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the publishers owning it. The infrastructure disseminates user queries to publishers, who answer
them at their own discretion. The infrastructure enforces a publisher k-anonymity guarantee,

which prevents leakage of information about which publishers are capable of answering a certain
query. Given the virtual nature of the global data collection, we study the challenging problem
of efficiently locating publishers in the community that contain data items matching a specified
query. We propose a distributed index structure, UQDT, that is organized as a union of Query

Dissemination Trees (QDTs), and realized on an overlay (i.e., logical) network infrastructure. Each
QDT has data publishers as its leaf nodes, and overlay network nodes as its internal nodes; each
internal node routes queries to publishers, based on a summary of the data advertised by publishers
in its subtrees. We experimentally evaluate design tradeoffs, and demonstrate that UQDT can
maximize throughput by preventing any overlay network node from becoming a bottleneck.
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1. INTRODUCTION

During the last decade, the web has enabled unparalleled access to the vast amount
of electronic data that is continually being created, and search engine technology
has made it feasible to issue queries and locate web sites that contain data of interest
to a user.
As the web evolves, two significant new trends are emerging. First, write access

to the web is becoming increasingly democratic as it is easier for a large number
of users to create and publish data on a wide variety of topics; this is evident
from the proliferation of blogs, Wikis (e.g., Wikipedia), user-generated videos and
photos, etc. Second, it is becoming easier to form web communities based on shared
interests; this is evident in the considerably popularity of social networking sites
like Facebook and MySpace. With the confluence of these two trends comes the
natural desire to freely exchange data within the community – this includes making
one’s own data collection accessible to others within the community, and also be
able to query, tag, and comment on the global collection that is the union of all
local data collections of users within the community.
Recent events have called attention to the pressing need to enhance the infrastruc-

ture of online communities to enable freedom of speech without fear of retribution
against the community users. People have come to learn that their online blogs
along with the mainstream news websites can be easily censored, or worse, the true
identity behind their online nicknames can be revealed. This information can be
used to censor or discriminate certain individuals pertaining to various online ac-
tivist groups or dissidents. To fully deliver on the promise of freely exchanging data,
any community-supporting infrastructure needs to enforce the key requirement of
preserving the privacy of publishers. That is, there should be no easy way for any
third party to infer the identity of publishers of documents on specific topics.
This privacy-preserving publishing requirement precludes some obvious approaches

that reuse and build on existing centralized technologies, e.g., search engines, hosted
online communities, etc. Whereas the centralized models for online content delivery
and social networks is growing, it has sparked debates on subjects like net neutral-
ity, content ownership and control, etc. While these models are designed to handle
the large number of potential publishers and the dynamic nature of published data,
enabling a straightforward query access to the global data collection, the downside
is that publishers are disintermediated from consumers by the central site:

—The central site has control over the visibility of publishers to user queries, and
can effectively censor publishers by choosing to not index them.

—The central site has complete knowledge of all the information created by the
publishers (in case they relinquish a copy of their data, as is usual with current
search engines), or at least the topics advertised by the publishers. Even under
the unrealistic assumption that this central site is trusted by the publishers, it is
vulnerable to third-party censors1 and attackers.

For this reason, we advocate a decentralized approach in this paper, where there

1See, for example, National Coalition Against Censorship (http://ncac.org/) and OpenNet Ini-

tiative (http://opennet.net/)
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is no central authority, and the global data collection is virtual. More specifically,
we make the following contributions.

—We propose a distributed privacy-preserving publishing infrastructure in which
data resides only with its owner. The infrastructure disseminates user queries
to publishers, who answer them at their own discretion. Moreover, the way
publishers advertise their data, in order to receive relevant queries, is designed to
prevent any third party from pinpointing which publisher advertises what data
(even when extensively colluding with or attacking community members).

—Given the virtual nature of the global data collection, we address the challenging
problem of efficiently disseminating queries to publishers that contain data items
matching a specified query.
We propose a distributed index structure, UQDT, that is organized as a union
of query dissemination trees (QDTs), and realized on an overlay (i.e., logical)
network infrastructure. Each QDT has data publishers as its leaf nodes, and
overlay network nodes as its internal nodes; each QDT internal node maintains a
summary of the data advertised by publishers in its subtrees. Unlike Distributed
Hash Tables (DHTs), no QDT node has complete knowledge of all the publishers
that publish an advertised data item, thereby protecting publishers even when
several nodes are successfully attacked by or collude with a third party censor.

—We define a notion of publisher k-anonymity which guarantees that for every
publisher p and published data item d, the information stored in the UQDT, as
well as the communication required to maintain the UQDT, are insufficient to
distinguish p from k − 1 other potential publishers of item d. We show how to
configure the UQDT to guarantee publisher k-anonymity even when an arbitrary
number of UQDT nodes are compromised by hacking, subpoena, collusion, or
impersonation attacks.

—The adoption of the UQDT solution hinges on its performance. We present algo-
rithms that use the UQDT for routing queries to publishers efficiently, following
the parent-child links from a QDT and making effective use of the advertised
data summaries maintained by QDT internal nodes. While a single QDT suffices
in principle to route queries, this results in congestion at the upper levels of the
QDT, severely limiting the throughput of the overall index structure, and making
it potentially vulnerable to Denial of Service attacks. We build on well known
techniques for scalable dissemination trees and for “Russian Doll” search over
sets [Hellerstein et al. 1995].
We show how UQDT can achieve load balancing and throughput maximization
for a workload W by a judicious combination of (i) Overlaying multiple QDTs
over the network, each with a distinct root, and arranging for queries in W to
be channeled in parallel through distinct QDTs, and (ii) Maintaining limited
selectivity information about data items to help inform the routing strategy. To
the best of our knowledge, there are no works that combine multiple trees for
load balancing and hierarchical summaries for ad-hoc query routing in distributed
systems.

—We experimentally evaluate UQDT design tradeoffs through extensive simula-
tions, using a real Wikipedia collection comprising about 1.1 million documents
of total size 8.6GB. We demonstrate that UQDT can maximize throughput by
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preventing any overlay node from becoming a bottleneck. In addition, we show
in [Curtmola et al. 2008] how UQDT empowers information publishers to join
democratic communities and query their global collection in an ad-hoc fashion
using expressive queries.
To this end, we explore various QDT topologies (e.g., Scribe [Castro et al. 2002]
generated multicast trees, as well as balanced structures), number of QDTs,
and routing strategies (based on the selectivity information maintained), and
show that (i) One can statically identify a near-optimal number of QDTs for
any specified QDT topology, which maximizes throughput by preventing any
overlay network node from becoming a bottleneck, and (ii) Maintaining selectivity
information about a few popular data items (2− 3%) achieves considerable gains
over random routing, and is almost as good as a “fully informed” routing strategy.

Paper Outline. The remainder of this paper is organized as follows. We start
with an overview of our proposed framework and the space of design tradeoffs in
Section 2. Section 3 describes our operation choices, followed by the analysis of
publisher k-anonymity for UQDT in Section 4. Experimental setup and results
are presented in Sections 5 and 6. We discuss related work in Section 7 and then
conclude in Section 8.

2. OVERVIEW OF OUR FRAMEWORK

Data and Query Model. For the purpose of information discovery and flexible
querying, we abstract information as collections of data items, where each data
item is described by a set of content descriptors (CDs). CDs are an abstraction of
keywords, terms, or other atomic information units [Ott et al. 2004]. For instance,
in information retrieval applications, data items are text documents, and the CDs
are the terms appearing in them. In relational databases, collections are tables,
data items tuples, and CDs are (attribute,value) pairs. Further examples are given
in Section 5. Given a data item D, we denote its set of CDs with cd(D).

We consider queries expressed as sets of CDs, and denote the set of CDs of query
Q with cd(Q). We say that data item D matches query Q if cd(Q) ⊆ cd(D). Notice
that the case of matching conjunctive keyword queries against text documents (the
most common Information Retrieval operation) corresponds to the particular case
in which CDs are keywords. Given a data collection D, the result of Q on D, denoted
Q(D), is the set of data items in D that match Q: Q(D) := {D ∈ D | D matches Q}.
Communities of Data Publishers and Consumers. We consider commu-

nities of autonomous publishers, who join the community with their own locally
stored data collection and make it available for querying. In return, they can query
the global collection consisting of the union of all local collections.
We contrast two competing approaches to designing the infrastructure for such

communities. At one extreme lies the centralized approach, where all data from the
publishers is collected at a single site (this is what all search engines and hosted
online communities do). The advantage of this approach is that querying the global
collection is straightforward. The downside however is that publishers are disin-
termediated from consumers by the central site, and hence they lose control over
who accesses or is interested in their content. At the opposite extreme, there is no
central control authority in charge of deciding where individual data items should
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reside and to re-shuffle them accordingly. In this latter setting the global collection
is virtual, i.e. it is not materialized at any central location. Instead, data resides
only with the publishers owning it. The advantage is that publishers maintain com-
plete control over who accesses their content, and how the content is ”advertised”
to the community. The challenge here is efficient query evaluation. Given our fo-
cus on providing community-enabling infrastructure for autonomous publishers, we
adopt the decentralized approach.

The virtual nature of the global data collection raises the challenge of avoiding the
naive broadcast of queries to all publishers. We propose in this paper is a distributed
index structure that supports sending a query Q to all publishers relevant to Q
while minimizing the number of irrelevant publishers reached by Q. We say that a
publisher is relevant to Q if one of its local data items matches Q.

Our indexing solution targets a service-oriented logical network infrastructure, in
which we distinguish two types of nodes. There are data publisher nodes (the com-
munity members) that provide data services and connect to the network via direct
links to nodes at its edge. The data are indexed inside the network, which consists
of a set of inter-connected and reconfigurable router nodes. These are responsible
for routing queries to the relevant publishers. In an internet-scale distributed set-
ting, it is natural that routers are controlled by a multitude of distinct network
providers covering different autonomous administrative domains. Thus, no single
provider controls more than a fraction of the entire network, and the resulting
architecture is not centralized.

While different queries might hit the same set of nodes, our goal is to balance
the community search generated load at routers during query dissemination while
preserving low space usage of index at a node and still preserving publisher k-
anonymity.

Design Requirements. We consider the following key requirements on the in-
frastructure design. First, published data should not be relinquished to anyone but
to community members, and only by answering queries upon successful credential
authentication of the query issuer. Note that harvest-index-query methods (e.g.,
centralized solutions) fail. Second, publishers should advertise just enough infor-
mation in the community to be reached by user queries without disclosing their
identity. Publishers advertise the contents of their local store by declaring a set
of CDs appearing in their local collection. Note that not all existing CDs need
to be declared, especially if they pertain to private data items. The advertised
information plays the role of a distributed index that is described next.

Publisher k-anonymity. We propose a notion of privacy that protects commu-
nity members by preventing an attacker from associating them with the CDs they
advertise. We define publisher k-anonymity (detailed in Section 4), which guaran-
tees that for every publisher p and published CD d, the information stored in the
infrastructure, as well as the communication required for maintenance, are insuffi-
cient to distinguish p from k − 1 other potential publishers of d. The distributed
index guarantees publisher k-anonymity even when an arbitrary number of UQDT
nodes are compromised by hacking, subpoena, collusion, or impersonation attacks.

Query Dissemination Trees. We propose the organization of the internal
nodes into a logical tree we call a Query Dissemination Tree (QDT). The internal
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QDT nodes are routers, the publishers are leaves. Regardless of which querier
initiates a query Q, Q is sent to the root of the QDT, whence it propagates down
the tree to the publishers. The intention is that, when Q reaches a node n with
no publishers in its subtree that are relevant to Q, n prunes its subtree from the
search, i.e. it does not forward Q to its children. This pruning saves the network
traffic and processing at n’s descendants.

One immediate technical difficulty associated with this goal is how to instrument
the index to efficiently determine that none of n’s descendant publishers are relevant
to Q. Of course, it is infeasible to maintain at every node n the collection of all data
items in n’s subtree. This would be prohibitively wasteful in terms of space, and
it would defeat the purpose of preserving privacy of publishers: it would require a
publisher p to trust (the good intentions and security of) every router on the path
leading to p from the root. This is an unrealistic prerequisite.
We adopt a solution in which publishers share only limited information with the

routers. Publishers advertise the contents of their local store by declaring a set of
CDs appearing in their local collection. Note that not all existing CDs need to be
declared, especially if they pertain to private data items.
We present in two steps the way routers exploit this information. In a first cut,

we assume that it is feasible to store at every node n the set cd(n) of all CDs
declared by publishers located in n’s subtree (we revisit this assumption shortly).
This assumption is supported by empirical evidence that, for real data sets, the
overlap of CDs across data items in a collection is considerable, and the union of all
CDs (with duplicate removal) is orders of magnitude smaller than the combined size
of the collection. For instance, in Section 5 we describe a collection of 1.1 million
Wikipedia articles of combined size 8.6 GB that has only 3.2 million distinct CDs.
Note that when only cd(n) is stored at a router n, n does not know which CD
appears in which publisher, nor which sets of CDs appear together in a data item.
This offers publishers an added degree of protection against compromised routers.
Query Routing in Single-QDT. In this setting, we consider the following

simple query routing algorithm. Every query Q posed by a querier p is initially
sent to the root of the QDT (in a message containing both Q and p’s address).
When a router node n receives the message, it forwards it in parallel to each of its
children in QDT if and only if cd(Q) ⊆ cd(n). When a publisher node is reached,
it sends back to p the result of Q against its local collection. Note that when
cd(Q) 6⊆ cd(n) holds, it is guaranteed that n’s publisher descendants are irrelevant
to Q. Therefore, the first-cut routing algorithm never prunes relevant publishers,
thus ensuring that the final result of Q over the global collection is computed in full.
In contrast, when cd(Q) ⊆ cd(n) holds, it is not necessarily the case that at least
one publisher in n’s subtree is relevant to Q. This is because the CDs in cd(Q) may
not be co-located in the same data item, or even at the same publisher. Therefore,
the first-cut algorithm may forward queries unnecessarily, generating non-minimal
traffic and processing load. This is a result of the unavoidable trade-off between
privacy and evaluation performance.

EXAMPLE 2.1. Throughout the paper we use the following running example.
Consider a network of 25 nodes that integrates general news from 8 different news-
paper web sites P1, ..., P8 (the remaining 17 nodes are routers). Figure 1(a) shows
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the CDs declared by each publisher (they are simple keywords). Consider also
a query workload consisting of the four queries shown in Figure 1(b). Without
showing the actual documents, assume that for every query Q there is at least one
newspaper web site that publishes a document matching Q.

Publisher p CDs declared by p, cd(p)

P1 Peking, Tibet, stocks, train, money

P2 Peking, yak tea, Hong Kong, train

P3 Peking, Tibet, yak tea, Hong Kong, money
P4 Peking, freedom, yak tea, stocks, money

P5 Peking, freedom, yak tea, stocks, money

P6 freedom, Tibet, stocks, money

P7 freedom, yak tea, stocks, money

P8 freedom, yak tea, stocks, money

(a) Publishers’ declared CDs.

Query Q cd(Q)

Q1 Peking, freedom
Q2 Tibet

Query Q cd(Q)

Q3 train
Q4 Hong Kong, money

(b) Query workload.

Fig. 1. Running Example Setup

Assume for now that the routers and publishers are organized in the single-QDT
configuration QDT1, shown in Figure 3(a). The router nodes are identified by their
preorder traversal rank. For simplicity, we assume that it is feasible for each node n
to store all CDs declared by the publishers in its subtree, cd(n). The corresponding
CD sets are shown in Table I. For example, node 2 stores all CDs published by P1

and P2, thus cd(2) = {Peking, Tibet, stocks, train, money, yak tea, Hong Kong}.

Node n CD summary cd(n)

4 Peking, Tibet, stocks, train, money

6 Peking, yak tea, Hong Kong, train
3, 2 Peking, Tibet, stocks, train, money, yak tea, Hong Kong

10 Peking, Tibet, yak tea, Hong Kong, money

9, 8 Peking, Tibet, yak tea, Hong Kong, money, freedom,

stocks
14 Peking, freedom, yak tea, stocks, money

18, 17 freedom, Tibet, stocks, money

21, 20 freedom, yak tea, stocks, money

24, 23 freedom, yak tea, stocks, money
16 freedom, Tibet, stocks, money, yak tea

13 Peking, freedom, Tibet, stocks, money, yak tea

1 Peking, Tibet, freedom, yak tea, stocks, money, train,

Hong Kong

Table I. CDs Stored at Routers in Single-QDT Case

For simplicity sake, let us consider in this example that every node can process
exactly one query per time unit. If all queries in the workload are issued simulta-
neously at time 0 and processed in the order Q1 to Q4, then Figure 2 shows their
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1 2 3 4 5 6 7 8

1 node 1 Q1 Q2 Q3 Q4

2 node 2 Q1 Q2 Q3 Q4

node 8 Q1 Q2 Q3 Q4

node 13 Q1 Q2 Q3 Q4

3 node 3 Q2 Q3

node 9 Q1 Q2 Q4

node 14 Q1 Q2

node 16 Q1 Q2

4 node 4 Q2 Q3

node 6 Q2 Q3

node 10 Q1 Q2 Q4

P4 Q1 Q2 Q4

P5 Q1

node 17 Q2

node 20 Q2

node 23 Q2

5 P1 Q2 Q3

P2 Q3

P3 Q2 Q4

NodeLvl.
Time Unit

P3 Q2 Q4

node 18 Q2

node 21

node 24

6 P6 Q2

P7

P8

Fig. 2. Query Dissemination in Single-QDT Configuration

dissemination according to the first-cut routing algorithm. For example, regardless
of the issuing node, query Q3 is disseminated in QDT1 starting from the root node
(node 1), which is congested and can only process Q3 at time unit 3. Because train
is contained in cd(1), Q3 is forwarded to all of node 1’s children, in this case to
nodes 2, 8 and 13, where the dissemination continues recursively. Since train does
not appear in the CD sets of nodes 8 and 13, their subtrees are pruned (i.e. nodes 8
and 13 do not forward Q3 to their children). However, node 2’s CD set does match
Q3 and the query is routed down to node 3 at time unit 5, then to nodes 4 and 6
at time unit 6. Both these nodes have a match and Q3 reaches the publisher nodes
P1 and P2 at time unit 7. Each of the two publishers runs Q3 on its local collection
and sends the result back to the issuing node. ⋄

CD Set Summaries. We now revisit the assumption that all CDs in cd(n)
are stored with every router n. We address the case when cd(n) is larger than
can be comfortably stored at a router n with available memory of size M . To
this end, we observe that we do not necessarily need to keep the exact set cd(n).
Instead, it suffices to store a summary thereof at node n. This is a data structure
smmM that fits in memory of size M and implements a boolean method contains

such that for any set S of CDs, the call n.smmM .contains(S) approximates the
actual test S ⊆ cd(n). We obtain the final version of our routing algorithm by
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replacing in the above first cut every containment test with a call to the summary’s
containsmethod. To preserve in the final version the desirable properties of the first-
cut routing algorithm, we require n.smmM to satisfy the following. If S 6⊆ cd(n)
but n.smmM .contains(S) = true, we say that n.smmM gives a false positive on S.
n.smmM gives a false negative if S ⊆ cd(n) yet n.smmM .contains(S) = false. Re-
gardless of the memory size M , we disallow false negatives, since these would lead
to incomplete computation of the query result, pruning potentially relevant sub-
trees. In contrast, false positive do not affect the correctness of query evaluation,
but impact its efficiency, as they result in unnecessary query forwarding. As seen
above, unnecessary forwarding to publishers that eventually turn out to be irrele-
vant is not entirely avoidable even when cd(n) is stored exactly. Therefore, it is not
crucial to guarantee the absence of false positives, but it is desirable to minimize
their frequency, which should ideally decrease as the the available memory size M
increases. We summarize the requirements on n.smmM in the following list.

(a) n.smmM fits in memory of size M ;
(b) the call n.smmM .contains(S) is efficient, i.e. runs in time independent of the
size of cd(n) and only linear in that of S;

(c) for every memory size M , n.smmM gives no false negatives (i.e. for every S,
n.smmM .contains(S) = false only if S 6⊆ cd(n)); and

(d) if M1 < M2, then the frequency of false positives is lower for smmM2 than for
smmM1 (where the two data structures summarize the same set of CDs).

In Section 3, we present one concrete summary implementation based on Bloom
filters [Bloom 1970; Fan et al. 2000], proving that it satisfies our requirements.
However, any alternative implementation qualifies.
Throughput Maximization. We have so far confined our discussion to the

routing of a single query through the network. We next extend our solution to
handle query workloads (sets of queries).
We start by observing that the arrival of a query at node n triggers measurable

computation effort pertaining both to the processing of the query (lookup in the
summary and evaluation over local collection if present) and to its forwarding to
n’s children. This limits the number of queries passing through n per time unit
and can lead to congestion. Since queries pruned at upper levels in the tree never
reach the lower levels, the fraction of any workload W reaching node n is a subset
(often strict) of the fraction reaching its ancestors. In particular, the root becomes
a bottleneck since it is reached by all of W . In contrast, edge routers at the leaves
are reached by relatively small fractions of W and may not be heavily utilized.

EXAMPLE 2.2. Revisiting Figure 2, observe that the number of query mes-
sages reaching the nodes is significantly skewed among the tree levels, and ul-
timately among the nodes, decreasing from the root to the leaves. Because all
queries touch the top 2 levels, their nodes receive 4 messages each, while nodes on
the lower levels receive 0, 1, 2 or 3 messages. Overall, it takes a total of 8 time
units to disseminate all queries, of which the root alone introduces a delay of 4 time
units, while nodes 21 and 24 remain idle. ⋄

We propose to alleviate congestion at the upper levels of the QDT by spreading
the load more uniformly across the nodes. Currently, there are two main solutions
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to achieve this. One class of algorithms replicate data (or indices of it) redundantly
at the router nodes. Thus, each router can initiate to answer queries. Nevertheless,
this incurs increased updates cost as well additional space cost to store all replicas
which is inappropriate with our initial set of goals. In contrast, we propose to par-
tition the global data collection and interconnect the publishers for each partition
block in a different overlay. We show next how this technique alleviates congestion
while still preserving the space usage at routers.
Therefore, our solution consists in overlaying multiple QDTs over the network,

each with a distinct root, and arranging for various fractions of W to be channeled
in parallel through distinct QDTs. Since all QDTs are supported by the same un-
derlying logical network, a network node n participates in several QDTs, receiving
and forwarding queries via each of them. Balancing the load involves arranging for
the distribution of levels associated with n to be (as close as possible to) uniform
across the set of all QDTs. For example, the fact that n receives a high fraction
of the queries flowing through QDT1 because it resides on an upper QDT1 level,
is compensated by n being reached by only a small fraction of the queries flowing
through QDT2, where it resides on a lower level.
The goal of splitting the query workload into fractions that flow through distinct

QDTs raises two fundamental technical obstacles we need to overcome.
The first pertains to controlling memory consumption at the router nodes. If

a node n participates in multiple QDTs, it must maintain separate summaries for
each of its subtrees. A key requirement is

(e) the total space used by the union of all summaries associated with n should
not exceed the space used by n’s summary in the single-QDT configuration.

We satisfy this requirement by arranging for each of n’s summaries to pertain to
disjoint CD sets. To this end, we partition the space of all possible CDs into a num-
ber of k disjoint blocks P = {Bi}1≤i≤k. (We discuss shortly what considerations
go into picking the value of k, and we describe in Section 3 how the partitioning is
achieved in practice.) We call each Bi a CD block. We assign to each CD block its
own QDT, obtaining a family UQDT = {QDTi}1≤i≤k.

The second problem is the preservation of the query semantics. That is, we need
to ensure that, by being routed only through a single QDT, a query is guaranteed
not to miss any relevant publishers. We achieve this soundness property by requiring
each QDT to satisfy the following:

(‡) QDTi contains as leaves all publishers whose local
data collection has at least one CD in common with Bi.

We defer to Section 3 the discussion on how the internal nodes of each QDTi are
organized.
Query Routing with Multiple QDTs. For every query Q, we pick the QDT

to send it to as follows. The partition P induces a partition PQ = {Qj}1≤j≤m on
cd(Q), such that for each Qj ∈ PQ there is Bi ∈ P with Qj = cd(Q) ∩Bi. We call
each such Qj a query block and we say that the CD block Bi corresponds to Qj .
Note that by definition each query block corresponds to precisely one CD block,
which in turn corresponds by construction to precisely one QDT. Given a query
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block Qj ∈ PQ, we can therefore refer to “the” corresponding QDT, and denote it
with qdt(Qj).
In general, Q has 1 ≤ m ≤ |cd(Q)| query blocks, with corresponding QDTs

qdt(Q1), . . . , qdt(Qm). For routing Q, we only pick one of these QDTs, say qdt(Qj).
Regardless of how this pick is taken, we send to the root of this QDT a message
containing three components: (Qj , Q, p), where p is the address of the initiating
querier. qdt(Qj) routes this message as described above in the single-QDT case,
with only three minor refinements:

—since every internal node n can participate in various QDTs, n stores one sum-
mary smmM

T per QDT T ;
—n uses Qj for routing in qdt(Qj) (i.e. for lookup into the summary n.smmM

qdt(Qj)
);

and
—leaf nodes use Q for evaluation against their local data collection.

We summarize our discussion so far in the pseudocode of algorithm eval below:

algorithm eval(Q, p, P)
input: query Q, address of its initiator p,

partition P of CD space.
begin
find PQ = {Q1, . . . , Qm} induced by P;
pick j ∈ {1, . . . ,m};
route(Qj , Q, p, root of qdt(Qj), qdt(Qj));

end

algorithm route(Qj , Q, p, n, T )
input: query block Qj , query Q, address of its initiator p,

reference to node n, reference to QDT T .
begin
if n is leaf then

run Q over n’s local collection; send result (if non-empty) to p
return;

if n.smmM
T .contains(Qj) = false then return;

for each child c of n in T do in parallel route(Qj , Q, p, c, T );
end

EXAMPLE 2.3. Example 2.2 shows how the congestion appears inevitably in
the upper levels of the dissemination tree. Here, we show how congestion can be
alleviated by using multiple QDT overlays over the same nodes.
We consider a configuration of 4 QDTs, each corresponding to a block in the CD

space partition P. P is shown in Table II.
In general, internal nodes can be connected in any configuration at the network

overlay layer. Figure 3 depicts 4 possible QDTs, one per CD space partition block.
Figure III shows the CD summaries maintained at every router. Since a router

appears in multiple QDTs, it actually manages a set of summaries. For example,
node 3 has one summary corresponding to nodes P1 and P2 which are all its pub-
lisher descendants in QDT1, a summary for all publishers in QDT2, one for P8 in
QDT3, and a fourth summary for P2 in QDT4. To simplify presentation of this
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Block CDs

B1 Peking, freedom
B2 Tibet, yak tea
B3 Hong Kong, stocks

B4 train, money

Table II. Blocks of the 4-Partition

Node Tree Data summary

4, 6, 3, 2, 10 QDT1 Peking
9, 8, 14, 13, 1 Peking, freedom
18, 17, 21, 20, 24, 23, 16 freedom

20, 2, 21 QDT2 Tibet

23, 10, 8, 24, 13, 1 yak tea
4, 9, 18, 6, 14, 17, 16, 3 Tibet, yak tea

24, 18, 9, 8, 14, 13, 16, 3, QDT3 stocks
21, 17

1, 2 Hong Kong

20, 6, 23, 10, 4 Hong Kong, stocks

9, 1, 18, 2, 6, 14, 10, 16, QDT4 money
17, 4, 8, 21

3 train
13, 24, 23, 20 train, money

Table III. CD Summaries in the 4-QDT Configuration
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18 21 24
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(a) QDT1 for B1.
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(b) QDT2 for B2.
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(c) QDT3 for B3.
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(d) QDT4 for B4.

Fig. 3. Query Distribution Trees for the 4-Partition

small example, we assume that each summary stores the exact set of CDs rather
than its approximation.
Figure 4 presents the routing diagram in the 4-partition over time, assuming
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1 2 3 4 5 6

node 1 Q1 Q2 Q4

node 2 Q1 Q4 Q2

node 8 Q1

node 13 Q1 Q3

node 3 Q2 Q3

node 9 Q2 Q1

node 14 Q2 Q1

node 16 Q2 Q1

node 4 Q4 Q2

node 6 Q4 Q2

node 10 Q4 Q2 Q1

P4 Q1 Q2 Q4

P5 Q1

node 17 Q4 Q2

node 20 Q3 Q4 Q2

node 23 Q3 Q4 Q2

P1 Q2 Q3

P2 Q3 Q4

P3 Q2 Q4

Node
Time Unit

P3 Q2 Q4

node 18 Q3 Q2

node 21 Q3 Q2

node 24 Q3 Q2 Q4

P6 Q2

P7

P8

Fig. 4. Query Dissemination in 4-QDT Configuration

queries Q1 . . . Q4 are issued simultaneously at time 0.
Query Q1 is a conjunctive query both of whose CDs fall in the first partition

block B1. The only routing choice is hence the tree corresponding to B1, namely
QDT1 shown in Figure 3(a). Since P’s blocks are disjoint, single-conjunct queries
also have only one routing choice. For instance, Q2 and Q3 are routed using QDT2

in Figure 3(b), respectively QDT4 in Figure 3(d). Q3’s routing on QDT4 by CD
train is highlighted in Figure 4. It starts from the root (node 20) at time unit 1.
Since train is contained in the node’s summary, Q3 is forwarded to nodes 23, 18 and
21. Only node 23 has a summary match and it forwards Q3 further down to node
24, which recursively routes the query to nodes 13 and 3 at time unit 4. Both these
nodes have a summary match, and publishers P1 and P2 receive Q3 at time unit 5.
However, because of processing contention at P1 (P1 is busy processing Q2 at time
unit 5), Q3 will be served by P1 at time unit 6 while P2 serves it upon receipt at
time unit 5. Both publishers contain matching documents and send them back to
the query issuer.
In contrast, query Q4 intersects CD blocks B3 and B4, which induce two query

blocks: PQ4
= {{Hong Kong}, {money}}. This offers two routing alternatives:

either by using CD Hong Kong on QDT3, or by using money on QDT4. In the
diagram, we assume that QDT3 was picked. When the subquery hits publishers P2

and P3 the full query Q4 is tested on the local store (only P3 has a match for both
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CDs of Q4).
Comparing with Example 2.1, notice that the 4-QDT configuration outperforms

the single-QDT case: the former takes 6 time units to complete the dissemination,
while the latter needs 8. The improved throughput is due to better load balance:
contrast the behavior of routers 21 and 24, which remain completely idle in Table 2
but shoulder part of the dissemination task in Figure 4.

Finally, observe that the benefit of better node utilization outweighs the drawback
of using query blocks for pruning, instead of the entire (and more selective) set of
query CDs. Indeed, the 4-QDT configuration wins despite its less aggressive pruning
which leads to slightly more messages (50, as opposed to 46 for one QDT). ⋄

It is easy to check that property (‡) on Page 10 implies the soundness of our
query evaluation algorithm:

Proposition 1. For every query Q, partition P, and every pick of j, our query
routing algorithm eval correctly computes Q’s answer.

Obviously, for single-block queries there is no choice and the QDT is uniquely de-
termined. However, in the general (and more likely) case of multiple-block queries,
Proposition 1 uncovers an optimization opportunity: the judicious QDT choice (out
of several equally sound alternatives) towards throughput maximization. We there-
fore need to treat the spectrum of possible routing strategies as an optimization
dimension in its own right.
The UQDT Design Space Layout. We remark that the number k of blocks

in the partition P of the CD space defines a spectrum of possible configurations of
the same network, thus adding a new dimension to the optimization space. One
extreme of this spectrum is the case k = 1, which we have discussed above as the
single-QDT configuration. At the other extreme, we have the case in which each
block of P is a singleton CD. We refer to it as the per-CD configuration. We argue
next that neither of the extremes results in optimal throughput, and that the value
of k is an optimization dimension we need to explore. Indeed, Example 2.1 and
Example 2.3 show that the single-QDT configuration is certainly not optimal, being
outperformed by a 4-QDT configuration for the given query load. At the same time,
constructing too many QDTs is counter-productive, since the increase in k decreases
the size of the query blocks, thus resulting in less selective lookups in each node’s
summary. This translates into less pruning, i.e. more query forwarding messages:
the 4-QDT configuration in Example 2.3 generates 50 messages, as opposed to the
46 of the single-QDT configuration in Example 2.1. In conclusion, as k increases, we
observe two opposite effects: an increase in load balancing potential, but also in the
overall load (number of messages) in the network. An independent consideration
that precludes extremely high values of k is that the maintenance of any overlay
network involves a small, but non-zero control traffic overhead [Castro et al. 2002].
Maintaining too many QDTs would amplify this overhead. Finally, we observe that
the per-CD configuration suffers from an additional problem: for every node n, any
reasonable summary n.smmM would have to contain at least one bit for the unique
CD it summarizes, so the combined size of all summaries of n would amount to a
prohibitively expensive value, linear in the number of all possible CDs.
In Section 3, we discuss the following issues not covered here, all of which have

Technical Report CS2010-0956, UC San Diego, March 2010.



Censorship-resistant Publishing · 15

significant impact on query throughput: How can a partition P of the infinite space
of all possible CDs be chosen and represented finitely (this includes determining the
value for k)? How can P be used to efficiently determine PQ? How are the various
QDTs corresponding to P organized for better throughput? How are the CD sum-
maries smmM

T at every node implemented and maintained to satisfy requirements
(a) through (e) above? How does the choice of QDT (the pick of j in algorithm
eval) impact throughput

3. OUR APPROACH

In Section 2, we have provided an overview of our proposed solution for query
dissemination, identifying the dimensions of the space of possible implementations.
We delegate to Section 4 the discussion of how to configure and maintain the UQDT
to ensure publisher anonymity. As a proof of concept for the viability of the overall
approach, we developed an actual implementation, described in this section and
evaluated experimentally in Section 6. Based on these results, we have demon-
strated the full power of a full-text publishing and querying distributed system as
described in [Curtmola et al. 2008].
We focus on the most flexible setting supported by our infrastructure, namely

the case in which the service-oriented overlay network to which publishers connect
is possibly owned by a multitude of different separate entities distinct from the
publishers. We therefore have a set of router nodes connected by an overlay network,
and a set of publisher nodes who attach to this network to join the community.
QDT Topology. There are many possible topologies according to which we

could organize the router nodes into a QDT. We investigate two approaches.
First, we take the pragmatic approach of “piggy-backing” on top of a mature

overlay tree-building approach to disseminate messages to groups of nodes (also
known as multicast groups). Since multicast overlay trees are constructed with a
different goal than QDTs, it is not immediately clear that they are optimal for
the purpose of query dissemination (though we show experimentally that we can
“convert” them, achieving very good performance). However, one advantage of del-
egating the QDT construction to such off-the-shelf technology is that it is equipped
to exploit information on the topology of the underlay network with minimal control
overhead. Moreover, it maintains overlays dynamically, adapting to the change in
underlay network conditions. One widely-used representative of this class of tools
is SCRIBE [Castro et al. 2002]. We use as our platform the open-source SCRIBE
implementation FreePastry version 2.0 beta 2 [pas ].

In addition, we consider home-grown QDTs built for the express purpose of
balancing the forwarding effort among the routers. Since every router forwards a
query to each of its children, the forwarding effort is linear in the node’s fanout. This
suggests constructing (nearly) balanced QDTs, with as little variation as possible
in the node fanouts. We need to construct such trees ourselves, since SCRIBE does
not guarantee balanced trees.
CD Summary Implementation. Regardless of the QDT topology, a key issue

is the implementation of the CD summaries at every router node so as to satisfy
the requirements (a) through (d) in Section 2. We choose to represent a summary
smmM as a Counting Bloom Filter [Bloom 1970; Fan et al. 2000] of size M for its
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well-known properties: compactness and probabilistic set membership of CDs (i.e.,
no false negatives, control over false positives rate). We obtain the final version
of our routing algorithm by replacing in the above first-cut every CD containment
test with a call to a Bloom filter set membership test. Note that false positives do
not affect the correctness of query evaluation.
The bloom filter is a data structure consisting of a vector of M counters, thus

satisfying smmM requirement (a). The vector is accompanied by l hash functions
{hi}1≤i≤l from CDs to the set of integers corresponding to positions in the vector,
{0, . . . ,M − 1}. Every CD c corresponds via the hash functions to up to l indexes
in V . We denote the set of these indexes with ind({c}), defined as ind({c}) =
{hi(c) | i ∈ {1, . . . , l} }. Given a set S of CDs, we associate to S the set ind(S) :=⋃

c∈S ind({c}). To insert a CD c into smmM , we simply increment all counters
located at the positions in ind({c}). When looking up CD set S,

smmM .contains(S) = true iff
∧

i∈ind(S)

V [i] > 0.

This immediately implies that smmM cannot yield false negatives, since if the CDs
in S are previously inserted in the summary, all the relevant counters are non-zero,
and method contains must return true. Therefore, smmM satisfies requirement (c).
Notice that the lookup of CD set S requires hashing each member c ∈ S and

accessing the vector at the l positions given by the hash functions on c. Since l
is a constant, we obtain lookup time linear in |S|, thus satisfying requirement (b).
We mention an optimization that minimizes the overall lookup effort for the CDs
of a query block Qj . Given a QDT T , all router nodes n in T implement their
summary n.smmM

T using the same l hash functions, and vectors of the same length
M . Consequently, there is no need to re-hash all CDs in Qj at every node, as
the result will be the same. Instead, nodes forward to their children in T the set
ind(Qj), computed once and for all at the root of T .
Requirement (d) follows from a celebrated property of Bloom filters, namely that

if the l hash functions are independent, then the probability of false positives de-
creases monotonically with increasing M [Fan et al. 2000]. There are well-known
techniques for constructing l independent hash functions for any l, for instance
by linear combinations of only two generating hash functions [Kirsch and Mitzen-
macher 2006]. We adopt this solution here. The generators can be picked from
among several well-researched specimens. We use the SHA1 [Eastlake and Jones
2001] cryptographic algorithm (that hashes strings of arbitrary size into 160-bit vec-
tors) because it is very fast to compute and yields good distribution of the hashed
values.
QDT Maintenance. When a publisher p joins the community, it declares a set

cd(p) of CDs it is willing to answer queries about. Recall from Section 2 that, to
preserve soundness of query evaluation, we must satisfy property (‡). To this end,
we determine (as described shortly) all the CD blocks with non-empty intersection
with cd(p), which in turn lets us identify all QDTs that p must join. The act of
joining a given QDT is taken care of by SCRIBE (or a traditional multicast join
as with IP-multicast), which identifies the router node that will become the new
publisher’s parent. Once the publisher is added to QDT T , the CD summaries
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of all its ancestors in T are updated by inserting cd(p) into them. This insertion
is implemented by simply obtaining once and for all the set of indexes ind(cd(p)),
which is then passed bottom-up from p to T ’s root, so that every router on the way
can increment its corresponding Bloom filter counters. When p leaves a QDT T , the
index set ind(cd(p)) is also sent bottom up to p’s ancestors in T , each decrementing
the corresponding counters. The case when an existing publisher p changes its list
cd(p) of declared CDs leads to the propagation of similar counter increment and
decrement operations.
Partitioning the CD Space. An important issue we need to address is how to

represent the partition P of the CD space finitely, and how to efficiently determine
which block a given CD belongs to. As described above, we need this test to
quickly identify the QDTs a new publisher must join. Moreover, the same test is
required to compute the induced partition PQ of a query Q, in order to identify
the QDT candidates for routing Q. We describe here our solution assuming that
we have already established the number k of blocks in P (we discuss below how
we determine k with an eye on load balancing). Given k, we implement P simply
as a hash function hP from CDs to the set {1, . . . , k}, where hP distributes CDs
uniformly over its range. Then each block Bi ∈ P consists of all CDs mapped by
hP to i: Bi := {d | d is a CD , hP(d) = i}. Of course, each CD block is potentially
infinite so we never really materialize it. Indeed, we don’t need to: all we need is
to quickly determine, given a CD d, which CD block it belongs to. This operation
is implemented as a constant-time invocation of hP(d).
Load Balancing. The way we determine the number k of QDT trees, as well

as their actual construction, are motivated by the goal of spreading the load evenly
across router nodes. For the following discussion, we denote with Nr the number
of router nodes in the service provider’s overlay network, and with Np the number
of publisher nodes. Since in any QDT T , every router node is reached by a larger
fraction of the query flow through T than its descendants in T , we need to ensure
that for every router n, the distribution of QDT levels n resides at is close to
being uniform. We adopt a solution which is certainly not the only possible one,
nor necessarily optimal, but it is easy to implement and (as proven experimentally
in Section 6) it yields excellent performance. We start by constructing (using
SCRIBE) a single QDT T1 whose internal nodes are theNr routers and whose leaves
are the Np publishers. SCRIBE tends to build trees of low height, in which the root
has a significant fanout that dominates the fanouts of nodes in lower levels. The
root and its children receive by far the highest fraction of queries flowing through
the tree, and are hence in most need of relief through load balancing.

Denoting with Nu the number of nodes on the top 2 upper levels in T1 (Nu = 1+
number of router children of the root), we construct

k = ⌊
Nr

Nu

⌋

QDTs, {Ti}1≤i≤k. Each Ti is an isomorphic copy of T1, whose nodes are obtained by
keeping the same Np leaves and only re-shuffling the Nr internal nodes as follows.
To completely specify Ti, we need to specify how its Nr internal node positions
are populated with the actual Nr routers. This specification can be formalized as
a function ai from the set of Nr routers to the set {0, . . . , Nr − 1} of positions
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in T1. We adopt the convention that the position of node n corresponds to n’s
rank in the breadth-first, left-to-right traversal of T1 (position 0 is the root). Let
π(n) := (n −Nu) mod Nr be the right-to-left cyclic permutation with step Nu on
{0, . . . , Nr − 1}. If a1 specifies the initial QDT T1, then for each 1 < i ≤ k, we
populate Ti by cyclically permuting with step Nu the nodes of T1 a total of i − 1
times: ai := πi−1 ◦ a1.

EXAMPLE 3.1. In Example 2.1, there are Nr = 17 routers, and the root of the
initial tree QDT1 has three children, yielding Nu = 4. We compute k = ⌊ 17

4 ⌋ = 4
and construct the 4 trees in Figure 3. Notice that the trees in Figure 3(b), (c), (d)
are obtained by cyclically permuting to the left by 4 steps the tree in Figure 3(a)
once, twice, respectively three times. ⋄

It is easy to see that our method of determining the number of QDTs, as well as
our method of populating them, ensures the following fairness property:

All routers appear precisely once in the top 2 levels of any QDT.

Furthermore, the k level values associated to every router are distributed almost
uniformly over all possible level values in T1. For instance, in Figure 3, router 1
appears on levels 1, 4, 4, 3.
Finally, note that building k+1 QDTs actually degrades the load balance, because

the additional cyclic permutation causes a “wrap-around” that returns some of the
routers residing on the top two levels in T1 to the top two levels of Tk+1, subjecting
these routers to unfair load (since we use the floor function to determine k, the
wrap-around is not necessarily complete). In general it follows that, to maximize
balance, we want to use a number of QDTs that is a multiple of ⌊Nu

Nr
⌋. In Section 6,

we validate this rule experimentally, also showing that choosing multiples higher
than 1 is unnecessary: they do not improve load balance, while leading to higher
control overhead.
Routing Strategies. We next discuss how a node n that initiates a query Q

picks the QDT to route Q on. First, n uses the hash function hP described above
to compute PQ = {Qj}1≤j≤m, which in turn determines the set of candidate QDTs
{qdt(Qj)}1≤j≤m. If m > 1, n picks one of these candidates. We consider several
alternatives for implementing this pick.
A simple solution is to choose 1 ≤ j ≤ m at random, in the hope that randomness

avoids sending too many queries down the same QDT and thus alleviates congestion.
We call this the random routing strategy.
We also consider alternative strategies, all attempting to alleviate the effect we

discussed in Section 2: as the number of QDTs increases, the selectivity of query
blocks decreases (recall that, when routing Q through QDT qdt(Qj), only the
CDs in Qj are looked up in the summaries). This results in increased overall
query forwarding and processing in the network. To compensate for this effect, the
routing strategy should ideally use the most selective query block Qj for routing,
as this results in the most aggressive pruning of qdt(Qj)’s subtrees during Q’s
dissemination.
Identifying the most selective block of a query is a non-trivial task, because it

requires determining the frequency of every CD in the global collection, and storing
these global statistics (or making them otherwise accessible) at every publisher
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node. We call the strategy assuming each publisher’s access to this information
the fully-informed routing strategy. Assuming independence between the CDs, the
publisher initiating Q computes the selectivity of a query block Qj as the product
of the individual frequencies of the CDs in Qj . Fully-informed routing is very
expensive in terms of both space and traffic. Indeed, for large global collections, the
number of CDs can be considerable. Moreover, space consumption is exacerbated
by the fact that the frequency information must be stored with every potential
initiator of a query. An even more serious problem is the traffic arising because the
global collection is virtual: gathering and maintaining the appropriate statistics
requires constant communication between nodes.
We therefore investigate a less ambitious strategy: instead of identifying the

most selective query block for Q, its initiator p only tries to avoid using the least
selective ones. It suffices to this end to maintain and store at each publisher a
short list of the s least selective (most frequent) CDs in the global collection, with
s a relatively small value ensuring small storage space and maintenance traffic
consumption. Finding the overall top s most frequent CDs amounts to solving a
distributed top-s problem, in particular the classical problem of top-s heavy hitters
estimation [Babcock and Olston 2003; Manjhi et al. 2005].
We implement a simple solution that exploits the already existing QDT overlays,

employing them in a dual role as multicast (data dissemination) trees. With every
CD they advertise, publishers declare its frequency in their local collection. Each
node n maintains a list n.L of length at most s entries, each containing a CD and
its frequency. For non-root routers, the list gives the s most popular CDs across all
their QDT subtrees. For QDT roots and publishers, the list holds most popular s
CDs across the global collection. Whenever a node n updates its list, it propagates
the new list bottom-up along all QDTs n participates in. If n is a root, it propagates
its list to the other k − 1 roots. Whenever the root of a QDT T updates its list, it
disseminates it top-down to all publishers in T .
When node n issues a query Q, it picks the QDT corresponding to Q’s most

selective block according to the information in n.L. Note that some query blocks
may contain CDs not occurring in the n.L list. These are treated as selective CDs,
and blocks with the highest number of selective CDs are preferred. If multiple such
query blocks exist, n breaks the tie by computing the selectivity of the conjunction
of popular CDs in each block, using n.L. If this still leaves more than one candidate
query block, one is picked at random. We call this strategy partially-informed rout-
ing, and observe that it leads to a spectrum of strategies parameterized by the size
of internal state reserved for the list of popular CDs. We use the term x-informed
routing in short for partially-informed routing based on the list of the most pop-
ular x% of CDs. Notice that 100-informed routing becomes fully-informed, and
0-informed routing degenerates to random routing. In Section 6, we show exper-
imentally that, by keeping track of even very short lists, we observe performance
very close to the fully-informed strategy, and much better than the random strategy.

EXAMPLE 3.2. We revisit Example 2.3, explaining why query Q4, which had
two routing alternatives, was sent to QDT3. To enable fully-informed or partially-
informed routing, publishers maintain frequencies of (some of) the CDs in the global
collection, which in our case include money (published by 7 publishers), stocks and

Technical Report CS2010-0956, UC San Diego, March 2010.



20 · Emiran Curtmola et al.

yak tea (published by 6 publishers). Notice that Hong Kong is declared by only
2 publishers and hence more selective than money, which is why it is preferred by
the fully-informed routing strategy. Since CD Hong Kong appears in block B3,
the corresponding tree QDT3 is used. The same outcome is achieved for partially-
informed routing, assuming for instance that publishers maintain only the 3 most
popular CDs: the list includes CD money, signaling to Q4’s initiator to avoid
routing by it. ⋄

Finally, when no selectivity information is available, we fall back on heuristic rout-
ing: simply direct Q to the QDT corresponding to one of Q’s maximum-cardinality
blocks, breaking ties with random picks. This strategy is based on the heuristic
that higher numbers of conjuncts tend to yield higher selectivity.

4. PUBLISHER K-ANONYMITY

The challenge for the design of the UQDT maintenance protocol is to simultane-
ously guarantee that (i) queries reach all relevant publishers, (ii) network traffic is
minimized and congestion avoided, and (iii) publishers are encouraged to register
with the dissemination infrastructure, being guaranteed that the registration will
not expose their connection to certain sensitive CDs. We have shown above how
the UQDT infrastructure addresses requirements (i) and (ii). In this section, we
focus on item (iii).
The privacy guarantee: publisher k-anonymity. Our approach here is

to adapt the notion of k-anonymity from relational table anonymization [Sweeney
2002]. In our context, we wish to guarantee that for every publisher p and every
CD c, if p advertises c, then the routing information stored in the UQDT and
exchanged during UQDT maintenance does not allow p to be distinguished from
at least k − 1 other potential publishers of c. This involves ensuring that the set
of publishers connected to the same edge router consists of at least k members,
and that even edge routers cannot tell which among its k+ publishers advertises
any given CD. This latter requirement defends against the event when edge routers
are compromised (by hacking, subpoena, or impersonation). As described shortly,
this guarantee involves collaborative computation among the publishers of an edge
router. We describe how this collaboration can be conducted without exposing a
publisher even if (i) all other publishers in its group have been compromised and
are colluding against it but the edge router is trusted, or (ii) the edge router and up
to N − k publishers have been compromised, where N is the number of publishers
in p’s group.
First observe that, if every edge router e could be trusted to behave as prescribed

in Section 3, and to never be compromised, then the publishers would remain k-
anonymous if ancestors of the edge routers were compromised. Indeed, recall that
e only stores and communicates to its parents in the UQDT the Bloom filter sum-
mary of cd(e), i.e. the union of all CD sets advertised by its publishers. The
Bloom filter, which is the only exposed information, does not record which of the
k+ publishers advertises a particular CD, nor which sets of CDs occur together
in some document. cd(e) is therefore insufficient to pinpoint who among e’s pub-
lishers advertises any given CD. By ensuring that e’s subtree contains sufficiently
many publishers advertising CDs as a group, we enable each publisher to remain
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anonymous by “hiding in the crowd” comprised of this group. As an added bonus,
the CD summary implementation is hash-based and does not distinguish among
two distinct CDs with the same hash code. Publishers exploit this by declaring the
hash codes of their advertised CDs rather than their actual value. An inspection
of the edge router’s summary will therefore fail to answer with certainty even the
simple question whether a given CD is advertised by some publisher, let alone by
a given publisher. Recall from Section 3 that the price traded off for this added
protection is that false positives to CD membership tests lead to queries being
forwarded unnecessarily to the publishers, thus affecting performance. Our experi-
ments show that this overhead is small and the false positives are negligible. Also
note that, the further up an ancestor a of an edge router e is, the more fuzziness
a’s CD summary will contain. If a is compromised and its summary exposed, then
each of e’s publishers is hidden not only in the crowd of e’s k+ publishers, but in
the larger crowd of all publishers in a’s subtree. Finally, note that the publishers
not in a’s subtrees are not affected.

But how do we defend against the case when the edge router e itself is compro-
mised? Since the collection of documents stored at publishers is dynamic, every
one of e’s publishers p (in some QDTi) needs to declare to e the set of CDs it wants
to advertise (or stop advertising). A compromised e would record this information
if p were to declare its CDs directly. To preserve p’s anonymity even against e, we
designed the following protocol.

Publishers p1, .., pN (with N ≥ k) of the same group participating in QDTi

declare to their edge router e only batch updates of their advertised CDs, instead
of sending up individual updates. To advertise a new set of CDs, publisher pj
installs them in an initially empty Bloom filter. That is, it starts from a filter with
all counters set to 0, hashes each CD, and increments the counters whose index is
given by the hash codes. The resulting filter is publisher pj ’s update Uj . The batch
update S is the vector sum of all publisher updates, S = U1 + . . .+ UN . e receives
S and sums it to its CD summary (since both are represented as Bloom filters, the
operation reduces to vector sum). CD deletions are handled by subtracting S from
e’s summary. It is easily shown that this protocol supports the correct maintenance
of CD summaries. More, it ensures that e cannot figure out the individual updates,
as it only receives their sum over all publishers. Note that e doesn’t even see the
actual CDs; it obtains only their count (muddled by hash collisions). We can show
that this protocol preserves k-anonymity even if all routers are compromised.

We must address one last issue: where can the batch update S be computed?
Asking e to do so would defeat the purpose, as it would involve each publisher
to send its update to e. Instead, S is computed collaboratively by the publishers,
without involving e. To find out the nodes connected to e, individual publishers
can publish/broadcast the router they are connected to (e.g., by running one’s own
Web service answering the “buddies” request using public key cryptography to rule
out impersonation). To defend even against the case when publishers themselves
are compromised, we use the classical cryptographic technique of secure multi-party
computation [Goldreich et al. 1987]. This allows a set of N publishers to compute
the batch update without revealing the individual values to each other or to outside
observers of their communication traffic. This shields every publisher even against
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the case that all other publishers in its group are colluding against it, assuming
that they are not also colluding with e. If e as well as some some publishers are
colluding, then e knows the updates of these publishers and can subtract them
from the overall batch update, retrieving the batch update of the uncompromised
publishers. If fewer than k of these remain, then anonymity decreases. One can
defend against this case by arranging sufficiently large publisher group sizes N ,
so that compromising more than N − k of them is practically infeasible. Another
possible defense consists in publishers joining UQDT only together k − 1 trusted
“buddies”. This does require trust, which however is bounded and does not need
to extend to a vast unknown infrastructure.
Secure multi-party computation involves overhead. However, note that the pub-

lisher group only needs to compute as many sums as entries in the Bloom filter
vector. This is a constant of the UQDT, independent of the size of the global doc-
ument collection. Further, the computation is performed only on batch updates, so
its overhead is manageable by adjusting the update frequency.

Finally, recall k-anonymity guarantee holds on a per-CD basis. Since UQDT
partitions the CD space among its member QDTs, there is no interaction between
QDTs to derive compromising information. If the guarantee holds for each QDT
in isolation, it holds for entire UQDT.
What we do not defend against. We emphasize that we are only concerned

with putting publishers’ minds at ease w.r.t. the safety of participating in the
UQDT. We do not address here the orthogonal problem of how publishers decide
whether to answer a query once it reaches them (recall that the query answer is sent
directly to the query issuer), or whether to identify themselves in the answer. To
guarantee that the query issuer is not an impersonator, and that the query answer
cannot be observed by third parties, one can adopt existing techniques based on
authentication credentials, encrypted channel communication, and anonymization
proxies (discussed in related work). We do not aim to make the infrastructure
impervious to large-scale censoring attacks, such as a governmental agency com-
pletely shutting down the Internet in a region, or a denial-of-service (DOS) attack
overloading the UQDT to decrease data availability. However, note that the ef-
fect of DOS attacks is mitigated by our load balancing scheme, which maximizes
throughput.

5. EXPERIMENTAL SETUP

The Initial Overlay Network. To analyze the effects of our implementation
choices on query dissemination, we built a simulator of a 10,000-node overlay net-
work consisting of Np = 9, 400 publisher and Nr = 600 router nodes. The particular
topology of this network is immaterial since in practice, every direct logical link be-
tween routers can be supported, and since actual dissemination will depend on the
QDT overlays. We therefore assume a mesh topology allowing direct logical links
for every pair of nodes.
A Real Data Set. To obtain true-to-life special-interest community, we simulate

a distributed community that shares a real data collection, namely a partial XML
dump of Wikipedia, comprising about 1.1 million real Wikipedia documents which
amount to a total size on disk of 8.6 GB [?]. G. Weikum We simulate that these
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documents are each brought into the community by one of the 9,400 publishers. Due
to lack of information on which publisher generated which Wikipedia document, we
assign the Wikipedia documents to publishers in a uniform random manner. An
interesting future work direction is to study how query dissemination is impacted
if publishers generate clusters of semantically related documents.
CD Definition. Wikipedia, as well as other available XML sources such as

CiteSeer, use structural schemas rather than ontological. This means that the
majority of the tags on the root-to-leaf XML paths are concerned with the document
organization, providing no semantic meaning. This observation motivates us to
consider CDs defined as pairs (t, w), where w is a keyword and t gives the context
in which w appears, given by the last XML element tag on the path from the
root to w. We include this tag to support context-aware queries that go beyond
standard keyword search. Moreover, we focus only on the tags that carry meaning
to users. We restrict the last element tag to the following set: “link”, “b”, “title”,
“subtitle” and “category”. The combination of keywords and these contexts yields
an interesting and complex set of about 3.2 million distinct CDs accounting for 24%
of the set of all distinct CDs obtained by considering all possible tags2.

EXAMPLE 5.1. We setup the BLoom filter for each node’s summary as follows.
Fixing the false positive rate at 10−2, it follows from the formula in [Fan et al. 2000]
that the optimum number of hash functions is l = 7 when the size of the Bloom
filter at every router (assuming a single-QDT configuration and counters of size 1
bit) is M = 3.6 MB, which represents only 0.044% of the global collection size. For
larger counter sizes, the false positive rate is even lower. For k QDTs, the global
memory consumption per node stays the same, since the k Bloom filters at every
node summarize disjoint sets of CDs. Each Bloom filter has size 3.6/k MB, and the
same error rate of 10−2. ⋄

Query Workload. We force the dissemination process to work under two ex-
treme query types. We construct a family of 10 workloads {WF

c }1≤c≤10, each con-
sisting of 5, 000 c-conjunct queries drawn at random from the space of queries with
no match against the global collection. Similarly, we build the family of workloads
{WT

c }1≤c≤10, each comprising 5, 000 c-conjunct queries drawn at random from the
space of queries with at least one match in the global collection. We also generate
the 50, 000-query workloads WT =

⋃10
c=1 W

T
c and WF =

⋃10
c=1 W

F
c . The matching

query workloads increase the overall forwarding effort by forcing QDTs to send
queries all the way to (some) leaves.
SCRIBE QDTs. Recall from Section 3 that, even in multiple-QDT configura-

tions, the QDTs are isomorphic. We obtain a (unique up to isomorphism) QDTS

topology using SCRIBE [Castro et al. 2002]. We first convince ourselves of the
faithfulness of the simulation, by generating a family of 20 SCRIBE tree topologies
for the same node set (by varying the order in which the nodes join the network).

2 We can envision other CD definitions: including the entire path from the root to w to support

more expressive queries, or keeping only w in support of only standard keyword search. We have
tried all alternatives, obtaining analogous experimental results, which is why in the remainder of
this paper we report only the (last tag/keyword) case. The point we wish to emphasize is that
the flexibility of CD definition is a key enabler for striking the right balance between expressivity

of supported queries and space overhead.
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We observe only non-essential variations across the family, thus boosting our con-
fidence that picking any tree in this family is representative of SCRIBE’s behavior.
The particular SCRIBE tree we pick has 9, 400 leaf nodes and 600 internal nodes,
5 levels, average fanout of 16.7, and a maximum fanout of 101. The fanout features
a very skewed distribution, decreasing from root to leaves (this holds for all 20
SCRIBE trees we considered). The distribution of the number of nodes per tree
level is as follows: 1 node (the root) on the first level, 40 nodes on the second
level (of which 3 are publishers), 1, 189 nodes on the third level, 6, 163 nodes on
the fourth level and 2, 607 nodes on the fifth level. We determine the number k of
isomorphic copies as in Section 3. We have Nr = 600 routers in total; among the
40 children of the root, 37 are routers. We obtain Nu = 1 + 37 = 38 and hence
k = ⌊Nr

Nu
⌋ = ⌊ 600

38 ⌋ = 15.
Fanout-balanced QDTs. For the sake of generality, we extend our simulation

to QDT topologies not created by SCRIBE. We consider a topology QDTB that uses
the same router and publisher nodes, but eliminates the skewed fanout distribution
that is typical of SCRIBE trees. This is beneficial since a node’s fanout influences
its forwarding cost. We first organize the 600 routers into a balanced skeleton
tree with fanout 8, where levels 1, 2, 3, 4, 5 have, respectively, 1, 8, 64, 512 and the
remaining 15 nodes. Next, we connect the 9, 400 publishers to this skeleton tree,
achieving for each node a fanout of 16 or 17. There are 75 non-leaf routers in
the skeleton tree, and each receives 8 publishers, for a total fanout of 16. Among
the leaf routers in the skeleton tree, 400 receive 17 publishers and 125 receive 16
publishers. We determine the number k of fanout-balanced QDTs in the usual
manner: k = ⌊Nr

Nu
⌋ = ⌊ 600

9 ⌋ = 66.
Metrics. Our goal is to improve the query throughput of the multi-QDT overlay,

defined as the number of queries answered per time unit. Throughput is a mani-
festation of two more fundamental factors, namely the processing and forwarding
effort at every router. For a given workload, the cumulative processing cost at node
n is proportional to the number of query messages reaching n. The cumulative for-
warding cost at n is proportional to the number of query messages it sends out
to its children. The exact proportionality constant depends on factors we do not
attempt to control, for instance such hardware properties as processor speed and
network link bandwidth. We therefore design our metrics to separate out these
factors and isolate the impact of our algorithmic solutions. For a given workload
W , we define the processing load at node n, denoted PLoadW (n), as the number
of query messages reaching n across all QDTs it participates in. The forwarding
load at n, FLoadW (n), is the number of query messages leaving n along all QDTs
it participates in. Notice that none of the two measures is derivable from the other,
since FLoadW (n) depends on n’s fanout distribution (over the QDTs it participates
in) and on the amount of pruning at n. For both load flavors, we define the peak
load, which is the maximum load over all nodes. Clearly, decreasing either or both
kinds of peak load results in increased throughput.

EXAMPLE 5.2. In Example 2.1, 46 messages are used to disseminate 4 queries
in 8 time units, while in Example 2.3, 50 messages disseminate the same query
workload in 6 time units. Defining throughput as the number of queries answered
per time unit, the 4-QDT case has the higher throughput. The reason we don’t
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simply use throughput as a metric is that it requires assumptions on the relative
duration of processing and forwarding cost (in our running example, we take the
simplifying assumption that forwarding cost takes constant time, independent of
fanout).
In Figure 2, the processing load for a node is the number of queries on its row.

For example, the processing load for node 13 is 4, which is also the peak processing
load. In Figure 4, the peak processing load is 3, experienced for instance by nodes
2 and 10.
The forwarding load can be read by inspecting the transitions between columns

and keeping track of parent-child relationships in the various trees. In the single-
QDT case (Table 2), root node 1 has the highest peak forwarding load, 12 (it
forwards each of the 4 queries to its 3 children). In the 4-QDT configuration
(Table 4), the peak forwarding load is 6 messages, experienced by node 20 (1
message for Q2, 3 for Q3 and 2 for Q4).

Notice that, compared to the single QDT, the 4-QDT configuration decreases
both processing and forwarding peak load, which leads to improved throughput
regardless of the concrete values of the per-query processing and forwarding cost.
⋄

The above considerations suggest comparing configurations by their degree of
reduction of the peak processing and forwarding loads. Clearly, in any configura-
tion, one cannot hope to lower the peak load below the average load, where average
processing load is defined as

∑
n∈routers PLoadW (n)

Nr

and average forwarding load as
∑

n∈routers FLoadW (n)

Nr

.

Observe that ideal load balance is achieved when the peak “drops” to the average
load.
Note that our goal is not merely to achieve balance, as one can do so without

improving throughput by simply raising the average load. Indeed, as discussed in
Section 2, with increasing number k of QDTs both kinds of average load increase
(though only slightly, as shown experimentally). This is because routing by smaller
query blocks results in less pruning, which increases the overall number of messages.
The smallest average loads are therefore witnessed in the single-QDT configuration,
and they represent the ideal target for lowering the peak load. Since we are
interested in closing the gap between the peak load in a k-QDT configuration and
the ideal peak load, we report the ideal-to-actual load ratio metric, defined as the
ratio between the peak load in the k-QDT and the average load in the single-QDT
configuration.

6. SIMULATION RESULTS

In this section, we explore through extensive simulations the space of configurations
defined by the three dimensions given by the topology of QDTs, the number of
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QDTs, and the routing strategies. Our experiments confirm empirically that the
configuration choices we advocate achieve near-optimal peak load reduction, and
therefore near-optimal throughput.
Warm-up: Single-QDT Configuration. In this experiment, we confirm that

the number of messages reaching the various levels in a single-QDT configuration
is sufficiently skewed to justify our load-balancing efforts, in particular that the
routers on the first two levels of the tree bear the brunt of the load. For query
workloads WF

2 and WT
2 , and the SCRIBE topology QDTS , we report in Table IV

for every level the total and average number of messages seen by its nodes. Notice
that the average number of messages per node decreases drastically below the upper
two levels. Also notice that, unsurprisingly, workload WT

2 generates more overall
messages, since its matching queries undergo less pruning than those in WF

2 .

WF

2 WT

2QDT
# msg. Avg. # msg. # msg Avg. # msg.

level per level per node per level per node

1 5,000 5,000 5,000 5,000
2 200,000 5,000 200,000 5,000

3 173,066 146 636,507 535
4 28,509 5 513,464 83

5 4,869 2 193,575 74

Total 411,444 - 1,548,546 -

Table IV. Messages per Level (k = 1, QDTS , fully-informed)

Effect of Number of QDTs. In this experiment, we validate our method for
determining the number k of QDTs (recall Section 3). For workload WT and fully-
informed routing, we increase the number k of QDTS copies from 1 to 31. Figure 5
shows the average and the peak load for both processing and forwarding.
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Fig. 5. Effect of Number of QDTs (WT , QDTS , fully-informed routing)

Notice that with increasing k, the gap between the peak load and the average
load decreases considerable. The highest load imbalance occurs for k = 1 as shown
in the big gap between the peak and the average values for both the processing and
the forwarding load. As predicted by our analysis in Section 3, k = 15 is indeed the
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“sweet spot” where the minimum gap is measured. Increasing k to 17 increases this
gap. This is because the two additional cyclic permutations cause a “wrap-around”
of the routers from the top two levels of QDTS

1 to the top two levels of QDTS
16

and QDTS
17 and thus introduce load imbalance. Also note that there is no point

in looking at strict multiples of ⌊Nr

Nu
⌋ beyond k = 15, as they cost more overlay

maintenance overhead without bringing the peak load any closer to the average
load.
Finally, we observe that the negative effect of increasing overall number of mes-

sages with increasing k does occur: the average processing load is indeed the lowest
for k = 1 since routing is done using all conjuncts, thus benefiting from maximum
routing selectivity. However, the increase is very slow when compared to the de-
crease in peak load. The negative effect of average load increase is outweighed by
that of peak load reduction, as shown by the closing gap between peak and average
loads.
We observe this behavior more accurately in terms of the ideal-to-actual peak load

ratio, which for increasing k approaches the ideal value 1. For example, the ideal-
to-actual peak load ratio for the same values of k as in Figure 5 are, respectively:
6.42, 1.85, 1.49, 1.21, 1.44 and 1.20.
Figure 5 shows the same trend for the forwarding load, with the only difference

that, while the gap of peak and average loads decreases with growing k ≤ 15 and
saturates once k exceeds 15, we remain far from the ideal reduction (for which the
ideal-to-actual load ratio is 1). This is explained by the forwarding load’s correlation
with the node fanouts and the fact that SCRIBE builds trees with highly skewed
fanout distribution.
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Fig. 6. Effect of Number of QDTs (WT , QDTS , full informed routing)

In addition, to validate our methodology for determining the “sweet spot” while
varying the number of QDTs, we report in Figure 6 the ratio between ideal and
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actual peak load ratio for both processing and forwarding. This experiment corre-
sponds to the effective load values presented in Figure 5.

Notice that with increasing k, the actual peak processing load approaches the
ideal load. As shown above, k = 15 is indeed the “sweet spot”, coming closest to
the ideal processing load.
Effect of static load indicators. We introduce two load indicators to capture

statically the balance degree of a k-QDT configuration and confirm experimentally
a good correlation with the dynamic query dissemination performance.
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Fig. 7. Distribution of internal nodes for ATL and AGF with the number of QDTs k (QDTS)

The average tree level for a node n, ATL(n), is the average over all the levels of
the k-QDT configuration node n participates in. Intuitively, the ATL distribution
reflects the processing load distribution observed over all nodes at run time. Simi-
larly, we define the average global fanout for node n, AGF (n), as the average over
all fanouts that n has when it participates in a k-QDT. Intuitively, the distribu-
tion of AGF values predicts the forwarding load distribution observed at run time.
Figure 7 depicts the histograms for ATL and AGF as a variation of the number
of QDTSs from 1 to 31. This confirms that we get the best load balance with our
techniques when ATL and AGF are fairly balanced. For example, when k = 15
the majority of the internal nodes are on the 3rd or 4th level in the UQDT on the
average (Figure 7(a)), while the node fanout is distributed almost evenly into two
intervals [8, 16) and [16, 32) on the average (Figure 7(b)).

Additionally, we can correlate the dynamic load behavior from Figure 5 with
the spread of the static load indicators: the higher the ATL and the AGF spread,
the higher the gap between the peak and the average loads (or, equivalently the
ideal-to-actual peak load ratio) for the same k. Indeed, if k = 1, ATL presents the
highest spread of values, showing an unbalanced distribution of nodes on tree levels.
At the same time, Figure 5 shows the biggest gap between the peak and the average
processing load. Just as the load gap decreases with the increase of k up to k = 15,
the ATL distribution concentrates in the range of [3, 4), which is nearly balanced.
Similarly, we notice that an unbalanced distribution of node fanouts corresponding
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to k = 1 (which corresponds to a high AGF spread), correlates directly with the
highest gap between the peak and the average forwarding load as in Figure 5. The
gap closes in with k as the AGF spread becomes more balanced. However, notice
that for k = 15 the fanouts are still not completely balanced. This explains why
the ideal-to-actual peak load ratio doesn’t quite reach 1. Our last experimental
result in this section shows that balancing the fanouts is a key factor in bringing
the peak forwarding load close to the average value.
Effect of Routing Strategy. We next compare the routing strategies defined

in Section 3. For the partially-informed strategy, we consider the case when pub-
lishers maintain the top s popular CDs for s = 43k, 74k and 124k, corresponding
respectively to 1.37%, 2.33% and 3.89% of the total number of CDs in the global
collection. We compare the strategies for workload WT and QDTS , reporting the
ideal-to-actual peak load ratio in Figure 8. For the effective load values, please see
below.
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Fig. 8. Effect of Routing Strategy (WT , QDTS)

First, we note that random routing performs worst, closely followed by heuristic
routing. Both strategies are significantly outperformed by the (partially- or fully-
)informed ones for every k > 1 (with the exception of k = 1 when all routing
strategies coincide).
The family of informed routing strategies follows a common trend: with increas-

ing k ≤ 15, the gap between ideal and actual load shrinks drastically, reaches the
sweet spot at k = 15 and essentially saturates for k > 15 (with a slight increase at
k = 17 for processing load, due to the already discussed load imbalance introduced
by the wrap-around).
Interestingly, random and heuristic routing behave slightly differently: at k = 5,

they get closer to the ideal load than at k = 15. This behavior is caused by the
following effect. The more QDTs, the more numerous the query blocks, which
decreases the chance of a random pick hitting the most selective block. With in-
creasing k, this effect starts generating non-minimal traffic, eventually canceling
the load balancing effect. This explains why the random strategy degrades with
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increasing k. The reason the degradation saturates is that the number of query
blocks cannot increase indefinitely (it must saturate once all blocks become sin-
gletons). Heuristic routing suffers from essentially the same problem: the more
blocks we split a query into, the smaller the variation in block cardinality. Recall
that, for same-cardinality query blocks, heuristic routing degenerates to random.
In contrast, for the informed routing family, the experiments show that this effect
remains subtle, being canceled out by the judicious choice of selective query blocks.
Finally, we observe that we can get very close to the benefits of fully-informed

routing with negligible space overhead, by maintaining the frequency for even a
small fraction (3.89%) of all CDs. These results strongly recommend partially-
informed routing over the other strategies.
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Fig. 9. Effect of Routing Strategy (WT , QDTS) – Processing Load

We show next the performance of the same routing optimizations based on the
query selectivity threshold s when routing query same workload WT . In Figures 9
and 10, we report on the effective load values, which are used to compute the
ideal-to-actual peak load ratio reported in Figure 8.

We observe that the routing benefit varies linearly with the amount of maintained
routing state such that the more state is maintained, the higher the benefit of
routing eliminating the redundant traffic; therefore, it improves the load balance.
As a result, if we are given the amount of routing state, we can derive what is the
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Fig. 10. Effect of Routing Strategy (WT , QDTS) – Forwarding Load

amount of the routing benefit. For example, with only 3.89% state, we obtain 83%
of the benefit.
Let us note that this numbers are in correlation with the results observed in

Figure 8 such that for the partially- and fully-informed strategies the “sweet spot”
where the gap between the peak and the average load is minimum lies when k=15.
Effect of QDT Topology. We repeated all above experiments using the fanout-

balanced QDT topology QDTB , observing the same trends as for the SCRIBE
topology QDTS .We do not report the detailed results for lack of space. Instead,
we summarize in Table V the comparison between the SCRIBE-generated and the
fanout-balanced topology, relative to the peak load reduction. For query workload
WT and the fully-informed routing strategy, we show both the ideal and the actual
value of the peak load ratio factor for the appropriate number of QDTs (15 for
QDTS and 66 for QDTB).

ideal-to-actual peak SCRIBE fanout-balanced

load ratio (QDTS) k = 15 (QDTB) k = 66

processing 1.21 1.18

forwarding 9.3 2.3

Table V. Effect of QDT Topology (WT , fully-informed)

Notice that both topologies come within reach of the ideal load reduction (when

Technical Report CS2010-0956, UC San Diego, March 2010.



32 · Emiran Curtmola et al.

the ideal-to-actual load ratio is 1) for processing load. However, for forwarding
load the SCRIBE topology misses the ideal by an order of magnitude, whereas
the fanout-balanced topology only by a factor of 2.3. The main reason not even
the QDTB topology reaches the ideal forwarding load reduction is the inherent
imbalance between the number of routers and publishers: the perfect configuration
consists of a perfectly balanced tree whose internal nodes are routers and whose
leaves are publishers. We did not simulate such a configuration because in practice
we have no control over the numbers of routers and publishers.
Our experiments confirm that fanout-balanced topologies result in improved for-

warding load reduction over SCRIBE topologies without sacrificing processing load
reduction. As mentioned above, the benefit of using SCRIBE is of logistic nature, as
it comes off-the-shelf with the overlay maintenance functionality. An advantage of
our solution is its generality, in the sense that it assumes no control over the shape
of the QDT, focusing on extracting the performance inherent in the topology.

Effect of Number of Conjuncts It is a well-known fact that the more query
conjunctions, the higher is the routing selectivity. To validate this conjecture on
the UQDT infrastructure we increase the number c of conjuncts from 1 to 10 for
WT

c query workload. Figure 11 shows the behavior of the average load for one
QDTS and fully-informed routing. We observe a slow decrease in the processing
load, while the forwarding load registers a quick decrease.

1,000

1,500

2,000

2,500

3,000

A
v

e
ra

g
e

 l
o

a
d

 (
n

r.
 o

f 
m

e
ss

a
g

e
s)

0

500

1,000

1 2 3 4 5 6 7 8 9 10A
v

e
ra

g
e

 l
o

a
d

 (
n

r.
 o

f 
m

e
ss

a
g

e
s)

Number of query conjunctions c in WC
T

Processing load Forwarding load

Fig. 11. Effect of Number of Conjunctions (QDTS , k=1, fully-informed routing)

We present next the effect of number of conjuncts over the routing benefit using
the various routing strategies introduced in Section 3. In addition to the previous
conjecture, more conjunctions induce a larger number of query blocks. For partially
informed strategies, if none of these blocks fall in the set of popular maintained
CDs at a node, then it means there are more query blocks to pick during query
routing. Thus, the likelihood to randomly pick a high selective query block to route
decreases, and therefore we expect the load to increase.
We vary both the routing strategy and the number of conjuncts c for WT

c query
workloads and k=15 QDTS . Figure 12(a) shows the peak processing load behavior.
We notice a slow increase in the gap between the peak load for fully informed
routing and the peak for the other considered routing strategies. We measure the
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gap increase by reporting the routing benefit variation with the number of conjuncts
for each of the partially informed routing strategies. Table 12(b) shows that the
gap increase determines a decrease of up to 10− 20% of the routing benefit.
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3 0.92 0.85 0.77
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4 0.92 0.83 0.72

WT

5 0.90 0.80 0.69
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6 0.91 0.80 0.69
WT

7 0.88 0.75 0.65

WT

8 0.86 0.74 0.65
WT

9 0.89 0.76 0.64
WT

10 0.88 0.75 0.63

WT 0.82 0.73 0.65

(b) Routing benefit for processing load.

Fig. 12. Effect of Number of Conjunctions (QDTS , k=15)

Latency We consider a basic latency abstraction to be the number of hops that
it takes to route a query workload from the root of the QDT to the publishers.
Currently, we ignore queuing delays during query routing.
We observe that the latency varies very little with the number of QDTs. It is

strongly influenced by the dissemination’s tree topology being puled toward the the
tree levels with the most populated leaves. Since in a QDTS most of the leaves
carrying data are on level four, the average latency varies a little between 3.5 and
3.88.
The small latency variation can be interpreted as a result of loosing the accuracy

of routing selectivity: the more QDTs, the higher the likelihood of touching false
positive nodes at deeper levels than the true positive answers.

7. RELATED WORK

To provide high throughput and scalable search over distributed content we identify
three research directions related to our work, mainly, mediation based, replication
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based, and partitioning based solutions. We analyze each of them in terms of
efficiency, query power expressivity and publisher anonymity.

Mediation approach. In the mediator approach the data residing with different
publishers in the network is collected and accessed via a single site, also called the
mediator. This architecture is the standard for most of the current search engines
and online hosted communities. Often, a mediator requires a highly parallel backend
in order to scale and to remove congestion. Our focus on publisher anonymity
makes the centralized architecture less than ideal, since publishers need to trust
the mediator when registering their data with it (or when allowing crawlers to
collect their data). Yet, the presence of only one central point of access to data is
vulnerable to attacks (governments have been known to press search engines to not
return query answers on certain political hot topics, and to turn over their records).
In addition, a mediator approach restricts the business model of the publishers as
they are disintermediated from the consumers.

Query dissemination in P2P networks. To leverage the already existing
computational power of the network, recently there has been a large body of work
that focuses on finding only the peers with relevant data to a user’s query. These
methods construct data summaries at nodes and use them as routing indices [Crespo
and Garcia-Molina 2002] to disseminate the query in the network toward the rele-
vant publishers. Hybrid approaches such as [Conforti et al. 2007; Kokkinidis and
Christophides 2004] compromise the decentralization premise by utilizing super-
peer nodes to coordinate the storage and data retrieval. These works are not focused
on publisher anonymity. We look next at complete decentralized architectures.

Replication based approaches. One way to increase data availability and to
balance the load, and therefore to improve the system throughput is to replicate all
or parts of the data (or indices of it) redundantly at the router nodes [Lomet 1996;
Galanis et al. 2003]. Disseminating queries to publishers in such a scenario is simple
since each such router has global information. Nevertheless, maintaining multiple
redundant routers incurs increased cost in store space and in updates to the index.
Moreover, information can be exposed easier to an attacker since all the routers
require now protection as opposed to protecting only one site as in the mediator
approach. That is, compromising a single router will violate the anonymity of all
publishers.

Partitioning based approaches. As a result, a better way to leverage the
distributed computational power is based on data partitioning. The baseline for
this approach is to partition the data items such that a partition block is managed
by different peers. The impact on query processing is that conjunctive queries span
over multiple blocks, therefore resolving them means less processing selectivity.
The advantage of the approach is twofold. First, there is no index update overhead
and no extra space requirement compared to the mediator solution. Second, the
publishers and the consumers do not need to know the details of the partitioning
scheme to send data or queries. The network takes care of identifying the relevant
matching data to the queries. Our approach is partition based.

DHT based. A partition-based solution to building routing indices that is pop-
ular among structured P2P networks is to leverage distributed hash tables (DHTs).
A DHT provides a distributed logical abstraction of object identifier lookups (e.g.
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mostly filename lookups) over the physical underlay. However, this approach fo-
cuses more on handling atomic queries [Galanis et al. 2003; Rhea and Kubiatowicz
2002; Bonifati et al. 2004; Yalagandula and Dahlin 2004; Abiteboul et al. 2007;
Bender et al. 2005] and less on the efficiency of complex queries processing [Harren
et al. 2002; Triantafillou and Pitoura 2003]. Our UQDT solution is optimized for
Boolean (XPath) queries. Another body of work builds hierarchies of overlays based
on DHTs. To improve locality, the hierarchies are created based on the document
content similarities [Zoels et al. 2006] or on the nodes proximity in the network to
minimize latency [.Xu et al. 2003; Mislove and Druschel 2004; Artigas et al. 2005;
Ganesan et al. 2004].

However, DHTs are inappropriate for the problem we study, since DHT nodes
maintain complete knowledge of all the publishers that advertise specific data items.
An attacker can gain global information for data items by simply compromising a
single DHT node. In contrast, no UQDT node maintains complete knowledge
about any data item. In addition, UQDT nodes only maintain summaries which
are masked union of data items present in their subtrees, without knowing exactly
which data item is contained in which publisher. A leaf QDT router node only has
information about a small set of publishers that connect to it. An attacker needs to
compromise a significantly large number of UQDT nodes before gaining any global
information.

Other routing strategies. Our load balancing technique applies to any tree
topology, and is complementary to research on determining the best topology for
dissemination (e.g. see [Jagadish et al. 2006; Crainiceanu et al. 2007] for tree-
shaped P2P indices that are not DHT-based).

Koloniari and Pitoura [Koloniari and Pitoura 2004] consider the problem of rout-
ing path queries over schema-less XML documents in a P2P system. They propose
the use of one hierarchical overlay network that clusters nodes with similar XML
documents where nodes contain filters that summarize repositories of a set of its
neighbors to facilitate path query routing. This approach is similar to the single-
QDT configuration, with the attendant limitations, and our technique for maxi-
mizing throughput has the potential to be useful for this problem as well. At the
opposite spectrum, [Fenner et al. 2005] builds a QDT for each published data item
which can sometimes be impractical due to the large number of CDs. Both these
related works do not address the publisher anonymity issue.

P2P publish/subscribe. A complementary problem is that of distributed pub-
lish/subscribe, wherein query subscriptions from users are maintained in a dis-
tributed index structure, and data items are disseminated to subscribers as soon as
they are published. Topic-based approaches use a set of pre-defined static topics to
form the rendezvous points between subscribers and publishers, and some form of
multicast is often used for efficiency purposes, such as IP multicast [Banavar et al.
1999], generic application-level multicast [Bozdog et al. 2003], and multicast on top
of DHTs [Castro et al. 2002]. Although constructed for a different goal than QDTs,
we show how off-the-self SCRIBE trees [Castro et al. 2002] for data dissemination
can be used for QDTs as well.

Content-based publish/subscribe approaches match the entire published content
against (possibly aggregated) subscriptions. A good example of this approach is
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ONYX, a system for XML content dissemination [Diao et al. 2004], wherein a dis-
semination tree is rooted at each publisher. Each router maintains for each inter-
face an aggregate subscription (XML query) that summarizes all the subscriptions
downstream along that interface. A published data item starts from the root (the
publisher), and gets forwarded to all downstream interfaces whose corresponding
aggregate subscriptions match the data item. Chand and Felber [Chand and Fel-
ber 2003] take a similar approach. SemCast [Papaemmanouil and Cetintemel 2005]
aggregates subscriptions in a centralized manner using a cost-based model, and
documents are routed through the network based on the subscription aggregates.
Censorship resistant. Most of the existing censorship-resistant systems like

Eternity [Anderson 1996], Free Haven [Dingledine et al. 2001], Publius [Waldman
et al. 2000], Tangler [Waldman and Mazieres 2001] are based on anonymizing the
communication, and therefore anonymizing the end-to-end communicating entities
(Tor [Dingledine et al. 2004], Freenet [Clarke et al. 2001], Freedom [Boucher et al.
2000], Tarzan [Freedman and Morris 2002], MorphMix [Rennhard and Plattner
2004]). This is usually done by using proxy based services (e.g., Anonymizer.com,
JAP [jap ]), based on DHTs which comes with their disadvantages, or based on
trusted servers to encrypt and route the traffic through established anonymous
tunnels over the other nodes. Note that both DHTs and encryption/routing servers
need to be trusted by publishers. These anonymization techniques can be used as a
complementary measure together with UQDTs. The advantage of UQDTs is that
they do not require publishers to trust them.

8. CONCLUSIONS

The dawn of the age of online communities poses the challenge of empowering in-
formation publishers to join privacy-aware communities and query their global data
collection in an ad-hoc fashion. We present an infrastructure that meets this chal-
lenge by allowing data to reside with its owners and by supporting queries against
the global data collection, with no need for any central authority that disinterme-
diates publishers from consumers. These queries are evaluated by dissemination
to relevant publishers using a distributed index structure. Our solution precludes
third parties from learning the exact publisher–CD associations, guaranteeing pub-
lisher k-anonymity (i.e. for every CD, there are at least k possible publishers) even
if nodes of the dissemination index, or peer publishers are compromised.
Technically, our approach is dual to the conventional work on data dissemination,

and its viability depends on the feasibility of efficient query dissemination. Our con-
tributions towards proving feasibility range from identifying the design space (with
its tradeoff dimensions, relevant metrics and notion of optimality), to introducing
solutions that achieve near-optimality with only low overhead.

Partially-informed routing emerges as the best-value strategy, with low space
overhead to yield the same benefits as fully-informed routing, and to significantly
outperform random and heuristic routing. The solution exploits crucially the dual
role of QDTs, deploying them as both query and statistics dissemination trees.
While we show that fanout-balanced topologies are closest to optimal, an advan-
tage of our solution is its generality, in the sense that it focuses on extracting the
performance inherent in any given topology. This enables the seamless porting

Technical Report CS2010-0956, UC San Diego, March 2010.



Censorship-resistant Publishing · 37

of our techniques on top of off-the-shelf overlay maintenance tools developed by
networking research.
To show the feasibility of our approach, we built in [Curtmola et al. 2008] a

distributed dissemination infrastructure that supports expressive queries, which
allows complex filtering conditions on the CD matches. These conditions pertain
to both the keywords and the context they appear in (a representative of this class
of queries is W3C’s XQuery Full-Text extension [The World Wide Web Consortium
]). This line of work will exploits our framework’s generality with respect to the
definition of CDs.
In future work, we contemplate various extensions of our solution. One of them

is to incorporate ranking functions and exploit the UQDT overlay for top-K query
processing.
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