. The difficulty is the same as in the preceding proof.

The simulation results of this section relative to projection views are summarized in
Figure 16 (single arrows indicate simulation only in one direction, and double arrows
indicate mutual simulation).

Comparison with Coarser Views

We have focused in this section on simulation relative to projection views (id, π ). The
results obtained turn out to be quite powerful. Indeed, by Lemma 2.5, the positive
results extend to any views that are coarser than projection views. For example, one
may wish to focus on the sequence of events (function calls and returns, together with
their arguments), ignoring state information. This information can be captured by
composing the views in id and π with a view V that is the identity on events and maps
every state to a fixed constant. By Lemma 2.5, the positive simulation results shown
in Figure 16 continue to hold relative to (id ◦ V, π ◦ V ).
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Conversely, one may be interested in observing certain characteristics of the states
in the tree of runs, ignoring event information. Once again, this can be captured by
coarser views than (id, π ), so the same simulation results hold.

6. BAXML AND TUPLE ARTIFACTS

In the previous section, we compare the expressiveness of several workflow languages
centered around the common core provided by BAXML. In this section, we illustrate
how views can be used to reconcile models that are otherwise incomparable. For this, we
use the views framework to compare BAXML workflows with tuple artifacts workflows,
a variant of IBM’s Business Artifacts, which uses relational databases as its underlying
model. The main result is that BAXML can simulate tuple artifacts. Indeed, tuple
artifacts can be seen as views of BAXML. We will also see that tuple artifacts cannot
simulate BAXML even with respect to coarse views retaining just the traces of service
and function calls.

We first review informally the tuple artifact model, as presented in Deutsch et al.
[2009]. We denote the model by T A. We assume an infinite data domain D. An artifact
system consists of a set of artifacts and a set of services acting on the artifacts. An
artifact consists of an artifact tuple and a set of state relations. In addition, an artifact
system has an underlying database shared by all artifacts and services, that is fixed
throughout a run of the system.

Each service causes a modification of one or several current artifacts. Intuitively, the
focus is on the evolution of the artifact tuples, while the state relations are used to
carry auxiliary information needed by the services. A service consists of the following:

—a precondition, which is an FO formula on the set of artifacts of the system and the
underlying database;

—a postcondition, which is an FO formula on the set of artifacts and the database,
defining, for each artifact tuple, the values allowed in the next instance; free variables
range over the infinite domain D, so they may take new values not present in the
current instance;

—for each state relation, two FO formulas defining the sets of tuples to be inserted and
deleted from the state. The formulas take as input the current artifact instance and
the database, and are interpreted with active domain semantics. Thus, their result
is always finite.

Services are applied nondeterministically. At any given time, a service can be applied
to the current instance if its precondition holds and if the postcondition is satisfiable.
Thus, there are two forms of nondeterminism in a transition: one stemming from the
choice of service, and another from the choice of values for the next artifact tuples,
among those satisfying the postcondition. A run of an artifact system is a sequence of
consecutive instances together with the name of the service applied at each transition.
(For initial instance, we take any instance whose artifact states are empty.) As for
BAXML, blocking runs are extended by repeating forever the last configuration, with
the corresponding transitions labeled by the special event block. See Deutsch et al.
[2009] for a detailed example of an artifact system.

The Tuple Artifact Model

We provide the definition of the tuple artifact model, adapted from Deutsch et al. [2009].
A relational database schema D consists of a finite set of relation symbols with specified
arities. The arity of relation R is denoted by arity(R). An instance, or interpretation,
over a database schema, is a mapping associating to each relation symbol R of the
schema a finite relation over D, of arity arity(R). We assume familiarity with First-
Order logic (FO) over database schemas. Given a schema D, LD denotes the set of FO
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formulas over D. If ϕ(x̄) is an FO formula with free variables x̄, and ū is a tuple over D
of the same arity as x̄, we denote by ϕ(ū) the sentence obtained by substituting ū for x̄
in ϕ(x̄). Note that, since D is infinite, an FO formula ϕ(x̄) may be satisfied by infinitely
many tuples ū over D (so may define an infinite relation). Finiteness and effective
evaluation can be guaranteed by using the active domain semantics, in which the
domain is restricted to the set of elements occurring in the given instance (sometimes
augmented with a specified finite set of constants in D, which by default is empty). For
an instance I, we denote its active domain by adom(I). Unless otherwise specified, we
assume active domain semantics for quantified variables and unrestricted semantics
for the free variables of a formula.

The artifact model uses a specific notion of class, schema and instance, defined next.

Definition 6.1. An artifact class is a pair C = 〈R, S〉 where R and S are two relation
symbols. An instance of C is a pair C = 〈R, S〉, where (i) R, called attribute relation,
is an interpretation of R containing exactly one tuple over D, and (ii) S, called state
relation, is a finite interpretation of S over D.

We also refer to an artifact instance of class C as artifact instance, or simply artifact
when the class is clear from the context or irrelevant.

Definition 6.2. An artifact schema is a tuple

A = 〈C1, . . . , Cn,DB〉
where each Ci = 〈Ri, Si〉 is an artifact class, DB is a relational schema, and for all i �= j,
Ci, C j , and DB have no relation symbols in common.

By slight abuse, we sometimes identify an artifact schema A as before with the
relational schema

DBA = DB ∪ {Ri, Si | 1 ≤ i ≤ n}.
An instance of an artifact schema is a tuple of class instances, each corresponding to

an artifact class, plus a database instance.

Definition 6.3. An instance of an artifact schema

A = 〈C1, . . . , Cn,DB〉
is a tuple A = 〈C1, . . . , Cn, DB〉, where Ci is an instance of Ci and DB is an instance of
DB over D.

Again by slight abuse, we identify each instance

A = 〈C1, . . . , Cn, DB〉
of A with the relational instance DB ∪ {Ri, Si|1 ≤ i ≤ n} over schema DBA. Let A be
an artifact schema and DBA its relational schema. Given an artifact instance over A,
the semantics of formulas in LA is the standard semantics on the associated relational
instance over DBA.

We now define the syntax of services. It will be useful to associate to each attribute
relation R of an artifact schema A a fixed sequence x̄R of distinct variables of length
arity(R).

Definition 6.4. A service σ over an artifact schema A is a tuple σ = 〈π,ψ, S〉 where:

—π , called precondition, is a sentence in LA;
—ψ , called postcondition, is a formula in LA, with free variables

{x̄R | R is an attribute relation of an artifact class in A};
—S is a set of state rules of the form:
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—S(x̄) ← ϕ+
S (x̄);

—¬S(x̄) ← ϕ−
S (x̄);

where S is a state relation of A, ϕ+
S (x̄) and ϕ−

S (x̄) are LA-formulas with free variables
x̄ such that |x̄| = arity(S).

As seen shortly, the formulas ϕ+
S (x̄) and ϕ−

S (x̄) are used to define updates to the state
relation S when the service is applied. The formula ϕ+

S (x̄) defines the tuples to be
inserted, and ϕ−

S (x̄) the tuples to be deleted (see the following). If a formula is not
provided for a state relation S, the set of tuples to be inserted or deleted is taken to be
empty.

Definition 6.5. An artifact system is a pair 
 = 〈A, �〉, where A is an artifact schema
and � is a nonempty set of services over A.

We next define the semantics of services. We begin with the notion of possible suc-
cessor of a given artifact instance with respect to a service.

Definition 6.6. Let σ = 〈π,ψ, S〉 be a service over artifact schema A. Let A and A′
be instances of A. We say that A′ is a possible successor of A with respect to σ (denoted
by A

σ−→ A′) if the following hold:

(1) A |= π ;
(2) A′|DB = A|DB (A and A′ agree on all relations in DB);
(3) A, ν |= ψ , where ν is the valuation of the free variables of ψ mapping x̄R to ūR for

each attribute relation R of A;
(4) for each state relation S of A and tuple ū over adom(A) of arity arity(S), A′ |= S(ū)

iff

A |= (ϕ+
S (ū) ∧ ¬ϕ−

S (ū)) ∨ (S(ū) ∧ ϕ+
S (ū) ∧ ϕ−

S (ū))
∨(S(ū) ∧ ¬ϕ+

S (ū) ∧ ¬ϕ−
S (ū))

where ϕ+
S (ū) and ϕ−

S (ū) are interpreted under active domain semantics, and are
taken to be false if the respective rule is not provided. Thus, the new state relation
S is obtained by inserting the tuples defined by ϕ+

S and deleting those defined by
ϕ−

S , with deletion given priority over insertion in case of conflict, except for tuples
previously in S, which are preserved in case of conflict.

Note that, according to (2) in Definition 6.6, services do not update the database con-
tents (thus, the database contents is fixed throughout each run, although it may of
course be different across runs). Instead, the data that is updatable throughout a run
is carried by the artifacts themselves, as attribute and state relations. Note that, if
desired, one can make the entire database updatable by turning it into a state. Also
observe that the distinction between state and database is only conceptual, and does
not preclude implementing all relations within the same DBMS.

We next define the notion of run of an artifact system 
 = 〈A, �〉. An initial instance
of 
 is an artifact instance over A whose states are empty.

Definition 6.7. A prerun of an artifact system 
 = 〈A, �〉 is a finite sequence ρ =
{(ρi, σi)}0≤i≤n where each ρi is an artifact instance over A and each σi is a service, such
that:

—ρ0 is an initial instance of 
;
—for each i > 0, ρi−1

σi−→ ρi.

We say that a prerun is blocking if its last configuration has no possible successor. As
for BAXML, blocking runs are extended by repeating forever the last configuration,
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with corresponding transitions labeled block. A run is an infinite sequence {(ρi, σi)}i≥0
in which either every finite prefix is a prerun, or the run is obtained by extending a
blocking prerun by repeating forever the last configuration with transitions labeled
block. For an artifact system, the associated workflow system is defined from the set of
runs analogously to BAXML. In particular, the states are artifact instances, and the
events are services causing state transitions or the special event block.

Workflow System Semantics. The workflow system semantics of artifact systems is
defined from its runs analogously to the semantics of BAXML, GAXML, AAXML, and
TAXML (Section 5). For each artifact system 
, the nodes of its associated workflow
system are the finite prefixes of runs of 
. The root is the empty prefix, and its state
label is the empty instance. The state label for each node other than the root is the last
instance in the prefix. For each nonroot node ν, there is an edge labeled σ from ν to node
ν ′ if ν ′ extends ν with a single instance obtained by application of the service σ . The
root has an outgoing edge to each node consisting of a prefix of length one, labeled by
a distinguished event init. Thus, transitions from the root provide the initial instances
of runs, and the infinite paths starting from children of the root correspond to the runs
of 
. Because of the semantics of blocking runs, each path is extensible to an infinite
path.

Simulation of Tuple Artifacts by BAXML

We denote the tuple artifact model by T A. More precisely, T A is the set of all artifact
system specifications, with workflow system semantics.

In order to simulate T A with BAXML, we must define views that render the two
compatible. For T A, we simply take the identity views id. For BAXML, we consider
schemas of a special form, that represent the artifact instances. A relation R with
attributes A1, . . . , Am is naturally represented in BAXML by a subtree rooted at R,
satisfying the DTD that follows, denoted by �R.

R → |tupR| ≥ 0
tupR → ∧m

i=1|Ai| = 1
Ai → |dom| = 1

Given an artifact instance, we refer to the contents of the artifact relations, consisting
of single tuples, as the artifact tuples. Each service of the artifact system is modeled
in BAXML by a corresponding function with the same name. The call of a service is
captured in BAXML by a call to the corresponding function.

We define the class of views used in the simulation, denoted by VT A. Each view
is defined relative to a set R of tags and a set F of function names. Intuitively, the
tags in R are meant to label subtrees encoding relations, as earlier. We say that a
BAXML workflow system is R-relational if for each R ∈ R there exists a DTD �R of
the aforesaid shape such that each BAXML instance labeling a nonroot state of the
workflow system contains exactly one occurrence of each tag R in R, and the subtree
rooted at R satisfies �R. The view VR,F in VT A is defined as follows. If the workflow
system is not R-relational, then all state labels are mapped to ∅ and all edge labels are
mapped to ε (these workflow systems are irrelevant because they are not used in the
simulation). If the workflow system is R-relational, the view is defined as follows:

—BAXML instances labeling nonroot states are mapped to the relational instance
represented by the subtrees rooted at labels in R;

—events consisting of calls to functions in F are mapped to the name of the function;
—the init event is preserved; and,
—all other events are mapped to ε.
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The main result is the following.

THEOREM 6.8. T A ↪→(id,VT A) BAXML. In other words, for each T A system 
 there
exists a BAXML schema S and a view V ∈ VT A such that [
] ∼ V ([S]).

PROOF. We show that T A can be simulated by GAXML. This suffices, because
BAXML can simulate GAXML. In more detail, suppose that T A ↪→(id,VT A) GAXML.
By Theorem 5.8, GAXML ↪→(id,π) BAXML. By Lemma 2.6, (since VT A = id ◦ VT A)
T A ↪→(id,π◦VT A) BAXML. From the definitions of π and VT A, it is clear that π◦VT A ⊆ VT A.
Thus, T A ↪→(id,VT A) BAXML.

We sketch the simulation of T A by GAXML for artifact systems with only one ar-
tifact class with a single state and database relation, and a single service. This is
sufficient to capture the salient elements of the simulation. As discussed in Deutsch
et al. [2009], an arbitrary T A system can be easily represented by such a restricted
system.

Suppose the artifact system has an artifact tuple with k attributes A1, . . . , Ak, a
database relation DB, and a state relation S. The unique service has precondition π ,
postcondition ψ , and state formulas ϕ+

S and ϕ−
S . Relations will be represented in the

simulating GAXML system in the standard way, by subtrees of bounded depth (see
Section 6). The database relation is a fixed subtree in the main document, while the
state and artifact tuple are represented in workspaces of function calls, which facilitates
updating their values. More specifically, the state is represented and updated using the
workspaces of two function calls that alternate between carrying the current state and
computing the next state.

An application of the service requires simulating the following:

(1) evaluating the precondition π on the database, current state, and current artifact
tuple.

(2) evaluating the FO formulas ϕ+
S and ϕ−

S and generating the new S in the workspace
of one of the two functions mentioned before.

(3) nondeterministically generating a new candidate artifact tuple and verifying sat-
isfaction of the postcondition ψ .

The bookkeeping needed to enforce the preceding sequencing can be straightfor-
wardly done with auxiliary functions. There are two delicate points: the evaluation
of an FO formula, and simulating (3) so that all qualified next artifact tuples can be
generated and failed attempts do not lead to spurious blocking or infinite chains of
ε-transitions. Recall that in general there are infinitely many new candidate artifact
tuples, because new values can come from the infinite domain D.

Evaluating an FO Formula. We first elaborate on the evaluation of FO formulas.
Recall that the formulas ϕ+

S , ϕ−
S , and π are interpreted with active domain semantics.

Consider an FO formula written using ∧,¬, ∃. The formula is evaluated by structural
recursion on its syntax tree. Given standard representations of the result of two sub-
formulas, it is easy to compute the relation obtained by applying ∧ and ∃. Applying ¬
is trickier. For conciseness, we illustrate how to compute the complement of a unary
relation P with respect to the active domain (this can be easily extended to arbitrary
arity). The relation P is represented by a subtree with root labeled P, satisfying the
DTD

P → |dom| ≥ 0.

The complement is constructed as follows. First, a call to a function !checkP generates
the current active domain, where each value is adorned with two functions !in-P and
!not-in-P. More precisely, the argument query of !checkP is shown in Figure 17 and
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∗

P

X

{val}

X !in-P !not-in-P

!p̄

Fig. 17. The query of checkP .

acheckP

!p̄ val

α1 !in-P !not-in-P

val

α2 !in-P !not-in-P

· · · val

αk !in-P !not-in-P

Fig. 18. Shape of the initial workspace of checkP .

acheckP

val

self X

∗

P

X

Fig. 19. Guard of the function in-P.

acheckP

val

X not-in

self

{val-p̄}

X

Fig. 20. Argument query of function p̄.

its initial workspace is of the form shown in Figure 18. In this example, a data value
is denoted by αi (the role of !p̄ will be explained shortly).

The functions in-P and not-in-P are internal. The call guard of in-P, shown in
Figure 19, verifies that the value adjacent to the call is in P, whereas the guard of
not-in-P checks that the value is not in P (so the guard of not-in-P is the negation of
the guard of in-P). The functions in-P and not-in-P return, respectively, a label in and
a label not-in. The role of the function !p̄ is dual. First, its guard ensures that for each
value, one of its siblings !in-P or !not-in-P has been called and has been returned.
To this end, its guard forbids the presence of two siblings !/?in-P and !/?not-in-P.
Second, its argument query computes the complement of P, by collecting the values
with a sibling not-in. The argument query of p̄ is shown in Figure 20.

Generating the New Artifact Tuple. Like the state, the artifact tuple is represented
and updated using the workspaces of two functions that alternate between carrying the
current value and computing the new value of the artifact tuple. Recall that generally
there are infinitely many candidates for the next artifact tuple, since the free variables
of the postcondition range over the infinite domain D. Observe that satisfaction of the
postcondition is invariant under the following equivalence relation on k-tuples over D:
〈a1, . . . , ak〉 ≡ 〈b1, . . . , bk〉 iff for all i, j:

—ai = aj iff bi = bj ,
—if either ai or bi is in the active domain, then ai = bi.

To each equivalence class corresponds a type specifying the values for the coordinates
that belong to the active domain, and the equality type for the coordinates whose values
are not in the active domain. It is straightforward to nondeterministically construct
a relation containing one representative tuple for each equivalence class. Specifically,
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internal function calls are used to generate the values of the coordinates in the active
domain, and external functions to generate values for the coordinates outside the active
domain. The equality type for the latter is imposed by constraints. In addition, each
tuple is adorned with a function call whose role is to evaluate the postcondition ψ for
the tuple, returning ok in the affirmative and not-ok in the negative. Since ψ is in
FO, this can be done similarly to the preceding. The functions evaluating ψ for each
tuple are called nondeterministically, and a simple locking mechanism ensures that:
(i) the functions are evaluated completely one at a time, and (ii) function activations
are blocked in the current round as soon as one of them returns ok. The new artifact
tuple is the unique one marked ok. It can be easily checked that every candidate tuple
can be generated in this manner by some computation path. If there is no such tuple,
the artifact system blocks, and so does the simulation.

Thus, BAXML can simulate T A. In fact, since the view used for T A is the identity,
tuple artifacts themselves can be seen as views of BAXML systems. The simulation
yields a BAXML schema polynomial in the T A schema, BAXML instances polynomial
in the T A instances, and polynomially many silent transitions (with respect to the
current instance), to simulate in BAXML one transition of T A.

Conversely, we will show that, in a strong sense, T A cannot effectively simulate
BAXML. We use coarse views that retain just the names of function calls in BAXML
and of service calls in T A (modulo a projection). Such views are natural because the
traces of function and service calls largely capture the sequencing of events central
to workflows. We will prove a strong negative result for such views. Intuitively, the
problem in simulating BAXML with T A is due to the fact that BAXML can read a
large structure (for example, an entire relation represented as an XML document) by
a single function call. On the other hand, tuple artifacts can only read one tuple at a
time, so the simulation requires a loop. This loop may lead to an infinite sequence of
ε-transitions (imagine a denial-of-service attack in which the attacker keeps sending
new tuples). But if no such sequence of ε-transitions occurs in the BAXML system, this
is not a correct simulation.

More precisely, the views we use are defined as follows.

—States. For both BAXML and T A, all states are mapped to a constant state (so all
information about the states is lost);

—Events. For BAXML, active calls ?g are mapped to ε and calls !g are mapped to g or
to ε (so some function calls can be hidden); for T A, a service σ is mapped to σ or to ε
(so again, some services can be hidden).

We denote the previous class of views of BAXML systems by Vfun and of T A systems
by Vserv.

Recall that the definition of simulation does not require effective construction of the
simulating schema (even though all our positive simulation results are constructive).
We can show that one cannot effectively construct a T A specification simulating a
given BAXML schema, with respect to the preceding views.

THEOREM 6.9. There is no algorithm that, given as input a BAXML schema W1
and a view V1 ∈ Vfun produces a T A schema W2 with a view V2 ∈ Vserv such that
V1([W1]) ∼ V2([W2]). Moreover, this holds even for BAXML schemas of bounded depth.

PROOF. The proof is based on a reduction from the implication problem for Functional
and Inclusion Dependencies (FDs and IDs), known to be undecidable. Specifically, we
consider instances of the implication problem of the form � |= f , where � is a set of
FDs and IDs, and f an FD. We consider a BAXML schema S whose initial instance
consists of a single external function !e under the root. The function returns a tree
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representing an arbitrary finite relation, of the form shown in Figure 6. Specifically,
each tuple is adorned with one function !fτ for each ID τ in �. Additionally, there is one
function !g under the root R. The call guard of each fτ checks that the ID τ is violated
for the sibling tuple. Satisfaction of the FDs in �, and violation of f, are ensured by
static constraints. The guard of !g simply checks that the relation returned by the call
to !e is nonempty.

We consider the view VS retaining all functions. It is easy to check that � �|= f iff
there is a blocking run of S whose view under VS is ρ = init.e.g.(block)ω (we ignore the
constant state). Indeed, since no function !fτ can be called, all IDs in � are satisfied.
Recall that satisfaction of the FDs in � and violation of f are ensured by the constraints.
Thus, the nonempty instance returned by e satisfies � and violates f.

Now suppose towards a contradiction that one can effectively construct, for each
BAXML schema as earlier, a corresponding artifact system 
 with a view V
 ∈ Vserv so
that VS([S]) ∼ V
([
]). By definition, the first event in both [S] and [
] is init. Also,
in [S] there is a unique edge labeled init, leading to the node whose state is root/!e.
Let T!e be the subtree of [S] rooted at that node. By definition of ∼, VS(T!e) must be
w-bisimilar to V (T ) for every subtree T ∈ Tinit, where Tinit consists of the subtrees of
[
] whose roots have incoming edge init. In other words, 
 must simulate S regardless
of its database. In particular, this must be the case for the empty database. Thus, let
T∅ be the subtree in Tinit corresponding to the empty database. From the previous, it
follows that VS(T!e) ∼ V
(T∅).

Recall that � �|= f iff VS(T!e) contains a path from the root labeled e.g.block.
Since VS(T!e) ∼ V
(T∅), this happens iff V
(T∅) contains a path from the root la-
beled ε∗.e.ε∗.g.ε∗.block. By definition of ∼, since VS(T!e) has no infinite branches of
ε-transitions (in fact no ε-transitions at all), V
(T∅) may not have infinite branches of
ε-transitions. Also note that T∅ is finitely branching, modulo isomorphism (this is be-
cause in artifact systems, each transition other than init generates only finitely many
nonisomorphic states from each given state). It follows that from each given node, the
set of lengths of ε-paths originating at that node is bounded (otherwise, an easy induc-
tion shows that there must be an infinite path of ε-transitions from that node). This
allows to effectively generate a breadth-first expansion of V
(T∅) (modulo isomorphism)
until the first 3 non-ε transitions occur along all branches. This allows deciding if a
path labeled ε∗.e.ε∗.g.ε∗.block starting from the root exists in V
(T∅), and provides a
procedure for testing whether � |= f .

Remark 6.10. By Lemma 2.5 (applied to effective simulations), the negative result
of Theorem 6.9 extends to any views that expose more information than those before.

7. CONCLUSION

This article makes a dual contribution. First, it proposes a flexible framework for
comparing distinct workflow models by means of views extracting a common set of
observable states and events, and a natural notion of simulation. Second, it uses this
framework to compare concrete languages capturing some of the main workflow speci-
fication paradigms: automata, temporal constraints, and pre and postconditions. These
were first investigated using as a common core BAXML, where the integration of XML
and embedded function calls allows to naturally support a wide range of data-centered
tasks. We proved the surprising result that the static constraints of BAXML are alone
sufficient to simulate the three apparently much richer workflow specification lan-
guages mentioned earlier. Beyond the specifics of the XML-based model, the results
provide insight into the power of the various workflow specification paradigms, the
trade-offs involved in choosing one over another, and the relation to static constraints.
Finally, we compared BAXML to tuple artifacts, a variant of IBM’s Business Artifact
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model using relational databases. We showed that BAXML can simulate tuple artifacts
whereas the converse is false. To compare these very different models, we used again
the views framework to render them compatible. This illustrates the usefulness of the
view-based framework to reconcile seemingly incomparable workflow models.
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