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ABSTRACT
We revisit the static verification problem for data centric business
processes, specified in a variant of IBM’s “business artifact” model.
Artifacts are records of variables that correspond to business-relevant
objects and are updated by a set of services equipped with pre-and-
post conditions, that implement business process tasks. The veri-
fication problem consists in statically checking whether all runs of
an artifact system satisfy desirable properties expressed in a first-
order extension of linear-time temporal logic. In previous work we
identified the class of guarded artifact systems and properties, for
which verification is decidable. However, the results suffer from an
important limitation: they fail in the presence of even very simple
data dependencies or arithmetic, both crucial to real-life business
processes. In this paper, we extend the artifact model and verifi-
cation results to alleviate this limitation. We identify a practically
significant class of business artifacts with data dependencies and
arithmetic, for which verification is decidable. The technical ma-
chinery needed to establish the results is fundamentally different
from our previous work. While the worst-case complexity of veri-
fication is non-elementary, we identify various realistic restrictions
yielding more palatable upper bounds.
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1. INTRODUCTION
Business process management is central to the operation of orga-

nizations in various domains, ranging from business to governmen-
tal, scientific, and beyond. Recent years have witnessed the evo-
lution of business process specification frameworks from the tradi-
tional process-centric approach towards data-awareness. Process-
centric formalisms focus on control flow while under-specifying
the underlying data and its manipulations by the process tasks, of-
ten abstracting them away completely. In contrast, data-aware for-
malisms treat data as first-class citizens. A notable exponent of
this class is the business artifact model pioneered in [44], deployed
by IBM in commercial products and consulting services, and fur-
ther studied in a line of follow-up works [4, 5, 24, 25, 6, 36, 31,
33]. Business artifacts (or simply “artifacts”) model key business-
relevant entities, which are updated by a set of services that imple-
ment business process tasks. A collection of artifacts and services
is called an artifact system. This modeling approach has been suc-
cessfully deployed in practice, yielding proven savings when per-
forming business process transformations [4].

In previous work [17], we addressed the verification problem for
artifact systems, which consists in statically checking whether all
runs of an artifact system satisfy desirable properties expressed in
a first-order extension of linear-time temporal logic. We consid-
ered artifact systems in which each artifact contains a record of
variables and the services may consult (though not update) an un-
derlying database. Services can also set the artifact variables to new
values from an infinite domain, thus modeling external inputs and
tasks specified only partially, using pre- and post-conditions. Post-
conditions permit non-determinism in the outcome of a service, to
capture for instance tasks in which a human makes a final deter-
mination about the value of an artifact variable, subject to certain
constraints. This setting resulted in a challenging infinite-state veri-
fication problem, due to the infinite data domain. [17] identified the
large and useful class of “guarded” artifact systems and properties,
for which verification is decidable. However, the positive results of
[17] suffer from an important shortcoming: they fail in the presence
of even very simple data dependencies or arithmetic, both crucial to
real-life business processes. In this paper we revisit the static ver-
ification problem in order to alleviate this limitation. Specifically,
we provide a practically motivated class of artifact systems that al-
low data dependencies (integrity constraints on the database) and
arithmetic operations performed by services, for which verification
becomes decidable. The technical machinery needed to establish
this result is fundamentally different from that of [17].

We illustrate the variant of the artifact systems model adopted
in this paper by means of a running example that models an e-
commerce business process in which the customer chooses a prod-
uct and a shipment method and applies various kinds of coupons

66



to the order. The business process exhibits a flexibility that, while
desirable in practice for a postive customer experience, yields intri-
cate runs, all of which need to be considered in verification. For in-
stance, at any time before submitting a valid payment, the customer
may edit the order (select a different product, shipping method, or
change/add a coupon) an unbounded number of times. Likewise,
the customer may cancel an order for a refund even after submit-
ting a valid payment. The business process is partially modeled in
Example 2.8.

The running example features three characteristics that drive the
motivation for our work.

1. The system routinely queries an underlying database, for in-
stance to look up the price of a product and the shipping weight
restrictions.

2. The validity checks and updates carried out by the services
involve arithmetic operations. For instance, to be valid, an order
must satisfy such conditions as: (a) the product weight must be
within the selected shipment method’s limit, and (b) if the buyer
uses a coupon, the sum of product price and shipping cost must
exceed the coupon’s minimum purchase limit.

3. Finally, the correctness of the business process relies on data-
base integrity constraints. For instance, the system must check that
a selected triple of product, shipment type and coupon are globally
compatible. This check is implemented by several local tests, each
running at a distinct instant of the interaction, as user selections
become available. Each local test accesses distinct tables in the
database, yet they globally refer to the same product, due to the
keys and foreign keys satisfied by these tables.

The properties we are interested in verifying are expressed in a
first-order extension of linear temporal logic called LTL-FO. This
is a powerful language, fit to capture a wide variety of business
policies implmented by a business process. For instance, in our
running example it allows us to express such desiderata as:

If a correct payment is submitted then at some time in
the future either the product is shipped or the customer
is refunded the correct amount.

A free shipment coupon is accepted only if the avail-
able quantity of the product is greater than zero, the
weight of the product is in the limit allowed by the
shipment method, and the sum of price and shipping
cost exceeds the coupon’s minimum purchase value.

Our previous results from [17] do not apply in the new context, as
we show undecidability even when adding to a guarded artifact sys-
tem a single functional dependency, or alternately, when the only
allowed arithmetic operation consists in incrementing counters.

We identify the condition of feedback-freedom which covers a
useful class of business processes and yields decidability when (i)
the arithmetic operations involve linear expressions with integer co-
efficients over artifact variables over the domain of rational num-
bers, while (ii) the database satisfies embedded dependencies for
which the chase terminates.

In fact, our decidability result is more general, extending to any
set of operations as long as we have decidability of satisfiability
of ∃FO formulas over the vocabulary C of these operations. This
happens to be the case for linear arithmetic expressions with integer
coefficients, but our result is generic: the verification algorithm is
modular, calling the satisfiability checker for C as a black box.

The proof technique is fundamentally different from the one em-
ployed in [17] for guardedness, and interesting in its own right. It
is based on describing runs symbolically, capturing, for each snap-
shot s in the run, only the part of the run prefix that is relevant to the
artifact variables at s. This description is expressible as ∃FO for-

mulae over the database schema and C, called inherited constraints.
Feedback-freedom determines a static bound on the number of dis-
tinct inherited constraints (up to logical equivalence) and therefore
on the length of symbolic runs the verifier needs to explore.

The positive decidability results for feedback-free systems come
at the cost of high worst-case complexity, hyperexponential in the
number of artifact variables (so non-elementary). We identify var-
ious realistic restrictions leading to improved upper bounds. These
consist of a stricter notion of feedback-freedom (called acyclicity),
a bound on the number of related artifact variables, and a restric-
tion on the propagation of artifact variable values from one con-
figuration to the next. For example, acyclicity yields a double-
exponential complexity upper bound. We note that no lower bound
has yet been proven, for the general case or its restrictions.

Paper outline Our model of artifact systems and the running ex-
ample are introduced in Section 2. Section 3 presents the property
language LTL-FO, and our undecidability results showing that the
techniques developed in [17] for guarded artifact systems do not
apply in the presence of integrity constraints and arithmetic. We
introduce feedback-freedom in Section 4, and show in Section 5
that it leads to decidable verification, without yet considering de-
pendencies. Restrictions of feedback-freedom for improved upper
bounds are dicussed in Section 5.2. We extend our decidability re-
sult to the presence of dependencies in Section 6. Related work is
discussed in Section 7. We end with brief conclusions.

2. FRAMEWORK
The arithmetic constraints considered here are over domain Q,

the rational numbers. While databases could use non-numeric data,
we assume for uniformity, and without loss of generality, that all
structures are over Q. We denote by C an infinite set of relation
symbols, each of which has a fixed interpretation as the set of so-
lutions of a finite set of linear inequalities with integer coefficients.
By slight abuse, we sometimes use the same notation for a relation
symbol in C and its fixed interpretation.

DEFINITION 2.1. An artifact schema is a a tuple A = 〈x̄,DB〉
where x̄ is a finite set of artifact variables and DB is a relational
schema.

For each x̄, we also define a set of variables x̄′ = {x′ | x ∈ x̄}
where each x′ is a distinct new variable.

DEFINITION 2.2. An instance of an artifact schemaA = 〈x̄,DB〉
is a tuple A = 〈ν,D〉 where ν is a valuation of x̄ into Q and D is
a finite instance of DB whose domain is included in Q.

We denote by ∃FO the first-order formulas whose prenex form uses
only existential quantification, and by CQ¬ the formulas built from
literals (positive and negated atoms overDB∪C∪{=}) using only
conjunction and existential quantification.

DEFINITION 2.3. A service over an artifact schemaA is a pair
σ = 〈π, ψ〉 where:

• π(x̄), called pre-condition, is an ∃FO formula using relational
symbols in DB ∪ C, with free variables x̄;
• ψ(x̄, x̄′), called post-condition, is an ∃FO formula on the rela-

tional symbols in DB ∪ C, with free variables x̄ ∪ x̄′.

DEFINITION 2.4. An artifact system is a triple Γ = 〈A,Σ,Π〉,
where A is an artifact schema, Σ is a non-empty set of services
over A, and Π is a pre-condition (as above, a ∃FO formula over
DB ∪ C, with free variables x̄).
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DEFINITION 2.5. Let σ = 〈π, ψ〉 be a service over an artifact
schemaA = 〈x̄,DB〉, and letD be an instance overDB. Let ν, ν′

be valuations of x̄. We say that ν′ is a possible successor of ν w.r.t.
σ and D (denoted A σ−→ A′ when D is understood) iff:
• D ∪ C |= π(ν), and
• D ∪ C |= ψ(ν, ν′).

DEFINITION 2.6. Let Γ = 〈A,Σ,Π〉 be an artifact system,
where A = 〈x̄,DB〉. A run of Γ on database instance D over
DB is an infinite sequence ρ = {ρi}i≥0 of valuations of x̄ so that
D ∪ C |= Π(ρ0) and for each i ≥ 0, ρi

σ−→ ρi+1 for some σ ∈ Σ.

We denote by RunsD(Γ) the set of all runs of Γ on database in-
stance D.

REMARK 2.7. In [17], artifacts are equipped with state rela-
tions in addition to the database and artifact variables. However,
under the guarded restriction, the state relations are essentially
limited to be finite-state. Note that finite state control can be simu-
lated with artifact variables, by having one variable hold the cur-
rent state. For instance, this role is played by variable status in
the example below. We therefore omit explicit states in the present
model.

We next illustrate the expressive power of the artifact system frame-
work by modeling the running e-commerce example. Due to lim-
ited space, we only list some of the services involved.

Example 2.8 The running example models an e-commerce busi-
ness process in which the customer chooses a product and a ship-
ment method and applies various kinds of coupons to the order.
There are two kinds of coupons: discount coupons subtract their
value from the total (e.g. a $50 coupon) and free-shipment coupons
subtract the shipping costs from the total. The order is filled in a
sequential manner (first pick the product, then the shipment, then
claim a coupon), as is customary on e-commerce web-sites. Af-
ter the order is filled, the system awaits for the customer to submit
a payment. If the payment matches the amount owed, the system
proceeds to shipping the product.

We define an artifact with the following variables:

status, prod_id, ship_type, coupon, amount_owed,
amount_paid, amount_refunded.

The status variable tracks the status of the order and can take the
following values:

“edit_product”, “edit_ship”, “edit_coupon”, “processing”,
“received_payment”, “shipping”, “shipped”, “canceling”,
“canceled”.

Artifact variables ship_type and coupon record the customer’s
selection, received as an external input. amount_paid is also an
external input (from the customer, possibly indirectly via a credit
card service). Variable amount_owed is set by the system using
arithmetic operations that sum up product price and shipment cost,
subtracting the coupon value. Variable amount_refunded is set
by the system in case a refund is activated.

The database includes the following tables (underlined attributes
denote keys):

PRODUCTS(id, price, availability, weight),
COUPONS(code, type, value, min_value, free_shiptype),
SHIPPING(type, cost, max_weight),

OFFERS(prod_id, discounted_price, active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype] ⊆ SHIPPING[type], and
OFFERS[prod_id] ⊆ PRODUCTS[id].

Our framework’s domain is Q, however, in order to enhance read-
ability and without loss of generality, we allow non-numeric at-
tributes over arbitrary domains, including in particular enumeration
types (as for the status artifact variable).

The starting configuration has status initialized to “edit_prod”,
and all other variables to “undefined”. By convention, in this ex-
ample we model undefined variables using the reserved constant
λ. (This is syntactic sugar and does not affect the artifact systems
model. In the example for instance, any non-positive value can
play this role.) The initialization is easily expressed by the artifact
system’s pre-condition Π.

The services. The following services model a few of the busi-
ness process tasks.

choose_product The customer chooses a product.
π : status = “edit_prod”
ψ : ∃p, a, w(PRODUCTS(prod_id′, p, a, w) ∧ a > 0)
∧status′ = ”edit_shiptype”

choose_shiptype The customer chooses a shipping option.
π : status = “edit_ship”
ψ : ∃c, l, p, a, w(SHIPPING(ship_type′, c, l)∧

PRODUCTS(prod_id, p, a, w) ∧ l > w)∧
status′ = “edit_coupon” ∧ prod_id′ = prod_id

apply_coupon The customer optionally inputs a coupon number.
π : status = “edit_coupon”
ψ : (coupon′ = λ ∧ ∃p, a, w, c, l(PRODUCTS(prod_id, p, a, w)
∧SHIPPING(ship_type, c, l) ∧ amount_owed′ = p+ c)∧
status′ = “processing” ∧ prod_id′ = prod_id∧
ship_type′ = ship_type)∨
(∃t, v,m, s, p, a, w, c, l(COUPONS(coupon′, t, v,m, s)∧
PRODUCTS(prod_id, p, a, w) ∧ SHIPPING(ship_type, c, l)
∧p+ c ≥ m ∧ (t = “free_shipping”→
(s = ship_type ∧ amount_owed′ = p))∧
(t = “discount”→ amount_owed′ = p+ c− v))
∧status′ = “processing” ∧ prod_id′ = prod_id∧
ship_type′ = ship_type)

Notice that the pre-conditions π of the services check the value
of the status variable. For instance, according to choose_product,
the customer can only input her product choice while the order is
in “edit_prod” status.

Also notice that the post-conditions ψ constrain the next values
of the artifact variables (denoted by a prime). For instance, ac-
cording to choose_product, once a product has been picked, the
next value of the status variable is “edit_shiptype”, which will at
a subsequent step enable the choose_shiptype service (by satisfy-
ing its pre-condition). Similarly, once the shipment type is cho-
sen (as modeled by service choose_shiptype), the new status is
“edit_coupon”, which enables the apply_coupon service. The in-
terplay of pre- and post-conditions achieves a sequential filling of
the order, starting from the choice of product and ending with the
claim of a coupon.

A post-condition may refer to both the current and next values of
the artifact variables. For instance, in service choose_shiptype, the
fact that only the shipment type is picked while the product remains
unchanged, is modeled by preserving the product id: the next and
current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance,
in service choose_product, the post-condition ensures that the prod-
uct id chosen by the customer is that of an available product (by
checking that it appears in a PRODUCTS tuple, whose availability
attribute is positive).

Finally, notice the arithmetic computation in the post-conditions.
For instance, in service apply_coupon, the sum of the product
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price p and shipment cost c (looked up in the database) is ad-
justed with the coupon value (notice the distinct treatment of the
two coupon types) and stored in the amount_owed artifact variable.

Observe that the first post-condition disjunct models the case
when the customer inputs no coupon number (the next value coupon′

is set to undefined), in which case a different owed amount is com-
puted, namely the sum of price and shipping cost. 2

Dependencies We consider integrity constraints of the form

∀ūw̄ φ(ū, w̄)→ ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of relational and equality atoms
(positive literals over the vocabulary including the relational schema
and the equality predicate, respectively). Such sentences are known
as embedded dependencies and are sufficiently expressive to spec-
ify all usual integrity constraints, such as keys, foreign keys, inclu-
sion, join, multivalued dependencies, etc. [22, 2]. In this paper, we
refer to embedded dependencies in short as “dependencies”. We
call φ the premise and ψ the conclusion. We write A |= Σ if the
instance A satisfies all the dependencies in Σ.

Example 2.9 We illustrate dependencies continuing Example 2.8.
The key constraintPRODUCTS is expressed by the dependency

∀i, p1, a1, w1, p2, a2, w2

PRODUCTS(i, p1, a1, w1) ∧ PRODUCTS(i, p2, a2, w2)
→ p1 = p2 ∧ a1 = a2 ∧ w1 = w2.

The foreign key constraint on the OFFERS table is expressed by

∀i, d, v OFFERS(i, d, v)→ ∃p, a, w PRODUCTS(i, p, a, w). 2

3. TEMPORAL PROPERTIES OF
ARTIFACT SYSTEMS

In order to specify temporal properties we use an extension of
LTL (linear-time temporal logic). Recall that LTL is propositional
logic augmented with temporal operators X (next) and U (until)
(e.g., see [45]). The extension we use, called1 LTL-FO, is obtained
from LTL by interpreting propositions as FO statements about par-
ticular artifact instances in the run. The different statements may
share some global variables, that are universally quantified.

DEFINITION 3.1. Let A = 〈x̄,DB〉 be an artifact schema. An
FO component overA is a quantifier-free FO formula overDB∪C.
An LTL-FO formula over A is an expression ∀ȳϕf , where:
(i) ϕ is an LTL formula with propositions P ;
(ii) f is a mapping from P to FO components over A
(iii) ϕf is obtained by replacing each p ∈ P with f(p);
(iv) ȳ is the set of variables occurring in ϕf that are different from

x̄ ∪ x̄′.

The semantics of LTL-FO formulas is defined as follows. Let
〈A,Σ,Π〉 be an artifact system, ∀ȳϕf an LTL-FO formula overA,
and ρ a run of 〈A,Σ,Π〉 on database D. Let µ be a valuation of ȳ
into Q. An FO component ψ(x̄, x̄′, ȳ) of ϕf is satisfied in ρi with
valuation µ if D ∪ C |= ψ(ρi, ρi+1, µ), i ≥ 0. The run ρ satisfies
ϕf with valuation µ if {σ(ρi)}i≥0 |= ϕ, where σ(ρi) is the truth
assignment for P in which p is true iff f(p) is satisfied in ρi with
valuation µ. Finally, ρ |= ∀ȳϕf if ρ |= ϕf with every valuation µ
of ȳ into Q.
1The variant of LTL-FO used here differs from previous ones in
that the FO formulas interpreting propositions are quantifier-free.
By slight abuse we use here the same name.

We say that an artifact system Γ satisfies an LTL-FO sentence ϕ,
denoted Γ |= ϕ, if all runs of Γ satisfy ϕ. Note that the database is
fixed for each run, but may be different for different runs.

We illustrate LTL-FO in the context of Example 2.8.

Example 3.2 We show a few properties that specify desirable busi-
ness rules for the running example.

(ϕ1) ∀xG((amount_paid = x ∧ amount_paid = amount_owed)
→ F(status = ”shipped” ∨ amount_refunded = x))

Property ϕ1 states that if a correct payment is submitted then at
some time in the future either the product is shipped or the cus-
tomer is refunded the correct amount. ϕ1 is obtained from LTL
property ϕ = G(p → Fq) via the mapping f1, where f1(p) =
amount_paid = x∧amount_paid = amount_owed and f1(q) =
status = ”shipped” ∨ amount_refunded = x. Note the use of
universally-quantified variable x to relate the value of paid and re-
funded amounts across distinct steps in the run sequence.

(ϕ2) ∀ v,m, s, p, a, w, c, l(G(prod_id 6= λ ∧ ship_type 6= λ
∧COUPONS(coupon, ”free_ship”, v,m, s))∧
PRODUCTS(prod_id, p, a, w) ∧ SHIPPING(ship_type, c, l)
→ a > 0︸ ︷︷ ︸

(i)

∧w ≤ l︸ ︷︷ ︸
(ii)

∧ p+ c ≥ m︸ ︷︷ ︸
(iii)

)

Property ϕ2 verifies the consistency of orders that use coupons
for free shipping. The premise of the implication lists the condi-
tions for a completely specified order that uses such coupons. The
conclusion checks the following business rules (i) available quan-
tity of the product is greater than zero, (ii) the weight of the product
is in the limit allowed by the shipment method, and (iii) the total
order value satifies the minimum for the application of the coupon.

Note that this property holds only due to the integrity constraints
on the schema. Indeed, observe that (i) is guaranteed by the post-
condition of service choose_product, (ii) by choose_shiptype, and
(iii) by apply_coupon. In the post-conditions, the checks are per-
fomed by looking up in the database the weight/price/cost/limit at-
tributes associated to the customer’s selection of product id and
shipment type (stored in artifact variables). The property performs
the same lookup in the database, and it is guaranteed to retrieve
the same tuples only because product id and shipment type are
keys for PRODUCTS, respectively SHIPPING. The verifier must take
these key declarations into account, to avoid generating a spurious
counter-example in which the tuples retrieved by the service post-
conditions are distinct from those retrieved by the property, despite
agreeing on product id and shipment type. 2

We note right away that one can easily eliminate the global vari-
ables ȳ of the LTL-FO formula ∀ȳϕf .

LEMMA 3.3. Given Γ and ∀ȳϕf as above, one can construct in
linear time an artifact system Γ′ such that Γ |= ∀ȳϕf iff Γ′ |= ϕf .

Indeed, Γ′ is obtained from Γ by simply adding ȳ to its artifact
variables and propagating their values at each transition. Thus,we
can assume that the LTL-FO formulas to be verified have no global
variables. Clearly, Γ |= ϕf iff there is no run of Γ satisfying ¬ϕf .
The verification problem will focus on the latter formulation.

Not surprisingly, model checking is undecidable for artifact sys-
tems and LTL-FO properties, even if the system uses only a database
(satifying given FDs) and no arithmetic constraints, or only arith-
metic constraints and no database.
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THEOREM 3.4. (i) It is undecidable, given an artifact system
Γ = 〈A,Σ,Π〉 whereA = 〈x̄,DB〉, a set F of FDs over DB, and
an LTL-FO property ϕ such that ϕ and all pre-and-post conditions
of Σ and Π use only relations in DB, whether ϕ holds for all runs
of Γ on databases satisfying F .

(ii) It is undecidable, given an artifact system Γ = 〈A,Σ,Π〉
where A = 〈x̄,DB〉 and an LTL-FO property ϕ such that ϕ and
all pre-and-post conditions of Σ and Π use only constraints in C,
whether Γ |= ϕ.

Proof: Part (i) follows from Theorem 4.2 in [17]. Part (ii) is shown
by defining an artifact system that simulates a counter machine in
conjunction with a property that further forbids reachability of a
given state of the machine (details ommitted). Since state reach-
ability is undecidable for counter machines [40], the result fol-
lows. 2

REMARK 3.5. Note that, in the absence of dependencies and
arithmetic, the artifact systems discussed here fall in the class of
“guarded” artifact systems introduced in [17] towards decidable
static verification. Theorem 3.4 shows that the results of [17] do
not transfer to the new setting. As detailed below, overcoming the
technical challenges introduced by arithmetic and dependencies re-
quires developing a fundamentally different proof technique and a
novel syntactic restriction that yields decidability.

4. FEEDBACK-FREE ARTIFACT SYSTEMS
We next define the feedback-free syntactic restriction, applying

jointly to an artifact system and a property to be verified. The orig-
inal intuition behind the notion of feedback freedom comes from
the proof of Theorem 3.4(ii), which shows that artifact systems can
simulate counter machines. Such an artifact system uses a service
that performs the increment operation on a counter variable, and
allows the run to “feed back” the incremented value into the same
service (by updating the same counter variable) for an unbounded
number of times. Decrement is handled similarly. This simula-
tion of unbounded counters is responsible for undecidability. The
feedback-freedom restriction is designed to limit the data flow be-
tween occurrences of the same artifact variable at different times in
runs of the system that satisfy the desired property. This precludes
the ability to perform the kind of unbounded computations needed
to simulate counter machines. The intuition is further discussed
after the formal definition of feedback-freedom.

Symbolic runs.
In order to formalize the feedback free condition, we use the no-

tion of symbolic run. This will also provide the central component
of our verification algorithm presented in the next section.

Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉,
and ϕf be an LTL-FO formula with no global variables. Recall that
our aim is to develop a procedure for checking whether there exists
a run of Γ satisfying ¬ϕf .

To each x ∈ x̄ we associate an infinite set of new variables
{xi}i>0, and we denote x̄i = {xi | x ∈ x̄}. A symbolic run %
consists of a sequence {ψi(x̄i, x̄i+1)}i≥0 where each ψi(x̄i, x̄i+1)
is a CQ¬ formula over A with free variables among x̄i ∪ x̄i+1.
The formulas ψi are obtained from Σ and ϕf as follows. We first
define the sets of CQ¬ formulas below, that capture symbolically
the possible transitions in Γ, together with truth assignments to the
propositions in ϕ, expanded in ϕf via f . As earlier, P denotes the
set of propositions in ϕ.

1. ∆Σ. For each service 〈π, ψ〉 ∈ Σ, consider the formula
∃z̄ξ obtained from π ∧ ψ by putting it in prenex form and

its quantifier-free body in DNF. For each such formula, ∆Σ

contains all formulas of the form ∃z̄ξd, where ξd is a disjunct
of ξ.

2. ∆ϕf containing, for each σ ∈ 2P , all disjuncts of the DNF
of the formula ∧

σ(p)=1

f(p) ∧
∧

σ(p)=0

¬f(p).

A symbolic transition template is a conjunction ψ(x̄, x̄′) of one
formula from ∆Σ and one from ∆ϕf . Intuitively, the formula cho-
sen from ∆Σ corresponds to a transition caused by one of the ser-
vices in Σ, while the formula chosen from ∆ϕf determines a truth
assignment σ for the FO components of ϕf . Note that there are
finitely many such formulas associated with ∆Σ and ∆ϕf . For
i > 0, each formula ψi in the symbolic run is obtained from some
symbolic transition template ψ(x̄, x̄′) by replacing x̄ with x̄i and
x̄′ with x̄i+1. We refer to ψi as a symbolic transition generated by
ψ. For i = 0, ψ0 is obtained by taking the conjunction of a formula
obtained as above with a formula accounting for the pre-condition
Π (specifically, a disjunct of the DNF of Π in prenex form, where
x̄ is replaced with x̄0). We denote by σi the truth assignment to the
propositions P of ϕ defined by σi(p) = σ(f(p)). We say that the
symbolic run % = {ψi}i≥0 satisfies ¬ϕf , denoted % |= ¬ϕf , iff
{σi}i≥0 satisfies ¬ϕ.

To formalize the feedback-free condition, we associate two undi-
rected graphs Gψ and Eψ to each symbolic transition template
ψ = ∃z̄(φ(x̄, x̄′, z̄)). The graph Gψ captures all connections
among variables occurring together in the same atom, whereas Eψ
captures equalities alone. Specifically, Gψ consists of the restric-
tion to x̄, x̄′ of the transitive closure of the graph containing an edge
among every two variables occurring together in an atom of ψ, and
Eψ is the restriction to x̄, x̄′ of the transitive closure of the graph
containing an edge among every two variables in ψ that appear to-
gether in an equality atom of ψ.

Similarly, we define for each symbolic transition ψi the graphs
Eψi andGψi by replacing x̄ by x̄i and x̄′ with x̄i+1 inEψ andGψ .
Given a symbolic run % = {ψi}i≥0, we define G% = ∪i≥0 Gψi

and E% as ∪i≥0Eψi . We also denote by E∗% the transitive closure
of E%. The graphs associated with finite symbolic runs are defined
analogously.

Clearly, E∗% is an equivalence relation on the variables of %. For
each variable xi, we denote by [xi] its equivalence class with re-
spect to E∗% . The span of an equivalence class [xi] is defined as
span([xi]) = {j | xj ∈ [xi]}. It is clear that span([xi]) is always
an interval (possibly infinite).

Example 4.1 We illustrate symbolic transition templates and the
associated graphs Gψ, Eψ, G%, E% using the artifact system from
Example 2.8, and the following property

ϕf = F(status = “shipped” ∨ status = “canceled”).

The corresponding ∆ϕf is

∆ϕf ={status = “shipped” ∨ status = “canceled”,
¬(status = “shipped” ∨ status = “canceled”)}.

To build ∆Σ, we need to rewrite the conjunction of pre- and
post-condition for each service into prenex DNF, and add each dis-
junct as a separate formula to ∆Σ. The pre- and post-conditions
of services choose_product and choose_shiptype are conjunctive,
so only trivial prenex normal form rewriting is needed, which we
omit. For service apply_coupon, we obtain five disjuncts

∨5
i=1 ξi

for the DNF of π∧ψ. We show ξ2 below; ξ1 corresponds to the case
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when the customer inputs no coupon number, while ξ2, . . . , ξ5 cor-
respond to various coupon type combinations (discount, free ship-
ping). ξ2 is the case of a discount coupon of value v:

ξ2: prod_id′ = prod_id ∧ ship_type′ = ship_type
∧ status = “edit_coupon” ∧ status′ = “processing”∧
∃ t, v,m, s, p, a, w, c, l (
COUPONS(coupon′, t, v,m, s) ∧ PRODUCTS(prod_id, p, a, w)
∧SHIPPING(ship_type, c, l) ∧ ¬(t = “free_shipping”)
∧ p+ c ≥ m ∧ amount_owed′ = p+ c− v)

Given the above sets ∆Σ,∆ϕf , one of the resulting symbolic tran-
sition templates is for instance

ψ = ξ2 ∧ ¬(status = “shipped” ∨ status = “canceled”).

Figure 1(a) depicts the graphs Gψ and Eψ for all transition tem-
plates. In the case of apply_coupon, we indicate which disjunct
ξi is used. The dashed (blue) edges correspond to equality atoms
and belong to both Eψ and Gψ . Solid (red) edges correspond to
relational atoms and belong to Gψ only.

For instance, in the case of choose_shiptype, the dashed edge
from prod_id to prod_id′ reflects the fact that the product id re-
mains unchanged, as specified by the corresponding equality atom
in the post-condition. The solid edge from prod_id to ship_type
reflects the folowing transitive connection between the two arti-
fact variables: prod_id is directly connected to non-artifact vari-
able w by co-occurrence in the PRODUCTS atom; w is directly con-
nected to l via the arithmetic constraint; l is directly connected to
ship_type′ via the SHIPPING atom.

Since the status artifact variable does not appear in any con-
straint with another variable (neither in the services nor in the prop-
erty), it does not affect the graphs of the symbolic transition tem-
plates, and it is dropped to avoid clutter. For the same reason we
do not show the entire transitive closure of edges for either the Gψ
and Eψ graphs.

Other services include edit_product, edit_shiptype and
edit_coupon, whose specification we omit. However, the graphs
already show that they perform expected tasks: when the user edits
a coupon, product and shipment type are preserved (as depicted by
the two dashed edges); when the shipment type is edited, only the
product id is preserved, coupon information is forgotten, requiring
subsequent re-input once the shipment type is known; finally, when
the product id is edited, nothing is preserved, as new shipment type
and coupon information will need to be re-input subsequently.

Now consider a run % whose prefix corresponds to the following
sequence of events: the customer chooses a product, then a ship-
ment type, then applies a discount coupon, then changes her mind
and edits the shipment type, chooses a new shipment type, and ap-
plies a discount coupon again. A resulting computation graph G%
and its restriction to equality edges E% are depicted in Figure 1(b).
The parenthesis annotating service apply_coupon means that dis-
junct ξ2 is used, since it corresponds to a free shipping coupon.
Notice that G% (E%) is obtained as the concatenation of the corre-
sponding Gψ (Eψ) graphs from Figure 1(a). 2

We now define feedback-freedom. We assume the notation de-
veloped above.

DEFINITION 4.2. (Γ, ϕf ) is feedback-free iff for every sym-
bolic run prefix % = {ψi}i≤n, each path from xi to xj in G%
contains a node y such that span([xi])∪span([xj ]) ⊆ span([y]).

By extension, we say that (Γ,∀ȳϕf ) is feedback-free if (Γ′, ϕf ) is
feedback-free, with Γ′ obtained from (Γ,∀ȳϕf ) as in Lemma 3.3.

Example 4.3 We illustrate some of the checks required to estab-
lish feedback freedom for the artifact system in the running exam-
ple, on the symbolic run % of Example 4.1 (we cannot, of course,
enumerate all runs).

Let prod_id play the role of y from Definition 4.2, ship_type
that of x, and instants 3 and 7 the roles of i, respectively j.

Consider the graph G% shown in Figure 1(b), and nodes
ship_type3 and ship_type7, corresponding to artifact variable
ship_type at instants 3 and 7. Recall that the dashed (blue) edges
depict equality atoms, and connected components thereof repesent
equivalence classes. We have :

[ship_type3] = {ship_type3, ship_type4},
span([ship_type3]) = [3, 4],
[ship_type7] = {ship_type7, ship_type6},
span([ship_type7]) = [6, 7].

Notice that every path from ship_type3 to ship_type7 must
pass through node prod_id4, and that

span([prod_id4]) ⊇ [2, 7]

⊇ span([ship_type3]) ∪ span([ship_type7]).

2
As discussed earlier, feeback-freedom is meant to restrict the

ability to perform computation such as needed to simulate a counter
machine, requiring repeated increments/decrements of the same
variable. This is done by preventing unbounded updates to a vari-
able’s current value that depend on its history. Instead, while
feedback-free processes still support updating an artifact variable
(x) an unbounded number of times, feedback-freedom guarantees
that each updated value is independent of how the value of x
evolved historically from step i to step j (i < j). Indeed, xj
depends only on the values of other variables (say y), which are
preserved throughout the computation from i to j (span([y]) ⊇
span([xi]) ∪ span([xj ])).

Example 4.4 In Example 4.3, the arithmetic constraint satisfied
by the shipment type considered at instant 7 does not depend on
the previous shipment choice at instant 3, and can be described di-
rectly in relation to the product id, which remains constant through-
out. This independence would hold even in a run in which the cus-
tomer repeatedly alternated between making up and changing her
mind about the shipment type, possibly re-considering (and again
discarding) the same shipment types several times. Similarly, the
current balance can be computed directly on the current order snap-
shot, being independent of the previous ones. 2

We formalize this intuition in Section 5, where we show that
under feedback-freedom it suffices for the verification algorithm
to keep only a “compressed” history of bounded size, in form of
“inherited constraints” on the artifact variable values at every step.

We claim that the feedback freedom condition is permissive
enough to capture a wide class of applications of practical inter-
est. Indeed, this is confirmed by numerous examples of practical
business processes modeled as artifact systems, that we encoun-
tered due to our collaboration with IBM. Many of these, includ-
ing typical e-commerce applications, satisfy the feedback freedom
condition. The underlying reason seems to be that business pro-
cesses are usually not meant to “chain” an unbounded number of
tasks together, with the output of each task being input to the next.
Instead, the unboundedness is usually confined to two forms, both
consistent with feeback-freedom:

1. Allowing a certain task to undo and retry an unbounded num-
ber of times, with each retrial independent of previous ones, and
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(a) Graphs Gψ and Eψ for the symbolic transition templates (b) Computation graph G%

Figure 1: Graphs in Example 4.1

depending only on a context that remains unchanged throughout
the retrial phase. A typical example is repeatedly providing credit
card information until the payment goes through, while the order
details remain unchanged. Another is the situation in which an or-
der is filled according to sequentially ordered phases, where the
customer can repeatedly change her mind within each phase while
the input provided in the previous phases remains unchanged (e.g.
changing her mind about the shipment type for the same product,
the rental car reservation for the same flight, etc.)

2. Allowing a task to batch-process an unbounded collection
of inputs, each processed independently, within an otherwise un-
changed context (e.g. sending invitations to an event to all atten-
dants on the list, for the same event details).

Testing feedback-freedom We can show that testing feedback-
freedom of (Γ, ϕf ) can be done in PSPACE. The proof reduces
feedback-freedom to testing emptiness of a two-way alternating
finite-state automaton, which is in turn reduced to emptiness of a
non-deterministic automaton A(Γ,ϕf ).

THEOREM 4.5. Feedback-freedom of (Γ, ϕf ) can be checked
in PSPACE.

REMARK 4.6. The automata-theoretic approach to testing
feedback-freedom can be used to refine the notion of feedback-free
by taking into account additional restrictions on the allowed runs
of the artifact system. For example, if additional control is spec-
ified by a Büchi automaton B, testing feedback-freedom for runs
satisfying the additional control reduces to testing emptiness of the
cross-product automaton B ×A(Γ,ϕf ) (with A(Γ,ϕf ) easily turned
first into a Büchi automaton).

5. VERIFICATION OF
FEEDBACK-FREE SYSTEMS

The main result of this section is that model checking LTL-FO
properties is decidable if the artifact system together with the prop-
erty are feedback-free. In Section 6, we extend this result to the
presence of integrity constraints on database relations.

THEOREM 5.1. It is decidable, given an artifact system Γ and
an LTL-FO formula ∀ȳϕf such that (Γ,∀ȳϕf ) is feedback-free,
whether ∀ȳϕf holds for every run ρ of Γ.

The proof requires developing some technical machinery, and is
outlined in the remainder of the section. We ignore data dependen-
cies for now, and later show how to take them into account.

Let Γ = 〈A,Σ,Π〉 whereA = 〈x̄,DB〉. Recall that, by Lemma
3.3, one can eliminate the global variables ȳ of the LTL-FO formula
∀ȳϕf . Thus, we can assume the LTL-FO formula to be verified is
simply ϕf . Clearly, Γ |= ϕf iff there is no run of Γ that satisfies

¬ϕf . We will prove the theorem by showing decidability of the
latter property.

The verification algorithm makes use of the symbolic runs intro-
duced earlier. We claim that symbolic runs provide a representa-
tion of all actual runs of an artifact system. Let % = {ψi}i≥0 be a
symbolic run of Γ. To each such symbolic run and each database
instance D we associate a set of actual runs on D as follows. Let
var(%) = {x̄i | i ≥ 0} and ∆% = {ψi|i ≥ 0}. Note that the set of
free variables of formulas in ∆% is var(%). Let

RunsD(%) = {{ν(x̄i)}i≥0 | ν is a valuation of var(%) into Q
such that D ∪ C |= ∆%}

We say that % is satisfiable if there exists a database instanceD such
that RunsD(%) 6= ∅. We use analogous defnitions and notation
for the case when % is a prefix of a symbolic run. In particular,
for j > 0, we denote by %|j the prefix {ψi}i<j of % and refer to
RunsD(%|j) with the obvious meaning.

The following establishes the desired connection between sym-
bolic runs and actual runs.

LEMMA 5.2. (i) For each database instance D, RunsD(Γ) =
∪{RunsD(%) | % is a symbolic run of Γ}. (ii) There exists a run
of Γ satisfying ¬ϕf iff there exists a satisfiable symbolic run of Γ
satisfying ¬ϕf .

In view of the above, it is sufficient to check the existence of a
satisfiable symbolic run of Γ satisfying ¬ϕf . To prove decidability,
we show that it is enough to consider prefixes of symbolic runs of
statically bounded length.

Consider a symbolic run {ψi}i≥0. We define for each j > 0
the inherited constraint of configuration j, denoted ηj , which sum-
marizes the constraints on configuration j imposed by the prefix
leading to it, i.e. {ψi}i<j . The inherited constraint ηj(x̄j) is de-
fined as ∃z̄

∧
i<j ψi where z̄ are all variables other than x̄j . The

following is immediate from the definitions.

LEMMA 5.3. Let % = {ψi}i≥0 be a symbolic run and D a
database instance. Then for every j > 0,

{ρj | {ρi}0≤i≤j ∈ RunsD(%|j)} = {ρj | D ∪ C |= ηj(ρj)}.

In other words, ηj defines precisely the set of valuations of
x̄ reachable in the last configuration of a run in RunsD(%|j).
Note that this is generally a strict superset of {ρj | {ρi}i≥0 ∈
RunsD(%)}.

We next show the key fact that for a feedback-free system there
are only finitely many inherited constraints up to logical equiva-
lence. This is done by rewriting each such constraint as a CQ¬

formula of bounded quantifier rank. Recall that the quantifier rank
of a formula is the maximum number of quantifiers along a path
from root to leaf in the syntax tree of the formula, and that there are
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finitely many non-equivalent formulas of given quantifier rank over
a given vocabulary (e.g., see [35]). The number of non-equivalent
formulas is hyperexponential in the quantifier rank.

LEMMA 5.4. For each ηj one can construct an equivalent CQ¬

formula η̄j of quantifier rank bounded by k2 + q, where k = |x̄|
and q is the maximum quantifier rank of the formulas used in pre-
and-post conditions of services in Σ.

The proof (omitted) shows how to rewrite ηj as a formula η∗j of
quantifier rank at most k2 + q, whose variables are the equivalence
classes of variables in %|j induced by the equality graph E∗%|j . The
construction of η∗j is non-deterministic, so several outcomes are
possible, all with the same quantifier rank. Finally, η̄j is obtained
from η∗j by replacing its free variables with x̄j . We will refer to η∗j
in the sequel.

Reduced inherited constraints It is well known that the number
of formulas of given quantifier rank is finite, up to logical equiva-
lence. The notion of equivalence is in fact a strong syntactic one,
upon which we elaborate next. For every CQ¬ formula α, we can
define a reduction procedure yielding a logically equivalent for-
mula red(α), obtained essentially by recursively merging isomor-
phic subformulas. It can be seen that the number of distinct reduced
formulas of given quantifier rank d is bounded by a hyperexponen-
tial in d. This also yields our upper bound for inherited constraints.

We denote byHyp the class of hyperexponential functions. Each
function inHyp is defined inductively by hyp(0) = 1 and hyp(n+

1) = 2c·hyp(n) for some constant c.

LEMMA 5.5. Let Γ and ∀ȳϕf be as above. The number of dis-
tinct reduced inherited constraints in configurations of symbolic
runs is bounded by h(k2) for some h ∈ Hyp.

Symbolic lassos We next use the finiteness of the reduced inherited
constraints to characterize the existence of symbolic runs satisfying
¬ϕf using finite prefixes of a certain form, which we call symbolic
lassos. Let B¬ϕ be the Büchi automaton corresponding to ¬ϕ.
Recall that, for a symbolic run {ψi}i≥0, we denote by {σi}i≥0

the sequence of truth assignments to propositions P in ϕ such that
σi(p) holds iff ϕi |= f(p). A run ofB¬ϕ on {σi}i≥0 is a sequence
{qi}i≥0 of states of B¬ϕ such that (init, σ0, q0) is a transition of
B¬ϕ for some initial state init and (qi, σi+1, qi+1) is a transition
of B¬ϕ for each i ≥ 0. A similar definition of run applies to finite
sequences {σi}i≤l.

DEFINITION 5.6. A symbolic lasso is a finite prefix {ψi}i<j+n
of a symbolic run such that:
• red(η∗j ) = red(η∗j+n),
• for each u, v ∈ x̄, [uj ] = [vj ] iff [uj+n] = [vj+n],
• for each u ∈ x̄, [uj ] = [uj+n] or [uj ] 6= [vj+n] for each
v ∈ x̄,
• there exists a run {qi}i≤j+n of B¬ϕ on {σi}i≤j+n such that

for some accepting state r, qj = qj+n = r.

We can show the following.

LEMMA 5.7. There exists a run of Γ satisfying ¬ϕf iff there
exists a satisfiable symbolic lasso.

Decision procedure The above development provides a deci-
sion procedure for satisfaction of LTL-FO properties of feedback-
free systems, which we outline next. Recall that the LTL-FO prop-
erty can be assumed to have no global variables by Lemma 3.3.

The input to the algorithm is an artifact system Γ = 〈A,Σ,Π〉 and
LTL-FO property ϕf over A such that (Γ, ϕf ) is feedback-free.
We begin by constructing the sets of formulas ∆ = ∆Σ∪∆ϕf and
the Büchi automaton B¬ϕ. We use a procedure Büchi-Next which,
given a state p of B¬ϕ and a truth assignment σ to the propositions
of ϕ returns one next state of B¬ϕ.

The algorithm non-deterministically searches for a satisfiable
symbolic lasso as follows:

1. flag := 0;
2. initialize a symbolic run prefix % to {ψ0}, with correspond-

ing truth assignment σ0 to the propositions of ϕ and set s to
some output of Büchi-Next(q0, σ0) for some initial state q0
of B¬ϕ;

3. set γ to red(η∗(%)), where η(%) is the inherited constraint
for the prefix %;

4. initialize the setR of reduced configurations to {(s, γ)};
5. if flag = 0 and s is an accepting state of B¬ϕ then non-

deterministically continue or set (s̄, γ̄) := (s, γ), flag:= 1,
andR := ∅;

6. non-deterministically generate from ∆ a symbolic transition
ψ with corresponding truth assignment σ to the propositions
in ϕ;

7. set s to Büchi-Next(s, σ), γ := red(η∗(%ψ)), and
% := %.ψ;

8. if (s, γ) ∈ R then output NO and stop; otherwise, set
R := R∪ {(s, γ)};

9. if flag = 1, (s, γ) = (s̄, γ̄), and γ̄ is satisfiable, output YES
and stop. Otherwise, go to 5.

To see that this provides a decision procedure, we need to show
that (i) it terminates and provides the correct answer (i.e. it out-
puts YES on some execution on (Γ, ϕf ) iff Γ |= ϕf ), and (ii) the
satisfiability test in step 9 is effective.

To see (i), note that, from the definition of inherited constraint
η(%) and the equivalence with red(η∗(%)), it follows that:

(§) if %1, %2 are satisfiable prefixes of symbolic runs such that
red(η∗(%1)) = red(η∗(%2)) and ψ is a symbolic transition,
then
• %1.ψ is satisfiable iff %2.ψ is satisfiable, and
• the sets of non-deterministically constructed
red(η∗(%1.ψ)) and red(η∗(%2.ψ)) are equal.

This means that the search for a symbolic lasso can be confined
to prefixes with no repeated configurations (s, γ) apart from the
knot (s̄, γ̄), which is enforced by step 8. Since there are finitely
many reduced inherited constraints for symbolic runs of (Γ, ϕf )
this bounds the running time of the above procedure.

For (ii), we discuss the procedure for checking satisfiability of
reduced inherited constraints.

We show that satisfiability of a CQ¬ formula overDB∪C can be
decided in a modular fashion, by independently checking satisfia-
bility of formulas over DB and over C. The significance of the re-
sult is that it enables a generic model checking algorithm that takes
as parameter the fixed interpretation of C, as long as it comes with
a domain-specific satisfiability checker SATC . SATC is called as
a black box by the model checker.

More precisely, let q be a prenex normal form CQ¬ formula over
DB ∪ C: q = ∃z̄ξ(ū) where ξ is quantifier-free, of free variables ū
(z̄ ⊆ ū). Let ξ|DB and ξ|C be the restrictions of ξ to schemas DB
and C, respectively, and denote with ȳ = vars(ξ|DB)∩ vars(ξ|C)
the variables they have in common. Denote with c̄ all constants ap-
pearing in ξ|DB. Recall that an equality type eq(t̄) over a set t̄ of
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terms (variables or constants) is a satisfiable conjunction of equal-
ity and non-equality atoms over t̄ such that every pair of terms from
t̄ occurs in some atom of eq. The following claim follows immedi-
ately from the preservation of CQ¬ formulas under isomorphisms:

(‡) q is satisfiable if and only if there exists an equality type
eq(ȳ, c̄), such that ξ|C ∧ eq(ȳ, c̄) and ξ|DB ∧ eq(ȳ, c̄) are
satisfiable.

Notice that the satisfiability check for ξ|C ∧ eq(ȳ, c̄) in the claim
is domain-specific (i.e. depends on the fixed interpretation of C),
being settled by calling SATC . Also recall that ξ|DB∧eq(ȳ, c̄) is an
existentially-quantified formula. Therefore its satisfiability reduces
to checking that: (a) no pair of terms appears both in an equality
and a non-equality atom, and (b) no tuple of terms appears both in
a positive and a negative literal with the same relational symbol.
This establishes decidability of verification for LTL-FO properties
of feedback-free systems, completing the proof of Theorem 5.1.

5.1 Complexity
The complexity analysis of the decision procedure involves sev-

eral orthogonal components:

Computing reduced inherited constraints This involves the re-
cursive construction in the proof of Lemma 5.4. It is easily seen
that it requires polynomial time in the size of inherited constraint
γ, which is bounded by the size of the the symbolic run prefix %.

Performing the satisfiability check (in step 9 of the decision pro-
cedure), which consists in

(i) Retrieving the prenex normal form of γ̄, which is η(%), then
guessing an equality type eq on the number of variables η(%)|C
and η(%)|DB have in common, and the number of constants
mentioned in η(%)|DB. This can be done in NP in the number
of common variables and of constants, which is bounded by the
size of η(%).

(ii) Running SATC on η(%)|C ∧ eq. This step depends on the
fixed interpretation of C. If C is interpreted as linear arith-
metic inequalities, the test reduces to solving a linear pro-
gramming problem. This yields polynomial time in the size
of η(%)|C ∧ eq [30], which in turn is polynomially (quadrati-
cally) bounded by the size of η(%). Indeed, each pair of terms
in η(%)|C must be related explicitly in eq by either an equality
or a non-equality atom.

(iii) Checking satisfiability of η(%)|DB∧eq. This is doable in poly-
nomial time in the size of η(%)|DB ∧ eq, which is again poly-
nomially bounded by the size of η(%).

The search for the symbolic lasso This step is polynomial in the
number of reduced inherited constraints and the states of B¬ϕ vis-
ited during the search. The test that the current inherited constraint
γ is the same as the knot candidate γ̄ is polynomial in the size of γ̄.

Since the size of reduced inherited constraints γ is upper
bounded by the length of the run %, which in turn is bounded by
the number of distinct reduced inherited constraints, by Lemma 5.4
we obtain:

PROPOSITION 5.8. Static verification for feedback-free pairs of
LTL-FO properties and artifact systems is decidable in time upper
bounded by h(k2), for some h ∈ Hyp.

5.2 Subclasses with Improved Upper Bounds
The above analysis shows that the complexity of the decision

procedure is dominated by the number of distinct inherited con-
straints, which upper bounds the symbolic run length. We identify

next three sub-classes of feedback-free artifact systems that occur
naturally and lead to a better bound.

Bounded width The construction in the proof of Lemma 5.4 intro-
duces the useful notion of width of a set of variables in a symbolic
run. Recall that the width w(ȳ) of ȳ is defined as max{|v̄| | v̄ ⊆
x̄i, and each v ∈ v̄ is in an equivalence class y ∈ ȳ}. By exten-
sion, the width of a subgraph of Gj is the width of its set of nodes.

DEFINITION 5.9. We say that (Γ, ϕf ) has width bounded by w
if it is feedback-free, and if for each symbolic run, the width of each
connected component of Gj is bounded by w for each j ≥ 0.

Intuitively, the width bound indicates the maximum number of
variables in x̄ that are mutually related in a configuration of a sym-
bolic run. We can show the following.

COROLLARY 5.10. If (Γ, ϕf ) has width bounded by w, then
the number of distinct reduced inherited constraints is bounded by
(h(w2))k, where h ∈ Hyp.

Proof: The bound is an immediate consequence of the construc-
tion in the proof of Lemma 5.4, and the fact that constraints cor-
responding to distinct connected components of Gj are indepen-
dent. 2

Thus, Corollary 5.10 provides a smaller bound on the number of
reduced inherited constraints if the connected components gener-
ated in symbolic runs have small width.

Linear propagation An artifact system and a property exhibit lin-
ear propagation if the feedback-freedom restriction is satisfied for
a more restrictive definition of variable equivalence classes. Equiv-
alence classes are generated exclusively by equalities of the form
x = x′, and any other equalities are treated as arithmetic con-
straints.

Note that every linear-propagation equivalence class involves the
values of a single variable. In the graphical representation of sym-
bolic transition templates and runs, all equality edges are horizon-
tal. This is the case in our running example.

PROPOSITION 5.11. Let (Γ, ϕf ) exhibit linear propagation.
The number of distinct reduced inherited constraints in configu-
rations of symbolic runs is bounded by h(k), for some function
h ∈ Hyp.

COROLLARY 5.12. If linear-propagation pair (Γ, ϕf ) has
width bounded by w, then there are at most (h(w))k distinct re-
duced inherited constraints, for some h ∈ Hyp.

Proof: The proof follows immediately from Proposition 5.11 and
the observation that constraints corresponding to distinct connected
components are independent. 2

Acyclicity Recall that feedback-freedom restricts the way in which
the value of variable x at step j can be connected to the value of x at
preceding step i. We investigate a more stringent restriction, which
disallows any such connection (except for preservation of the value
of x from i to j).

DEFINITION 5.13. (Γ, ϕf ) is acyclic iff for every symbolic run
prefix % = {ψi}i≤n, if xi and xj are connected in G%, then [xi] =
[xj ].

Note that acyclicity trivially implies feedback-freedom: in Defi-
nition 4.2, the role of y is played by xi.
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PROPOSITION 5.14. Let (Γ, ϕf ) be acyclic. The number of dis-
tinct reduced inherited constraints in configurations of the same
symbolic run is bounded by a doubly-exponential function of k.

To illustrate the difference between acyclicity and feedback free-
dom, consider again our running example. As discussed earlier,
feedback freedom allows changing the shipment type unboundedly
many times for the same product. In contrast, acyclicity disallows
such runs. If the customer wants to change the shipment type, she
must forget all her choices and starts filling the order from scratch
(select a product again, then a shipment type). This puts the two
shipment type choices in disconnected components of the compu-
tation graph.

6. VERIFICATION WITH DEPENDEN-
CIES

We show next that model checking for feedback-free pairs of
LTL-FO properties and artifact systems is decidable even in the
presence of expressive database integrity constraints modeled by
dependencies.

Given a set I of dependencies on the database schema DB, we
say that an artifact system Γ satisfies an LTL-FO sentence ϕ under
I, denoted Γ |=I ϕ, if for every database D satisfying I and every
run ρ of Γ on D, ϕ holds on ρ.

We next establish decidability under a set of dependencies, pro-
vided that the chase with these dependencies terminates. The chase
is a fundamental algorithm that has been widely used in databases.
It takes as input an initial instance A and a set of dependencies I
and produces (if it terminates, which is not guaranteed), a finite
model of I and A that satisfies a universality property (see [2] for
details).

We borrow from [39] the notation CT∀∃ for the class of depen-
dency sets I such that for every instance A there exists a terminat-
ing chase sequence of A with I.

THEOREM 6.1. It is decidable, given artifact system Γ and an
LTL-FO sentence ∀ȳϕf such that (Γ, ∀ȳϕf ) is feedback-free, and
given set I ∈ CT∀∃ of dependencies on DB, whether Γ satisfies
∀ȳϕf under I.

While membership of a set of dependencies in CT∀∃ is in gen-
eral known to be undecidable (see for instance [18]), recent re-
search has proposed sufficient syntactic restrictions. Examples in-
clude weak acyclicity [23], stratification [18], and the termination
hierarchy [39] which is a hierarchy of successive relaxations of
weak acyclicity and stratification that nevertheless suffice for the
existence of a terminating chase sequence.

COROLLARY 6.2. If I lies in the terminaton hierarchy and
(Γ, ∀ȳϕf ) is feedback-free, then Γ |=I ∀ȳϕf is decidable.

The proof of Theorem 6.1 is given after introducing a few useful
definitions and results.

Let q(ū) be a CQ¬ formula over DB ∪ C with free variables ū.
We say that q is I-satisfiable if there exists D |= I and a valuation
ν of ū such that D ∪ C |= q(ν). We say that symbolic run % is
I-satisfiable if there exists D |= I such that RunsD(%) 6= ∅.
The definition extends naturally to prefixes of symbolic runs, and
in particular to symbolic lassos.

Decision procedure The decision procedure we exhibit in proving
Theorem 6.1 is the one presented in Section 5 for the dependency-
free case, modified as follows: in step 9, the test of satisfiability of

γ̄ is replaced with an I-satisfiability test.

The remainder of the section outlines the proof that the above
modification yields a decision procedure for model checking under
dependencies, provided that the set of dependencies lies in the
termination hierarchy.

We extend Claim (‡) from Section 5 to the presence of depen-
dencies. We first show that I-satisfiability of a CQ¬ formula over
DB ∪ C can be decided in a modular fashion, by independently
checking satisfiability of formulas over DB and over C.

More precisely, let q be a prenex normal form CQ¬ formula over
DB ∪ C: q = ∃z̄ξ(ū) where ξ is quantifier-free, of free variables ū
(z̄ ⊆ ū). Let ξ|DB and ξ|C be the restrictions of ξ to schemas DB
and C, respectively, and denote with ȳ = vars(ξ|DB)∩ vars(ξ|C)
the variables they have in common. Denote with c̄ all constants
appearing in ξ|DB or I.

LEMMA 6.3. q is I-satisfiable if and only if there exists an
equality type eq(ȳ, c̄), such that ξ|C ∧ eq(ȳ, c̄) is satisfiable and
ξ|DB ∧ eq(ȳ, c̄) is I-satisfiable.

As observed in Section 5, the satisfiability check for ξ|C ∧ eq(ȳ, c̄)
in Lemma 6.3 is domain-specific (i.e. depends on the fixed inter-
pretation of C), being settled by calling SATC .

We next show that I-satisfiability of formulas over DB reduces
to chasing with I and an appropriately selected set IDB of depen-
dencies whose construction is determined by the schema DB.

We recall from [18] an extension of the chase to disjunctive em-
bedded dependencies (DEDs). Here, we are only interested in the
particular case when the DED conclusion consists of the empty (al-
ways false) disjunction ⊥. As soon as a chase step derives ⊥, the
chase sequence terminates, yielding the result ⊥. We then say that
the chase fails. A terminating chase sequence is a finite sequence
of chase steps which either fails or yields an instance that satisfies
all dependencies.

Define the set of dependencies

IDB := {δ6=} ∪ {δP¬ | P ∈ DB}

where δ6= : ∀x∀y x = y ∧ x 6= y → ⊥
δP¬ : ∀x̄ P (x̄) ∧ ¬P (x̄)→ ⊥.

LEMMA 6.4. If I ∈ CT∀∃, then

(i) I ∪ IDB ∈ CT∀∃, and
(ii) a formula q ∈ CQ¬ over DB is I-satisfiable if and only if the

chase of q with I ∪ IDB does not fail.

REMARK 6.5. We could have applied the more general deci-
sion procedure from [18], for satisfiability of CQ¬ under a set of
dependencies with negated literals. The result in [18] is based on
chasing with more expressive, disjunctive dependencies, yielding a
tree of chase sequences. When applied to our setting, this would
result in an exponential number of chase sequences. Lemma 6.4
shows that this exponential blow-up can be avoided by resorting to
the standard (non-disjunctive) chase, and by exploiting the fact that
the dependencies in I contain only positive literals.

The following result establishes the decidability of I-
satisfiability for finite prefixes of symbolic runs.

LEMMA 6.6. It is decidable, given a symbolic run prefix % and
I ∈ CT∀∃ on DB, whether % is I-satisfiable.
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Proof: Lemmas 5.3, 6.3 and 6.4 imply that the following is a deci-
sion procedure for I-satisfiability of %. Let ηn be the inherited con-
straint for configuration n of % (in prenex normal form), and ξ be
its quantifier-free body. Let ξ|DB, ξ|C , ȳ, c̄, eq be as in Lemma 6.3,
and IDB as in Lemma 6.4. Return YES if and only if SATC re-
turns YES on ξ|C ∧ eq and the chase of ξ|DB ∧ eq with I ∪ IDB
does not fail. 2

Complexity The complexity upper bound obained in the absence
of dependencies is virtually unaffected by the presence of sets of
dependencies from the termination hierarchy.

First, recall that the satisfiability check for the restiction of the
inherited constraints to C is settled by calling SATC , thus inheriting
the complexity of the particular instantiation of C.

Second, the complexity of the I-satisfiability check for the in-
herited constraints restricted to DB inherits the complexity of the
chase with sets of dependencies from the termination hierarchy.

This complexity is polynomial in the size of the inherited con-
straint, with the polynomial’s degree bounded by the size of I [39,
18, 23]. The bound is very conservative, and a refined analysis
shows that it depends on the longest path in a graph that reflects
how a chase step with one dependency can trigger another.

Given that we expect multiple verification instances over the
same database schema with integrity constraints, a reasonable as-
sumption (often adopted in the literature) is to consider schema and
dependencies fixed. This yields a truly polynomial complexity of
the chase. The same truly polynomial complexity holds, even ifDB
and I are not fixed, if the dependencies in I are equality-generating
dependencies [2]. It also holds if only DB is fixed but not I, if it
consists only of full dependencies [2]. Equality-generating depen-
dencies allow only equality atoms in the conclusion, and capture as
particular cases the class of functional dependencies. Full depen-
dencies contain no existentially quantified variables.

7. RELATED WORK
Data-aware business process models The specific notion of ar-

tifact was first introduced in [44] and was further studied, from both
practical and theoretical perspectives, in [4, 5, 24, 25, 6, 36, 31, 33,
21]. Some key roots of the artifact model are present in “adap-
tive objects”[32], “adaptive business objects” [41], “business enti-
ties”, “document-driven” workflow [47] and “document” engineer-
ing [26]. The Vortex framework [28, 20, 27] also allows the spec-
ification of database manipulations and provides declarative spec-
ifications for when services are applicable to a given artifact. The
artifact model considered here is closely related to that of semantic
web services in general. In particular, the OWL-S proposal [38,
37] describes the semantics of services with input, output, pre- and
post-conditions.

Static analysis of data-aware business processes Work on for-
mal analysis of artifact-based business processes in restricted con-
texts has been reported in [24, 25, 6]. Properties investigated in-
clude reachability [24, 25], general temporal constraints [25], and
the existence of complete execution or dead end [6]. For the vari-
ants considered in each paper, verification is generally undecidable;
decidability results were obtained only under rather severe restric-
tions, e.g., restricting all pre-conditions to be "true" [24], restrict-
ing to bounded domains [25, 6], or restricting the pre- and post-
conditions to refer only to artifacts (and not their variable values)
[25]. None of the above papers permit an underlying database, in-
tegrity constraints, or arithmetic.

[14] adopts an artifact model variation with arithmetic operations
but no database (and therefore no integrity constraints). It proposes
a criterion for comparing the expressiveness of specifications using

the notion of dominance, based on the input/output pairs of busi-
ness processes. Decidability is shown only by restricting runs to
bounded length. [48] addresses the problem of the existence of a
run that satisfies a temporal property, for a restricted case with no
database, no arithmetic, and only propositional LTL properties.

Static analysis for semantic web services is considered in [42],
but in a context restricted to finite domains.

More recently, [3] has studied automatic verification in the con-
text of business processes based on Active XML documents.

Our work is most closely related to the one in [17], which iden-
tifies the class of guarded artifact systems and LTL-FO properties,
for which verification is decidable. The two settings have in com-
mon the underlying database and the infinite data domain with a
dense linear order, as well as the syntax for pre-, post-conditions,
and properties. However, [17] considers no dependencies and no
arithmetic operations. Our previous results do not apply in the new
context, as Theorem 3.4 shows undecidability even when adding
to a guarded artifact system a single functional dependency, or al-
ternately, when the only allowed arithmetic operation consists in
incrementing counters. The novel proof technique based on de-
scribing configuratons using inherited constraints is fundamentally
different from the one employed for guardedness.

The works [19, 46, 1] are ancestors of [17] from the context
of verification of electronic commerce applications. Their mod-
els could conceptually (if not naturally) be encoded as artifact sys-
tems, but they correspond only to particular cases of the model
in [17]. They all disallow the linear order on the domain. Also,
limit artifact values to essentially come from the active domain of
the database, thus ruling out external inputs, partially-specified ser-
vices, and arithmetic.

Infinite-state systems We expect our results to be of interest
to the verification community at large, since artifact systems are a
particular case of infinite-state systems. Research on automatic ver-
ification of infinite-state systems has recently focused on extending
classical model checking techniques (e.g., see [13] for a survey).
However, in much of this work the emphasis is on studying recur-
sive control rather than data, which is either ignored or finitely ab-
stracted. More recent work has been focusing specifically on data
as a source of infinity. This includes augmenting recursive proce-
dures with integer parameters [9], rewriting systems with data [10,
8], Petri nets with data associated to tokens [34], automata and log-
ics over infinite alphabets [12, 11, 43, 15, 29, 7, 8], and temporal
logics manipulating data [15, 16]. However, the restricted use of
data and the particular properties verified have limited applicability
to the business artifacts setting.

8. CONCLUSIONS
We identified the practically significant class of feedback-free busi-
ness artifact systems for which verification of useful temporal prop-
erties is decidable. This alleviates limitations of our previous re-
sults on guarded artifacts, which disallow data dependencies and
arithmetic, nonetheless essential in practical business processes.
Our new results required developing technical machinery that is en-
tirely different from the one we used for guarded artifact systems.

For the moment, we were only able to prove a hyperexponen-
tial upper bound on the complexity of verification, with improved
bounds for several restricted but realistic cases. In the absence of
lower bounds, there is hope that better upper bounds can be ob-
tained. More importantly, it appears that practical specifications
often obey restrictions leading to drastically lower complexity. This
can be effectively exploited through appropriate heuristics. We
plan to further explore the practical potential of our approach using
real-world business artifact specifications made available through
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our collaboration with IBM. More broadly, feedback-freedom and
acyclicity are interesting data-flow notions in their own right, that
may be fruitfully used with any data-aware business process model,
beyond artifact systems.
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