
Policy-Aware Sender Anonymity in Location Based

Services

Alin Deutsch∗, Richard Hull #, Avinash Vyas+, Kevin Keliang Zhao ∗

∗Department of Computer Science and Engineering, UCSD, La Jolla, CA 92093 USA
{deutsch, kezhao}@cs.ucsd.edu

#IBM T.J. Watson Research Center, Hawthorne, NY 10532 USA
hull@us.ibm.com

+Bell Labs Research, Alcatel-Lucent, Murray Hill, NJ 07974 USA
vyas@research.bell-labs.com

Abstract— Sender anonymity in location-based services (LBS)
attempts to hide the identity of a mobile device user who sends
requests to the LBS provider for services in her proximity (e.g.
“find the nearest gas station” etc.). The goal is to keep the
requester’s interests private even from attackers who (via hacking
or subpoenas) gain access to the request and to the locations of
the mobile user and other nearby users at the time of the request.
In an LBS context, the best-studied privacy guarantee is known
as sender k-anonymity. We show that state-of-the art solutions
for sender k-anonymity defend only against naive attackers who
have no knowledge of the anonymization policy that is in use. We
strengthen the privacy guarantee to defend against more realistic
“policy-aware” attackers. We describe a polynomial algorithm to
obtain an optimum anonymization policy. Our implementation
and experiments show that the policy-aware sender k-anonymity
has potential for practical impact, being efficiently enforceable,
with limited reduction in utility when compared to policy-
unaware guarantees.

I. INTRODUCTION

Recent years have witnessed increased demand for

Location-Based Services (LBS), which answer requests of

mobile device users for services in their proximity (e.g. “find

the nearest gas station”, “Thai restaurant”, “hospital”). While

some such LBS providers are available in wireless networks

since 2001 [1], their proliferation has been limited, among

other reasons, by privacy concerns.

In this paper we address one such concern, which pertains

to hiding the identity of the sender of more sensitive requests

(e.g. for the local campaign headquarters of a given political

party, spiritual center for a given religion, etc.) in order to keep

her interests private. The sender’s identity must be protected

even against attackers who, via hacking or subpoenas, gain

access to a) the request (from the LBS provider’s log) and b)

to the locations of the mobile user and other nearby users at

the time of the request (from the wireless service provider)

and c) who know the “design” of the system used to provide

this protection. The assumption c) about the attackers is based

on a well accepted principle of designing a private and secure

system - “The design is not secret” [21]. This is indeed a

realistic threat since an attacker with subpoena powers (e.g. a

federal agency) or a disgruntled ex-employee can obtain the

“design” of the system.

In the context of LBS, the best-studied identity protection

measure is known as sender k-anonymity [16], which is

intended to guarantee that the request log and precise location

information are insufficient to distinguish among the actual

requester and k-1 other possible requesters. Typical sender

anonymization algorithms [15], [20], [16], [24] are based on

hiding the sender’s precise location in the request, substituting

instead a cloak, i.e. a region containing this location. The

cloak is usually chosen from among regions of a pre-defined

shape (circular, rectangular, etc.), to include at least k-1 other

mobile users. To maximize the utility of the answer to the

service request, usually the tightest cloak containing k users

is picked. We refer to these utility-maximization policies of

choosing cloaks as k-inside.

In the version of sender k-anonymity provided by the k-

inside policies [15], [20], [24], the principle that the design

of a system is not secret is ignored. Therefore, such privacy

guarantee does not hold against an attacker who knows the

“design” i.e. the policy used to pick the cloaks for locations.

The next example illustrates how an attacker who knows

the cloaking policy (“policy-aware” attacker) can identify the

sender when the cloaks are selected using a k-inside policy.

Example 1. Figure I shows the 2-inside policy obtained using

the algorithm described in [20] for the location database

of Table I. The algorithm assumes a static quad-tree based

partitioning of a geographic space and uses quadrants and

sub-quadrants (combination of two adjacent quadrants) as

possible cloaks. For a given requester, the algorithm picks

the smallest cloak (containing the requester) that contains k-1

other users. For k=2 the algorithm cloaks A and B to R1, C

to R3 and S and T to R2. Since each of these cloaks contains

at least 2 locations this is a 2-inside policy. Assume there

is an attacker that has access to the location database D1

(via hacking or subpoena) and is “design-aware” i.e. knows

the 2-inside policy used to provide sender 2-anonymity. If this

attacker observes an LBS service request with cloak R3, he

can identify the sender as C!. �

The privacy guarantee of the k-inside policy have been

refined by additional constraints such as k-reciprocity[16] and

S

C

A

B

T

R2

R1

1 2 3 4

1

2

4

3

R3

Fig. 1. 2-inside policy

userid locx locy

· · · · · · · · ·
Alice 1 1

Bob 1 2

Carol 1 4

Sam 3 1

Tom 4 4

· · · · · · · · ·

TABLE I

LOCATION DATABASE D1

k-sharing [11]. We show (in Section VI) that since the policy-

aware attacker is not considered, these additional constraints

also fail to provide sender k-anonymity.

As described later in detail, to preserve sender k-anonymity

against a policy-aware attacker, in some cases the cloak used

for a location needs to be bigger (and include more than

k locations) than the cloak picked by a k-inside policy. As

a result, a cloaking that provides policy-aware sender k-

anonymity (policy-aware cloaking) may have reduced utility

in comparison to a k-inside policy. Moreover unlike k-inside

policies where one can find the utility-maximizing (optimum)

cloaking for each user by considering a small subset of all

the users, for optimum policy-aware cloaking one has to

consider all the users (as described later in Section IV),

which is computationally more expensive. Hence policy-aware

sender k-anonymity trades utility and performance for stronger

privacy. In this paper, we describe our findings on identifying

the “sweet spot” in this trade-off.

Our contributions. In addition to showing that k-inside

policies achieve sender anonymity only against attackers who

are policy-unaware, and is not proof against policy-aware

attackers, our contributions include the following.

[1] We formalize the classes of policy-unaware and policy-

aware attackers, and define a novel, stronger privacy guar-

antee: sender anonymity against policy-aware attackers. We

prove formally that this guarantee strictly subsumes sender

anonymity against policy-unaware attackers.

[2] We study the problem of finding, among all policy-

aware sender k-anonymizations of a set of mobile users, one

with optimum utility. We show that the problem of finding

optimum policy-aware sender k-anonymity depends upon the

type of cloaks used. In particular, we show that when the

cloaks are circles whose centers are selected from a given set

of points, the problem is NP-complete, but becomes PTIME

for cloaks picked from among the quadrants of a quad-tree-

based partition of the map (a common choice in state-of-the-art

anonymization solutions [15], [20]).

[3] We implement and evaluate experimentally our op-

timum policy-aware anonymization algorithm. Even though

finding optimum policy-aware anonymization is computation-

ally costly in comparison to finding optimum k-inside policy

(that uses the same cloak types) we show that our algorithm

is practical and scales extremely well with the number of

service requests: it takes less than 1 second to anonymize 250k

requests from users in the San Francisco Bay area (using a

single anonymization server) and can scale up to 1 million

requests using 16 servers in parallel.

[4] As stated earlier, the policy-aware cloaking may result

in some loss of utility in comparison to a k-inside policy

(that uses the same cloak type). We show empirically that

the utility reduction traded for the stronger privacy guarantee

is reasonable: the average cloak area is at most 1.7 times that

of the tightest cloak used for policy-unaware anonymity.

Scope of the paper More recently, several extensions to

sender k-anonymity have been proposed, such as allowing user

specified k (in [13], [11]) and defending against trajectory-

aware attacker [6], [24], [11] where the attacker has knowl-

edge of when multiple requests have originated from the

same (a priori unknown) user, even if they are sent from

different locations at different times. While these extensions

are important, our work improves upon the foundations of

these extensions, namely make them policy-aware. We leave

as future work the extension of the policy-aware sender k-

anonymity to handle user-specified k and trajectory-awareness.

Paper outline The remainder of the paper is organized as

follows. In Section II, we show how we model an LBS. We

define sender anonymity and the classes of attacks it defends

against in Section III. Section IV gives our PTIME algorithm

for finding a policy-aware anonymization of maximum utility.

In Section IV-C we describe how we utilize the inherent

parallelism in the problem to obtain greater scalability and

report on the experimental evaluation in Section V. We discuss

related work in Section VI and conclude in Section VII.

II. LBS MODELS

This section introduces a basic model of providing location

based services, based on information about user locations

provided by a wireless network. It then describes modifications

and additional components required for privacy support.

A. Basic LBS Model

Wireless “Communications Service Providers” (CSPs) can

derive the approximate location of user devices, through a

variety of mechanisms, including triangulation based on signal

strength or time-delay to multiple cell towers, and GPS capa-

bilities on the device. In the US, the E911 Requirement [3]

mandates that CSPs provide the necessary infrastructure to

determine the location of mobile devices within a range of

50 to 300 meters, depending on the technology used. This

infrastructure must be available when users call the emergency

911 number, but can also be used to support other services,

including location-based information services. It is now com-

mon for CSPs to include specialized network components,

which are called Mobile Positioning Center (MPC) in the

CDMA standard, that serve as a logically centralized point

that provides access to device locations for E911 and other

location based services.

An abstract model is used here to study location-based

services and their privacy characteristics. For simplicity, we

model a geographic area as a 2-dimensional space and user’s

location as integer coordinates within this 2-dimensional

space. There are four core elements in the delivery of a

location-based service: the user making a request, typically

called the sender, the (wireless) Communication Service

Provider, denoted as CSP, the Mobile Positioning Center

operated by the CSP, denoted as MPC, and the Location Based

Service (LBS) provider, denoted as LBS. We view the CSP

to be a trusted agent that operates the MPC. Although in

practice the MPC provides the approximate location of each

user’s device, for simplicity we assume that the MPC produces

device’s exact location. A sender’s request for a location-based

service is processed by the CSP, which obtains the user’s

location from the MPC and forwards the request to the LBS.

We abstract from the fact that location is usually determined

only on demand, and assume in our investigation that the

locations of all devices are eagerly computed and available.

This eagerness assumption is appropriate in connection with

the study of privacy guarantees, since we target attackers who

might be able to reconstitute all device locations, perhaps by

hacking in real-time, by hacking logs, or by subpoena-induced

cooperation of the CSP.

Location Database In the abstract model, for simplicity we

assume that the device locations made available by the MPC

are stored in a relational database, called the location database.

(This database might be virtual.) Although its actual schema

can vary from CSP to CSP, it is essentially equivalent to a

single relation schema

D = {userid, locx, locy}.

Here, the domains of attributes locx and locy are the domains

of x and y coordinates in the 2-dimensional space used to

model the geographic region.

In the current paper, we assume that the location database

is updated periodically (e.g., every 30 seconds) to reflect the

movement of users. Multiple location-based requests can be

made against each snapshot. Thus the state of a location

database over a period of time can be modeled as a sequence

of different instances of schema D. We represent the set of all

possible instances of D by D. An example instance D1 ∈ D
is shown in the Table I, and illustrated in Figure I.

The following definition allows us to focus on the precise

information associated with a sender’s request for a location-

based service. (In the following section we describe how this

request might be modified by the CSP to provide privacy

protections before forwarding to the LBS.)

Definition 1. A service request is a tuple 〈u, (x, y), V 〉 where

u is a sender identifier, (x, y) are coordinates in 2-dimensional

space and V is a vector of name-value pairs. We say that

the service request is valid w.r.t a location database D if

〈u, x, y〉 ∈ D. �

Intuitively, the name-value pairs contain the categories and

specifics of the sought services. We define the function id(SR)

that returns the user id in the service request and another

function loc(SR) that returns the location co-ordinates (x, y).
Although a service request SR itself is created by the CSP,

based on a request from a sender u, we sometimes refer to

SR as having been sent by u.

Example 2. The following are examples of service requests

sent respectively by users Alice, Bob, Carol, Sam, and Tom:

SRa = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉,
SRb = 〈Bob, (1, 2), [(poi, groc), (cat, asian)]〉,
SRc = 〈Carol, (1, 4), [(poi, rest), (cat, ital)]〉,
SRs = 〈Sam, (3, 1), [(poi, rest), (cat, ital)]〉,
SRt = 〈Tom, (4, 4), [(poi, cinema), (cat, drama)]〉.
(Here “poi” stands for “point of interest”, “cat” stands

for “category”, “rest” stands for “restaurant”, etc.) All five

service requests are valid w.r.t. the location database instance

D1 of Table I. �

In the abstract model, the service requests are created by

the CSP using a combination of a request for information

from a user, along with the user’s location as provided by the

MPC. We will therefore assume for our ongoing discussion

that each service request is valid w.r.t. the current location

database instance.

B. Privacy-conscious LBS Model

In realistic privacy solutions, the goal is not to hide infor-

mation from everybody, but rather to minimize the number

of parties one needs to trust to achieve the desired communi-

cation. The fundamental assumption underlying the privacy-

conscious LBS model studied here is that the CSP is a trusted

party, and nobody else is. In particular, the LBS is not trusted,

reflecting the fact that it is usually a third-party provider that

is not under the CSP’s control.

We extend the basic LBS model of Subsection II-A to

support mobile users in accessing the LBS without revealing

their identity to anyone except for the CSP. Users rely on the

CSP to ensure this goal. While we assume that the CSP can

be trusted to perform the privacy-ensuring computations and

not log them, we will assume that attackers may be able to

obtain information about the locations of individual users at

different times. (e.g. due to hacking, or subpoenas, if the CSP

logs user locations for the purposes of advertising or service

personalizations.) For the worst case, then, we assume that the

sequence of location databases is available to the attacker.

In the privacy-conscious LBS model, a user sends a

location-based request to the CSP over a channel that is

assumed to be secure (this is typically the case in cell phone

networks). The CSP constructs the corresponding service

request SR, and based on this, will send a request on behalf

of the user to an LBS L. The CSP cannot sent SR itself,

because this includes the sender’s identity, which would be

revealed to both the LBS provider (which may be an attacker)

and to any potential attackers listening on the channel. Also,

simply removing the sender identity from SR does not suffice,

because the identity can be obtained by examining the location

database (which is assumed to be available to attackers). While

there are many approaches to anonymize a request SR so

that it does not reveal the requester’s identity, for the current

investigation we shall use the following classical one.

Definition 2. An anonymized request is a tuple 〈rid, ρ, V 〉
where rid is a unique request identifier, ρ is a connected,

closed region in the plane, and V is a vector of name-value

pairs. If ρ is a rectangular region with vertical and horizontal

sides, then we also denote this anonymized request as

〈rid, (x1, y1, x2, y2), V 〉

where (x1, y1) ((x2, y2)) specifies the southwest (respectively

northeast) corners of a rectangular region. �

From now on we refer to these regions in anonymized

requests as cloaks. We also define a function reg(AR) that

returns the cloak from an anonymized request AR.

Example 3. The following is a list of anonymized requests,

whose cloaks are depicted in Figure I.

ARa = 〈167, (0, 0, 1, 2), [(poi, rest), (cat, ital)]〉
ARb = 〈168, (0, 0, 1, 2), [(poi, groc), (cat, asian)]〉
ARc = 〈169, (0, 0, 2, 4), [(poi, rest), (cat, ital)]〉
ARs = 〈170, (2, 0, 4, 4), [(poi, rest), (cat, ital)]〉
ARt = 〈171, (2, 0, 4, 4), [(poi, cinema), (cat, drama)]〉 �

Definition 3. We say that an anonymized request AR =
〈id, ρ, V 〉 masks a service request SR = 〈u′, (x′, y′), V ′〉 if

the location (x′, y′) is inside the cloak ρ and V=V’. �

Example 4. For each x in {a, b, c, s, t}, the anonymized
request ARx of Example 3 masks the service request SRx of

Example 2. �

Instead of sending a service request SR to the LBS provider,

the CSP forwards to the LBS provider an anonymized re-

quest that masks SR. The next section discusses how such

anonymized requests are constructed.

III. POLICY-AWARE K-ANONYMITY

Prior research considers anonymization algorithms that

cloak the sender’s location with a region covering the location

of k−1 additional mobile users [15], [20], [24]. The intention

is that an attacker who observes the anonymized request and

has access to the location database can not reduce the number

of possible senders below k, since there are k potential service

requests, one for each of the senders covered by the cloak

of the anonymized request, that could have lead to the same

anonymized request. While the cloaking algorithms proposed

in the literature use different cloak shapes (quadrants [15],

[20], minimum bounding circles [24], etc.) they agree in one

important aspect: to maximize utility of the service, the tightest

cloak that includes k users is picked. We term this class of

cloaking policies as k-inside policies.

The results in this section are motivated by the observation

(described in Section I) that if the attacker is aware of the k-

inside policy used by the CSP, then for some location databases

he is able to reduce the number of possible senders below k,

defeating the purpose of anonymization. We set out to defend

against such “policy-aware” attackers (for general classes of

cloaking policies, including but not limited to the k-inside

policy). To this end we need to formalize the classes of

policy-aware and -unaware attackers. In turn, this requires the

formalization of the notion of cloaking policy, as the CSP’s

method of obtaining an anonymized request AR from a service

request SR and a given location database instance D.

Definition 4. A policy is a deterministic procedure P that

takes as input a location database instance D and a service

request SR, and outputs an anonymized request AR:

P : {instances of location database} × {service requests}
→ {anonymized requests}.

A policy P is masking if for every service request, the

location specified in the service request lies within the

cloak in the anonymized request it is mapped to. Formally,

∀D ∀SR loc(SR) ∈ reg(P (D,SR)). �

In this investigation we consider only masking policies, so

from now on we use the term policy for a masking policy.

Example 5. Assume that the current location database in-

stance is D1, as shown in Table I. The policy P1 for the service

requests shown in Example 2 is as follows:

P1(D1, SRa) = ARa P1(D1, SRs) = ARs

P1(D1, SRb) = ARb P1(D1, SRt) = ARt

P1(D1, SRc) = ARc

where ARa, ARb, ARc, ARs, ARt are the anonymized re-

quests of Example 3 and the cloaks used in these anonymized

requests are shown in Figure I (where reg(ARa) =
reg(ARb) = R1, reg(ARc) = R3 and reg(ARs) =
reg(ARt) = R2). �

The Attacker Model We now proceed to formalizing the

privacy guarantee of policy-aware sender k-anonymity. To this

end, we need a framework for describing what an attacker

knows about the policy being used by the CSP to anonymize

requests. At the one extreme, an attacker may know exactly

which policy is being used; as formally defined below these

will be called “policy-aware” attackers. At the other extreme

of interest here, an attacker may know only that the policy is

based on the use of some family C of possible cloaking regions

(e.g. rectangles, quadrants of a given quad tree, circles with

center from a given set). Given such a family C, we let PC

denote the set of all policies that use cloaking regions from C.

As formally defined below, attackers who know only that the

policy used is an element of PC for some set C will be called

“policy-unaware (relative to C)”.

We target a strong, information-theoretic definition of pri-

vacy. To this end, we model attackers as a function taking

certain input to launch the attack. There are no limiting

assumptions on the computational resources expended to com-

pute this function. The only assumptions are on what input

the function has (intuitively, the information that the attacker

sees). We classify this input into two groups as follows.

Design time: Even before the attacker observes any

anonymized request, he may know

• the targeted level k of sender k-anonymity, and

• the family of candidate policies P (which in our study is

typically either a singleton, or a set PC for some family

C of cloaking regions)

Run time: The attacker can observe (or reconstruct after the

fact, via log hacking or subpoenas)

• the instance D of the location database (corresponding to

a snapshot of all of the sender locations), and

• the set of anonymized requests made against D.

Notice that hacking attacks may be unable to reconstruct the

entire location database. If sender k-anonymity is provided

under the above assumptions, then it is also provided if the

attacker has only partial knowledge of D.

The attack function models the following attack: starting

from the observation of a set A of anonymized requests and

the full knowledge of the location database D, the attacker

“reverse engineers” the anonymized requests to obtain the

possible service requests masked by A and compatible with

the candidate policies in P . We capture this result of the attack

by defining the notion of Possible Reverse Engineering (PRE)

of a set of anonymized requests.

Definition 5. Consider a family of policies P , a location data-

base D and a set of anonymized requests A = {ARi}1≤i≤n.

A Possible Reverse Engineering (PRE) π of A w.r.t. D and

P is a function from anonymized requests to service requests

such that

• π(ARi) is valid w.r.t. D for all 1 ≤ i ≤ n, and

• there exists some P ′ ∈ P , such that P ′(D, π(ARi)) =
ARi for each 1 ≤ i ≤ n. �

Intuitively, a PRE π associates with every anonymized

request AR in A a possible service request that could have

generated AR, based on some fixed policy P ′ from the family

of candidates P . We represent the set of all PREs of a set A

w.r.t. D and P as PRE(A, D,P).
Sender k-anonymity We are now ready to define sender

k-anonymity. Intuitively, this will capture the property that,

even if the attacker uses the available information to flawlessly

compute (no matter at what computational cost) all PREs of

the observed set of anonymized requests, these PREs still point

to at least k possible senders for each anonymized request.

We consider it a breach of sender k-anonymity if the attacker

succeeds in reducing the set of possible senders to fewer than

k. We first define sender k-anonymity as a property of a set

A of anonymized requests w.r.t. a location database D and

a family of policies P . Since the anonymized requests are

obtained using a policy P , it is easy to extend the definition

as a property of a policy P .

Definition 6 (Sender k-Anonymity). Let P be a family of

policies and D a location database. Let A be a finite set of

anonymized requests obtained using a policy P ∈ P . We say

that A provides sender k-anonymity against P-aware attackers
on D if there are PREs π1 . . . πk ∈ PRE(A, D,P) such that

for each AR ∈ A and each pair i, j satisfying 1 ≤ i < j ≤ k,

id(πi(AR)) 6= (id(πj(AR)).
We say that policy P provides sender k-anonymity against

P-aware attackers on D if for each finite set S of service

requests (valid w.r.t. D), the set of anonymized requests

{P (D, SR) | SR ∈ S} provides sender k-anonymity against

P-aware attackers on D.

We say that P provides sender k-anonymity against P-
aware attackers if for every location database D, P provides

sender k-anonymity against P-aware attackers on D. �

Since our attacker model is parametrized by the family

of candidate policies P and the set of observed anonymized

requests A, by varying these sets one can enumerate different

classes of attackers and the corresponding flavors of sender

anonymity. In this paper we focus on two extremes.

• A policy-unaware attacker (relative to family C of pos-

sible cloaking regions) does not know which particular

cloaking policy in PC is used by the CSP, and observes

only one anonymized request.

• A policy-aware attacker knows the specific policy P used

by the CSP, and is able to observe and memorize all

anonymized requests.

We show next that the class of policy-aware attackers

is strictly more powerful (in terms of breaching sender k-

anonymity) than the class of policy-unaware attackers.

Example 6. Let’s analyze the Example 1 of Section I

formally. It can be easily observed that the policy P1

in Example 5 is based on the cloaking described in Ex-

ample 1 When the policy-unaware attacker observes ARc

and reverse engineers the service requests that could

have generated it, he finds 3 PREs π1(ARc) = SRc

and π2(ARc) = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉 and
π3(ARc) = 〈Bob, (1, 2), [(poi, rest), (cat, ital)]〉 with dis-
tinct users, Alice, Bob and Carrol. Therefore policy P1 pro-

vides sender 2-anonymity against policy-unaware attackers.

In contrast, the {P1}-aware attacker who observes ARc

can construct only one PRE, involving Carol, whose identity

is completely compromised. Thus the {P1}-aware attacker
breaches sender 2-anonymity in a case when policy-unaware

attacker cannot. �

In the remainder of the paper we target an anonymization

algorithm that preserves sender k-anonymity against the class

of policy-aware attackers. Such an algorithm will also defend

against policy-unaware attackers. This claim is formalized

below (for proof see[12]).

Proposition 1. Let A be a set of anonymized requests ob-

tained using policy P on location database D. If A provides

sender k-anonymity against a policy-aware attacker on D, it

also provides sender k-anonymity against a policy-unaware

attacker on D.

Sender k-Anonymity and k-inside Policies We first check

the privacy provided by some of the cloaking algorithms

proposed in the literature [15], [20], [24] against the two

classes of attackers introduced above. As it turns out, they

only defend against policy-unaware attackers.

Recall that all of these algorithms implement a k-inside

cloaking policy, which we use to obtain generic results that

hold for all algorithms in this class. The Example 5 shows

a 2-inside policy and Example 6 describes how it provides

sender 2-anonymity against policy-unaware attackers. We can

show that this finding is not accidental:

Proposition 2. A k-inside policy provides sender k-anonymity

against policy-unaware attackers.

In contrast, the Example 6 also illustrates a case in which

a k-inside policy does not provide sender k-anonymity against

a policy-aware attacker, leading to the following claim (for

proof see[12]).

Proposition 3. Not all k-inside policies provide sender k-

anonymity against policy-aware attackers.

Since by Proposition 3, the prior anonymization algorithms

do not satisfy our goal of defending against policy-aware

attackers, we need to search for a novel algorithm.

Before presenting this algorithm in Section IV, we illustrate

a policy that does provide sender 2-anonymity against policy-

aware attackers.

Example 7. For the location database instance D1, we

describe a policy P2 for the service requests shown in Example

2:

P2(D1, SRa) = 〈167, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRb) = 〈168, R3, [(poi, groc), (cat, asian)]〉,
P2(D1, SRc) = 〈169, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRs) = 〈170, R2, [(poi, rest), (cat, ital)]〉, and
P2(D1, SRt) = 〈171, R2, [(poi, rest), (cat, thai)]〉.
The cloaks R2 and R3 used in these anonymized requests are

those depicted in Figure I. The readers can check that P2

provides privacy against {P2}-aware attackers since for each
anonymized request one can construct 2 PREs using P2. �

IV. OPTIMAL K-ANONYMITY

For the same location database, there may exist several

policies that provide policy-aware sender k-anonymity, raising

the obvious question of which one to use. In this section we

address the problem of finding the policy of highest utility to

the users. Prior work on policy-unaware anonymity proposes

that one way to maximize utility is to minimize the cloak area.

A smaller cloak allows for more efficient processing of range

queries (e.g. find gas stations within 2 miles) at the LBS as

well as more efficient filtering of results at clients. Since we

don’t know a priori the users who are going to send a request

at a given snapshot of location database, we compare policies

for the case when every user sends a request.

Cost of a policy We introduce the cost of a policy to quan-

titatively capture the fact that the utility is maximized as the

cloak area is minimized. We define the cost of an anonymized

request AR as the area of its cloak reg(AR). Given a location

database D and a set S of service requests valid w.r.t. D, the

cost of S under P is defined as
∑

SR∈S cost of P (D, SR).
The cost of a policy P onD, denoted Cost(P, D), is computed

as the cost of the set of service requests obtained if every user

in D issues precisely one request (of immaterial parameters);

it is the cost of the set of service requests

S = {〈u, (x, y), V 〉| (u, x, y) ∈ D}

where V is some arbitrary vector of name-value pairs.

Optimal policy. We next focus on the problem of obtaining,

for a given location database D, an optimal (cost-minimal)

policy that provides sender k-anonymity against policy-aware

attackers. We show that the complexity of this problem de-

pends upon the type of cloaks used in the anonymization. In

particular we show that the problem is NP-complete if the

cloaks are of circular shape, and are picked by choosing the

center from a given set of points (e.g. public landmarks such

as libraries, train stations or cell towers) and by choosing the

radius freely. It comes therefore as a pleasant surprise that the

problem becomes PTIME for a version in which cloaks are

picked among the quadrants of a quad-tree-based partition of

the map.

We first detail the circular-cloak version of the problem.

Let D be an instance of location database and SC be a set

of possible centers. Find a policy-aware sender k-anonymous

policy P that minimizes Cost(P, D). P uses circular cloaks,

each centered at some point from SC, with no restriction on

the radius. We call this problem Optimal Policy-aware Bulk-

anonymization with Circular cloaks. We find the following

negative result.

Theorem 1. Optimal Policy-aware Bulk-anonymization with

Circular cloaks is NP-Complete.

Note that the NP-completeness is in the size of the location

database, meaning that optimal policy-aware anonymization is

practically infeasible.

There is good news, however, if we consider a different

type of cloaks from which the policy may choose. This result

has high practical impact, since the cloak type in question

is already widely used in the literature. We consider cloaks

picked from among the quadrants corresponding to a quad-

tree-based partitioning of a planar area. The quad tree is a

well-known structure for organizing spatial data, and it has

been used in a number of anonymization solutions [15], [20].

As the name suggests, it is a tree in which every non-leaf

node has exactly 4 child nodes. In a quad tree representation

of a (square shaped) map, the root node represents the entire

map. The region is then divided equally into 4 non-overlapping

square quadrants, each of whom represents a child node of the

root. Each quadrant is then again divided into 4 equal sub-

quadrants that correspond to grandchildren of the root. This

four-way splitting goes on until the desired level of granularity

for the minimum region is reached.

A policy that anonymizes locations to cloaks represented by

nodes of the quad-tree representation of a given map is known

as quad-tree policy. This brings us to our main finding.

Theorem 2. An optimal quad-tree policy providing sender

k-anonymity against policy-aware attackers can be found in

PTIME.

In the remainder of this section, we describe a PTIME

algorithm to find an optimal quad-tree policy.

A. Reducing the Policy Search Space

Given a map with its associated quad tree T , and a location

database D, it is easy to see that the space of all quad-tree

policies cloaking locations in D by nodes in T is exponential

in the size of D. This rules out solutions based on enumerating

all policies.

Intuitively, the following key observation reduces the search

space to polynomial size: both the property of being policy-

aware sender k-anonymous, and the cost of the policy depend

only on how many locations are cloaked by each node N

of the quad tree T , being indifferent to which particular

locations are cloaked by N . Calling policies equivalent if every

quad tree node cloaks the same number of locations under

both policies, one need not enumerate individual policies,

enumerating policy equivalence classes instead. It turns out

that only polynomially many such classes need to be inspected.

Equivalent Policies. We formalize this intuition next. Given

location database D and quad tree T , two policies are equiv-

alent under D, T if every node N of T cloaks the same

number of locations from D under both policies. When D

and T are clear from the context, we may not mention them.

The following justifies why we need not discriminate among

equivalent policies.

Lemma 1. If policies P1, P2 are equivalent under D, T , then

(a) P1 and P2 have the same cost; and

(b) P1 provides policy-aware sender k-anonymity on D if

and only if so does P2.

B. A First-Cut Algorithm

For simplicity of exposition, we start by presenting a first-

cut PTIME algorithm derived in the most direct way from

the insight that equivalence classes suffice. We leave its

optimization to [12].

Configurations. The first-cut algorithm manipulates equiv-

alence classes of policies. It represents an equivalence class

by keeping track for each quad tree node of the number of

locations it cloaks. For technical convenience, this is done by

equivalently tracking for each node N the number of locations

that are located within N yet are not cloaked by N or any of its

descendants. It is easy to translate between the two equivalence

class representations.

Definition 7. Let D be a location database, and T be a quad

tree rooted at node r. Let d(m) denote the total number of

locations from D that occur in the quadrant m. A configuration

C of T is a function from the nodes of T to natural numbers,

such that

(i) for every leaf node m in T , C(m) ≤ d(m); and

(ii) for every internal node m, C(m) ≤
∑4

i=1 C(mi),
where m1 . . . m4 are the children of m.

We say that C is complete if C(r) = 0. �

Item (i) of Definition 7 simply states that a node can be used

to cloak at most as many locations as contained in its quadrant

(since we only consider masking policies). Item (ii) states that

the number of locations not cloaked by m’s children is higher

than the number of locations not cloaked by m, which is an

immediate consequence of the fact that each child quadrant is

contained in its parent.

Note that, given a policy, location database D and quad

tree T , and a configuration C for T , we can exhibit in

linear time one of the policies C represents (by arbitrarily

selecting the C(m) locations for each node m). The first-cut

algorithm’s strategy is to find a minimum-cost configuration,

then exhibit (in linear time) one of the policies represented

by it, picked non-deterministically.1 Note that a configuration

is exponentially more succinct than an explicit listing of the

policies it represents; if we focus on any node m alone, there

are exponentially many ways to pick C(m) locations among

those occurring in m.

Before explaining how the desired configuration is found,

we address two technical issues that need to be solved to allow

the first-cut algorithm to manipulate configurations without

materializing policies (except for outputting the result). First,

how to compute the cost of the represented policies without

materializing them. Second, how to check if a configuration

corresponds to policy-aware sender k-anonymous policies.

Computing Cost from Configurations. We define the cost

of a configuration as the cost of the policies it represents

(uniquely defined by Lemma 1(a)). This cost can be com-

puted without materializing any represented policy, using the

following function.

Definition 8. Let D be a location database instance and C be

a configuration of a quad-tree T. We define the cost of C on

D, denoted Costc(C, D), as

Costc(C, D) :=
∑

n∈nodes(T)

f(n, C)

where f(n, C) is given by

f(n, C) =

{

(d(n) − C(n)) × area(n), n is leaf

((
∑4

i=1 C(ni)) − C(n)) × area(n), n is internal

where n1 . . . n4 are the children of n and area(n) is the area

of the quadrant corresponding to quad node n. �

We can show that the configuration cost is precisely the cost

of the represented policies:

Lemma 2. Given a location database D, a quad tree T ,

a quad-tree policy P based on T and a configuration C

1For the sake of conciseness, in the following we overload the term policy
to denote functions from user locations to cloaks (instead of from service
requests to anonymized requests as in Definition 4). The two notions of policy
are inter-reducible.

representing P ’s equivalence class, we have Costc(C, D) =
Cost(P, D).

Checking Sender Anonymity from Configurations. We

turn to checking if the policies in the equivalence class

represented by a given configuration are policy-aware sender

k-anonymous, without materializing them. By Lemma 1(b),

either all represented policies qualify, or none does. It turns out

that it suffices to check directly that the configuration satisfies

a property we call k-summation.

Definition 9. (k-summation) Let D be a location database

instance and C a configuration of a quad tree T rooted at n.

C satisfies k-summation if

• for a leaf node m

(i) if d(m) < k, then C(m) = d(m).
(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m) − k).

• for an internal node m let ∆ =
∑4

i=1 C(mi),
where m1 . . .m4 are the children of m

(iii) if ∆ < k, then C(m) = ∆.

(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆ −
k). �

Intuitively, in Definition 9, clause (i) states that if node

m’s quadrant contains less than k locations, none of them

can be cloaked by m lest k-anonymity be compromised. The

cloaking responsibility for all d(m) of them is “passed up” to

m’s ancestors (C(m) = d(m)). By clause (ii), if there are at

least k locations, then either all of them are passed up, or at

most d(m) − k (since at least k must be cloaked together to

preserve k-anonymity). ∆ represents the number of locations

whose cloaking responsibility is passed up from m’s children

to m. If there are too few of them (less than k) then they

cannot be cloaked by m, who in turn passes the responsibility

to its ancestors (in clause (iii)). Otherwise, m has the choice

of either cloaking none of them (C(m) = ∆ in clause (iv)),

or cloaking at least k and passing up at most ∆ − k.

Lemma 3. Let T be the quad-tree representation of a map

and D be an instance of the location database for that map.

If C is a configuration of T and P a policy in the equivalence

class C represents, then P is policy-aware k-anonymous on

D if and only if C satisfies the k-summation property.

Algorithm Bulkdp. Lemmas 2 and 3 justify an algo-

rithm that explores the space of configurations satisfying k-

summation, in search for a complete minimum-cost configu-

ration under Costc.

The exploration is carried out as follows. Recall from

Definition 8 that the cost of configuration C of a quad tree T

rooted at m depends only on the number C(m) of locations

not cloaked by T ’s nodes, and is independent of the cloaking

at the nodes outside of T . For this reason, it suffices if the

search space includes, for every quad tree node m, all possible

numbers u of locations whose cloaking responsibility is passed

up to m’s ancestors. That is, all possible values u for C(m).
For each such pair (m, u), the minimum cost is computed

among all possible configurations C′ of T with C′(m) = u. To

this end, the algorithm considers all possible counts u1, . . . , u4

of locations passed up to m by its children m1, . . . , m4, and

recursively computes the corresponding minimum cost for

each (mi, ui) pair.

Redundant cost re-computation for m, u pairs is avoided by

storing the result in the corresponding cell of a bi-dimensional

matrix M indexed by quad tree nodes and by values for u. To

enable the easy retrieval of the min-cost configuration from

M , the entries for node m carry, besides the minimum cost,

some bookkeeping information relating to the configurations

at the children of m.

This yields the following dynamic programming algorithm

Bulkdp that, given quad tree T and location database D, fills

in a configuration matrix M of dimension |T | × |D|, where

|T | denotes the number of nodes in T and |D| the number of

locations in D. Each entry M [m][u] in the matrix is a tuple

of the form 〈x, u1, u2, u3, u4〉, pertaining to a configuration

C for the quad sub-tree rooted at m, such that C(m) = u,

Costc(C, D) = x, and C(mi) = ui where m1, . . . , m4 are

the children of m. The algorithm traverses the quad-tree T

bottom-up starting from its leaf nodes, and for each node m

and 1 ≤ u ≤ n fills in the entry M [m][u] using the rows for

m1, . . . , m4.

Notice that it is easy to retrieve in polynomial time a

minimum-cost complete configuration from M , by a top-down

traversal of T . First, pick a minimum-cost entry in the row

corresponding to the root of T . This entry lists for each child

mi of the root the value C(mi) = ui leading to the minimum

cost. Now inspect for each mi the corresponding row in M ,

picking again a minimum-cost entry, and continue recursively

until all leaf nodes are reached.

Function F (m) in line 13 limits the possibilities of the

number of locations whose cloaking can be passed up by

m. Notice that it rules out the values d(m) − k + 1 through

d(m)−1 since these imply cloaking less than k locations at m,

which would immediately compromise k-anonymity. Quantity

x is the minimum cost among all configurations C with k-

summation for which C(m) = u. This is computed from the

costs of the configurations at the 4 children, and the term

area(m)×((
∑4

l=1 ul)−u), where (
∑4

l=1 ul)−u is the number

of locations actually cloaked by m. Recall that the cost is

found in the first component of the tuple stored in the matrix

entry, whence the need for the projection operation M1.

Notice how the algorithm mirrors the definition of the k-

summation property (Definition 9) to ensure that only config-

urations satisfying k-summation are considered. By Lemma 3,

these configurations represent only policy-aware sender k-

anonymous policies. For instance, line 6 corresponds to case

(i) in Definition 9, which prescribes that no locations are to be

cloaked by m (all d(m) locations occurring in its quadrant are

passed up, C(m) = d(m)). Thus by Definition 8, the resulting

cost is 0, which is what line 6 fills into the first component of

M [m][d(m)]. Similarly, line 8 gives the cost corresponding to

the case in the first disjunct of line (ii) of Definition 9; line

10 corresponds to the second disjunct. It’s easy to see that:

Algorithm 1 Bulkdp

1: for 1 ≤ m ≤ |T | do

2: for 1 ≤ u ≤ |D| do

3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: for all node m ∈ T do

5: if (m is a leaf node) and (d(m) < k) then

6: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
7: else if (m is a leaf node) and (d(m) ≥ k) then

8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: for 0 ≤ u ≤ d(m) − k do

10: M[m][u] := 〈area(m) × (d(m) − u), 0, 0, 0, 0〉
11: else {m is a non-leaf node}
12: let m1, m2, m3, m4 are children of m

13: for all u in F(m) do

14: pick u1 ∈ F (m1), u2 ∈ F (m2), u3 ∈ F (m3),
15: u4 ∈ F (m4) that minimize the quantity

16:

17: x :=
∑4

l=1 M1[ml][ul]+

area(m)×((
∑4

l=1 ul)−u)

18: where

F (m) denotes the set [0..(d(m) − k)] ∪ {d(m)},

and M1[i][j] returns the first component of the

tuple at M [i][j]
19:

20: M[m][u] := 〈x, u1, u2, u3, u4〉
21: return M

Lemma 4. Algorithm Bulkdp computes in each

M [m][u] = 〈x, u1, u2, u3, u4〉 the minimum configuration
cost x among all configurations C with k-summation where

C(m) = u and where C(mi) = ui, with m1, . . . , m4 the

children of m.

By the above discussion, the information in M suffices to

retrieve in PTIME a minimum-cost configuration.

C. Optimizations and Complexity Analysis

We just described the first cut algorithm. In [12] we show

some novel optimization techniques that significantly reduces

the complexity of the first cut algorithm and obtain the opti-

mized Smart-Bulkdp algorithm. In this section we analyze

the complexity of Bulkdp and Smart-Bulkdp and describe

two techniques to increase the performance: incremental main-

tenance of optimum solution and parallel anonymization.

Complexity analysis. The running time of Algorithm Bulkdp

is dominated by steps 13-17 , which, for internal node m,

ranges each of u, u1, u2, u3, u4 over at most |D| values (since

F (n) ≤ d(n) ≤ |D| for every n), resulting in O(|D|5)
iterations. Summing up over all nodes m of the quad-tree,

we obtain the complexity of Bulkdp in (O|T ||D|5). Lemma 4

and this complexity analysis directly imply Theorem 2. While

polynomial, and thus a welcome surprise in contrast to Theo-

rem 1, the degree 5 is impractically high given the large size

of the location database.

Optimizations. We adapt our algorithm from quad-tree to

binary-tree partitioning of the space and use novel optimiza-

tions (described in [12]) to obtain the optimized Smart −
Bulkdp that has reduced complexity of O(|B|(kh)2), where

|B| denotes the number of materialized node in the binary-tree

(since we don’t materialize the complete tree) h is the height of

the tree and k is the level of anonymity desired. Additionally as

run-time optimization, the binary-tree is not computed eagerly;

we split a (semi-)quadrant only if the resulting children contain

sufficient users to maintain anonymity.

Complexity Analysis in terms of |D|. Our complexity

analysis so far was carried out for precision in terms of the

size and height of the quad tree. While a gross upper bound

for |B| and h is |D|, leading to cubic running time in |D|,
the real values of h and |B| depend on the skew of the

locations in D. For instance, if the location distribution is

uniform, it follows that |B| ∈ O(|D|
k

) and h ∈ O(log(|D|
k

)),

and the overall running time becomes O(k|D| log2(|D|
k

)), i.e.

linear for practical purposes in both k and |D|. It turns out

that this analysis is highly robust to relaxing the assumption

on uniformity. Our experiments in Section V-A confirm the

above formula even for realistic data whose distribution is

quite skewed from uniform: 1.75 million locations reflecting

the actual population density in the entire San Francisco Bay

Area. The only examples we could create to force non-linear

behavior are contrived.

Incremental Maintenance of M . Algorithm Bulkdp com-

putes the optimal policy for a snapshot D of the location

database starting from scratch (hence the name). As the users

of the mobile network move around, the location database

snapshot changes from D to D′ at the next snapshot. Any

optimal policy computed at snapshot D may not remain

optimal for D′, or may not provide policy-aware sender k-

anonymity to users in D′. One can simply re-compute the

optimal policy from scratch, calling algorithm Bulkdp on D′

and T . Alternatively, if there are a large number of users in

D but only few of them move between consecutive snapshots

it makes sense to consider incremental re-computation of the

optimal configuration matrix for D′ starting from the optimal

configuration matrix for D. This is easily accomplished by

running the same bottom-up steps as algorithm Bulkdp, with

the added twist that the algorithm starts only from the quad

tree leaves m whose quadrants now contain a changed number

d(m) of locations.

Parallel Anonymization. We next explore a powerful tech-

nique for scaling the anonymization algorithm to cover large

areas. The result is based on the key observation that the spatial

nature of the problem features inherent parallelism that is eas-

ily exploited: just partition the region into sub-regions, putting

each under the jurisdiction of an independent anonymization

server. The servers run in parallel, each maintaining their own

binary tree and location database, and seeing only requests

issued in their jurisdiction. The policy in this distributed setting

is a master policy which anonymizes a location l by referring

to the policy constructed by the individual server under whose

jurisdiction l falls.

One concern is that the obtained anonymization cost may

no longer be optimal. To see why, consider cases when the

best way to anonymize location l by server 1 is to issue a

cloak that spans the jurisdiction of server 1 and its neighboring

server 2. Since server 1 does not have access to the location

database in server 2, it will use a different, larger cloak,

contained within its own jurisdiction. However such cases

occur only on the border of jurisdictions, and requires very low

population density at the borders. We therefore expect only

a minimal divergence from the optimal cost. We verify this

experimentally in [12], showing that the system throughput

can be effectively increased as more servers are added, while

the cost remains close to optimum (within 1% of the optimum

for 4k servers).

Assuming a fixed pool of servers, in extended version [12]

we describe a greedy partitioning scheme so as to balance

server load (the number of locations per server).

V. EXPERIMENTS

We next verify experimentally that our optimized algorithm

scales well with the size of the location database, and that the

stronger privacy guarantee comes at a reasonable cost increase.

Platform All our experiments were performed on an Intel

Pentium4 3.20GHz machine running Linux with 2GB memory.

(a) Population Density (b) 5000 Street Intersections

Fig. 2. Street intersections and Population density

Location Data We set out to generate location data starting

from a real-life map, using a real distribution of population

density. Figure 2(a) illustrates the population density for the

San Francisco Bay area in 1990, and is available from [7].

Unfortunately, the actual data values are not available, which

is why we generated them as follows. We obtained a data

set of street intersections in the same region (available at [8]).

This dataset contains about 175k street intersection points. We

conjectured that the population density is highly correlated

with the intersection density. We validated this conjecture by

plotting a random sample of 5000 points from this dataset

(shown in Figure 2(b)), and observing that it is roughly similar

to the actual population density graph of Figure 2(a).

We inserted 10 locations around each intersection using a

Gaussian distribution with standard deviation of 500 meters.

We obtained a Master dataset of 1.75 million locations. We

believe this number to be realistic, since although the total

population of the San Francisco Bay area is around 7M, it

corresponds to the maximum market share at national level

for any single national wireless provider (according to the

statistics published in [2]). To scale the size of the location

database for our experiments, we draw random samples of

increasing sizes (100k, 200k etc.) from the Master data set.

A. Bulk Anonymization Time

In this experiment we evaluate the running time of our

algorithm (the optimized version) varying the size of the

location database, the anonymization degree k, and the number

of anonymization servers. Figure 3(a) shows, for fixed k = 50,

the running time for computing an optimum configuration

with increasing location database size, with one curve per

number of servers. The horizontal axis shows the number of

locations while the vertical axis shows the time in seconds.

The running time is linear in the number of locations |D| for

up to 1.75M locations, as predicted by the complexity analysis

in Section IV-C. Notice that 16 servers can bulk anonymize

1.75M locations in less than 1s, and 32 servers in less than

0.5s. We note that this is extremely good scalability, especially

since our experiment stress-tests the algorithm to sizes of the

location database that far exceed the ones reported in prior

work on policy-unaware k-anonymity: at most 300K in [16].

0 12345678 0 0 . 5 1 1 . 5R unni ngTi me(sec)
N u m b e r o f U s e r s (m i l l i o n s)

1 2 4 8 1 6 3 2
(a) Running time vs |D|

0 12345678 0 5 0 1 0 0R unni ngTi me(sec)
K

1 2 4 8 1 6 3 2
(b) Running time vs k

Fig. 3. Linear running time in |D| and k

Next, we inspect how the running time scales with k, keep-

ing the number of locations fixed at 1M. Figure 3(b) shows

that the time increases quasi-linearly (really sub-linearly) with

k, again as predicted by the analysis at the end of Section IV.

B. Cost Overhead of Stronger Privacy

We expect that the stronger privacy guarantee will result

in higher cost, by requiring larger cloaks in the anonymized

requests. To evaluate the increase in cost from policy-unaware

to policy-aware sender k-anonymity, we compared the Cost

(in Definition IV) of the optimum policy-aware sender k-

anonymous policy obtained using our algorithm, with that of

• Casper: since it is the state-of-the-art policy-unaware

anonymizing system based on semi-quadrants [20], and

our binary tree optimization was inspired by it.

• Optimum policy-unaware binary tree (PUB): since it uses

the same type of cloak as our algorithm and a comparison

would give a good measure of the penalty of stronger

privacy.

• Optimum policy-unaware quad tree (PUQ): since this was

the first system [15] that proposed to use quad-tree based

cloak to provide (policy-unaware) sender k-anonymity.

For reasons described in [12] we use our own implementa-

tion of Casper and PUQ. Figure 4(a) shows the comparison of

average cloak areas obtained using the 4 algorithms described

above. The horizontal axis represents the number of locations

in the location database, and the vertical axis represents the

average area (in square meters) of anonymized regions. k is

fixed at 50. As expected, Casper has the minimum average cost

among all the policies since it can select between horizontal

or vertical semi-quadrants in contrast to fixed horizontal or

vertical semi-quadrants selected by the policy-unaware binary

tree. The cost of policy-aware sender k-anonymous policy is

nearly identical to that of the policy-unaware quad-tree, and

is at most 1.7 times that of Casper.

024681 01 21 4
0 0 . 5 1 1 . 5A verageA rea(k m2)

N u m b e r o f L o c a t i o n s (m i l l i o n s)
P U QP A BP U BC a s p e r

(a) Average cloak area for various
policies

0 12345 0 1 0 2 0 3 0 4 0 5 0R unni ngTi me(sec)
N u m b e r o f U p d a t e s (t h o u s a n d s)B u l kI n c r e m e n t a l

(b) Incremental Maintenance time
for |D| = 1M, k = 50

Fig. 4. Parallel and Incremental Anonymization

C. Incremental Maintenance

We have also studied the performance of incrementally

maintaining the optimum configuration matrix M from (the

optimized version of) algorithm Bulkdp. For the case of 1M

locations and k = 50, we varied the number of locations

that move from one snapshot of the location database to

another. To this end, we randomly selected a set of distinct

users updated their locations to a point at a randomly selected

distance (bounded by 200 meters, that represents the maximum

possible movement within 10 seconds) in a randomly selected

direction. Figure 4(b) shows the comparison of performance

of incremental maintenance with bulk re-computation. As

expected, the time for incremental maintenance of M is

always below that of the bulk re-computation as we increase

the percent of moving users. However, to our surprise, once

this percentage reaches 5%, the two times become virtually

identical, and there is no gain in incremental maintenance.

This is because most binary tree leaves require updating in that

case, and incremental degenerates into bulk anonymization.

VI. RELATED WORK

In the context of LBS, the two aspects of user privacy

that have received the most attention are location privacy [5]

and sender anonymity. The line of work on location privacy

is complementary to this paper, as location privacy refers to

hiding the precise location of the user (one is not required to

hide the identity of the user) while sender anonymity refers to

hiding the identity of the user (one is not required to hide the

location, on the contrary, one assumes it falls in the attacker’s

hands). As described in the introduction, the extensions to

user-defined k and trajectory-aware attacker are out of the

scope of this paper and we leave them as future work.

Extensions of k-inside. Most of the proposals for sender

anonymity are based on k-anonymity [23]. While a majority of

these [15], [20], [24] are simply based on the k-inside policy

(described earlier, and shown to not defend against policy-

aware attacks), some use variations. In [13], the cloaking

policy ensures that at least k−1 other users issue LBS requests

from the cloaked region. It’s been shown [15], [16], [11]

that a k-inside policy fails to provide sender k-anonymity to

“outlier” locations in some cases. To address this issue in k-

inside policies, additional constraints of k-reciprocity [16] and

k-sharing [11] have been proposed. k-reciprocity requires that

among the ≥ k locations inside the cloak R of a location x,

at least k − 1 have x in their cloak, while k-sharing requires

that at least k − 1 of them have R as their cloak. We found

that these additional constraints also fail to provide sender k-

anonymity against a policy-aware attacker.

Consider the cloaking algorithm in [11] that takes into

account the requesting locations to generate cloaking groups

(set of locations that are cloaked to the same region). For

locations in Figure 5(a), if the first request is made by C

the algorithm groups C with B whereas if the first request is

made by B then it puts B and A in the same cloaking group to

satisfy 2-sharing property. In the case when the initial request

contains the cloak corresponding to {C, B}, a policy-aware

attacker can infer that the sender is C!

S

C

A

B

T

1 2 3 4

1

2

4

3 Requester = C

Requester = B

(a) with 2-sharing

A
B

S1 S2

k = 2

(b) with 2-reciprocity

Fig. 5. Privacy breach

Next, consider a cloaking algorithm that generates circular

regions centered at the base station nearest to the cloaked

location. As shown in Figure 5(b) user Alice is closest to

station S1, hence her cloak is centered at S1. User Bob is

closest to station S2 so his cloak is centered at S2. Since both

users are inside the intersection of both circular cloaks, this

cloaking satisfies 2-reciprocity. When a policy-aware attacker

observes the cloaking region centered at S1, he can infer that

the only possible sender is Alice!

Utility-maximizing cloaking. Borrowing the result [19]

from data k-anonymity, the problem of finding optimum k-

anonymous cloaking that preserves privacy against a policy-

unaware attacker has been considered (in [16]) to be NP-hard.

In [13] the authors show that the problem of finding optimum

cloaking using a minimum bounding box as the cloak is NP-

hard and therefore provide an approximate algorithm. More-

over they only consider the locations with pending requests for

generating the cloak, as a result the cloak size can be quite

large as not all users in a small region are expected to use LBS

at nearly same time. The FindMBC algorithm in [24] computes

the minimum bounding circular cloak that preserves privacy

against a policy-unaware attacker. By Theorem 1, extending it

to optimal policy-aware anonymization is likely hard.

Data k-anonymity. One may argue that some of the al-

gorithms [22], [17], [4], [9], [10] developed for data k-

anonymization can be applied to the location database,

to reduce sender k-anonymization to the classical data k-

anonymization problem. However, the reduction from sender

to data k-anonymization is inadvisable since the problem of

finding the minimum-cost data anonymization is known to be

NP-complete [19]. As we show here, more headway can be

made by exploiting the additional structure of the problem,

namely that the data to be anonymized is location data.

Private Information Retrieval(PIR). The work in [14] is

based on computational PIR and uses cryptographic tech-

niques to provide sender k-anonymity. This solution addresses

a different point in the space of possible trade-offs of privacy

versus feasibility. It achieves maximal anonymity since all

senders are cloaked by the entire map area. The price to pay

includes costly adoption, and limited billing model. Adoption

is hindered by the need to change the operation of current

LBS to include cryptographic query evaluation. Since the LBS

does not know what query answers it returns, this precludes

insertion of relevant ads, and rules out a advertising-based

business model in which ads/service providers are charged by

the volume of their ads/service postings reaching users.

Beyond k-anonymity: l-diversity Similar to Homogeneity

attack [18] against k-anonymization, in our setting also, if

in a snapshot there are as many identical requests with

same cloak as the number of locations then it exposes all

senders. This assumes that a sender can issue a single request

per snapshot, which is reasonable given the short snapshot

duration. The following simple modification of our approach

to sender k-anonymity precludes such frequency-based attacks:

the anonymization server caches the query results returned by

the LBS, indexed by the anonymized request. This means that

the LBS does not even see duplicate anonymized requests

during the same snapshot, and therefore cannot count their

frequency (nor can it log it and thus make the count available

to hacking or subpoena).

VII. CONCLUSION

We introduce the notion of sender k-anonymity against

policy-aware attackers. This privacy guarantee is stronger than

the sender k-anonymity in prior work, which defends against

policy-unaware attackers only. Our results show that the novel

guarantee strikes a pragmatic balance in the trade-off between

strength of the privacy guarantee, utility, and running time for

enforcement.

We also show the considerable amenability of the problem

to parallelization, which reduces the anonymization time while

preserving the optimal utility in virtually all cases. Indeed,

dividing the San Francisco Bay area among 4K servers –

far more than needed since 16 suffice– leads to only 1%

divergence of the cost from the optimum. 16 servers already

provide anonymization time of about half a second for 1

million users.

REFERENCES

[1] Au’s GPS cell phone shows how to get to McDonald’s.
http://www.mobilemediajapan.com/headline2.asp?page=AU/KDDI.

[2] Verizon News Center: 4Q and Full-Year 2008.
http://news.vzw.com/news/2009/01/pr2009-01-27.html.

[3] Wireless 911 Services.
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,
D. Thomas, and A. Zhu. Achieving anonymity via clustering. In PODS,
2006.

[5] A. R. Beresford and F. Stajano. Location privacy in pervasive computing.
IEEE Pervasive Computing, 2(1):46–55, 2003.

[6] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against
location-based personal identification. In SDM, 2005.

[7] P. W. Bowen. DIGITAL ATLAS OF CALIFORNIA.
http://130.166.124.2/CApage1.html.

[8] T. Brinkhoff. A framework for generating network-based moving
objects.
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator.

[9] J.-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymization
using clustering techniques. In DASFAA, 2007.

[10] C.-C. Chiu and C.-Y. Tsai. A k-anonymity clustering method for
effective data privacy preservation. In ADMA, pages 89–99, 2007.

[11] C.-Y. Chow and M. F. Mokbel. Enabling private continuous queries
for revealed user locations. In SSTD, volume 4605 of LNCS. Springer,
2007.

[12] A. Deutsch, R. Hull, A. Vyas, and K. Zhao. Policy-aware sender
anonymity in location based services. TR CS2009-0939, UCSD, 2009.
http://db.ucsd.edu/pubsFileFolder/335.pdf

[13] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized
anonymization model. In ICDCS, pages 620–629, 2005.

[14] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan.
Private queries in location based services: anonymizers are not necessary.
In SIGMOD, 2008.

[15] M. Gruteser and D. Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In MobiSys, 2003.

[16] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing
location-based identity inference in anonymous spatial queries. IEEE
Trans. on Knowl. and Data Eng., 19(12):1719–1733, 2007.

[17] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient
full-domain k-anonymity. In SIGMOD, 2005.

[18] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.
ℓ -diversity: Privacy beyond κ -anonymity. In ICDE, 2006.

[19] A. Meyerson and R. Williams. On the complexity of optimal k-
anonymity. In PODS, 2004.

[20] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query
processing for location services without compromising privacy. In
VLDB, 2006.

[21] J. H. Saltzer. Protection and the control of information sharing in
multics. Commun. ACM, 17(7):388–402, 1974.

[22] L. Sweeney. Achieving k-anonymity privacy protection using general-
ization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):571–588, 2002.

[23] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[24] T. Xu and Y. Cai. Location anonymity in continuous location-based
services. In GIS, 2007.

