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ABSTRACT
We study the problem of context-sensitive ranking for document
retrieval, where a context is defined as a sub-collection of docu-
ments, and is specified by queries provided by domain-interested
users. The motivation of context-sensitive search is that the ranking
of the same keyword query generally depends on the context. The
reason is that the underlying keyword statistics differ significantly
from one context to another. The query evaluation challenge is the
computation of keyword statistics at runtime, which involves ex-
pensive online aggregations. We appropriately leverage and extend
materialized view research in order to deliver algorithms and data
structures that evaluate context-sensitive queries efficiently. Specif-
ically, a number of views are selected and materialized, each cor-
responding to one or more large contexts. Materialized views are
used at query time to compute statistics which are used to com-
pute ranking scores. Experimental results show that the context-
sensitive ranking generally improves the ranking quality, while our
materialized view-based technique improves the query efficiency.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Retrieval models; H.2.4 [Database Management]:
Systems—Query processing

General Terms
Algorithms, Performance

Keywords
Context-sensitive ranking, materialized views, view selection

1. INTRODUCTION
While research in information retrieval (IR) has generated many

effective ranking models for general-purpose search, existing rank-
ing models may not deliver satisfactory rankings for domain ex-
perts. In this paper, we propose a new query model that allows
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expert users to specify contexts. The ranking of the query result is
computed based on keyword statistics collected from the special-
ized contexts. This is motivated by the observation that keyword
statistics usually vary dramatically from one domain to another
and therefore the ranking of the query result will vary accordingly.
For example, while “leukemia” is rare over the Web, it is a fairly
common term in biomedical science (as captured in the PubMed1

database of 18 million articles), and is extremely common among
articles of PubMed that are annotated to be cancer-related. Con-
ventional ranking models will consider “leukemia” as a discrim-
inative term, which is not true from the perspective of a cancer
researcher or doctor, who typically narrows his/her interest in the
cancer-related articles. Given that all ranking models and func-
tions use keyword statistics to compute ranking scores, specialized
keyword statistics naturally lead to specialized rankings for users
interested in narrow domains.

1.1 A Motivating Example
PubMed contains 18 million biomedical citations. All the ci-

tations include title, abstract, and authors’ information. Citations
are often linked to full-text articles. Additionally, every citation
is annotated with one or more MeSH (Medical Subject Headings)
terms from a controlled vocabulary, which specifies a variety of
concepts in biomedical science, e.g., “anatomy”, “diseases”, “diag-
nosis”. MeSH terms in the vocabulary are organized in a hierarchy,
as shown in Figure 1. A MeSH term may appear in several places
in the hierarchy tree.

MeSH

digestive system neoplasms

liver pancreas

…...

anatomy disease …...

Figure 1: MeSH terms and the hierarchy

The vocabulary and the hierarchy of MeSH terms represent an
ontology of biomedical science. Each MeSH term represents a
biomedical concept and indexes a list of related citations. A com-
bination of MeSH terms represents a context that spans the cor-
responding concepts. For example, “neoplasms” and “digestive
system” represent two concepts under “diseases” and “anatomy”
respectively. The combination of the two terms identify a set of
1http://www.ncbi.nlm.nih.gov/pubmed/



citations, which form a search context for researchers and doctors
concentrating on gastrointestinal (GI) cancer.

A researcher or a doctor can specify such a context by utilizing
tools that visualize the MeSH term ontology and enable the user to
navigate in the ontology and select terms of interest for the context.
For example, the tool of Figure 2 mimics the widely used ontology
navigator provided by PubMed2 and extends it with the ability to
select terms during the navigation. In Figure 2, we see two snap-
shots of the ontology navigator, at the point where the user has just
selected the context terms. Note that the use of such tools for spec-
ifying the context removes the risk of mistyping the context trems,
which would otherwise be an important risk since in context-based
search only documents that contain the context terms will be re-
trieved.

Figure 2: Choosing context terms using hierarchical ontology
navigation in PubMed

Keyword distributions and statistics often vary dramatically from
one specialized context to another. For example, research on can-
cer and research on digestive system have very different terminol-
ogy. Using keyword statistics from a specialized context in ranking
functions will deliver a specialized ranking order for the documents
in that context. For example, the classical TF-IDF model uses doc-
ument frequency as term weights to boost the ranking of documents
that contain query terms that are rare in the collection. The ratio-
nale is that rare query terms are more discriminative, and therefore
are more important in identifying relevant documents than frequent
query terms. In the above example, a query term that is frequent
for the citations on “neoplasms” may be rare for the citations on
“digestive system”. The ranking order of two documents may be
reversed when users are interested in different contexts.

Consider the query {pancreas, leukemia}, and two citations
C1: “Complications following pancreas transplant” and C2: “Or-
gan failure in patients with acute leukemia”, both annotated with
the MeSH term “digestive system”. Assume we rank the two ci-
tations’ titles by tf × idf . Since both citations match precisely
one single query term, the ranking order of the two citations is
only determined by idf . Without a context specification, the fre-
quency of leukemia is higher than pancreas in PubMed. Hence,
C1 is ranked higher than C2. However, if the query is issued by
a GI doctor or researcher, whose focus is on digestive system, the
frequency of leukemia is much less than pancreas in the corre-
sponding context, and therefore C2 should be ranked higher than
C1. Intuitively, pancreas transplant is a common topic among GI
researchers. Leukemia in the query is more discriminative in the
context. Given that C2 is annotated with “digestive system”, it is
very likely that the organs mentioned in the C2’s title refer to di-
gestive organs, which include pancreas.

2http://www.nlm.nih.gov/mesh/MBrowser.html

1.2 Contribution
We propose a new query model that extends conventional key-

word queries and allows domain-interested users to specify search
contexts. A search context is defined as a sub-collection of doc-
uments that users are interested in. The goal of context-sensitive
ranking is to use keyword statistics based on user-defined contexts
to rank documents in the contexts.

The query processing of context-sensitive queries presents novel
performance challenges that are not met in the processing of con-
ventional keyword queries. In conventional keyword query eval-
uation, the context is always fixed; it is the entire document col-
lection. So the statistics are precomputed at indexing time. For
context-sensitive ranking, however, contexts are specified by users
at query time and can be arbitrary subsets of the document collec-
tion. Therefore, the collection-specific statistics (such as document
frequency) also have to be computed at query time.

A straightforward solution to compute keyword statistics is us-
ing standard text search techniques to materialize contexts at query
time and gathering required statistics accordingly. Unfortunately,
this solution is not always cheap. The challenges are two. First,
a common approach to materialize contexts is to intersect inverted
lists of keywords, e.g., MeSH terms in PubMed. While intersection
operations are efficient for most keyword combinations, intersect-
ing very long inverted lists is still expensive [9]. Second, computing
keyword statistics not only requires intersections, but also aggrega-
tions. As we will show later, some statistics in conventional rank-
ing models demand aggregations of the documents in the contexts,
which can be very expensive when the contexts are large.

In this paper, we propose a materialized view technique to over-
come the above challenges. We reduce the problem of computing
keyword statistics to evaluating aggregation queries, and use ma-
terialized views to improve query performance. Given that there
is a huge number of possible context specifications, the technical
challenge is how to choose a reasonable number of views to mate-
rialize. We present two algorithms for view selection. The goal is
to guarantee good system performance for worst-case queries.

Key contributions of the paper include:

1. We propose a novel query model that allows expert users to
specify search contexts. The ranking model uses keyword
statistics collected from the specified contexts to rank docu-
ments in the contexts.

2. We reduce the problem of computing keyword statistics to
evaluating aggregation queries, and leverage materialized
views to improve query efficiency. Two algorithms are pro-
posed to select a number of views to materialize.

3. We perform thorough experiments on the PubMed data set.
Results show that context-sensitive ranking improves the
ranking quality remarkably, compared with the conventional
ranking models. The materialized view technique improves
the efficiency of worst-case queries significantly. The overall
performance of the system is guaranteed.

The paper is organized as follows: Section 2 defines the query
model and the ranking model for context-sensitive ranking. Query
evaluation is discussed in Section 3. Section 4 reduces the problem
of computing keyword statistics to evaluating aggregation queries,
and presents a view-based technique to compute statistics. Two
view selection algorithms are presented in Section 5 to choose a
reasonable number of views to materialize. Experiments and re-
sults are elaborated in Section 6. Related work is discussed in Sec-
tion 7. Section 8 is the conclusion.



2. DATA MODEL & QUERY SEMANTICS
In this section, we formally define the query model (Section 2.1)

and the ranking model (Section 2.2) for context-sensitive ranking.

2.1 Query Model
A document, denoted by d, is modeled as a tuple of fields, each

consisting of a bag of words. A field may refer to abstract, category
(e.g., MeSH annotations in PubMed), keywords or full content. Let
D denote a collection of documents.

A query for context-sensitive search, Qc = Qk|P , consists of
two parts: a context specification (P ) that defines a set of docu-
ments as the search context, and a set of keywords (Qk) as the
conventional keyword query. The unranked result of Qc is a set of
documents in the search context that contain all the keywords.

Definition 1. A predicate field of D contains literals, each of
which is a single keyword, called context predicate.

Definition 2. A context specification P = p1 ∧ p2 . . . ∧ pc is
a conjunction of context predicates that specify a sub-collection
DP ⊆ D such that ∀d ∈ DP , d satisfies P . In other words, DP =
σP (D) = σp1∧p2...∧pc(D).

Consider a conventional n-keyword query Qk = w1 ∧ . . . ∧
wn in context P . The unranked result of Qc = Qk|P is a set of
documents in Dp that contain all the keywords:

Qc(D) = Qk(DP ) = σP (D) ∩ σw1(D) ∩ . . . ∩ σwn(D)

where σwi(D) = {d|d ∈ D ∧ d contains wi}, i = 1, . . . , n.
Without loss of generality, we assume the predicate field in con-

text predicates is fixed, and simply use a conjunction of keywords
m1 ∧m2 ∧ . . . ∧mc to denote the context specification. For ex-
ample, the query Qc = w1 ∧ w2|m1 ∧m2 over PubMed defines a
set of documents DP that contain MeSH terms m1 and m2 as the
context. The unranked result of Qc is a set of documents in DP
that contain w1 and w2.

2.2 Ranking Model
Next we define the ranking of the result of Qc. We start by pre-

senting a generic representation of ranking functions for conven-
tional keyword queries. We then evolve it to the context-sensitive
ranking function. In the following, we use Qt to denote conven-
tional keyword queries.

Various ranking functions were developed in the literature to
rank documents with respect to keyword queries. In general, they
combine keyword statistics to a single score to evaluate the rel-
evance between a query and a document. The statistics used in
the ranking models can be classified into three categories: query-
specific, document-specific and collection-specific:

• A query-specific statistic, denoted by Sq(Qt), is a statistic com-
puted from the input query Qt, e.g., query length.

• A document-specific statistic, denoted by Sd(d), is a statistic
computed from document d, e.g., term count of wi in d. Every
document has its unique document-specific statistics.

• A collection-specific statistic, denoted by Sc(D), is a statistic
computed from the collection D. Conceptually, a collection-
specific statistic is calculated by aggregating parameters of indi-
vidual documents in the collection to a single value. For exam-
ple, term count of wi in the collection is calculated by sum-
ming up the number of occurrences of wi in every document in
the collection.

Table 1 summarizes atomic statistics used in a variety of ranking
models, including vector space models (TF-IDF), language mod-
els and probabilistic relevance models. Note that some compound
statistics used in the models can be computed by combinations of
atomic statistics. For example, average document length (avgdl)
is calculated by collection length divided by collection cardinal-
ity: avgdl = len(D)

|D| .
Let Sq(Qt) be a set of query-specific statistics for Qt, Sd(d) be

a set of document-specific statistics for d, and Sc(D) be a set of
collection-specific statistics for D.

Given a queryQt and a document d ∈ D, a conventional ranking
function f(·) takes as arguments statistics from Sq(Qt), Sd(d),
Sc(D), and computes a score of d with respect to Qt:

score(Qt, d) = f(Sq(Qt),Sd(d),Sc(D)) (1)

In context-sensitive ranking, a context specification P defines a
set of documents DP ⊆ D of interest. Accordingly, the statistics
used in the ranking function should be based on DP , rather than
D. Specifically, given a context-sensitive query Q = Qk|P and a
document d ∈ DP , the ranking score is computed as:

score(Qk|P, d) = f(Sq(Qk),Sd(d),Sc(DP )) (2)

The ranking model for context-sensitive ranking uses the same
computation function f as the conventional IR model, but different
input statistics. In particular, Qk in Qc is a n-keyword conven-
tional keyword query, and Sq(Qk) in Formula 2 is equivalent to
Sq(Qt) in Formula 1. Sd(d) is the same in both formulas. The
only difference is Sc: Sc(DP ) in Formula 2 collects statistics from
DP , whereas Sc(D) in Formula 1 collects statistics from D.

EXAMPLE 2.1. TF-IDF weighting is a well-known ranking
model. Among its variants, the pivoted normalization formula [30]
is considered to be one of the best performing vector space models
and is widely used in many text search systems. Its mathematical
representation is shown in Formula 3, where s is a constant and is
usually set to 0.2. The other variables’ meanings can be found in
Table 1.

score(Qt, d) =
∑
w∈Qt

1 + ln(1 + ln(tf(w, d)))

(1− s) + s · len(d)
avgdl

·

tq(w,Qt) · ln
|D|+ 1

df(w,D) (3)

where avgdl = len(D)
|D| .

The statistics used in the pivoted normalization formula are clas-
sified as follows:

• tq(w,Qt) is a query-specific statistic.

• tf(w, d), len(d) are document-specific statistics.

• df(w,D), |D|, len(D) are collection-specific statistics.

The context-sensitive version of the pivoted normalization for-
mula for Qc = Qk|P replaces every Sc(D) with Sc(DP ), i.e.,
∀d ∈ DP ,

score(Qk|P, d) =
∑
w∈Qk

1 + ln(1 + ln(tf(w, d)))

(1− s) + s · len(d)
avgdlP

·

tq(w,Qk) · ln
|DP |+ 1

df(w,DP )
(4)

where avgdlP = len(DP )
|DP |

.



Table 1: Statistics used in ranking functions

Scope Statistics Notation
term count in the collection (for keyword w) tc(w,D)

collection length len(D)
collection-specific collection cardinality |D|

document count (for keyword w) df(w,D)
unique term count in the collection utc(D)

term count in document tf(w, d)
document-specific document length len(d)

unique term count in document utc(d)
term count in query (for w) tq(w,Qt)

query-specific query length len(Qt)
unique term count in query utc(Qt)

3. QUERY EVALUATION
We discuss query evaluation of context-sensitive queries in this

section. We first describe a straightforward evaluation (Section
3.1), and then analyze its performance bottlenecks (Section 3.2),
which will be tackled in later sections.

3.1 Straightforward Evaluation
Query evaluation of a context-sensitive query evaluates the un-

ranked result set, and computes keyword statistics to further com-
pute ranking scores. Unlike conventional keyword query evaluation
where all statistics are precomputed at indexing time, collection-
specific statistics Sc(DP ) for context-sensitive ranking must be
computed at query time, because contexts are specified by queries
and can be arbitrary subsets of the document collection.

A straightforward evaluation of a context-sensitive query is to
materialize the context collection and compute required statistics
accordingly. Thereafter the query evaluation is the same as con-
ventional keyword queries. Let Lw = σw(D) be the inverted list
of w. Consider the query Qc = w1 ∧w2|m1 ∧m2 and the TF-IDF
ranking function in Formula 4. By query semantics, the unranked
result of Qc is evaluated as Lw1 ∩ Lw2 ∩ Lm1 ∩ Lm2 . In other
words, intersecting the inverted lists of the four keywords returns
the complete result set.

To compute collection-specific statistics, the query plan must sat-
isfy the following constraints:

1. Document count for wi, df(wi,DP ), is the number of doc-
uments in the context that contain wi, which is evaluated as
|σwi(D) ∩ σP (D)|. Therefore, the query plan must include
Lw1 ∩ Lm1 ∩ Lm2 and Lw2 ∩ Lm1 ∩ Lm2 , where the first
expression computes document count for w1, and the second
expression computes document count for w2.

2. Collection cardinality |DP | is evaluated as |σm1(D)∩σm2(D)|.
Hence, the query plan must include Lm1 ∩ Lm2 .

3. Collection length len(DP ) requires a SUM aggregation on the
lengths of the documents in the context, i.e., γsum(σm1(D) ∩
σm2(D)) where γ denotes an aggregation operator.

Putting the above constraints together, the execution plan of Qc
is shown in Figure 3, where ∩γ means “intersection with aggrega-
tion”. At the bottom level, Lm1 and Lm2 are intersected to return
documents in the context. Two aggregations, denoted by γcount
and γsum, are performed upon Lm1 ∩ Lm2 to compute collection
cardinality and collection length. The result of Lm1 ∩ Lm2 is
further intersected with Lw1 and Lw2 respectively to obtain doc-
ument count for w1 and w2. The final result is computed by the
highest intersection operator.

Lm1 Lm2

γsum⋂γ

⋂γ ⋂γ

Lw1 Lw2

γcount

⋂

γcountγcount

Figure 3: The execution plan of Qc = w1 ∧ w2|m1 ∧m2

3.2 Performance Analysis
We introduce a simple cost model to quantify the cost of the

straightforward evaluation. The purpose of the model is not to es-
timate the cost as accurate as possible, but to analytically demon-
strate the bottlenecks of the straightforward evaluation.

3.2.1 Cost Models for Inverted List Intersection and
Aggregation

The core operation of the query plan in Figure 3 is the inter-
section of inverted lists. In standard text search systems, a simple
representation of an entry in an inverted list is a pair of document
ID and term count, i.e., 〈docid, tf〉. Inverted lists are ordered by
document ID so that two lists can be merged efficiently. A simple
cost model for the merge join is |Li| + |Lj |, where Li and Lj are
two inverted lists.

In addition to the standard merge join, inverted lists are par-
titioned into segments and skip pointers are maintained to jump
between consecutive segments [24]. When two inverted lists are
scanned, if the current document ID of the first inverted list does
not fall in the segment of the second inverted list, the whole seg-
ment of the second inverted list can be skipped. Let M0 be the
number of entries in one segment, No

i be the number of segments
in Li whose ranges overlap with some segment(s) in Lj , and No

j

be the number of segments in Lj whose ranges overlap with some
segment(s) in Li. Then the cost of the intersection with skip point-
ers is M0 · (No

i +N
o
j ). Since No

i ≤ |Li|
M0

and N0
j ≤

|Lj |
M0

, we have
M0 · (No

i +No
j ) ≤ |Li| + |Lj |. Therefore, the cost model of the

intersection is:

cost(Li ∩ Lj) =M0 · (No
i +No

j )

An aggregation over a list requires a full scan of the elements in
the list. Hence, the cost model of the aggregation is:

cost(γ(P )) = |
⋂

mi∈P

Lmi |



3.2.2 Analysis
Intersecting inverted lists is generally considered to be efficient.

The skip pointer optimization improves the efficiency significantly
when the join cardinality is small, as many segments can be skipped.
In particular, when |Li| is orders of magnitude smaller than |Lj |,
Li’s entries span at most |Li| segments of Lj , i.e., each entry in Li
falls in a separate segment of Lj . In such a case, the cost for the
intersection of Li and Lj is |Li| + |Li| ·M0, which can be much
cheaper than |Li|+ |Lj |.

However, intersecting very long inverted lists is not cheap [9].
In particular, when the join cardinality is not small, the intersection
cannot take advantages of skip pointers and all segments must be
scanned. The cost of the context materialization is bounded by∑
mi∈P |Lmi |.
While inverted-list intersections in conventional keyword query

evaluation can start from the most selective keyword, the evalua-
tion of context-sensitive ranking must fully materialize the context.
Intuitively, the context size tends to be fairly large, because the pur-
pose of the context specification is to define a general search scope,
rather than to filter out specific information as the keywords in con-
ventional queries.

In standard text search systems, when the keywords in the query
are not selective and the result size (i.e., the join cardinality) is very
large, top-K processing techniques have been developed to reorder
inverted lists so that only a small fraction of the lists are processed
to generate top K results. This strategy, however, is not applicable
for context-sensitive ranking before all collection-specific statistics
are computed. The performance of the query will still be bounded
by the complexity of the context materialization.

In addition to the cost of intersections, the cost of aggregations is
proportional to the context size which is less than

∑
mi∈P |Lmi |.

PROPOSITION 3.1. The cost of a context-sensitive query Qc =
Qk|P is bounded by O(

∑
mi∈P |Lmi |) in the worst case.

The above analysis shows that context-sensitive ranking can be
fairly expensive when the context is not selective. The performance
of Qc = Qk|P can be orders of magnitudes slower than the con-
ventional query Qt = Qk ∪ P (by query semantics, the unranked
result of Qt = Qk ∪ P is the same as the unranked result of Qc).
This makes context-sensitive ranking unacceptable in these scenar-
ios, as it sacrifices efficiency too much.

4. COMPUTING STATISTICS USING MA-
TERIALIZED VIEWS

While context-sensitive ranking leverages customized statistics
to provide specialized rankings, current text search systems can-
not efficiently evaluate queries specifying very large contexts. The
technical challenge is to maintain query efficiency as close as pos-
sible to conventional keyword queries. In the section, we reduce
the problem to evaluating aggregation queries, and leverage mate-
rialized views to achieve this goal.

Computing collection-specific statistics essentially involves on-
line aggregations. Similar problems were encountered in OLAP
[12], an approach to quickly analyze multi-dimensional data. A
large body of OLAP queries involve expensive aggregations which
must be answered in a short time. The most important mechanism
in OLAP that allows such performance is the use of the data cube,
a materialized view that aggregates data along some dimensions.
Aggregation queries then can be answered from the materialized
views which are typically much smaller than the raw table. We in-
corporate a similar idea for the context-sensitive ranking problem.

4.1 Formalization
A document collection D is modeled as a wide sparse table T ,

as shown in Table 2. In addition to document ID, columns are clas-
sified into two categories: keyword columns (e.g., m1,m2), each
corresponding to a keyword mi that can be used in context specifi-
cations, and parameter columns (e.g., len(d) and tf(d,wi)), each
corresponding to a parameter on which a collection-specific statis-
tic aggregates. Every row corresponds to a document di. An entry
in row di and column mj is 1 if di contains mj ; otherwise, the
entry is 0.

Table 2: A relational representation of the document collection

docid len(d) tf(d,w1) . . . m1 m2 . . . mn

d1 156 15 . . . 1 0 . . . 0
d2 98 7 . . . 0 1 . . . 1
. . . . . . . . . . . . . . . . . . . . . . . .

Given the wide sparse table T , computing a collection-specific
statistic Sc(DP ) of context P = mj1∧mj2 . . .∧mjc is equivalent
to evaluating an aggregation query:

Sc(DP ): SELECT Stats-Aggre(para(d))
FROM T
WHERE mj1 = 1 AND . . . AND mjc = 1

where Stats-Aggre is the aggregation function for Sc and para(d)
is the document parameter upon which Sc aggregates.

Let K = {mi1 ,mi2 , . . . ,mik} be a subset of {m1, . . . ,mn}.
VK is a materialized view that groups by K and aggregates the
documents’ parameters of every group:

VK : SELECT mi1 ,mi2 , . . . ,mik ,
Stats-Aggre(para(d)) AS ContxPara

FROM T
GROUP BY K

We refer to mi1 ,mi2 , . . .mik as keyword columns, and Contx-
Para as parameter columns in the materialized view.

Given the view definition, if P ⊆ K, the aggregation query that
computes Sc(DP ) can be rewritten as follows:

Sc(DP ): SELECT Stats-Aggre(ContxPara)
FROM VK
WHERE mj1 = 1 AND . . . AND mjc = 1

The GROUP BY clause in the view definition essentially parti-
tions the document collection. Every tuple in the view is an ag-
gregation on one partition. The evaluation of the rewritten query
aggregates partial aggregation results and avoids scanning the raw
table.

EXAMPLE 4.1. Consider a two-keyword context specification
P = m1 ∧m3. Collection length len(DP ) and collection cardi-
nality |DP | can be translated to a SUM and a COUNT aggregation
on the wide sparse table respectively:

len(DP ): SELECT SUM(len(d))
FROM T
WHERE m1 = 1 AND m3 = 1

|DP |: SELECT COUNT(*)
FROM T
WHERE m1 = 1 AND m3 = 1



Let K = {m1,m2,m3}. The view

VK : SELECT m1,m2,m3,
SUM(len(d)) AS ContxtLen,
COUNT(∗) AS ContxCount

FROM T
GROUP BY m1,m2,m3

partitions D into 23 partitions. The tuple V (m1 = 0,m2 =
1,m3 = 1) aggregates the statistics of the documents that contain
m2 and m3, but do not contain m1. Similarly, the tuple V (m1 =
0,m2 = 0,m3 = 0) aggregates the statistics of the documents
that do not contain m1, m2 or m3.

Having the view VK , collection length and collection cardi-
nality for P = m1 ∧m3 can be computed as follows:

len(DP ) = VK(m1 = 1,m2 = 0,m3 = 1).ContxLen
+ VK(m1 = 1,m2 = 1,m3 = 1).ContxLen

|DP | = VK(m1 = 1,m2 = 0,m3 = 1).ContxCount
+ VK(m1 = 1,m2 = 1,m3 = 1).ContxCount

4.2 View Usability
A view is usable for a query if it can be used to compute com-

plete or partial results of the query.

THEOREM 4.1. View VK is usable for computing the collection-
specific statistic Sc(DP ) for context P if

1. VK includes a parameter column that aggregates the docu-
ments’ parameters of Sc;

2. P ⊆ K.

VK groups byK and projects out all the other keyword columns.
For a context specification that contains mj /∈ K, the aggregation
query of a collection-specific statistic requires mj in the WHERE
clause. Therefore, VK cannot be used to answer the aggregation
query if P * K.

4.3 Complexity
If a materialized view is usable, collection-specific statistics can

be computed by aggregating the materialized view, whose com-
plexity is only determined by the view size, regardless of the con-
text size. In other words, by choosing appropriate view sizes, query
performance of context-sensitive ranking can be guaranteed.

THEOREM 4.2. If view VK is usable for Sc(DP ) in context
P , the complexity of computing Sc(DP ) is O

(
V iewSize(VK)

)
,

which is bounded by O
(
2|K|

)
.

Without additional indexes built on the view, computing
collection-specific statistics using a view requires a full scan of
the view. Theoretically, the number of tuples in the view is ex-
ponential to the number of keywords columns. However, the actual
number of non-empty tuples can be much smaller. Consider two
keywords m1,m2 that always appear in the same documents. The
tuples VK(m1 = 1,m2 = 0) and VK(m1 = 0,m2 = 1) are
always empty. Similarly, if m1 and m2 never appear in the same
document, the tuple VK(m1 = 1,m2 = 1) is always empty.

While computing accurate view size needs a full scan of the en-
tire document collection, a simple approach to estimate the view
size is sampling: a small number of documents are sampled and
mapped to VK . The number of non-empty tuples after the mapping
is estimated as the view size. In the following, we use V iewSize(·)
to denote a function that returns the size of a given view, either by
sampling or by scanning.

5. VIEW SELECTION
Materialized views improve query performance, in particular the

computation of collection-specific statistics, significantly. Ideally,
if we can materialize views that cover all possible context specifi-
cations, query performance of context-sensitive ranking is guaran-
teed. However, this would cost exponential disk storage, which is
not feasible for any system. The challenge is how to choose a small
number of views to materialize to guarantee the system’s overall
performance.

Cost analysis in Section 3.2 shows that the straightforward ap-
proach relying on standard text search systems can still achieve
acceptable performance for small contexts. Query performance
would be orders of magnitudes slower when user-specified con-
texts are very large. Hence, context specifications (i.e., keyword
combinations) corresponding to large contexts should be covered
by at least one view, so that performance of worst-case queries is
bounded. Queries whose context specifications are not covered by
any views are evaluated by the straightforward approach.

In addition to the context size, view size is the second parameter
that needs to be constrained. The cost of computing collection-
specific statistics using views is proportional to the view size.
Therefore, the sizes of materialized views should be as small as
possible.

Given a context specification P , let ContextSize(P ) be the
size of context P . We formalize the view selection problem as
follows:

PROBLEM STATEMENT 5.1. Given a threshold of context size
TC and a threshold of view size TV , find a set of views V =
{VK1 , VK2 , . . .} such that

1. ∀VKi ∈ V , V iewSize(VKi) ≤ TV .

2. For every possible context specificationP , ifContextSize(P )
≥ TC , then ∃VKj ∈ V such that P ⊆ Kj .

Finding keyword combinations that specify large contexts is
equivalent to mining association rules of keywords such that their
supports, in terms of the number of documents that contain the key-
words, are greater than TC . Based on this reduction, we propose
two view selection algorithms in the following sections.

5.1 Data-Mining-based Selection
A number of algorithms for mining association rules have been

proposed in the data mining literature, e.g., Apriori [2], FP-growth
[13], Eclat [36]. Given a set of items and a set of transactions, the
algorithms scan the transaction set one or more times and return
combinations of items whose occurrences in transactions (called
support) are greater than a pre-specified threshold (called minimum
support). In our problem setting, an item is mapped to a keyword,
and a transaction is mapped to a document. Association rule mining
algorithms return a set of keyword combinations, whose supports
are greater than TC .

Given a set of high-support keyword combinations, a naive ap-
proach for view selection is to create one view for each com-
bination. However, this would result in a very large number
of views. While aggregations on individual views are efficient
enough, matching a view for the given query at query time would
be prohibitively expensive. Therefore, under the data-mining set-
ting, we reformulate the view selection problem as follows:

PROBLEM STATEMENT 5.2. Given a set of high-support key-
word combinations P = {P1, P2, . . .}, find the minimal number of
views V = {VK1 , VK2 , . . .} such that



1. ∀VKi ∈ V , V iewSize(VKi) ≤ TV .

2. ∀P ∈ P , ∃VKj ∈ V such that P ⊆ Kj .

THEOREM 5.1. Given a set of high-support keyword combina-
tions, the view selection problem is NP-hard.

Algorithm 1 presents a greedy algorithm that takes as an input a
set of keyword combinations generated by association rule mining
algorithms, and returns a set of views to materialize. Two heuristics
are used for algorithm design. First, for two keyword combinations
P1, P2, if P1 ⊂ P2, a view covering P2 is usable for P1. In other
words, we only need to consider P2 for the view selection purpose.
Second, in order to reduce the total number of views, the overlap of
the keyword combinations that are covered by a view is expected
to be maximized.

The algorithm first removes keyword combinations that are sub-
sets of other combinations (Line 1 in Algorithm 1), according to the
first heuristic. For each newly created view VKi , the algorithm it-
eratively scans uncovered keyword combinations and adds the one
that has the maximal overlap with Ki (Line 6-9 in Algorithm 1),
until the size of VKi reaches TV .

Algorithm 1: Data-mining-based View Selection
input : A set of keyword combinations P = {P1, P2, . . .}

generated by association rule mining algorithms
output: A set of views V = {VK1 , VK2 , . . .}
Scan P and remove Pi such that ∃Pj ∈ P, Pi ⊂ Pj ;1
i← 0;2
while P is not empty do3

Create a new view VKi ,Ki = ∅;4
Remove Pj with the largest size from P , and add it to5
VKi , i.e., Ki = Pj ;
while V iewSize(VKi) < TV do6

Remove Pm from P such that (1) |Ki ∩ Pm| is7
maximized, and (2) V iewSize(VKi∪Pm) < TV ;
Ki ← Ki ∪ Pm;8

end9
V = V ∪ {VKi} ;10
i← i+ 1;11

end12
return K13

An implicit assumption of Algorithm 1 is that for any input key-
word combination P , V iewSize(VP ) < TV . This assumption
can be guaranteed by setting an upper bound on the number of
keywords when applying association rule mining algorithms. The
upper bound on |P | is reasonable in practice. Statistics from stan-
dard text search systems have shown that most user queries have
no more than 5 keywords [3]. The number of keywords in context
specifications is expected to be even smaller.

5.2 Graph-Decomposition-based Selection
Many existing algorithms for mining association rules achieve

good efficiency. But mining association rules is still an expensive
operation. In particular, to discover a combination of size k, Pk =
{m1,m2, . . . ,mk} , k−1 combinations must be visited, i.e., P1 =
{m1}, P2 = {m1,m2}, . . . , Pk−1 = {m1,m2, . . . ,mk−1}, and
their supports must be computed accurately, even though we are
only interested in Pk for the view selection purpose.

The selection algorithm in Section 5.1 essentially presents a
bottom-up approach to select views: keyword combinations whose
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Figure 4: The first graph decomposition scheme

supports are greater than TC are generated first. Then a set of views
are selected to cover all of them.

In this section, we present a top-down approach to select views.
The idea is based on decomposing the keyword set to smaller sub-
sets, until each keyword subset is small enough to be covered by
one view whose size is less than TV . The key of this approach
is that the decomposition process does not violate the principle of
view selection: keyword combinations with high supports should
be covered by at least one view. Under this principle, the algo-
rithm skips many combinations and only computes accurate sup-
ports when necessary.

5.2.1 Graph decomposition Schemes

Definition 3. A Keyword Association Graph (KAG) is a graph of
keywords, where vertex mi represents a keyword, and the weight
of the edge emi−mj represents the number of documents mi and
mj co-occur. Edges with zero weight do not appear in the graph.

A KAG constructs pair-wise relationships between keywords,
and implicitly captures k-ary (k ≥ 3) keyword relation-
ships: m1,m2, . . . ,mk co-occur in the same document only if
m1,m2, . . . ,mk form a clique in the KAG. Initially, edges whose
weights are less than TC can be removed from the graph, because
cliques containing such edges do not have high supports and there-
fore are not considered for view selection.

A connected component is a subgraph of KAG in which any two
vertexes are connected to each other. As the first step, the KAG is
decomposed to a set of connected components. We only need to
consider views covering individual components. Without loss of
generality, we assume the KAG is fully connected, and has only
one connected component.

For a view that covers a subgraph, the view size is determined by
the number of vertexes in the subgraph. Initially, the KAG has one
component, which contains all vertexes. It is too large to be covered
by one view. We need to decompose the KAG into subgraphs so
that views covering individual subgraphs are smaller than TV .

A cut divides the KAG G = (V,E) into two parts, as shown in
Figure 4a. Since the graph is fully connected, some edges’ end-
points are in different parts. In Figure 4a, m1,m2,m3 form a
clique and some of its edges cross the two parts. The goal of the
decomposition is to completely separate the graph. The question
is: how to deal with the crossing edges?

The principle of the decomposition is that if the support of a
clique (i.e., a keyword combination) is greater than TC , the clique
must be kept holistically in one subgraph after the decomposition,
so that at least one view will cover it. In Figure 4a, if the support of
{m1,m2,m3} is greater than TC , after the decomposition, at least
one subgraph needs to contain the clique. To this end, m1,m2

and the edge between them are replicated in G2 after the decom-
position, as shown in Figure 4b. Notice that m1,m2 and the edge
em1−m2 are kept inG1 as well. The reason is that other vertexes in
G1 may form cliques with them. Removing m1,m2 and the edge
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em1−m2 from G1 may lose keyword combinations that should be
covered by views.

If the support of {m1,m2,m3} is less than TC , the correspond-
ing clique is decomposable, because we do not need any view to
cover it. This is the second decomposition scheme, as shown in
Figures 5. Compared with the first decomposition scheme, the edge
em1−m2 is not replicated in G2. Hence, G2 in Figure 5b is sparser
than G2 in Figure 4b.

A formal representation of the decomposition schemes is de-
scribed as follows.

Definition 4. A vertex separator is a set of vertexes whose re-
moval separates a graph into two distinct connected components.

Let S0 be a vertex separator whose removal separates the ver-
texes in the KAG G = (V,E) into S1 and S2, i.e., V =
S1 ∪ S2 ∪ S0. Given S0, G = (V,E) is decomposed into
G1 = (V1, E1), G2 = (V2, E2) such that:

• V1 = S1 ∪ S0, V2 = S2 ∪ S0.

• ∀mi ∈ S1,mj ∈ S1, if emi−mj ∈ E, emi−mj ∈ E1.

• ∀mi ∈ S2,mj ∈ S2, if emi−mj ∈ E, emi−mj ∈ E2.

• ∀m0 ∈ S0, if ∃mi ∈ S1, em0−mi ∈ E, then em0−mi ∈
E1; if ∃mj ∈ S2, em0−mj ∈ E, then em0−mj ∈ E2.

• ∀mi ∈ S0,mj ∈ S0, if emi−mj ∈ E, emi−mj ∈ E1.

• ∀mi ∈ S0,mj ∈ S0, if (1) there exists a clique containing
mi,mj and vertex(es) in S2, and (2) the support of the clique
is greater than TC , emi−mj is replicated in E2.

In the example in Figure 4 and 5, S0 = {m1,m2}. Theoreti-
cally, whether to replicate the edge em1−m2 in G2 or not depends
on whether the support of the clique containing em1−m2 is greater
than TC . Since the support of the clique cannot be derived from the
graph, we still need to compute support, which is similar to mining
association rules. However, recall that as long as the view selec-
tion principle is satisfied, either decomposition scheme is correct.
If the support of the clique is unknown, we may implicitly assume
that the support is greater than TC , and all the edges in the clique
are replicated in G2. In other words, using the first decomposition
scheme always leads to a correct decomposition.

The above analysis indicates that computing support is not al-
ways necessary for the view selection purpose, especially when the
subgraphs are large and sparse. The first decomposition scheme
becomes less effective when the graphs are smaller and denser, and
eventually is invalid for the subgraphs that are cliques.

5.2.2 Graph Decomposition Algorithm
Having the decomposition schemes, the remaining question is

how to choose the vertex separator S0 so that the graph can be

decomposed efficiently. Two factors are considered: first, S1 and
S2 should be about the same size, so that the sizes of all subgraphs
decreases fast as the decomposition proceeds. Second, the number
of vertexes in S0 should be minimized. Since vertexes in S0 are
replicated in G1 and G2, and the view size is directly related to the
number of vertexes in a subgraph, we want to minimize the number
of replicated vertexes.

The optimization function for the graph decomposition is defined
as follows:

min
|S0|

min{|S1|, |S2|}+ |S0|
(5)

The numerator minimizes the number of vertexes to be replicated.
The denominator ensures that neither of the subgraphs is too small.

Given the optimization function in Formula 5, the graph de-
composition problem is NP-hard [6]. A number of approxima-
tion algorithms have been developed. Most recently, paper [11]
exhibits an O(

√
logn) approximation algorithm for finding bal-

anced vertex separators in general graph, with approximation ratio
of O(

√
log opt) where opt is the size of an optimal separator.

The pseudo code of the algorithm that decomposes the KAG is
shown in Algorithm 2.

Algorithm 2: Graph decomposition
input : A KAG G = (V,E)
output: A vertex separator (S1, S2, S0)
Let V = {v1, v2, . . . , vn} ;1
foreach 1 ≤ i ≤ n do2

Create the augmented graph by adding a source s and a3
sink t to G;
Connect s to vj , 1 ≤ j ≤ i, and connect t to vk,4
i < k ≤ n;
Find the minimum capacity s− t separator Si0 ;5

Let Si1 = (V ∪ {s, t})− Si0, Si2 = V − (Si1 ∪ Si0) ;6

end7

return (Si1, S
i
2, S

i
0) such that |S

i
0|

|Ei
12|

is minimal, where |Ei12| is8

the number of edges eu−v , u ∈ Si1 ∪ Si0, v ∈ Si2 ∪ Si0;

5.3 Hybrid Approach
The data-mining-based selection and the decomposition-based

selection have strengths in different directions. The data-mining-
based approach is strict, and only covers keyword combinations
that must be covered. Therefore, it is space efficient. However,
it has to enumerate a very large number of keyword combinations.
The decomposition-based selection, on the other hand, usually cov-
ers more keyword combinations than required. While it has high
efficiency when the graph is large and sparse, its capability is lim-
ited when the graph is small and dense.

In implementation, we uses a hybrid approach to select views.
Initially, the graph decomposition algorithm quickly decomposes
the KAG into subgraphs, most of which can be covered by indi-
vidual views. The data-mining-based approach is used thereafter
to further decompose the remaining subgraphs, each of which is a
clique and is still too large to be covered by one view.

6. EXPERIMENTS
We use the PubMed data set to evaluate the effectiveness of

context-sensitive ranking and the efficiency of the materialized view
technique. PubMed maintains 18 million citations, each annotated
with one or more MeSH terms. We use combinations of MeSH



terms to specify contexts and conventional keywords to search the
citations’ titles and abstracts. To deal with MeSH term inheritance,
if a citation is annotated with the term t, all the ancestors of t in
the hierarchy are attached to the citation. The average number of
MeSH terms in a citation after the inheritance is 44.

In the experiments, we use the Lucene library3 as the standard
text search system. Lucene is a general-purpose text search system
and reflects the state-of-the-art of keyword query evaluation. We
only use Lucene for performance evaluation, but not for ranking.
The reason is that Lucene’s ranking module provides limited inter-
faces for customized ranking, which is not suitable for our context-
sensitive ranking model.

The algorithms and the framework are implemented under Java
6. All the experiments are performed on an Intel i7 860 PC, with
8G memory.

6.1 Ranking Quality
We evaluate the effectiveness of context-sensitive ranking using

the TREC Genomics benchmark of 2007 [16], which consists of
162,048 full-text documents, a small fraction of the PubMed data
set. The TREC Genomics also contains 34 topics in the form of
biological questions, which were collected from bench biologists
and represent actual information needs in biomedical research. For
each query, relevant documents were tagged manually by biolo-
gists based on pooled results from team submissions as the gold
standard.

Given the TREC Genomics questions, conventional keyword
queries are constructed by extracting one or more noun keywords
from the questions. For example, for the question “What symptoms
are caused by human parvovirus infection”, a possible keyword
query is Qk = symptoms ∧ human ∧ parvovirus ∧ infection.

Then we rely on PubMed’s Automatic Term Mapping (ATM) to
construct appropriate contexts. Given a set of keywords, PubMed’s
ATM maps them to one or more MeSH terms. For the previous
example, ATM maps the keywords to two MeSH terms: Humans
and Parvovirus. Then P = Humans ∧ Parvovirus specifies the
context that studies Humans and Parvovirus.

For the constructed context-sensitive queries, we exclude those
queries whose result sets are too small (less than 20), or the corre-
sponding relevant document sets in the gold standard are too small
(less than 5), since ranking thereof is not so important. Altogether
30 queries qualify for the experiment.

The main concern of ranking quality in practice is the number of
relevant results in top few returned results, which are most likely
to be examined by users. To study this aspect, we measure the
rank precision among top ranked results, i.e., the number of rele-
vant results in top K results. For the TREC Genomics benchmark,
the relevance of a document to the query is based on whether the
TREC Genomics gold standard includes the document. In the ex-
periments, K is set to 20, as statistics from PubMed has shown that
most users do not go beyond looking top 20 [22].

In additional to the precision, the reciprocal rank [33] is another
popular measure for evaluating top ranked results. The reciprocal
rank is the inverse of the position of the first relevant document in
the ranked results. The higher the reciprocal rank of the query, the
better the ranking is. In particular, if the first result is relevant, the
reciprocal rank is 1

1
= 1.

In the experiments, we use the TF-IDF model as shown in For-
mula 4. While more sophisticated ranking functions are in use
nowadays, TF-IDF still remains at the core and provides a clean
way to measure the effect of context sensitivity.

3http://lucene.apache.org/

Given a context-sensitive query Qc = Qk|P , we compare the
context-sensitive ranking and the conventional ranking. The con-
ventional ranking of Qc is equivalent to the ranking of the conven-
tional queryQt = Qk ∪P , where P is treated as a boolean filter in
Qt and does not contribute to ranking scores. The measures of the
precision and the reciprocal rank are shown in Figures 6, where the
x-axis denotes the query ID. In Figure 6a and 6b, the y-axis denotes
the number of relevant results in top 20 results. In Figure 6c and
6d, the y-axis denotes the reciprocal rank, whose maximum value
is 1.

Figure 6a and 6b show that context-sensitive ranking delivers
better ranking in 21 out of 30 queries, with occasional large im-
provements over conventional ranking (e.g., Q8 and Q9), while
in the few occasions conventional ranking is superior (Q15, Q16,
Q30) and the gap is not large. Statistically, the mean precisions of
conventional ranking and context-sensitive ranking over 30 queries
are 7.9 and 10.2 respectively; the mean reciprocal ranks over 30
queries are 0.62 and 0.78 respectively.

It is worth pointing out that some queries shown in Figure 6
do not benefit from context-sensitive ranking. Our observation is
that ranking effectiveness depends on how well a context specifica-
tion fits the original TREC query. In the experiments, the contexts
are mechanically generated by PubMed’s ATM mapping. We ex-
pect that context-sensitive ranking can deliver more improvements
over conventional rankings for real-life queries, as their contexts
are constructed by domain expects.

6.2 View Selection
To select views for materialization, we set TC to 1% of the

PubMed data set. PubMed has 18 million citations, so the absolute
value of TC is 180, 000. In other words, only contexts whose sizes
are greater than 180, 000 are covered by views. Query performance
under this setting will be shown in Section 6.3. The maximum view
size TV is set to 212 = 4096 tuples. Note that this is the number
of non-empty tuples. The actual number of keyword columns in a
view can be much higher than 12.

Efficiency of View Selection. We first apply two mining algo-
rithms, Apriori [2], FP-growth [13], on the complete PubMed data
set. Unfortunately, both algorithms fail. Specifically, by setting the
minimal support to 1% of the number of the documents, the imple-
mentation of FP-growth runs out of memory when building the FP-
tree, which invalidates the algorithm. The Apriori algorithm can
swap intermediate results to disk, but requires multiples scans of
the data set. Even if we limit the maximal size of keyword combi-
nations to 8, it would take weeks to generate all valid combinations.

In general, the algorithms for mining association rules have diffi-
culties for the PubMed’s scale and our threshold. Although increas-
ing the threshold can improve the efficiency of the mining process,
as we will see in Section 6.3, the 1% threshold guarantees that all
queries can be evaluated in a reasonable amount of time.

We then test the hybrid approach: the graph decomposition al-
gorithm is first applied. 684 MeSH terms whose frequencies are
greater than TC are selected to form the initial KAG. It takes 24
hours to decompose the original graph to subgraphs, each of which
is either (1) small enough to be covered by one view or (2) large
and very dense (i.e., a clique).

When a subgraph is a clique and is still too large to be covered
by one view, the data-mining-based approach is used for further
decomposition. Since individual cliques are much smaller than the
original graph, the data-mining-based approach can achieve good
efficiency. Altogether, the hybrid approach takes 40 hours, and
selects 3,523 views.

In our problem setting, context specifications are comprised of
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Figure 6: Ranking quality of top 20 results

MeSH terms, which are from a well-controlled vocabulary and are
fairly stable. Given that the threshold of the context size (TC ) is set
to a fixed percentage of the size of the document set , the number
of views to materialize is stable, and does not change much as the
the document set scales.

The size of the document set (|D|) only has limited impact
on the algorithms’ complexities. Specifically, since the graph-
decomposition-based algorithm is based on the KAG, which is
comprised of MeSH terms, its complexity is independent of |D|.
The data-mining-based algorithm is based on mining association
rules, which need to scan the document set one or more times.
Hence, the complexity of the mining process is proportional to
|D|. Overall, the complexity of the view selection increases lin-
early with |D|.

Storage usage. For a materialized view VK , while keyword
columns (i.e., K) determines the number of tuples in VK , the
storage of VK is also dependent on parameter columns, e.g.,
len(D), tf(d,wi), which are specified by a specific ranking func-
tion. In the experiments, we use the TF-IDF formula which de-
mands document count df(wi,DP ) of every query term which
can be any keyword in the document set. Storing df(wi,DP ) for
all the keywords in the document set would result in tens of thou-
sands of parameter columns in VK .

In our system, VK only stores the df(wi,DP ) column if |Lwi | ≥
TC . In other words, document counts of keywords with low
frequencies are computed at query time. Consider the query
Qc = w1 ∧ w2|m1 ∧ m2 and the materialized view VK ,K =
{m1,m2,m3}. Assume |Lw2 | < TC . Then document count of
w2, which is evaluated as |Lw2 ∩ Lm1 ∩ Lm2 |, cannot be com-
puted from VK . However, since |Lw2 | < TC , the support of
{w2,m1,m2} must be less than TC , and Lw2 ∩ Lm1 ∩ Lm2 can
be evaluated efficiently at query time. Notice that the evaluation
of Lw2 ∩ Lm1 ∩ Lm2 can start from the most selective keyword
and leverage the optimization of skip pointers. The intersection
Lm1 ∩ Lm2 is not enforced in the query plan, because collection
cardinality |Lm1 ∩Lm2 | and other statistics can be evaluated from
VK directly.

There are 910 keywords in the document set whose frequencies
are greater than TC . Therefore, every materialized view contains
912 parameter columns (the other two columns are context length
and context cardinality). Given that the maximal number of the
tuples in a materialized view is 4096, the maximal storage of a
single view is 14.3 MB.

The total storage of the materialized views is 12.77 GB. For
comparison, the original data set of PubMed takes 70 GB, and the
Lucene index takes 5.72 GB. The average storage of a single view
is 3.71 MB, which means that most views have fewer tuples than
4096. The cost of using a materialized view to compute statistics is
very small.

6.3 Query Performance
Next we evaluate the performance of context-sensitive queries.

The complete PubMed data set is used in the experiments. The
straightforward evaluation, which was described in Section 3.1,
is implemented as follows: for each collection-specific statistic,
a conventional keyword query that materializes the corresponding
document set is constructed and sent to Lucene. After Lucene re-
turns the document set, an aggregation is performed upon it. Con-
sider the example queryQc = w1∧w2|m1∧m2 in Figure 3. Four
collection-specific statistics are required for the TF-IDF function:
document count for w1, w2, collection cardinality and collec-
tion length. Hence, three conventional queries are evaluated by
Lucene: Q1

t = m1 ∧ m2, Q2
t = w1 ∧ m1 ∧ m2 and Q3

t =
w2∧m1∧m2, upon which the required statistics can be computed.
Basically, we simulate the execution plan of a context-sensitive
query in Lucene by issuing multiple conventional keyword queries.

With the materialized view technique, before sending keyword
queries to Lucene, collection-specific statistics are matched over
the views first. If a view is usable for a collection-specific statistic,
no Lucene evaluation is needed. It is possible that there are more
than one views that are usable for a collection-specific statistic. In
such cases, the view with the minimal size is picked.

Two categories of queries are tested in the experiments:
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• Large contexts: queries whose context sizes are greater than
TC . They are evaluated using some materialized view(s).

• Small contexts: queries whose context sizes are smaller than
TC . They are evaluated without any views.

The large-context queries demonstrate the effectiveness of the
materialized view technique. The small-context queries show how
bad the query performance could be when the context size is be-
low TC and the evaluation uses the straightforward approach. For
each category, context-sensitive queries are randomly generated in
the following way: keywords in Qk are randomly selected from
keywords in the citations’ titles. Given the generated keywords,
PubMed’s ATM is used to map them to MeSH terms. We vary
the number of keywords from 2 to 5. For each experiment, fifty
queries are generated. The values shown in the following figures
are the average of the fifty queries.

For a large-context query Qc = Qk|P , three numbers are com-
pared: (1) the execution time of the conventional query Qt =
Qk∪P , which returns the same result set asQc, but different rank-
ing orders. (2) the execution time of Qc with materialized views.
(3) the execution time ofQc without materialized views. The num-
bers are reported in Figure 7.

Figure 7 shows that the materialized view technique improves
query efficiency significantly. Query performance of context-
sensitive ranking with materialized views is about 2 times slower
than the conventional queries, which is much better than the
straightforward approach. The performance drop is mainly at-
tributed to the partial coverage of document counts for keywords
in the materialized views: for a keyword wi whose frequency is
less than TC , df(wi,DP ) is computed at query time. Overall, the
absolute execution time stays around 100 ms.

For a small-context query Qc = Qk|P , only two numbers are
compared: (1) the execution time of the conventional query Qt =
Qk ∪P , and (2) the execution time of Qc. Note that since the Qc’s
context size is smaller than TC , no views can be used. The results
are shown in Figure 8.

As expected, the performance decreases are much larger than
the large-context queries, as every collection-specific statistic must
be computed at query time. However, the absolute execution time
of context-sensitive queries stays around 100 ms. Figure 7 and 8
validate our original goal for query performance: while context-

sensitive ranking may sacrifice query performance to some degree,
the execution time of worst-case queries should be bounded.

The experiments in Section 6.1 has shown that ranking quality
is directly related to the contexts. As a special case, when the con-
text size is too small, the statistics are much less unreliable. For
example, one of the most important problems for language models
is smoothing, a technique to estimate the keywords’ probabilities.
When the context size is too small, smoothing becomes harder. The
derived language models may not achieve satisfactory ranking per-
formance. This means that the materialized view technique is even
more important in practice: real-life queries that can benefit greatly
from context-sensitive ranking are most likely to be answered by
materialized views.

7. RELATED WORK
Personalized ranking is a problem whose motivation is similar

to ours. It aims to bring personalizations to ranking so that users
issuing the same query get different rankings for their own prefer-
ences, interests or search contexts. Personalized ranking has been
extensively studied in IR community, especially in web search. A
wide spectrum of personalization models were proposed, including
users’ profile information [29, 23, 35], and prior search behavior
(e.g., query history, click logs) [31, 34, 25, 27]. They either re-rank
top K results returned by standard search systems, or reformulate
queries before sending to the search systems. The fundamental dif-
ference between these models and our ranking model is that they
still rely on conventional ranking models and do not “personalize”
underlying statistics.

Personalized PageRank [15, 18, 7, 19] is a personalization model
specifically studied in web search. Instead of using the uniform
distribution for all nodes at the initial state, personalized PageRank
uses a set of query or user-specific nodes as the random walk start-
ing points. Since the initial state is query or user-specific, PageR-
ank scores must be computed at runtime. The main challenge is
how to compute personalized scores efficiently, as online computa-
tions usually involve expensive fixpoint iterations over a very large
graph. Among the proposed solutions, the algorithms in [18, 19]
share the same spirit of the materialized view technique: some
small subgraphs are precomputed in advance. Online computations
use the materialized subgraphs to improve efficiency.

Personalized ranking has also been studied in database commu-
nity. Paper [20] defines a preference model, where preferences are
expressed as predicates associated with interest scores. Users’ pref-
erences are stored in their profiles and are used to rewrite SQL
queries. Paper [1] defines a preference as an order of two tuples
when their attributes satisfy some conditions. Preferences are not
commutative, and may conflict with each other. Given a selection
SQL query, the goal is to compute an order of the retrieved tuples
that is consistent with the predefined preferences as much as pos-
sible. Unlike the model in [20], this model does not personalize
rankings for individual users.

We are not the first one to utilize domain-specific statistics to
improve ranking effectiveness. For example, the clustered-based
retrieval [21] clusters documents that are semantically related and
uses statistics within individual clusters to improve the smoothing
of language models. In machine learning, topic model was also
studied [26, 5]. However, none of the existing work ever consid-
ers dynamic context/domain/topic specifications. Given that static
contexts/domains/topics are chosen in advance, they cannot satisfy
diverse users’ needs. Our query model provides much more power
to domain experts.

A lot of work has been done in OLAP query processing, e.g., [12,
14, 17, 8, 32]. Given that we formalize the document collection as a



wide sparse table, more OLAP techniques can be leveraged in our
problem, e.g., wavelet. Furthermore, while our current definition
of context specifications only involves keywords, context specifi-
cations can be extended with other variables. For example, with
time variable, users are able to specify the context as a set of doc-
uments published after 1998. Existing work on range aggregation
queries can be used for such queries.

View selection is an important problem in RDBMS [14, 4, 28,
10]. Its problem setting, however, is quite different from ours.
Specifically, view selection in RDBMS is formalized as a combina-
torial problem: given a query workload and a space constraint, find
a set of views to materialize so that the performance improvement
for the workload is maximized. Our goal of view selection, on the
other hand, is to improve the performance of worst-case queries.
This is based on the following considerations. First, no query work-
load is available for this new query model. Second, even if the
query workload is available, it is still dangerous to only rely on it.
Unlike RDBMS queries which are fairly stable, queries of keyword
search systems are typically unpredictable and may evolve as time
passes.

8. CONCLUSION
Many document sets are organized structurally. For example,

citations in PubMed are annotated with MeSH terms and are orga-
nized by a biomedical ontology. Conventional ranking models for
document retrieval ignore such structures and fail to provide spe-
cialized rankings to domain experts. In this paper, we proposed
a novel query model that allows domain-interested users to spec-
ify expected contexts, on which keyword statistics are computed
to rank documents in the contexts. We addressed the problem of
inefficient query evaluation for context-sensitive ranking. The key
of the solution is to reduce the computation of collection-specific
statistics to aggregation query evaluation. Materialized views are
used to compute collection-specific statistics. The technical dif-
ficulty is how to select a small number of views to improve the
system overall performance. We presented two algorithms, the
data-mining-based algorithm and the graph-decomposition-based
algorithm, for the view selection problem. Experiments on the
PubMed data set demonstrated that context-sensitive ranking de-
livers remarkable improvements of the ranking quality. The mate-
rialized view-based technique improves the system overall perfor-
mance significantly.
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