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ABSTRACT
Wikipedia infoboxes is an example of a seemingly structured, yet
extraordinarily heterogeneous dataset, where any given record has
only a tiny fraction of all possible fields. Such data cannot be
queried using traditional means without a massive a priori integra-
tion effort, since even for a simple request the result values span
many record types and fields. On the other hand, the solutions
based on keyword search are too imprecise to capture user’s intent.

To address these limitations, we propose a system, referred to
herein as WIKI ANALYTICS, that utilizes a novel search paradigm
in order to derive tables of precise and complete results from Wi-
kipedia infobox records. The user starts with a keyword search
query that finds a superset of the result records, and then browses
clusters of records deciding which are and are not relevant. WIKI -
ANALYTICS uses three categories of clustering features based on
record types, fields, and values that matched the query keywords,
respectively. Since the system cannot predict which combination
of features will be important to the user, it efficiently generates all
possible clusters of records by all sets of features. We utilize a
novel data structure, universal navigational lattice (UNL), that com-
pactly encodes all possible clusters. WIKI ANALYTICS provides a
dynamic and intuitive interface that lets the user explore theUNL

and construct homogeneous structured tables, which can be further
queried and aggregated using the conventional tools.

1. INTRODUCTION
Growing popularity of Wikipedia and other wikis raises the issue

of querying this data to extract insights that span multiple pages.
Although most of Wikipedia is free text, it also contains a large
amount of structured information in tables, lists, categories, and
infoboxes. A number of ongoing efforts [16, 11, 9, 24] aim to
harness this information.

We focus on querying Wikipedia infoboxes, which are essen-
tially typed records of field-value pairs. Infoboxes appear on over
a million Wikipedia pages and often contain the most vital infor-
mation about the entity described by the page. For example, an
infobox on Arnold Schwarzenegger’s page (Figure1) contains in-
formation about his office, family, birthday, party and religious af-
filiation, and more.
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A major challenge in querying infoboxes is the diversity of their
structure. Every infobox instance has an equivalent of a type – wiki
template that renders the infobox WikiText into HTML. However,
new templates can be introduced and old templates can be extended
relatively easily. Moreover, enabling query processing was never a
requirement for the authors of templates and infoboxes. As a result,
templates often allow for many ways of representing the same in-
formation. For example, a very popular “officeholder” template has
bothdate of birth andbirthdate fields. Figure2 conveys
their heterogeneity. There are about2, 500 distinct infobox types
(templates), with over50, 000 distinct<type, field> pairs. How-
ever, there is a clear long tail in the distribution of the number of
occurrences of the fields, with almost20, 000 fields occurring in
exactly one infobox and only300 fields occurring in over4, 000.

Many other data types, such as product catalogs, patient records,
and electronic forms collections, exhibit similar structural diver-
sity. These sources are often designed for human consumption with
structural flexibility as the key feature and query processing as an
afterthought. Thus, many products in a catalog may have rare or
unique fields, most fields on any given form may be optional, and
different doctors fill out the same clinical documents differently.

Structural diversity presents major problems when queries need
to access many objects (infoboxes) in order to extract lists of results
from them. For example, if a user wants to construct a list of Gover-
nors of California, a good heuristic may be to look for infoboxes of
typegovernor andoffice field with value “Governor of Cal-
ifornia.” However, thus constructed list will be only90% correct.
For example, Ronald Reagan’s infobox has typepresident, with
value “33rd Governor of California” hidden in theorder2 field.
We call such resultsstructural outliers. They are critical for deriv-
ing a complete and precise answer.

It is hard to imaginea priori reliable integration of information
from all large clusters and outliers for the entire dataset - either
heuristic or manual. Instead, we adopt a “pay as you go” approach,
where only the objects potentially relevant to the result are interac-
tively integrated at query time.

In this paper we present a system, referred to herein as WIKI -
ANALYTICS, which enables users to browse multiple clusters of
all potential results, and relatively easily identify the main result
cluster(s) as well as the outliers. The clustering features that we
use are based on the names and values of fields that contain the
query keywords. Conceptually, the features define the relevant di-
mensions on the data specifying the matching context for the query
keywords. The intuition is that occurrence of the same keyword
in different fields or in different values is likely to have different
meanings. For example, a group ofgovernor infoboxes with
“California” in the office field is semantically different from a
group where the same keyword occurs in thebirthplace field.



Furthermore, even within the “California”∈ office cluster, there
is a significant difference between infoboxes with values “Governor
of California” in theoffice field and “Governor of Baja Califor-
nia” in the same field.

In order to give users a full picture of the possible clusters of
the query results we adopt a notion ofconcept lattice[17] over
the clusters of infoboxes. Ouruniversal navigational lattice(UNL)
encodes all possible ways to group the records in the query result
according to their features. We developed a GUI that allows users
to navigate theUNL and interact with it by including and excluding
the clusters from the result list.

TheUNL usually grows super-linearly with the size of the result,
so we introduce a pruning technique that filters out features that
occurred fewer times than a user-definedfeature support threshold
(FST ). Besides reducing theUNL size, pruning greatly speeds-up
theUNL construction and makes the result easier for users to work
with. In a typical session,FST is initially set relatively high, to
filter out the long tail of features and allow the user to focus on
large clusters of structurally homogeneous records. Then, the user
can accept or reject some of these clusters, which consist entirely of
results or non-results, respectively. Finally, the user can recompute
theUNL with a lowerFST over the remaining objects after the ex-
clusion of already accepted or rejected records. The last two steps
can be repeated iteratively allowing the user to zoom in on progres-
sively smaller clusters in order to look for structural outliers.

The final result of a WIKI ANALYTICS query is a table with a
key column (name of the wiki page) and a value column for every
keyword specified as an extraction, by the special “!” character.
For example, query “California governor religion!”, which is our
running example throughout this paper, returns pairs of governors’
(page) names and religious affiliations. The resulting feeds can
be joined and aggregated by mashup tools like Yahoo Pipes1 and
Damia[25], or visualized by services like Swivel2 and Many Eyes3.

This paper focuses on the formalism and algorithms behind WIKI -
ANALYTICS, in particular its clustering features andUNL. For
more details on system architecture and user interaction, please re-
fer to [5] as well as our extended version [6]. The rest of the paper
is organized as follows. In the next section, we formalize WIKI -
ANALYTICS data and query model. Section3 describes clustering
features while in Section4, we define the Universal Navigational
Lattice and give algorithms for its construction and visualization.
Experimental results are shown in Section5. Related work is dis-
cussed in Section6 and we conclude in Section7.

2. DATA AND QUERY MODEL
We model a Wikipedia infobox as a record that comprises of a

set offields. Given a recordr, we denote byFld(r) its set of fields:
Fld(r) = {(f.name, f.value)|f ∈ r}. We also denote byr.N
the set of all field names ofr. Each record has a type,r.type that
identifies a set of possible field names for records of this type; i.e.,
r.type maps to a superset ofr.N . We assume that records don’t
have duplicate field names and that field values are strings.

We model a collection of recordsR as auniversaltableU. This
table contains a column for every distinct field name inR; i.e.,
the set of column names inU is Col(U) = ∪{r.N |∀r ∈ R}.
In addition, we add a specialtype column toU to represent the
record type information. Each recordr ∈ R corresponds to a row
in U. Therefore, a table cellUij contains the field valuefk.value
for field fk under recordri, such thatfk.name = Col(U)j . The
cell value is null if no suchfk exists in recordri.

1http://pipes.yahoo.com/
2http://www.swivel.com
3http://manyeyes.alphaworks.ibm.com/manyeyes

{{ Infobox Governor
| name= Arnold Schwarzenegger
| nick = Governator
| image= Arnold Schwarzenegger 2004-01-30.jpg
| imagesize= 200px
| order = 38th
| office= Governor of California
| term_start = November 17, 2003
| lieutenant = {{nowrap|[[Cruz Bustamante]]<small>

(2003-2007)</small>}}<br/>{{nowrap|[[John Garamendi]]
<small>(2007-present)</small>}}

| predecessor= [[Gray Davis]]
| successor=
| order2 = Chairman of the [[President’s Council on

Physical Fitness and Sports]]
| term_start2 = 1990
| term_end2= 1993
| president2= [[George H. W. Bush]]
| birth_date = {{birth date and age|1947|07|30}}
| birth_place = [[Thal, Austria|Thal]], [[Styria]], [[Austria]]
| nationality = [[Austria]][[United States|American]]
| party = [[Republican Party (United States)|Republican]]
| spouse= {{nowrap|[[Maria Shriver]] (1986-present)}}
| religion = [[Roman Catholic]]
. . . }}

Figure 1: Sample Wikipedia Infobox in WikiText format.
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Figure 2: Wikipedia Infoboxes are sparse: Distribution of fields per number
of infobox instances in which they occur.

EXAMPLE 2.1. A fragment of the universal tableU for Wikipedia
infoboxes is shown in Figure3. The full universal table would com-
prise around18, 000 columns and approximately500, 000 rows4 .
However, only 0.08% of its cells would have non-null values.⋄

Type Office Order Religion �

Infobox Id1 Governor Governor of 

California

38th Roman 

Catholic

�

Infobox Id2 President - 40th [[President of 

the United States]]

Baptized 

[[Presbyte

rian]]

�

� � � � � �

~18,000 distinct fields

~0.5M

infoboxes

Documents

Fields
Infobox

Figure 3: Fragment of the Wikipedia infobox universal table.

We consider keyword queries where a queryQ = (k1, . . . , kn)
defines three category of keywords: keywordsC(Q) that appear
in matching records, keywordsN(Q) that should not appear in
matching records, and keywordsR(Q) that identify the result as
columns ofU. For our running example above, we have thatC(Q) =
{“governor”, “California”} andR(Q) = {“religion”}.

A keywordk appears in recordr, ork ∈ r, if k appears in either
one of its field names or values:{fi ∈ Fld(r)|k ∈ fi.name ∨
k ∈ fi.value} 6= ⊘. We say that arecord r matches a query
Q = (k1, . . . , kn) if ∀ki ∈ C(Q) ∪ R(Q) then ki ∈ r, and
∀ki ∈ N(Q) thenki /∈ r.
4The infoboxes were extracted as a subset of templates embedded
in pages of November 2009 snapshot of the Wikipedia.

http://pipes.yahoo.com/
http://www.swivel.com
http://manyeyes.alphaworks.ibm.com/manyeyes


Given a data collection of recordsR, the candidate result set
of Q onR, denoted byQ(R), is the set of records that matchQ:
Q(R) = {r ∈ R|r matches Q}. We denote byFld(R) the set of
all field names in the collection across all records in the collection:
Fld(R) = {f.name|∀r ∈ R, f ∈ Fld(r)}.

To derive a complete answer set that satisfies an information need
corresponding to queryQ, the user may choose to iteratively refine
the candidate result set by adding or removing groups of records.
We denote this feedback selection process over the candidate set of
records for useru with σu(Q(R)). Finally, the query result is a
tableT , which is the result of extracting the query specified return
values after the user selection by projecting on the fields matched to
R(Q); by abuse of notation, we also refer to these fields asR(Q):

T = πR(Q)∪key(R)(σu(Q(R)))

The record keykey(R) is used only for presentation of records.
We used Wikipedia page title as a key.

3. CLUSTERING FEATURES
To help users identify the final result subset of the candidate set,

we cluster the records that pass the keyword search filter based on
their types, as well as field names and values that contain the key-
words. Our goal is to produce clusters that the user will easily
identify as entirely relevant or entirely irrelevant to the query.

Given a candidate resultQ(R) we define the following three
categories of clustering features, which will be used to summarize
and slice the result set. First, it is often important to know the type
of records inQ(R). We say thatFt : type = k is atype featurefor
recordr if r.type = k.

Second, the keyword may occur in different fields belonging to
various records. In order to distinguish which is the fieldf that
keywordk hits, we say thatFc : k ∈ f is acontainment featurefor
recordr if f ∈ Fld(r) ∧ (k ∈ f.name ∨ k ∈ f.value).

Finally, the field matching a keyword might correspond to a va-
riety of distinct textual valuess, which may be important in parti-
tioning the search results. Intuitively, a partition with value “Gov-
ernor of California” in the "office" field, will be relevant to our
running example query, unlike a partition with value “Governor of
Baja California” in the same field. In order to distinguish between
such partitions, we say thatFe : f = s is anequality featurefor
recordr if f ∈ Fld(r) ∧ f.value = s.

Each feature uniquely determines a cluster of records that have
this feature. Formally, we define afeature association function
C
R : {Ft,Fc,Fe}∗ → R that clusters a set of recordsR accord-

ing to features. For instance,CR(F ) is a set of records that have
featureF . For a given set of features,CR associates the set of all
records conforming with the features as follows:

C
R(F1, . . . , Fn) = {r ∈ R|∀i ∈ [1, n], Fi is a feature of r}

Thus,CR(F1, . . . , Fn) =
⋂

i
C
R(Fi).

We introduce next the set of all featuresFQ inducedby a query
Q onR asFQ = {Fk|∀k ∈ Q} , whereFk is the feature set in-
duced by an individual termk. Fk corresponds to all cells of table
U that contain a match with keywordk. It consists of the following
components: the type feature setF t overU, the containment fea-
ture setF c, which identifies all fields inU that have a match onk,
and the equality feature setF e, which identifies what values do the
fields inU match withk. Their formal definitions are:

Fk = F t ∪ Fc(k) ∪ Fe(k)

F t = {Ft : type = term|∀term ∈ Πtype(U)}

Fc(k) = {Fc : k ∈ f |∀j, f ∈ U∗,j ∧ (k ∈ f.name ∨ k ∈ f.value)}

Fe(k) = {Fe : f = f.value|∀j, f ∈ U∗,j ∧ (k ∈ f.name ∨

∨ k ∈ f.value)}

Note that such a feature setFQ might contain features with refer-
ences to records that match with one or few keywords specified in
the user query. To deliver a meaningfulFQ to the user, we restrict
the set of features induced byQ overR to those features that refer
to a subset of records that have a higher relevance to the query.

DEFINITION 3.1. (Restricted universal table) Let Q be a
query andQ(R) its candidate result. The corresponding universal
tableUQ restricted toQ(R) identifies only the sub-part ofU that
corresponds to records ofQ(R): UQ = {Ui|∀i, ri ∈ Q(R)}. ⋄

Finally, we revisit the definitions forFk andFQ feature sets. We
restrict them to apply only on the subtableUQ ⊂ U. For instance,
FQ stands for the features induced by queryQ on recordsQ(R).

EXAMPLE 3.1. Figure4 shows a subset of the restricted uni-
versal tableUQ for our running example query. The columns rep-
resent some fieldstype, f1, . . . , f5 of R that contain hits with one
of the query keywords, whereas the rows represent documents in
Q(R) = {1, 2, 3, 10, 20, 21, 22, 23} that contain all the query
keywords. We have indicated with a check mark the correspond-
ing fields where the keywords hit the documents (while omitting the
actual field contents). Table1 shows the matching featuresFQ to-
gether with their associated clustersCQ(R) overUQ. ⋄

type f1 f2 f3 f4 f5

1 � �

2 � � �

3 � �

10 �

20 � � � �

21 �

22 � �

23 �

Documents

Fields
Infobox

Figure 4: Universal tableUQ for example3.1.

FeaturesFQ ClustersCQ(R)

F1 = {Ft : type = governor} {1, 2, 3}
F2 = {Fc : “Governor” ∈ f1} {1, 2, 10}
F3 = {Fe : f1 = “Governor of California”} {1, 2, 10}
F4 = {Fc : “governor” ∈ f2} {2, 3, 20, 21}
F5 = {Fc : “governor” ∈ f3} {20, 22}
F6 = {Fe : f4 = “religion”} {20, 22, 23}
F7 = {Fc : “california” ∈ f5} {20}

Table 1: Features and Clusters for Example3.1

4. UNIVERSAL NAVIGATIONAL LATTICE
Since we cannot predict which combination of features will be

important to the user, we generate all possible clusterings of records
by all sets of features. We do this compactly and efficiently, by
organizing the clusters into a lattice structure called theuniversal
navigational lattice(UNL). The clusters inUNL are connected
with each other based on the subsumption relationship of features.

Given a set of restricted featuresFQ that are relevant to query
Q, the powerset of features ofFQ forms a lattice(L,≤) with
the following two binary operations: (1) join (∨) is the union of
features, and (2) meet (∧) is the intersection of features such that
∀a, b ∈ L wherea = {Fi|Fi ∈ FQ} andb = {Fi|Fi ∈ FQ} then
a ∨ b =

⋃
Fi anda ∧ b =

⋂
Fi, respectively.

The partial order relation,≤, on the elements ofL is defined as
the subset relationship between feature sets. The bottom element of
L corresponds to the empty set, while the top element is the union
of all features. Moreover, the way we defined the join operation
implies that the cluster associated witha ∨ b corresponds to all



records satisfying both feature setsa andb, that isCQ(R)(a∨ b) =

C
Q(R)(a) ∩ C

Q(R)(b).

DEFINITION 4.1. (UNL ) We define the universal navigational
latticeUNL over the meet-semilattice of(L,≤) (i.e., ifa, b are fea-
ture sets with non-empty cluster of records thena ∧ b is also a
non-empty cluster feature set) with the following properties: (i)
a feature seta ∈ UNL is the description of a non-empty cluster
of recordsCQ(R)(a); (ii) no two elements have the same cluster
of records, i.e.,∀a, b ∈ UNL thenC

Q(R)(a) 6= C
Q(R)(b). In

other words, each element inUNL is a unique feature set and has
a unique cluster of records. ⋄

Let us note thatUNL is not closed under the join operation, i.e.,
if a, b are non-empty cluster feature sets it does not mean that a
non-empty cluster fora∨ b exists inUNL all the time. We consider
that elements ofUNL are organized on levels based on the number
of features they contain. For instance, an element with four features
is considered to be on level four inUNL.

4.1 Construction ofUNL
We now describe an efficient algorithm that constructs a Univer-

sal Navigational Lattice. The pseudocode of this algorithm, called
compute_unl, is shown in Figure6.

We capture the lattice as a direct acyclic graph (DAG) data struc-
ture,UNL = (N,E). Each noden ∈ N is characterized by a set
of featuresn.F and the corresponding cluster of records that have
all these featuresn.I = C

Q(R)(n.F ). A link (n1 → n2) ∈ E
connects two nodes such thatn1.I ⊃ n2.I andn1.F ⊂ n2.F .

Our algorithm constructs the lattice graphUNL bottom-up, in-
ductively, level by level such that levelLk−1 generates the next
levelLk and possibly some nodes on the higher levels. This strat-
egy avoids generating all combinations of nodes. Therefore, it ben-
efits from pruning the nodes as early as possible if they do not agree
with the definition of UNL, i.e. they correspond to duplicate or
empty clusters of records.

The algorithm starts at lines 2-4 by generating the first lattice
level, and possibly other nodes by consolidating the set of individ-
ual featuresFQ, and their clustersCQ(R), which were previously
constructed by scanning the search engine results. The consolida-
tion of features is required byUNL property (ii), as defined above.
Thus, functionconsolidate_features, in line 2, builds a lattice
node for each distinct cluster of records, and groups all features that
characterize that cluster onto that node. Due to space constraints,
please check out [6] for the pseudocode of supporting functions.

EXAMPLE 4.1. Building on our running example, the initial
feature sets are computed as in Table1. After going through the
consolidation process, the lattice consists of the following nodes
n1 − n6 as displayed in Figure5a. Each noden in the lattice
has associated two sets: the set of featuresn.F and the cluster of
recordsn.I under the context of the features. In particular, node
n2 consolidates featuresF2 andF3 (i.e.,n2.F = {F2, F3}) as a
result of characterizing the same cluster setn2.I = {1, 2, 10}. ⋄

The algorithm continues by considering all possible groups of
records by all sets of features. Lines 5-8 construct all subsequent
levels of the lattice by extending the current level with one more
feature as part of the previously consolidated nodes. At each step,
a new lattice node is created. It consists of merging the features
sets of the underlying nodes while taking a set intersection over
their clusters (line 9). For each such new potential node, the al-
gorithm applies two pruning rules based on the properties of UNL
definition. Rule (R1), in line 10, disregards the node if it stands for
an empty cluster. Rule (R2), in lines 11-15, consolidates all nodes

that have the same cluster by merging their feature sets. Finally,
we add the new node to the graph lattice (lines 17-19) in case the
cluster does not exist (the default rule).

EXAMPLE 4.2. Construction of the lattice graph starts with
the generation of the following nodesn7, n8, n9 as a result of ap-
plying ruleR1. This is shown in Figure5b. Each node is the re-
sult of taking the union of the features sets of the parents and of
set intersecting the record clusters of the parents. For instance,
n7.F = n1.F ∪ n2.F while n7.I = n1.I ∩ n2.I. All combina-
tions for which the cluster set is empty are not part of the lattice as
stated by ruleR1. Next, the algorithm generates the combination
between nodesn7 andn3 for which ruleR2 applies. Since their
cluster intersection coincides with the cluster for noden9.I, the
new combination is merged onton9 as shown in Figure5c. Simi-
larly, this is observed for generating the combination betweenn8

and n3. Figure 5d shows the complete lattice graph where new
nodes get generated for unique feature sets and unique clusters, or
just merged with existing nodes. ⋄

Note thatUNL encodes all sets of features even though not every
set corresponds to a node. For example,{F1, F2} is not a node but
the set corresponds ton7.I sincen7.F is their smallest superset.

In the end, the algorithm eliminates all the redundant edges in
line 20. TheUNL edges represent cluster relationship, which is
transitive. Consider an edgee = (n1, n2), such that there is a path
from n1 to n2 that does go throughe. This edge does not encode
any new information, since it can be reconstructed from the path.
We remove such edges fromUNL to keep it compact and simplify
its presentation.

Functionremove_generalized_triangles computes a set of in-
direct ancestors for each noden – the ancestor nodes ofn excluding
its direct parents. We do this in one pass over the lattice by em-
ploying breadth first search graph traversal starting from the roots
(nodes without parents) of the lattice graphUNL, and processing
the nodes only if all their descendants have been visited previously.
In the end, we identify all links inE (“parent" relationships) that
are simultaneously in “indirect ancestor" relationship, and remove
them remove fromE.

EXAMPLE 4.3. Our sample lattice graph contains four such
redundant links closing generalized triangles. They are shown with
dotted red lines in Figure5e. For instance, the direct linkn2 → n9

is redundant sincen9 can be reached fromn2 via n7. Intuitively,
this is translates in better user navigation and answer discovery
since the user wants to explore the collection in a gradual manner,
i.e., explore records from very generic groups to more and more
focused groups. Jumping directly fromn2 to n9 omits the inter-
mediate group ofn7. Otherwise, the user may go ton7 instead.
Eventually,n9 can be reached if the user is not satisfied withn7. ⋄

4.2 Presentation ofUNL
UNL lends itself to many ways of presentation and user interac-

tion, such as faceted search or OLAP style slicing and dicing. We
chose tree-based presentation approach, similar to directory fold-
ers, where clusters are shown as parents of their sub-clusters. For
each cluster we display its size and the full set of features. The user
can expand or collapse any tree node, as well as select or unselect
any cluster for the final result.

We obtain the tree shape by a depth-first traversal ofUNL, start-
ing from each of its root nodes. In practice, most of the lattice nodes
are well connected so there are relatively few roots. For every node,
its children are ordered in the descending order of the cluster size.
A sample user interface is explained in more details in [6].



n1 n2 n3 n4 n5 n6

{F1}

{1,2,3}

{F2,F3}

{1,2,10}

{F4}

{2,3,20,21}

{F5}

{20,22}

{F6}

{20,22,23}

{F7}

{20}

(a) Initial lattice nodes after consolidation ofFQ.

n1 n2 n3 n4

n9

n5 n6

n7 n8

{F1}

{1,2,3}

{F2,F3}

{1,2,10}

{F4}

{2,3,20,21}

{F5}

{20,22}

{F6}

{20,22,23}

{F1,F2,F3}

{1,2}

{F1,F4}

{2,3}

{F2,F3,F4}

{2}

{F7}

{20}

(b) Generating nodesn7, n8, andn9 using ruleR1.

n1 n2 n3 n4

n9

n5 n6

n7 n8

{F1,F2,F3,F4}

{2}

{F1}

{1,2,3}

{F2,F3}

{1,2,10}

{F4}

{2,3,20,21}

{F5}

{20,22}

{F6}

{20,22,23}

{F1,F2,F3}

{1,2}

{F1,F4}

{2,3}

{F7}

{20}

(c) Merging new nodes onn9 using ruleR2.

n1 n2 n3 n4

n9

n5 n6

n10

n7 n8

{F7,F4,F5,F6}

{20}

{F5,F6}

{20,22}

{F1,F2,F3,F4}

{2}

{F1}

{1,2,3}

{F2,F3}

{1,2,10}

{F4}

{2,3,20,21}

{F5}

{20,22}

{F6}

{20,22,23}
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Figure 5: Construction ofUNL Universal Navigational Lattice Graph.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate performance of theUNL construction

algorithm. We show that despite the exponential complexity of the
algorithm, judicious use ofFST -based pruning helps us achieve
on-line level performance. We have not yet performed a formal
user-interaction evaluation, but we have positive experience from
the in-house use of the tool in the context of a larger project [23].

We ran the WIKI ANALYTICS system on a Centrino Duo 2.2GHz
laptop with 2GB of RAM. The tables below show how the lattice
parameters vary withFST for queries with different selectivities
on Wikipedia. Table2 reports results for our running example,
Q1 =“governor California religion!”. As expected, the construc-
tion time and the size ofUNL increase with the decrease ofFST
since the number of features after consolidation increases.

To stress WIKI ANALYTICS, we have focused on less selective
queries. For instance,Q2 as shown in Table3 matches to approxi-
mately 1,000 documents. In general, our tool is designed to extract

algorithm compute_unl(FQ, CQ(R))
input: featuresFQ, clustersCQ(R)

output: universal navigational latticeUNL
begin
1 N = {⊘}, E = {⊘}

2 initial_nodes = consolidate_features(FQ,CQ(R))
3 for each noden ∈ initial_nodes do
4 N+ = n
5 for each levellevel = 2..|FQ| do
6 for each noden1 ∈ N do
7 if (|n1.F | == level − 1) then
8 for each noden2 ∈ initial_nodes do
9 constructnewNode :

{ F = n1.F ∪ n2.F , I = n1.I ∩ n2.I }
10 if (newNode.I == {}) then continue
11 oldNode = find oldNode ∈ N such that

oldNode.I == newNode.I
12 if (oldNode exists)then
13 oldNode.F+ = newNode.F
14 E+ = (n1 → oldNode)
15 E+ = (n2 → oldNode)
16 else
17 N+ = newNode
18 E+ = (n1 → newNode)
19 E+ = (n2 → newNode)
20 remove_generalized_triangles(N , E)
22 return (N,E) asUNL
end

Figure 6: UNL construction algorithm

FST=20 FST=15 FST=10 FST=5 FST=0
# docs inUQ 82 82 82 82 82
# fields inUQ 19 19 19 19 19
# features after 7 9 11 16 76
consolidation
|N | 19 35 53 79 151
|E| 31 66 106 163 278
# roots 1 1 1 1 1
constructUNL 2ms 5ms 9ms 27ms 163ms

Table 2: QueryQ1 = “California governor religion!"

results of a few hundred to a couple of thousand of answers at a
time, as it is hard to find larger groups of semantically similar in-
foboxes.

We presentQ2 in Table 3 and we notice big impact ofFST
on the size and construction time of theUNL. Without use of
FST , we could not support on-line ad-hoc querying. Indeed, for
FST = 0 there are over 2,000 clusters available for browsing, and
theUNL takes almost 2 minutes to compute. BringingFST to 15,
we experience reasonable search parameters, i.e., construction time
of about 1 second and 465 nodes.

6. RELATED WORK
Recently, much effort went into the management of heteroge-

neous datasets enabling the average user to browse and query them.
On one hand, there are the web search engines and ranked keyword
search with heuristics over relational databases [8, 2, 20, 19, 7, 21]
as well as over semistructrued data [13, 22, 32, 27]. Yet, they are
not powerful enough to capture the user’s intention in full [29]. On
the other hand, query languages such as SQL, XPath, XQuery, and
SQL/XML require up-front data integration, are complex and hard
to express. To cover the range between the two extremes, we iden-
tify a list of complementary techniques to ours.



FST=20 FST=15 FST=10 FST=5 FST=0
# docs inUQ 1014 1014 1014 1014 1014
# fields inUQ 32 32 32 32 32
# features after 33 40 71 166 1306
consolidation
|N | 395 465 762 1389 2274
|E| 967 1137 1811 3159 4443
# root 2 2 2 2 2
constructUNL 1s190ms 1s200ms 3.5s 15s 1m54s

Table 3: QueryQ2 = “jazz album artist! released!"

There is an increasing effort in designing tools to extract data
and structure from heterogeneous collections and making it avail-
able for querying from various communities. Freebase [9] supports
collaborative structured information integration. However, it forces
the users to follow a central predefined schema. DBpedia [16, 3] is
another effort, which also complements Wikipedia infoboxes with
additional information. Nevertheless, the result is just as heteroge-
neous as the original. It can be accessed via keyword-based inter-
faces or SPARQL[1]. Other efforts focus on building and leverag-
ing ontologies [30, 26]. To improve the accuracy of search results,
Powerset [24] brings in natural language processing. Yet, it fails
to disambiguate query answers and it does not return aggregated
information from multiple pages. Same applies to WebTables [10],
which proposes to leverage structured data in HTML tables and
return ranked relations.

Another related body of work has focused on using lattice-based
techniques [17] to extraction knowledge. For example, [33] deals
with extraction of association rules by mining for frequent itemsets
and sequences inside databases. Similarly, [18, 12] use a lattice
as an effective tool for hierarchical conceptual clustering. How-
ever, these lattices encode the exploration space over all possible
queries of terms. Browsing is similar to jumping between query
formulations. In contrast, our lattice is built dynamically for each
user query. It aims to disambiguate answers by navigating on the
structure of the content, i.e., our features represent logical structural
points in the collection where the keywords hit.

On the other hand, semantic data exploration by traditional faceted
search [3, 28, 14] defines a predefined set of “facets” that are intrin-
sic properties of the data itself such as color, price etc. The number
of facets per entity is usually manageable given that these engines
are very domain specific. The entities in the dataset are then classi-
fied in hierarchical buckets according to facets. In contrast, our di-
mensions are dynamic, defined on the fly, based on where the query
keywords hit in the entity fields. In practice, for heterogeneous data
this generates a large number of facets that would make interaction
impractical using the existing faceted search engines. Moreover,
faceted search is best suited for “point” queries while we focus on
aggregation of information from multiple result records. [15, 31, 4]
focus on integrating dynamic faceted search with OLAP process-
ing. However, they are not suitable for large heterogeneous data or
designed to return a complete set of answers.

7. CONCLUSION
Large quantities of structured data are being created by online

communities in wikis and other highly heterogeneous data sources.
In this paper we presented WIKI ANALYTICS, a tool to support on-
line ad-hoc querying over these data. We demonstrate effective
methods within a smart interactive user interface that facilitates ex-
ploration and disambiguation of search results in order to compile
complete and precise answers that span multiple records or pages.
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