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ABSTRACT
We address two open problems involving algebraic execution of
full-text search queries. First, we show how to correctly apply tradi-
tional database rewrite optimizations to full-text algebra plans with
integrated scoring, and explain why existing techniques fail. Sec-
ond, we show how our techniques are applied in a generic scoring
framework that supports a wide class of scoring algorithms, includ-
ing algorithms seen in the literature and user-defined scoring.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Design; Performance

1. INTRODUCTION
Though not commonly used for web-search, search systems that

reason about individual word positions (henceforth: full-text search)
are commonly used in contexts where expert users require more fo-
cused queries and precise results [9]. Full-text search systems[3,
27, 14, 22, 19] power search for enterprise, government, academia,
scientific applications such as Westlaw[32], PubMed[30], and the
U.S. Library of Congress. The choice of a powerful but more
complex language is appropriate for sophisticated expert users and
for search systems with GUI-generated queries. Expressive power,
and thus improved precision, entails complex evaluation plans and
higher evaluation cost. To make full-text search feasible despite
high evaluation cost, plans must be optimized like database queries.

Expert users who demand the power of full-text search, also ex-
pect to be able to use their preferred ranking function [21], or tailor
a ranking function [6] to their specific need. It follows that devel-
opers of full-text search systems need to support a wide variety of
ranking functions, even plug-in ranking functions, to appeal to the
widest possible audience. This fact is supported anecdotally; Ter-
rier [22] ships with, as of September 2010, two different weight
aggregation techniques, 15 different term-weighting functions, and
support for user defined term-weighting functions.

Many state-of-the-art full-text systems do not support multiple
ranking algorithms [27, 14], and those that do, like Terrier, support
narrow classes thereof. Rigid plan generation, which hard-codes
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assumptions about the specific ranking algorithm, limits generic
ranking support in these systems; such systems only support rank-
ing algorithms that fit their assumptions. Ranking techniques such
as proximity metrics [16, 25] do not fit typical evaluation plans.

To support a wider class of ranking algorithms, IR systems must
either generate highly generic plans (sacrificing performance), im-
plement multiple rigid generators, one per supported ranking al-
gorithm (sacrificing maintainability and extensibility), or deploy a
flexible generator that takes a ranking algorithm as a parameter and
adjusts plans to fit it. This paper studies flexible plan generation.

Our approach is to add generic ranking to database-style alge-
braic strategies for full-text evaluation recently proposed in the data-
base community [2, 7]. Ranking is defined against a ‘canonical’
plan that, for each document d, first computes the set S of query
‘matches’ and then scores d based on S. From the canonical plan
and a selected ranking algorithm, our optimizer finds a plan which
avoids large intermediate results by interleaving matching and scor-
ing. If, for instance, the Lucene ranking algorithm [27] is selected,
then our optimizer finds a plan of comparable performance to the
one yielded by Lucene’s rigid plan generator. If a context-sensitive
ranking algorithm is selected, then our optimizer finds an optimized
plan consistent with that algorithm. An optimal plan for context-
sensitive ranking will look very different from an optimal plan for
Lucene’s ranking, even for the same query.

Prior works in full-text algebras [2, 7] provide a useful founda-
tion for extension with generic ranking, but these works focus on
the boolean retrieval problem (identifying, but not ranking docu-
ments that match the query) and, as we show in Section 2, opti-
mizers designed for boolean retrieval cannot be straightforwardly
re-purposed for consistent ranked retrieval. Simply put, scoring
discussed in prior work depends on intermediate results that op-
timizers may change. Different scoring schemes are sensitive to
different changes in the intermediate results. An optimizer needs
to carefully avoid optimizations that lead to score changes, while
making full use of those that preserve scores; thus the optimizer
should choose which optimizations to apply based on the selected
scoring scheme. Building a generic optimizer that correctly applies
optimizations for plug-in ranking algorithms, is the primary tech-
nical challenge we address.

We call an optimizer score-consistent if all produced execution
plans of a particular query yield the same score for the same com-
bination of document and ranking algorithm.

Given the effort usually exerted by application owners into rank-
ing results, and the competitive advantage ranking algorithms of-
ten entail, making sure scores do not change due to optimization
is not only a technical challenge but also a serious business issue.
Ranking algorithms are frequently tuned for specific applications
to guarantee some level of precision, recall, and/or ‘fairness’ that
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must be maintained. Moreover, a score-consistent optimizer and
execution engine can be updated and improved without potentially
adverse effects on the (carefully tuned) ranking of the results and
without requiring changes to ranking implementation.
Desiderata. The goal of this work is to provide a system that: (1)
supports expressive full-text search and flexible generic scoring;
(2) has an optimizer that exploits both known and novel optimiza-
tions techniques without introducing inconsistent scoring; (3) de-
spite overhead from generic scoring, performs competitively with
systems using a fixed scoring algorithm; and (4) isolates scoring
interface from optimizer such that scoring scheme developers need
not understand the optimizer or respond to optimizer changes.
Contributions. This paper presents GRAFT (Generic Ranking
Algebra for Full Text), a full-text algebra with integrated generic
scoring framework. We show how GRAFT supports known and
novel optimizations by providing the optimizer just enough infor-
mation about a selected scoring implementation – including user-
defined implementations – to select only the compatible optimiza-
tions. Reaching this result, we make the following contributions:
1. We study the interplay between scoring and match computation
and show that blind application of traditional database optimiza-
tions to match computation can result in different scores. Such
blind application of optimizations is known to arise naturally in
systems in which the optimizer is developed initially for boolean
retrieval, and scoring is integrated afterward (see Section 2).
2. We present the first formal model for generic ranking of full-text
queries. The model comprises a small set of operators (a scoring
algebra SA). We validate the expressive power of our model by
capturing ranking algorithms and techniques found in the literature
[7, 13, 16, 20, 22, 25, 28, 29, 34].
3. We propose an integrated algebraic model for the interplay be-
tween score computation and match computation. This model al-
lows us to reason about the correctness of traditional optimizations
in ranked full-text query systems.
4. We show that our integrated model accommodates novel opti-
mizations involving both scoring and match algebra operators.
5. We identify a small set of SA operator properties relevant to ap-
plicability of optimizations. We show how to automatically config-
ure the optimizer, based on these properties, to exploit the available
optimization potential without compromising score consistency.
6. Finally, we show experimentally that optimization allows a sys-
tem that supports generic scoring to compete with a system that
does not, and that our novel optimizations are powerful.
Paper organization. Section 2 motivates our work with examples
that illustrate how we solve the score-consistency problem found in
existing full-text algebras. Section 3 describes a relational model
for full-text based on sequences of match tuples called match ta-
bles. Section 4 defines our novel model for generic scoring and
outlines the GRAFT framework. Section 5 discusses optimizations,
both classical database optimizations, and optimizations that cross
the boundary between matching and scoring. With each optimiza-
tion, we list the scoring scheme properties that must hold for the
optimization to be score-consistent. Section 6 discusses the com-
plexity of evaluating relational full-text queries. Section 7 is a study
of scoring schemes observed in the literature[7, 13, 16, 20, 22, 25,
28, 29, 34]. Section 8 reports on the implementation and experi-
mental evaluation of GRAFT. We conclude in Section 9.

2. MOTIVATION
We motivate our work with an example that both illustrates why

state-of-the-art full-text algebra solutions are unsatisfactory for gen-
eric ranking, and gives the intuition behind our solution. This sec-
tion also introduces vocabulary used in the following sections.

TOKEN DOC #INDOC #DOCS OFFSETS

‘emulator’ dw 1 2768 [64]
‘free’ dw 1 332335 [3]
‘foss’ dw 1 2044 [179]

‘software’ dw 4 71735 [4, 32, 180, 189]
‘windows’ dw 4 43949 [27, 42, 144, 187]

Figure 1: A fragment of a normalized term-position index for a document
dw . The fragment includes all positions of keywords used in later examples.
OFFSETS is a list of positions of the token in dw . #INDOC is the number of
occurrences of the keyword in dw , and #DOCS is the the count of documents
in the collection that contain the keyword.

A(‘free’, d, f)

πd

σs−f=1

1J1
1J2

A(‘emulator’, d, e)

A(‘software’, d, s)

Plan 1: An algebraic plan which
evaluates the matches to Q1.

A(‘free’, d, f)

πd

σs−f=1

1J1

1J2

A(‘emulator’, d, e)

A(‘software’, d, s)

Plan 2: An algebraic plan which
evaluates the matches to Q1, with a
selection pushed through join J2.

Expressive power to reason about term positions is the funda-
mental difference between full-text search and classical keyword
search. The document model for full-text search is a sequence of
words, whereas for pure keyword search it is a bag of words. Fig-
ure 1 shows part of a full-text index for document dw1. This index
contains positional information: it records the position (offset) of
each word occurrence in the document.

The expressive power of full-text search is illustrated in Query Q1,
a simple query over some collection of documents that includes dw.

find documents with ‘emulator’, ‘free’ and ‘software’
s.t. ‘free’ appears immediately before ‘software’ (Q1)

Keyword search systems that do not index the full-text (word po-
sitions) cannot answer this query without scanning the document
text because ‘appears immediately before’ involves term positions,
which the bag-of-words document model does not maintain.

Document dw is an answer to Q1 because it has one match to Q1
using tokens at offsets 64 (emulator), 3 (free), and 4 (software). In-
formally, matches are tuples consisting of a document id and token
offsets that satisfy the query, such as 〈dw, 64, 3, 4〉. If not for the
‘appear immediately before’ clause, Q1 would have four matches,
one of the four different positions for ‘software’: 〈dw, 64, 3, 4〉,
〈dw, 64, 3, 32〉, 〈dw, 64, 3, 180〉, and 〈dw, 64, 3, 189〉. Three of
these tuples are not matches because the value of the fourth field
minus the value of third field is greater than one, indicating that
‘free’ does not appear immediately before ‘software’.

Plan 1 and Plan 2 both compute the answer to Q1 under Boolean
semantics. These plans compute ‘match tuples’ for each document,
but project only the document ids (a set of documents is the answer
to a boolean search query). A(‘emulator’, d, e) is a relation con-
sisting of every pair of document id (d) and offset (e) such that
‘emulator’ appears in d at position e. A(‘emulator’, d, e) abstracts
a term-position index scan over all positions of ‘emulator’ in the
document collection. The joins (J1 and J2 for reference) are nat-
ural inner joins, and the other operators are standard relational al-
gebra[15]. Plan 1 processes selection after the joins in a manner
consistent with automatic translations from a calculus. Plan 2 se-
lects before join J2, and is derived from Plan 1 using a textbook
selection-pushing rewrite that preserves Boolean semantics.
State-of-the-Art. Plans 1 and 2 illustrate why state-of-the-art full-
text algebras cannot simultaneously facilitate generic scoring and
1dw is a real document; specifically, the abstract portion of the
Wikipedia article Wine_(software) as of March 10, 2009.
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score-consistent optimizations. The state-of-the-art full-text alge-
bra [7] extends each match tuple with a score, and extends each
algebra operator with a function to manipulate the scores. As plan
evaluation constructs and combines match tuples, it simultaneously
computes and aggregates match scores using the scoring functions.
Join, for instance, is extended with the function SJ (Score Join).
SJ(mL,mR) computes the score of an output tuple m, such that
the arguments mL and mR are tuples that join to form m. This
framework supports generic ranking. A new ranking algorithm is
‘plugged in’ by providing new scoring function implementations.

An example implementation, given in [7], for SJ(mL,mR) is
mL.s
|MR|

+ mR.s
|ML|

where mL is a tuple from the left input, mL.s is the
score of tuple mL. |MR| is the number of tuples from the right
input that join with mL. Intuitively, the value mL.s is distributed
equally among the output tuples mL contributes to, so that the join
operator does not create or eliminate score value. Returning to the
example, assume mL is 〈dw, 64, s〉 (s is the score of the tuple).
In Plan 1, mL joins (join J2) with 4 tuples and the value mL.s is
distributed evenly between them. Three of the resulting tuples are
eliminated in the selection, thus only one-quarter of mL.s’s score
value contributes to the final score of dw. In Plan 2, the three tuples
have already been eliminated by the selection before they join mL.
The value of mL.s is distributed to only one tuple, and the whole
value of mL.s contributes to the final score of dw. Thus, while the
selection pushing optimization does not affect which matches are
computed by the plan, it affects document scores. To avoid score
inconsistency the selection pushing optimization must be disabled
when using this scoring function.

Score inconsistency in this example is not the fault of a poorly
chosen scoring function, it is a result of encapsulating score com-
putation into operators that compute matches. Textbook selection
pushing was designed for Relational Algebra and preserves the se-
mantics of computing tuples (matches), but it is unaware of scoring,
which it does not preserve.
Proposed Solution. We model scoring using similar scoring func-
tions as the framework in [7], but without encapsulating them in the
relational algebra operators. Instead, scoring functions are stand-
alone aggregate functions that interact with the other relational al-
gebra operators in the standard way.

We define the correctness of scoring based on the principle of
score isolation. A plan is score-isolated when all matches are com-
puted by a matching subplan which contains no scoring. This sub-
plan yields a match table containing the matches in a defined order
(e.g. lexicographic). Scoring semantics are defined as aggrega-
tion of the match table, thus (conceptually) isolating scoring from
match computation. Plan 3 is a score-isolated plan for Q1, show-
ing the matching subplan in a box. The match table is well-defined
at the semantic, optimization-independent level, thus enabling an
optimization-independent definition of the intended scoring seman-
tics, namely score-isolation. This in turn is key to define score con-
sistency meaningfully, by identifying the score to be preserved.

Following the matching subplan, matches for the same document
are grouped and aggregated into a document score. Two score ag-
gregation operators are used in Plan 3: SJ and SG (Score Group).
SJ still computes the score of joined matches, but not immediately
when joined. Instead, SJ is explicitly called outside the matching
subplan. SG is an aggregate function (like SUM in SQL) that com-
putes the score of grouped matches. For specifics on algebra nota-
tion see Section 3.2 and for scoring semantics see Section 4.

Match tables can be large (see Section 6). Optimizing score-
isolated query plans entails interleaving matching and scoring in a
way that avoids materializing the entire match table while comput-
ing the same answers and scores. A crucial part of this work seeks

πd,s:SJ(e,SJ(f,s))

γd|s:SG(s)

σs−f=1

1J1

A(‘free’, d, f)

τ(lexicographic order)

A(‘emulator’, d, e)

1J2

A(‘software’, d, s)

Plan 3: A score-isolated evaluation
plan for Q1 displaying the matching
subplan within a box.

A(‘free’, d, f)

πd,s:SJ(f,s)

πd,s:SJ(e,s)

γd|s:SG(s)

σs−f=1

1J1

1J2

A(‘emulator’, d, e)

A(‘software’, d, s)

Plan 4: A plan derived from Plan 3
by rewrite optimization. (Only for
some scoring schemes!)

machinery to optimize such plans in a score preserving way using a
mix of classical relational optimizations as well as novel optimiza-
tions that cross the boundary between matching and scoring.

Definition 1 (Score Consistency). An optimizer is score-consistent
if, given a score-isolated input plan, it produces only plans that
compute the same answers and scores as the input plan.

To interleave matching and scoring without violating score con-
sistency, an optimizer must know which optimizations are toler-
ated by the selected scoring function implementation. A naïve
approach requires each function to specify (in meta-data) which
rewrites it tolerates. For instance, to reach optimized Plan 4 from
score-isolated Plan 3, it must be true that SG tolerates unsorted
matches (since the sort operator is removed), and that SJ tolerates
being pushed through joins. But this naïve approach requires the
scoring function designer to know and care about the inner work-
ings of the optimizer, and limits the applicability of the scoring
function implementation to future optimizations.

A better approach has the scoring designer specify a small set
of fundamental properties about her implementation, (e.g. which
functions are commutative, fully-associative, idempotent, mono-
tonic, etc.) and allow the optimizer to infer which optimizations
will preserve score consistency given a selected scoring function.
In Section 5 we describe our solution along these lines.

3. RELATIONAL MODEL FOR FULL-TEXT
The relational model for full-text evaluation has recently been

explored within the database community [7, 2]. Full-text queries
in the relational model are first-order formulae over term positions.
In this section we define MCalc, a full-text calculus used to spec-
ify a set of matches, and MA, a full-text algebra used to compute
those matches. Ranked retrieval needs this set of matches because
scoring functions measure the connection between document and
query; matches establish that connection.

3.1 Matching Calculus
The Matching Calculus (MCalc) specifies the set of matches to

a full-text query in a collection of documents, in the style of the
Domain Relational Calculus. The basic primitive in MCalc is the
HAS predicate. HAS(d, p, k) is true when the word k appears in
document d at position p, and is false otherwise. All HAS predi-
cates have one document variable argument, one position variable
argument, and one keyword (variable or literal) argument.

Full-text predicates define relationships between the positions of
keywords. For example: DISTANCE(p1, p2, n) is true when the dis-
tance from position p1 to p2 is exactly n, and PROXIMITY(p1, p2, n)
is true when the distance from position p1 to p2 is at most n.
More generally, MCalc supports full-text predicates of the form
PRED(p̄, c̄) which specify constraints on position variables in the
vector p̄. Optional constants, c̄, parameterize the constraints. MCalc
is general enough to support generic positional predicates [5].
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MCalc queries take the form {〈d, p̄〉|Ψ(p̄) is satisfied}, where
Ψ is a first-order logic formula over the primitives HAS, EMPTY
(described below) and full-text predicates. The free variables in Ψ
are exactly the document variable d and the position variables in p̄.

Example 1 (MCalc Query):
{〈d,p0, p1, p2〉| HAS(d, p0, ‘emulator’) ∧ HAS(d, p1, ‘free’)
∧ HAS(d, p2, ‘software’) ∧ DISTANCE(p1, p2, 1)} (Q2)

Query Q2 is a MCalc query that finds all matches to Q1. The HAS
predicates restricts position variables p0, p1, and p2 to positions
of keywords ‘emulator’, ‘free’, and ‘software’ respectively. The
DISTANCE predicate specifies the distance between values of p1
(‘free’) and p2 (‘software’) must be exactly 1, expressing the re-
quirement that ‘free’ occur immediately before ‘software’. ♦

MCalc also has a built-in EMPTY predicate that is necessary to
support optional keywords, and to ensure safe disjunctive queries.
EMPTY(p) is true when p binds to the ‘empty position’ symbol ∅.
An empty position value does not imply the keyword associated
with the variable is absent, just that its presence, or lack thereof, is
inconsequential to a particular match.
Example 2 (MCalc Query with Disjunction):
{〈d, p0,p1, p2, p3, p4〉|

(
Ψ0 ∨Ψ1

)
∧ HAS(d, p0, ‘windows’)

∧ HAS(d, p1, ‘emulator’) ∧WINDOW(p0, p1, 50)}
Ψ0 :=EMPTY(p2) ∧ EMPTY(p3) ∧ HAS(d, p4, ‘foss’)

Ψ1 :=HAS(d, p2, ‘free’) ∧ HAS(d, p3, ‘software’) ∧ EMPTY(p4)

∧ DISTANCE(p2, p3, 1)

(Q3)

Q3 asks for matches where the keywords ‘windows’ and ‘emula-
tor’ appear within a window of 50 words, and are accompanied by
either the keyword ‘foss’, or by the phrase ‘free software’. ♦

The formal meaning of ‘match’ is given with respect to MCalc:

Definition 2 (Match). The tuple 〈d, p̄〉 is a match of query Ψ in
document d iff 〈d, p̄〉 is a satisfying assignment for Ψ that maps the
free position variables in Ψ to either word positions in d or to ∅.

MCalc vs. State of the Art. State-of-the-art full-text calculi, such
as FTC[7], were not designed to specify a set of matches (only doc-
uments), and sometimes under-specify matches. Matches to FTC
queries may contain positions of keywords not mentioned in the
query[5]; such matches are not useful for scoring. MCalc adds a
safe-range[1] requirement (similar to SQL) which restricts matches
to only those useful for scoring by binding under-specified posi-
tion variables to ∅ via the EMPTY predicate. Otherwise MCalc
has equivalent expressive power to FTC, which was shown in [7]
to subsume other full-text specifications, including predicate-based
languages [8, 4], and text-regional algebras[12]. See [5] for details
on safety, expressive power, and MCalc’s relationship to FTC.

3.2 Matching Algebra
We express evaluation plans for MCalc queries in the Matching

Algebra (MA). MA has enough expressive power to express all safe
MCalc queries, as Relational Algebra has enough expressive power
to express safe Relational Calculus queries. Queries may be trans-
lated between MCalc and MA using traditional translation methods
developed for the Relational Calculus and Relational Algebra [1].

MA operates on, and outputs match tables. Match tables are lists
of matches, which are tuples of form 〈d, p0, ..., pn〉 where d ranges
over documents, and pi ranges over term positions and ∅. Match
tables are lists (rather than sets) of tuples; table rows and columns
are both sequenced, and tables may contain duplicate rows. We use
“matches”, “tuples” and “rows” interchangeably. The use of tables

is consistent with practical relational algebra and SQL implemen-
tations. The match table for query Q3 on document dw (from Sec-
tion 2) is shown in Figure 2.

The Matching Algebra consists of familiar Relational Algebra
operators: natural join 1, outer bag-union ] [11], selection σ, gen-
eralized projection π, anti-join ., group γ, and sort τ . A formal
specification and description of each operator is available[5]. Due
to space constraints, we focus this discussion on the novel Atomic
Match Factory (A) and clarify our notationfor π and γ.
Atomic Match Factory: A, is the terminal operator in MA, corre-
sponds logically to the MCalc HAS predicate, and abstracts a scan
of the term-position index. The expression A(d, p, k) produces a
match table with two columns, specifically, a document id named
d and a term position named p. The match table contains one tu-
ple 〈d, p〉 for each d and p satisfying HAS(d, p, k) – one for each
occurrence of keyword k in the index. To simplify presentation we
assume that a system has a single library of documents indexed,
and that all queries are applied to the entire library.
Notation. The subscript of π contains a list of attribute names
and assignments with the form a:f(b). The attribute names are
the usual fields that are preserved through a projection, while the
assignment means attribute a in the output tuple gets the value of
function f applied to attribute b in the input tuple.

The subscript of γ has the form A|B, where A is the list of
group-by attributes, andB a list of assignments of the form a:f(b).
In this case, f is an aggregate function (e.g. SUM), and field a in
the output tuple is the result of using f to aggregate the values of b
in the grouped input tuples. We use the following shorthand for bi-
nary aggregation operators: a:+(b) ≡ a := g0.b+g1.b+· · ·+gn.b,
where g0 . . . gn are the grouped tuples.

4. SCORING
Scoring functions measure evidence that establishes the connec-

tion between a document and a query. For GRAFT, we consider a
class of scoring algorithms, called match-scoring algorithms, that
measure specifically the evidence contained in the list of matches
to the query against the document.

We choose match-scoring algorithms for several reasons. Match-
scoring captures many real world algorithms because the list of
matches is a superset of the evidence they require. The match table,
which is already computed for boolean evaluation, contains the list
of matches. Finally, we can model match-scoring algorithms using
a simple algebra of scoring operators that can be integrated with the
Match Algebra, uncovering optimization opportunities.

We validate the expressiveness of our algebra, and of match-
scoring, in Section 7 by demonstrating how several scoring algo-
rithms seen in the literature [7, 13, 16, 20, 25, 22, 28, 29, 34] are
implemented as scoring schemes in our algebra. A scoring scheme
is an implementation of the operators of our scoring algebra.

Section 4.1 introduces the Scoring Algebra (SA) and explains
the underlying intuition, Section 4.2 discusses subtleties of score
aggregation which must be considered when choosing a scoring al-
gebra plan, and Section 4.3 explains how SA and MA work together
to evaluate ranked full-text queries. Due to space constraints, we
relegate to [5] the formalization of the intuitive presentation in Sec-
tion 4.1 and Section 4.2. [5] defines the score of a match table
inductively, as an aggregation of scores of match subtables, and
summarizes the rules that govern the allowed choices of subtables.

4.1 Scoring Algebra
The Scoring Algebra (SA) is an algebra of composable abstract

scoring operators, whose implementations, called scoring schemes,
express match-scoring functions. A canonical SA plan takes as in-
put a match table (the result of computing a MA query) and outputs
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a list of scored documents. An optimized plan interleaves SA and
MA operators, as discussed in Section 4.3, to avoid materializing
full match tables because, as we show in Section 6, their size can
be quite large. A score for document d is computed from the query
matches to d using the following three-step process:
Step 1: Initialization. The term position p in each table cell
is replaced with an initial score value α(p). α is the initializer
function in SA, and typically implements a term weighting function
such as TF-IDF[18], BM25[18], KL Divergence[18], etc.
Step 2: Aggregation. Initial scores are aggregated into a single,
but not final, aggregate score value. Modeling this step using a
single aggregation operator would be too crude, because the match
table has two dimensions with different semantics. Term positions
within the same row have a different relationship than positions in
the same column. Furthermore, term positions in the same row
that match conjunctive sub-expression ‘foo’∧‘bar’ have a differ-
ent relationship than positions matching disjunctive sub-expression
‘foo’∨‘bar’ (details in Section 4.2.1). We developed three binary
aggregation operators to reflect the relationships between positions.

We call term positions within the same match table column al-
ternates of each other. Within the same row, we say that posi-
tions in columns corresponding to a conjunctive (disjunctive) sub-
expression of the query are conjuncted (disjuncted). The relation-
ship among positions induces a relationship among scores. If posi-
tions p, p′ are alternates/conjuncted/disjuncted, we say that so are
the scores α(p),α(p′). Conjuncted, disjuncted, and alternate scores
are combined using, respectively, the conjunctive combinator 7,
the disjunctive combinator 6, and the alternate combinator �.
Step 3: Finalization. The finalization function ω computes a fi-
nal, floating point, score for a document from the aggregate score
produced by Step 2. The aggregate score is a structure, called an
internal score, composed of one or more values that are aggregated
independently. Internal scores are necessary so that score aggrega-
tion, which is defined using binary operators, can express compli-
cated aggregation functions that do not normally compose when ex-
pressed as binary operators. For instance, the mean of {a . . . y, z}
cannot be computed given the mean of {a . . . y} and value z. It can
be computed given z and both the sum and count of {a . . . y} as
the pair (s, c). Adding z to s and incrementing c yields a new pair
(s′, c′). The internal score type for mean is the pair 〈sum, count〉
and ω((s′, c′)) = s′

c′ yields the final score.
The ω function also performs other post-processing including

normalization and incorporation of match-unrelated score compo-
nents such as document age, PageRank[23], etc.
Summary. SA comprises six operators (α, ω, 7, 6, �). The ini-
tialization function α scores individual match table cells. Three bi-
nary score aggregation operators 7, 6, and � aggregate the scores
of the individual cells into a single (internal) aggregate score. Fi-
nally, the finalization function ω post-processes the internal score.
Example 3 (MEANSUM Scoring Scheme Implementation):
We present a scoring scheme called MEANSUM, chosen because
it helps illustrate our points effectively in a single example. More
scoring schemes reflecting the real world scoring algorithms in [7,
13, 16, 20, 22, 25, 28, 29, 34] can be seen in Section 7.
α(d, c, p) : if p is ∅ then : return 〈0.0, 1〉

else : let tfidf := p.#InDoc
d.length

× d.collectionSize
p.#Docs

return 〈tfidf, 1〉
�(s1, s2) : return 〈s1.sum+ s2.sum, s1.count+ s2.count〉
7(s1, s2) : return 〈s1.sum+ s2.sum, s1.count〉
6(s1, s2) : return 〈s1.sum+ s2.sum, s1.count〉
ω(d, s) : letmean := s.sum

s.count

return 1− 1
ln(mean+e)

MEANSUM defines the score of a document as the average score
of all its alternate matches, and the score of a match as the total
score of the individual positions in the match. Term positions in
MEANSUM are scored by tfidf [18].

The initializer function α produces a score for a single match ta-
ble cell populated by a term position or ∅. The function takes three
arguments: a document d, a match table column c, and a term posi-
tion p. Position p must appear in document d and match the query
variable corresponding to column c. Each of these arguments is not
merely an id, but a collection of relevant statistics (e.g. the docu-
ment argument d includes the document length as d.length). When
the position argument is ∅, the implementation returns the pair of
zero and one. Otherwise, p contains a word position summary, and
the implementation returns a pair of a tfidf value and the value one.
MEANSUM uses pairs as its internal score type. The members of
the pair are the two components of a mean computation: the sum
of tfidf scores, and the count of aggregated matches (rows).

The alternate combinator combines alternate scores s1 and s2.
Each input score is a sum of tfidfs, and a count of matches. The
sums are added, as are the counts (alternate match sets must be
disjoint by definition.)

MEANSUM does not differentiate between conjuncted and dis-
juncted scores, thus 7 and 6 have the same implementation. The
arguments s1 and s2 are conjuncted or disjuncted scores. The intu-
ition behind the implementation is similar to that of �, only that in
this case s1 and s2 by definition refer to the same set of matches,
so they have the same counts, which are preserved by 7 and 6.

The finalizer function ω computes the final score value as a float-
ing point number. ω takes two arguments, d is the document, and
s is the internal score computed by aggregating the entire match
table. The sum member of the pair score is divided by the count
member to compute the mean, and the final score is computed by
normalizing the mean to the range [0:1]. ♦

4.2 Match Table Aggregation
SA operators aggregate match (sub)tables into single aggregate

scores. This aggregation is formally defined from the top down,
but practically implemented using bottom-up plans. For now, we
confine our discussion to the top-down definition.

Match table scoring is defined inductively. Two column-wise or
row-wise subtables are chosen and scored recursively. The scores
of the subtables are combined using 7, 6, or � to reach a score for
the full table. Row-wise subtables partition the match table rows.
Column-wise subtables partition the match table columns (and thus
the query variables, which provide the column names). The query
variables are partitioned into conjuncted or disjuncted variable sets
(see Section 4.2.1 for more).

Match tables with more than one column and/or more than one
row allow multiple partitions into subtables. The choice of subta-
bles cannot be arbitrary, rather it must consider the selected scoring
scheme. As a simple example, consider a match table with two
rows a and b. There are two possible row-wise subtable pairs:
({a}, {b}) and ({b}, {a}) which differ merely in order. Given
these two choices, the score of the match table is either score(a)�
score(b) or score(b) � score(a). Clearly, if � is commutative,
then either pair results in the same score, otherwise the score will
depend on which pair is chosen, and a score-consistent optimizer
must choose so as not to perturb the desired order among matches.
A generic score-consistent optimizer must therefore know if the �
implementation of the selected scoring scheme is commutative.

While the commutativity of � provides a simple example, the
following two sub-sections detail two far more subtle issues that
guide the choice among potential subtables.
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p0 p1 p2 p3 p4

27 64 ∅ ∅ 179
27 64 3 4 ∅
42 64 ∅ ∅ 179
42 64 3 4 ∅

Figure 2: The match table for Q3 over dw . Each cell contains either the
empty position symbol ∅, or a term position. Only term offset is shown for
each term position, the other statistics (See Figure 1) are hidden for brevity.

4.2.1 Choosing Column-Wise Subtables
The structure of the query expression defines relationships be-

tween match table columns and between column-wise subtables.
Two columns q and r are conjuncted if q ∧ r is a subexpression of
the query and disjuncted if q ∨ r is a subexpression of the query.
Similarly, two column-wise subtables with variable (column) sets
Q and R are conjuncted if Ψ(Q) ∧Ψ(R) is a subexpression of the
query, where Ψ(Q) is a subexpression over the free variable set Q.
Since the columns in a full match table have a one-to-one mapping
to the free variables in a valid query expression, valid conjuncted
or disjuncted subtables are identified using the query’s syntax tree.

A scoring plan Φ(p̄) is a syntactic transformation of a query
Ψ(p̄) which provides information needed to determine column-
wise subtables: the structure of conjunctions and disjunctions be-
tween free position variables. The transformation procedure is as
follows: erase all non-HAS predicates, erase HAS predicates with
quantified position variables, erase all negations, erase dangling lo-
cal connectives, replace each remaining HAS predicate with its po-
sition variable argument, and finally, replace the remaining ∧ and
∨ with 7 and 6 respectively. The safety condition on MCalc[5]
guarantees this procedure yields a meaningful scoring plan.

Example 4 (Scoring Plan):
The scoring plan for Q3 is obtained by following these steps. First
remove the non-HAS predicates from Ψ:
(HAS(d, p0, ‘windows’) ∧ HAS(d, p1, ‘emulator’))

∧
([

HAS(d, p2, ‘free’)∧HAS(d, p3, ‘software’)
]
∨HAS(d, p4, ‘foss’)

)
Then replace HAS(d, px, k) with px, and ∧ and ∨ with 7 and 6

to arrive at the scoring plan Φ: (p0 7 p1) 7 ([p2 7 p3] 6 p4) ♦

Generic scoring support constrains the selection of column-wise
subtables. In the absence of scoring, MCalc queries obey FO-logic
equivalences. Query q ∧ r is equivalent to r ∧ q because ∧ is com-
mutative. These two FO-equivalent queries result in the scoring
plans q 7 r and r 7 q, that are equivalent only when 7 is commu-
tative for the selected scoring scheme. Similar issues occur with
associativity, commutativity, and monotonicity of both 7 and 6.

Since query equivalence is based on properties of FO-logic and
scoring plan equivalence is not, a question arises: from which of
the many potential syntax trees for Ψ is Φ derived? The matching
plan is obtained from a syntax tree derived using standard FO-logic
equivalences. The scoring plan is obtained from a syntax tree de-
rived using the properties (see Section 5.1) of the selected scoring
scheme. The decoupling of the Matching and Scoring Algebras
thus allows an optimizer to reorder joins (using the flexibility of
FO-logic equivalence) even when a rigid scoring scheme is selected
that does not allow reordering of the score aggregation operators.

Example 5 (Score Computation):
In this example we walk through the process of computing a score
using MEANSUM. Score computation starts from the match table.
Figure 2 shows the match table used in this example, which con-
tains matches in document dw (introduced in Section 2) for Q3.

We score the match table by aggregating the scores for its subta-
bles. For the example, we choose column-wise subtables until only

single-column subtables remain. We first compute the scoring plan
for Q3: Φ = (p07p1)7 ([p27p3]6p4). Each individual column
is a column-wise subtable that must be first scored by aggregating
the initial scores of its rows. We show how column p4 is scored.

Column p4 has four alternate position values: [179, ∅, 179, ∅].
We split p4 into two, then four row-wise subtables: [([179], [∅]),
([179], [∅])]. Each new subtable is a single, uninitialized cell; we
continue the example by showing how these cells are initialized.

The first and third single-cell subtables both contain term posi-
tion 179. α uses statistics from 179’s index record (Figure 1, Sec-
tion 2): 〈Offset=179,#Docs=2044,#InDoc=1, . . . 〉. α also
requires two document parameters, which are dw.length=207 and
dw.collectionSize=4,638,535. Finally,
α(dw, p4, 〈179, . . . 〉) = 〈 1

207
× 4638535

2044
, 1〉 = 〈10.96, 1〉.

The second and fourth single-cell subtables each have the empty
term position ∅. Based on the α implementation for MEANSUM,
α(dw, p4,∅) = 〈0.0, 1〉.

We next aggregate the initial scores of the alternate positions in
column p4 using the alternate combinator:
(〈10.96, 1〉� 〈0, 1〉) � (〈10.96, 1〉� 〈0, 1〉)
= 〈10.96, 2〉� 〈10.96, 2〉
= 〈21.92, 4〉

The scores of the other columns are computed similarly, bring-
ing us back to the computation for the whole match table which is
completed with the conjunctive and disjunctive combinators:
(〈8.156, 4〉7〈32.38, 4〉)7((〈0.134, 4〉7〈2.498, 4〉)6〈21.92, 4〉)
= 〈40.536, 4〉7 (〈2.632, 4〉6 〈21.92, 4〉)
= 〈40.536, 4〉7 〈24.552, 4〉
= 〈65.086, 4〉

Finally, the finalizer function ω computes the final, normalized
document score from the aggregated score:
ω(d, 〈65.086, 4〉) = 1− 1

ln( 65.086
4

+e)
= 0.660. ♦

4.2.2 Scoring Directionality
Scoring directionality has to do with whether row-wise subtables

or column-wise subtables are selected first. Some scoring schemes
are sensitive to this choice. There are two simple scoring patterns:
row-first, and column-first. Row-first scoring involves first com-
puting the score of each row, and combining those scores. For row-
first scoring, row-wise subtables are always chosen when a match
table has more than one row. Column-first scoring involves first
computing the score of each column, and combining those scores.
For column-first scoring, column-wise subtables are always chosen
when a match table has more than one column. In hybrid scoring
row-wise and column-wise score aggregation may be interleaved.

Many scoring schemes are directional; they will compute dif-
ferent scores under row-first aggregation than under column-first
aggregation. When a scoring scheme is directional, one direction
(row-first or column-first) is ‘correct’ – in that it is the intention of
the scoring scheme designer – and hybrid scoring is incorrect.
Example 6 (Scoring Directionality):
Directionality is easy to illustrate with a simple example. Consider
the match table Mbool of conjunctive query a∧ b, where scores are
either T (true) or F (false). We define 7 := ∧, and � := ∨. If we
choose row-first aggregation, then the score computation is shown
as sr . Similarly, sc shows column-first aggregation.

Mbool :=

a b
T F
F T

sr := (T ∧ F ) ∨ (F ∧ T ) = F ∨ F = F
sc := (T ∨ F ) ∧ (F ∨ T ) = T ∧ T = T

Scores computed by row-first and column-first aggregations are dif-
ferent even in this overly-simplistic scenario. ♦

Score evaluation must respect the appropriate pattern for direc-
tional scoring schemes or computed scores will be wrong.
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Diagonal scoring schemes compute the same score using a row-
first, column-first, or hybrid scoring pattern, and are highly desir-
able because they provide the optimizer more flexibility. Some op-
timizations discussed in Section 5 only work for diagonal schemes.
Several scoring schemes we study in Section 7 are diagonal.

Definition 3 (Diagonal Scoring). A scheme is diagonal iff the fol-
lowing properties hold:

(w 7 x)� (y 7 z) = (w � y)7 (x� z)
(w 6 x)� (y 6 z) = (w � y)6 (x� z)

4.3 Integrating Matching & Scoring Algebras
We now introduce GRAFT (Generic Ranking Algebra for Full

Text), which integrates MA and SA. In GRAFT, the operators of the
scoring algebra are hosted by π and γ operators (which in score-
isolated plans are performed outside the matching subplan). Hosted
aggregations are a familiar concept. The SQL query
‘SELECT a+b as c, SUM(d) FROM foo GROUP BY a,b’ trans-
lates to a relational algebra expression where the SUM aggregate is
hosted by a group-by operator and the addition (a+b) is hosted
by a generalized projection. In GRAFT, � is hosted by the group
operator γ, while 6, 7, α and ω are hosted by projection π.

Plans produced by automatic MCalc-to-GRAFT translation are
score-isolated (introduced in Section 2). Score-isolated plans con-
sist of a matching subplan with no scoring operations that computes
a match table, and a scoring portion (everything above the match-
ing subplan) which computes the match table score. The optimizer
starts with a canonical score-isolated plan, rewriting it iteratively.

There are two canonical score-isolated plans for any MCalc query
which compute scores in a row-first (column-first) manner. Which
one is used depends on the directionality of the selected scoring
scheme as discussed in Section 4.2.2. Both plans share the same
matching subplan. Canonical matching subplans use a right-deep
join tree and join order follows the order of keywords in the query.
Selections follow joins, and a sort follows selections. Plan 7 shows
the matching subplan of the canonical score-isolated plan for Q3.

The scoring portion of the row-first canonical plan first scores
each match table cell and row by evaluating α and the scoring plan
Φ in the context of a π. It then aggregates the row scores using �
in the context of γ. Finally, it computes the final scoring using ω in
the context of π. Plan 6 shows the scoring portion of the row-first
canonical score-isolated plan for Q3.

The scoring portion of the column-first canonical plan first scores
each match table cell by evaluating α in the context of π. It then
uses � in the context of γ to compute column scores. It then eval-
uates the scoring plan Φ to combine column scores, and computes
the final scoring using ω in the context of π. Plan 5 shows the
scoring portion of the column-first canonical plan for Q3.

5. OPTIMIZATION
Optimizing GRAFT queries involves interleaving matching and

scoring to avoid materializing the entire match table, while com-
puting the same answers and scores as the canonical score-isolated
plan. The performance of GRAFT queries stems from the size
of the match table – a crucial intermediate result in score-isolated
plans. We base our semantics on the match table for two reasons:
it allows us to use an unrestricted, fully expressive set of full-text
predicates; and we consider expressive ranking algorithms that use
all of the matches as evidence for scoring. In the worst case, the
match table is the cross product of the position list for each query
keyword. Since the number of positions of each keyword scales
linearly with the size of the data, the size of this cross product is
O(WQ) whereW is the size of the library in words, and Q is the
size of the query. Eager materialization of the match table, as in a

score-isolated query plan, is a costly step, potentially incurring ex-
ponential complexity. Match tables are, however, only conceptual,
they need not always be materialized, and certainly not eagerly.

In Section 5.1 we describe some design-time-specified proper-
ties of scoring scheme implementations that are relevant to the ap-
plicability of optimizations. In Section 5.2 we list useful relational
optimizations, both classical and novel, and discuss how each is
related to properties from Section 5.1.

5.1 Optimization-Relevant Properties
With respect to a selected scoring scheme, some optimizations

are valid (preserve score consistency) or invalid (do not preserve
score consistency). The optimizer must be able to discriminate and
only apply valid optimizations. To do this, the optimizer needs
to know some properties of each scoring scheme implementation.
These properties are declared by the scoring scheme developer.

We keep the set of properties simple, small, and high level to re-
duce burden on the developer and improve maintainability across
updates. The scoring scheme developer can specify the properties
without understanding the workings of the optimizer, and changes
in the optimizer will not break previously specified scoring schemes.

The set of specified properties includes basic mathematical prop-
erties of aggregation operators: associativity, commutativity, mono-
tonicity, and idempotency of 7, 6, and �. If the scoring scheme is
not diagonal (see Section 4.2.2), the developer must specify whether
she intends the scoring to be row-first or column-first. Finally, we
define here three additional properties that are useful for determin-
ing the validity of interesting optimizations.

A � operator multiplies if a sequence of equal scores can be ag-
gregated in one operation. Specifically, if there exists and operator
⊗, implementable in constant time, such that:

s1 � s2 � ...� sk ≡ s0 ⊗ k where ∀i, j : si = sj

A scoring scheme is constant when all matches for a document
have the same score, and the alternate combinator � is idempo-
tent. The constant property implies that finding one match for a
document is enough to score the document. Specifically:

∀m1,m2 : (matches(m1, doc) ∧matches(m2, doc))→
(score(m1) = score(m2) = score(m1) � score(m2))

A scoring scheme is positional if term positions factor into scores.
Specifically, a scoring scheme implementing α is positional iff:

∃p0, p1, d, k : HAS(d, p0, k) ∧ HAS(d, p1, k) ∧ α(p0) 6= α(p1)

5.2 Study of Optimizations Under Scoring
We first relate some classical relational optimizations to the rele-

vant properties an optimizer must consult to check validity of each
optimization for a selected scoring scheme. Then we do the same
for both existing and novel full-text-specific optimizations.

5.2.1 Classical Optimizations
Sort Elimination. Canonical GRAFT plans have a single sort
operator which guarantees a well-defined order to matches in the
match table. This order is necessary for scoring schemes where �
is non-commutative. When� commutes, the order is irrelevant and
the sort operator may be removed. If � does not commute, sorting
can sometimes be eliminated using classical techniques [24].
Selection Pushing & Join Reordering. Selection pushing and
join reordering, are both textbook relational algebra optimizations.
Since score aggregation in GRAFT is decoupled from join and se-
lection operators, these optimizations are not prohibited by any
scoring schemes. They must still be applied carefully because, for
instance, some join orders are more amenable than others to opti-
mizations that push score aggregation (described below).
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πd,s:(v7w7[(x7y)6z)])

matches(Q3, dw)

πd,s:ω(s)

γd|v:�(v),w:�(w),x:�(x),y:�(y),z:�(z)

πd,v:α(v),w:α(w),x:α(x),y:α(y),z:α(z)

Plan 5: Scoring portion of the column-first
canonical score-isolated plan for Q3.

πd,s:(v7w7[(x7y)6z)])

matches(Q3, dw)

πd,s:ω(s)

γd|s:�(s)

πd,v:α(v),w:α(w),x:α(x),y:α(y),z:α(z)

Plan 6: Scoring portion of the row-first
canonical score-isolated plan for Q3.

A(‘emulator’, d, w)

τd,v,w,x,y,z ASCENDING

σWINDOW(v,w,50)∧DISTANCE(x,y,1)

A(‘windows’, d, v)

matches(Q3, dw)

1

1

]

A(‘software’, d, y)

1

A(‘foss’, d, z)

A(‘free’, d, x)

Plan 7: Canonical matching subplan for Q3

Eager Aggregation. One way to avoid full materialization of
match tables is to eagerly aggregate the matches in intermediate re-
sults by pushing group-bys down the plan. See Yan and Larson [33]
for details on eager aggregation. Yan and Larson also studied ea-
ger aggregation in the context of generic aggregate functions [33].
We can directly map their aggregate function classifications to our
properties and assert that eager aggregation is applicable when� is
fully associative. Additionally, and unique to our application, when
the selected scoring scheme requires row-first scoring, γ operators
hosting � may not be pushed down through π operators hosting 7
or 6 (as doing so would violate the row-first requirement).
Eager Counting. Eager counting [33] is a technique that groups n
identical tuples into a single tuple with a count value n. When two
eagerly counted tuples join, their counts are multiplied. Counted
tuples are expanded for aggregation, but otherwise eagerly counted
tuples act as regular tuples in the system. The expansion step prior
to aggregation can be avoided for score aggregation if the � oper-
ator multiplies (see Section 5.1).
Zig-Zag Joins. The zig-zag join[15] is a special case of sort-
merge join useful in fully streaming plans/subplans when each join
attribute is indexed. The zig-zag join consumes its inputs by ex-
ploiting order to signal the index scan over one join attribute to
skip directly to the value of the other join attribute. Zig-zag join
signals the index scan operator even if it is several levels down the
operator tree, thus bypassing large swaths of intermediate results
from earlier joins. Zig-zag is a powerful join technique for GRAFT
since every plan leaf is an ordered index scan.

In the context of relational full-text, zig-zag joins perform the
same function as the skip pointers[18] commonly used in IR sys-
tems to accelerate inverted list intersection.
Rank Joins. Top-k optimizations speed up query execution by
first exploring the documents that show the highest potential for a
high score, and avoiding further exploration of lower scoring docu-
ments once the top-K are established. The relational rank-join[17]
is a state-of-the-art algorithm for efficiently joining two rank-order
tuple streams, producing a rank-order tuple stream.

Since MA uses a standard relational join, the rank-join may, un-
der some circumstances, be used to implement a match join. The
GRAFT rank-join hosts the7 operator which it uses to combine the
scores of joining tuples. Therefore, a rank-join may only be used
where 7 may be pushed into the matching subplan. Additionally,
rank-join only works with monotonically increasing ranking func-
tions [17], so 7 must be monotonically increasing for rank-join to
apply. A similar rank-union operator is also possible. Rank-union
hosts the 6 operator, requiring it to be monotonically increasing.

5.2.2 Full-Text Specific Optimizations
Forward-Scan Joins. Botev et al. [7] identified a set of com-
mon full text predicates (PPREDS) that can be executed in a sin-
gle forward pass over the index and can be used as join predicates
to zig-zag joins. They developed an efficient evaluation plan for
a full-text language restricted to PPRED. The language restriction

enables the forward-scan join technique: a stateless zig-zag join
that advances both its inputs in a forward-only manner. We discuss
the complexity results for the PPRED algorithm in Section 6.

The forward-scan join may be used as a physical join opera-
tor in GRAFT queries, but only for very specific scoring schemes.
Specifically, the scoring scheme must be constant (see Section 5.1)
since the forward-scan join may miss some matches [5].

5.2.3 Novel Full-Text Optimizations
Alternate Elimination. For constant scoring schemes, alternate
aggregation is unnecessary since the score of any match is the doc-
ument score. In this case, group-by operators used to aggregate
scores may be replaced by an alternate elimination operator δA:

γA|B(P ) ≡ δA when all aggregation functions in B are �

The implementation of alternate elimination differs from group-by
in two crucial ways: (1) it emits a new result match as soon as a
new group is seen instead of waiting to see all group members, and
(2) it signals its child operators to skip any further tuples in the
group. Alternate elimination is similar to relational-algebra’s du-
plicate elimination, except that matches (unlike tuples) are by def-
inition never duplicates. Because matches behave like duplicates
under a constant scoring scheme we can treat them as such, and in
doing so we exploit the scoring scheme property.
Pre-Counting. Positions are not always used by a query. For
example, consider a keyword k that is involved in no full-text pred-
icates. Unless the positions are needed by the scoring scheme, they
may be eliminated by the rewrite A(d, p, k) ; πd(A(d, p, k)).
The projection creates duplicates, which may be eagerly counted
by the rewrite πd(A(d, p, k)) ; γd|c:COUNT(∗)(πd(A(d, p, k))). In
this case, the Match Factory, projection, and eager-counting group-
by can be replaced by a much more efficient Pre-Counting Atomic
Match Factory CA:

γd|c:COUNT(∗)(πd(A(d, p, k))) ≡ CA(d, p, k)

The novelty and efficiency of pre-counting is at the physical level:
instead of the term-position index, CA scans a much smaller term-
document index (a logical subset of the term-position index). Pre-
counting yields significant performance gains over eager counting;
in Section 8 we report a query with twenty-fold runtime speedup.

Since it forgets positions, pre-counting is valid only for non-
positional scoring schemes.

5.2.4 Discussion of Optimizations
Table 1 summarizes specifically which scoring scheme proper-

ties are required by each optimization discussed in this section.
One positive feature of Table 1 is that there are no restrictions on
classical optimizations (join reordering, selection pushing, zig-zag
joins, and eager counting). This fact is a direct consequence of
our aggregation scoring model that decouples scoring from match
computation as much as possible. As shown in Section 2, this is in
contrast to state-of-the-art systems that encapsulate score computa-
tion in join and selection operators: they must either give up these
optimizations or score-consistent generic ranking.
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OPTIMIZATION OPERATOR REQ. DIRECTION REQ.
τ elim. � commutes

1 reordering
σ pushing
zig-zag 1

forward-scan 1 constant
alt. elim. constant

eager agg. � fully associative not row-first
eager count

pre-count non-positional
rank-join 7 monotonic increasing diagonal

rank-union 6 monotonic increasing diagonal

Table 1: Each optimization listed can be applied when the selected scoring
scheme satisfies the operator and direction requirements listed in the same
row. Entries in this table are limited to properties that determine the opti-
mization’s correctness. An optimizer may consult other properties to assist
optimization heuristics (e.g. eager count is not generally not helpful for
positional scoring schemes).

πd,score:ω(s)

γd|x:�(x),y:�(y)

γd|v:�(v),w:�(w)

πd,x:α(x),y:α(y)

πd,v:α(v),w:α(w) πd,z:α(z)

γd|s:�(r)

A(‘windows’, d, w) A(‘emulator’, d, v)

πd,r:(v7w7((x7y)6z))

1

1DISTANCE(x,y,1)

]

CA(‘foss’, d, z)1WINDOW(v,w,50)

A(‘free’, d, x) A(‘software’, d, y)

Plan 8: An optimized evaluation plan for Q3 for a diagonal,
non-positional scoring scheme.

Optimizations involving grouping and aggregation, show quite a
few restrictions in Table 1. This is not a surprise, as � is insepara-
ble from the group-by operator. Four optimizations are described
(in the middle row block of Table 1), each with different scoring
scheme restrictions as well as different applicability within queries.
Given their different applicability, these optimizations should be
viewed as complementary.

Example 7 (Optimized Plan):
Plan 8 is a plan for Q3 showing various optimizations. The Pre-
Counting Atomic Match Factory has been chosen for the keyword
‘foss’ since it is not involved in any predicates. Selections are
pushed down into join predicates and joins are reordered. Group-by
operators are pushed down beneath joins. Finally, the sort operator
has been eliminated. ♦

In general, GRAFT’s extensible design allows incorporating as
optimizations various techniques from IR systems with rigid plan
generation and/or restricted query language. GRAFT broadens the
applicability of these techniques to queries and scoring schemes
such systems do not support, by identifying the query subplans that
are score-consistent with these techniques.

6. COMPLEXITY
The evaluation complexity of full-text languages has been exten-

sively studied [7]. MCalc and MA have the same evaluation com-
plexity as the similarly expressive FTC[7]: LOGSPACE-complete
for the data and PSPACE-complete for the expression size. This
result should not be a surprise. First-order relational calculus eval-
uation has the same data and expression complexities[31]. Despite
this complexity, optimizers have made SQL and relational algebra
practical even for very large datasets. The relational framework of
GRAFT opens similar optimization opportunities for MCalc.

Lower complexity evaluation plans for restricted full-text lan-
guages have also been studied, but the restrictions placed on scor-
ing generality for these plans have not been studied. Here we con-
sider two such plans from [7] focusing specifically on the scoring
scheme restrictions implied by the plans.

Languages in the class BOOL (no full-text predicates), have an
evaluation plan in O(D ×Q2)[7] where D is the number of docu-
ments in the library and Q the number of keywords in the query.
This algorithm scans a term-document index instead of a term-
position index. Because term positions are not scanned, positional
scoring schemes [16, 25] cannot be used with this algorithm. The
BOOL algorithm is simulated in GRAFT using the pre-counting
optimization with the same restriction.

Languages in the class PPRED (discussed in Section 5.2.2) have
an evaluation strategy that is O(W×Q2)[7] whereW is the num-
ber of words in the collection. This algorithm is guaranteed to find
a match in a document if one exists[7], but will not necessarily find
all matches[5]. Because matches are missed, this algorithm is com-
patible only with scoring schemes that are constant and thus do not
require all matches. The PPRED algorithm is simulated in GRAFT
using forward-scan joins with the same restriction.

Clever evaluation techniques are crucial to low complexity plans
for restricted languages, and for optimizing plans for expressive
languages, but they must be applied carefully when using generic
scoring. With some scoring schemes, the restricted language plans
and similar optimizations become invalid. To illustrate how care-
ful one must be, we point out that the paper which describes the
efficient plans for BOOL and PPRED [7] also describes a scoring
scheme (which we call Join-Normalized in Section 7) that is not
score-consistent for either plan.

7. STUDY OF REAL SCORING SCHEMES
To validate the expressiveness of our Scoring Algebra, we con-

sidered scoring algorithms from the literature [7, 13, 16, 20, 22,
25, 27, 28, 29, 34]. From these, we identified seven appropriate
scoring schemes that capture all the scoring algorithms. We imple-
mented all seven schemes in our prototype and analyzed the set of
scoring-relevant properties of the implementations. As shown in
Table 2, even in our sample of scoring schemes there is significant
variance in these properties. We combined our list of optimization
requirements (Table 1) with the scoring scheme property analysis
(Table 2) and obtained a list of rewrite optimizations that each scor-
ing scheme allows (Table 3).

The schemes we implemented are as follows:
AnySum.
α(d, a, p) : return Bm25(d, p)
7(sL, sR) : return sL + sR
6(sL, sR) : return sL + sR
�(sL, sR) : return sL
ω(s) : return s

AnySum is a scoring scheme typical of keyword-search systems
that find a single match per document, and do not differentiate be-
tween different positions of a term. Thus all positions (including
∅) for a keyword have the same term weight, and consequently
all matches to a document have the same score. AnySum defines
the score of a document as the same as the score of its matches;
the number of matches in a document does not factor into score.
The score of a match is the sum of the BM25[18] (similar to tfidf)
measures of the term positions that together form the match.

The scoring schemes we studied from Terrier[22] (DFR models),
Timber[34] (as implemented for INEX) are instances of AnySum.
Terrier also uses a similar scoring scheme for language model scor-
ing where the score of a match is the product (vs sum) of the term
position scores.
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SumBest.
Extends AnySum; overrides:
α(d, a, p) : if p is ∅ : return 0.0 else return Bm25(d, p)
�(sL, sR) : return max (sL, sR)

SumBest is column-first, initializes the score of non-∅ positions
to BM25[18] and the score of ∅ to 0. It defines a column score as
the maximum score in that column, and the document score as the
sum of the column scores.
Lucene. Lucene [27] is a respected open-source keyword search
engine with limited support for full-text predicates. This consists
of the PROXIMITY and the phrase predicate, and, in contrast to
GRAFT, allows no “plug-in” full-text predicates.

The scoring scheme used by Lucene goes slightly beyond the
scoring model we present here. Specifically, for the proximity pred-
icate, imperfect matches are allowed, whose scores reflect the di-
vergence from the proximity parameter. Because we feel that no
evaluation of our GRAFT prototype is complete without a compar-
ison to Lucene, and because we didn’t want to rule out proximity
predicates in this comparison, we have implemented in our proto-
type an extension to capture this special matching behavior. We
omit presentation of this extension because it is an ad-hoc solution
to a more general problem: fuzzy matching. Fuzzy matching for
MCalc queries is beyond the scope of this paper, and an interest-
ing follow-up topic. Excluding the special handling of proximity
predicates, the Lucene scoring scheme coincides with SumBest.
Join-Normalized Weighting.
α(d, a, p) : if p is ∅ : return 〈0.0, d.occurrences(a)〉

let scr := TfIdf(d, p)
let size := p.countInDoc
return 〈scr, size〉

7(sL, sR) : let scr := sL.scr
sR.size

+ sR.scr
sL.size

let size := sL.size ∗ sR.size
return 〈scr, size〉

6(sL, sR) : let size := (sL.size ∗ sR.size) + sL.size+ sR.size

let src :=


sL.scr

2
if sR.scr = 0.0

sR.scr
2

if sL.scr = 0.0
sL.scr

2∗sR.size
+ sR.scr

2∗sL.size
else

return 〈scr, size〉
�(sL, sR) : return 〈sL.scr + sR.scr, sR.size〉
ω(s) : return s.scr

Join-Normalized weighting implements the scoring from [7] as dis-
cussed in Section 2, and a similar scoring scheme from [20]. When
implemented in the GRAFT framework, the Join-Normalized scor-
ing scheme does not have access to the size of intermediate results
(because our scoring model does not include an explicit API to this
statistic). To overcome this, the scoring scheme maintains the de-
sired statistic in the size field of the internal score structure. As
detailed in Section 2 the intermediate result size changes under op-
timizations. To obtain a well-defined score, we compute the size
intermediate results would have in a canonical, score-isolated plan
(i.e. the intermediate results are subtables of the match table).
Event Model.
α(d, a, p) : if p is ∅ : return 0.0 else return Bm25(d, p)
7(sL, sR) : return sL ∗ sR
6(sL, sR) : return sL + sR − (sL ∗ sR)
�(sL, sR) : return sL + sR − (sL ∗ sR)
ω(s) : return s

The probabilistic event model found in [13] and [29] treats the
initial term weights as probabilistic events. The score of a match is
the conjunction and/or disjunction of the term weights according to
the scoring plan, using the standard inclusion-exclusion principle
under the independence assumption. Finally, a document score is a
disjunction of the scores to all matches.

Any Sum Join Mean Event BestSum
Sum Best Lucene Normal Sum Model +MinDist

directional col row row
positional X2 X

� associates left
� commutes X X X X X X X

� monotonic inc X X X X X
� idempotent X X X X
� multiplies X X X X X X X
� constant X

7 associates
7 commutes X X X X X X X

7 monotonic inc X X X X X X
6 associates
6 commutes X X X X X X X

6 monotonic inc X X X X X X X

Table 2: Optimization-relevant properties of scoring schemes that we im-
plemented in our prototype for our study.
2 Lucene is positional only for queries with phrase or proximity predicates.

Any Sum Join Mean Event BestSum
Sum Best Lucene Normal Sum Model +MinDist

τ elim. X X X X X X X
1 reordering X X X X X X X
σ pushing X X X X X X X
zig-zag 1 X X X X X X X

forward-scan 1 X
alt. elim. X

eager agg. X X X X X
eager count X X X X X X X

pre-count X X X X X X
rank-join X X X X

rank-union X X X X

Table 3: By combining Table 1 and Table 2 we derive the set of optimiza-
tions that may be consistently applied for each scoring scheme.

BestSum+MinDist.
α(d, a, p) : if p is ∅ : return 〈0.0,∞, [ ]〉

let scr := Bm25(d, p)
let pos := [p.offset]
let dist := MinDist(pos)
return 〈scr, dist, pos〉

7(sL, sR) : let scr := sL.scr + sR.scr
let pos := sL.pos@sR.pos
let dist := MinDist(pos)
return 〈scr, dist, pos〉

6(sL, sR) : return sL 7 sR
�(sL, sR) : let scr := max(sL.scr, sR.scr)

let dist := min(sL.dist, sR.dist)
return 〈scr, dist〉

ω(s) : return s.scr + log(1 + e−s.dist)

BestSum+MinDist uses the MinDist proximity measure from [25].
MinDist gives a high score to matches where two matching terms
are very close, and a low score when no two matching terms are
very close. MinDist over full-text is interpreted as applying to in-
dividual matches, since the proximity of keywords that do not oc-
cur in the same match is irrelevant. BestSum+MinDist computes
the score of an individual match as the sum of the BM25 score of
each term position in the match, multiplied by the MinDist metric.
The score of a document is the score of its highest-scoring match.
MinDist concerns term position so BestSum+MinDist is positional.

All the proximity measures found in [25] and the scoring schemes
from [28, 16] are implemented similarly to BestSum+MinDist.

8. EXPERIMENTAL RESULTS
We report on experiments showing both that (a) our novel op-

timizations effectively improve query performance beyond classi-
cal optimizations and (b) despite additional overhead from generic
scoring, GRAFT performance frequently exceeds state-of-the-art
full-text search systems that do not implement generic scoring.
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Our contributions regarding classical optimizations (join order,
selection pushing, eager aggregation, eager count, zig-zag and rank-
joins) are in building a framework to (correctly) exploit them, not
their development. We do not validate their potential here.
Data. As a test dataset, we used a snapshot of the English Wiki-
pedia from September 2010 [26]. We indexed the text from all
articles, talk pages, disambiguation pages, and figure detail docu-
ments. The index constitutes 2.4 billion words (12 million unique
terms) distributed over 5.2 million documents.
Queries. We give results with respect to eight queries formulated
over Wikipedia, listed below in a shorthand syntax that is more
concise than MCalc. Position variables are implicit. Keywords
are conjuncted unless separated by a vertical bar. Quotes imply
a PHRASE predicate. Other predicates are preceded by keyword
arguments in parenthesis and followed by constant arguments in
brackets. Q8 is the translation of MCalc query Q3 to this shorthand.

Q4. san francisco fault line
Q5. dinosaur species list (image | picture | drawing | illustration)
Q6. “orange county convention center” orlando
Q7. “san francisco” “fault line”
Q8. (windows emulator)WINDOW[50] (foss | “free software”)
Q9. (free wireless internet)PROXIMITY[10] service
Q10. arizona ((fishing | hunting) (rules | regulations))WINDOW[20]
Q11. “rick warren” (obama inauguration)PROXIMITY[4]

(controversy invocation)PROXIMITY[15]

Q4 and Q5 are simple boolean keyword queries, used as yardsticks
to measure the overhead introduced by support for full-text predi-
cates. Q6 and Q7 have phrase predicates which, from the full-text
perspective, are syntactic sugar over a series of DISTANCE pred-
icates. Q8 through Q11 have predicates typically only found in
full-text search systems.

Besides Q8 our queries are non-artificial. (Q8 was constructed
for the examples in earlier sections.) Q4 and Q7 were chosen at ran-
dom from a friend’s web search history (with permission). The rest
are loosely based on topics from the TREC 2009 Web Track [10].
Web track queries are simple keyword search, not full-text search,
so we rephrased topic descriptions into full-text queries.
Measurement Methodology. Each measurement was repeated
nine times in succession, and we report the average of the five me-
dian times. This methodology was chosen to minimize the chance
that a garbage collection or JIT event would occur during one mea-
surement and not during another.

All systems tested cache index entries in RAM. Measurements
are all taken on a warm cache; no measured times include disk ac-
cess.
Platform. Experiments ran on a Phenom II 940 CPU, using the
IcedTea6 1.8.1 JVM restricted to 4GB of RAM on Linux 2.6. Our
GRAFT implementation is single-threaded.
Plans and Optimizer. Starting with a canonical plan, first the
selection pushing rewrite is applied iteratively until the plan con-
verges. Then either the eager aggregation or eager counting rewrite,
is applied similarly. Eager counting is used when the scoring scheme
is constant (in this case eager counting always performs better) or if
the scoring scheme does not support eager aggregation. Plans used
in experiments are listed in [5] to ensure repeatability. We expect
a cost-based optimizer to outperform the heuristic optimization we
used. Cost-based optimization is beyond the scope of this work.
Alternate Elimination. To measure the benefit of alternate elim-
ination, we started with plans optimized as described above. We
used the AnySum scoring scheme, and replaced each group-by op-
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Figure 3: Execution time reduction provided by Alternate Elimination op-
timization, Pre-Counting optimization, and a combination of both over the
classical eager count optimization.

erator with the alternate elimination operator per the equivalence
listed in Section 5.2. We use AnySum for this experiment because
it is the only scheme compatible with alternate elimination that we
list in Section 7. We report the execution time reduction, i.e. the
difference between unoptimized and optimized execution time as
percentage of the unoptimized time. These results are the first (red)
column of each cluster in Figure 3 (taller is better).

Alternate elimination improves the performance of all eight que-
ries. It is most effective, e.g. in Q5, when it replaces a group-by
operator with moderate to large group sizes. In this case, a regu-
lar grouping operator waits for its inputs to produce every tuple in
the group. The alternate elimination operator does not wait, rather
it recursively signals operators in its input subplan to skip further
members of the same group, speeding up the subplan.
Pre-Counting. To test pre-counting, we again started with plans
optimized as described above for the AnySum scoring scheme, and
then applied the pre-counting rewrite listed in Section 5.2 itera-
tively until the plan converged. The performance provided by pre-
counting, measured in the same manner as alternate elimination,
is shown in the middle (blue) bars in Figure 3. Pre-counting does
not apply to Q7 or Q11 because they have no free keywords; all
keywords in these queries occur in full-text predicate arguments.

Pre-counting substantially improves the performance of queries
Q4 and Q5 since all of their keywords are free. Q6, Q9, Q8 and Q10
have one free keyword each. Q8 and Q10 do not benefit from pre-
counting due to Amdahl’s law: the free keywords represent only
3% and 2% of the positions scanned for the unoptimized Q8 and
Q10, as opposed to 31% and 69% for Q6 and Q9 respectively.
Combined Effect. The third (green) bar of each cluster in Figure 3
is the combined evaluation time reduction of our two novel opti-
mizations. Alternate elimination and pre-counting both produce
results with a single tuple per document. Alternate elimination’s
effectiveness depends on having an input that produces multiple tu-
ples per document. In Q4, Q5 and Q9 alternate elimination oppor-
tunities follow pre-counting; thus pre-counting minimizes alternate
elimination’s effect. In Q8 and Q10 alternate elimination oppor-
tunities follow full-text predicates, and consequently keywords are
not pre-counted. An additive effect occurs for queries like Q6 with
both predicate-free and predicate-full sub-plans.
Comparison to State-of-the-Art. Compared to many traditional
IR search systems, our matching and scoring model require addi-
tional bookkeeping to support more expressive queries and generic
ranking. We tested our system against two state-of-the-art IR sys-
tems Lucene[27] and Terrier[22] to show that the additional book-
keeping does not negatively impact our performance. We also tried
to compare against Egothor[14] and FTA[7], but Egothor repeat-
edly failed to index our collection, and we were unable to obtain
the FTA implementation.

Let us first note the difference in expressive power. Lucene
and Terrier support only the PROXIMITY and PHRASE predicates.
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Figure 4: Execution time Lucene, GRAFT optimized for Lucene’s scoring
scheme, Terrier, and GRAFT optimized for Terrier’s scoring scheme.

GRAFT additionally supports DISTANCE, ORDER, WINDOW, and
can support as plug-ins virtually any predicate on positions. It can
be easily extended to support such predicates as SAMESENTENCE
or SAMEPARAGRAPH, assuming the index supports sentence and
paragraph offsets. Of the seven scoring schemes we studied, Terrier
only supports AnySum, and Lucene supports its own.

Figure 4 shows the comparative execution times for Q4 through
Q11 on GRAFT optimized for Lucene’s scoring scheme, Lucene,
GRAFT optimized for Terrier’s scoring scheme, and Terrier. In all
cases, results are fast enough for interactive use. Properly opti-
mized GRAFT plans run as fast, if not faster than both Lucene and
Terrier. Lucene and Terrier do not support Q8 or Q10 because they
do not support the WINDOW predicate.

It is worth noting that Lucene and Terrier are multi-year, multi-
person projects tuned for traditional keyword and phrase search
queries such as Q4 through Q7. Remarkably, GRAFT is very com-
petitive against both systems even on such simple queries, and even
using the systems’ own custom scoring schemes. The fact that
this holds despite the overhead stemming from GRAFT’s support
for higher query expressivity, score genericity, and score consis-
tency, is due to unlocking the optimization potential allowed by
each scheme.

9. CONCLUSIONS
This work is motivated by the observation that state-of-the-art

algebraic execution of full-text queries creates a conflict between
support for generic scoring on one hand, and score-consistent opti-
mization on the other. To resolve this conflict, the same query must
be optimized differently for different scoring schemes.

We show how to build an optimizer that takes as plug-in param-
eter a scoring scheme, and exploits its inherent potential for opti-
mization without perturbing scores. Towards a well-defined scor-
ing semantics, we first introduce an execution-independent scoring
model based on the principles of match-scoring and score isolation.
We show that our model supports score-consistency for classical
relational algebra optimizations, IR techniques adapted as algebra
optimizations, and even novel optimizations that cross the bound-
ary between matching and scoring. We show that our scoring model
can capture different interesting scoring algorithms from the litera-
ture [7, 13, 16, 20, 22, 25, 28, 29, 34] in a generic manner, and we
describe a technique by which an optimizer can correctly optimize
a plan given different scoring schemes.

Compared to state-of-the-art IR engines tuned for classical key-
word and phrase search, GRAFT incurs overhead due to its support
for more expressive full-text predicates and for a wider class of
scoring schemes under score-consistency. However such overhead
is more than made up for by the proposed optimizations, which
yield an all-around competitive engine.
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