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ABSTRACT A major challenge in querying infoboxes is the diversity of their

Wikipedia infoboxes is an example of a seemingly structured, yet structure. Every infobox instance has an equivalent of a type — wiki

extraordinarily heterogeneous dataset, where any given record hadeMPlate that renders the infobox WikiText into HTML. However,
only a tiny fraction of all possible fields. Such data cannot be MW templates can be introduced and old templates can be extended

queried using traditional means without a massive a priori integra- relat!vely easily. Moreover, enabling query processing was never a
tion effort, since even for a simple request the result values span 'eduirement for the authors of templates and infoboxes. As aresult,
many record types and fields. On the other hand, the solutionstempla_tes often allow for many ways of re_presentlng the same in-
based on keyword search are too imprecise to capture user’s intent{)o”ﬁgt'on' Fc;r e;.amprlle, ad\ggw pﬁgular fgf::;ehqlderegtemplate has
To address these limitations, we propose a system, referred to Ot_ ate o ! rthandbirthdate 1elas. Flgur conveys
herein as WKI ANALYTICS, that utilizes a novel search paradigm their heterogehelty. There are ?b@“f’“o d'St.mCt |nfo_box types
in order to derive tables of precise and complete results from wi- (templates), with oves0, 000 distinct <type, field> pairs. How-
kipedia infobox records. The user starts with a keyword search €Ve there is a clear_ long ta_ll in the dlstnbut_lon of the ngmper of
query that finds a superset of the result records, and then browseé)ccurlrenceg ?f l‘;he f'elc?s’ with fglrlr(;dm, 000 fields occnurrlng n
clusters of records deciding which are and are not relevamki W exl?/lcty Onﬁ mg oxan Onmﬁ 1elas (()jccurrlnglln ovedt, 000. q
ANALYTICS uses three categories of clustering features based on any ot er ata types, such as pro .U.Ct qatg 0gs, patient recoras,
record types, fields, and values that matched the query keywords,a_”d electronic forms coIIectlons,_ exhibit similar structural (_Jllver-_
respectively. Since the system cannot predict which combination sity. These sources are often designed for human consumption with
of features will be important to the user, it efficiently generates all Structural flexibility as the key feature and query processing as an
possible clusters of records by all sets of features. We utilize a aft_erthoft_J%Zt. Thus,f_mlzny product_s in ? catalog rtr;ay he_lve rlare gr
novel data structure, universal navigational lattigal (), that com- unique fields, most fields on any given form may be optional, an
pactly encodes all possible clusters.JRMANALYTICS provides a different docto_rs flll_out the same c_I|n|caI documents dlffere_ntly.
dynamic and intuitive interface that lets the user explorelthik Structural diversity presents major problems when queries need

and construct homogeneous structured tables, which can be furthefC 2C€SS many objects (infoboxes) in order to extract lists of results
queried and aggregated using the conventional tools. from them. For example, if a user wants to construct a list of Gover-

nors of California, a good heuristic may be to look for infoboxes of
1. INTRODUCTION typegover nor andof f i ce field with value “Governor of Cal-
ifornia.” However, thus constructed list will be on®9% correct.
For example, Ronald Reagan’s infobox has tgpesi dent , with
value “33rd Governor of California” hidden in ther der 2 field.
q We call such resultstructural outliers They are critical for deriv-
ing a complete and precise answer.

It is hard to imaginea priori reliable integration of information
from all large clusters and outliers for the entire dataset - either
heuristic or manual. Instead, we adopt a “pay as you go” approach,
where only the objects potentially relevant to the result are interac-
tively integrated at query time.

In this paper we present a system, referred to herein ag W
ANALYTICS, which enables users to browse multiple clusters of
all potential results, and relatively easily identify the main result
cluster(s) as well as the outliers. The clustering features that we
use are based on the names and values of fields that contain the
query keywords. Conceptually, the features define the relevant di-

Growing popularity of Wikipedia and other wikis raises the issue
of querying this data to extract insights that span multiple pages.
Although most of Wikipedia is free text, it also contains a large
amount of structured information in tables, lists, categories, an
infoboxes. A number of ongoing effortd§, 11, 9, 24] aim to
harness this information.

We focus on querying Wikipedia infoboxes, which are essen-
tially typed records of field-value pairs. Infoboxes appear on over
a million Wikipedia pages and often contain the most vital infor-
mation about the entity described by the page. For example, an
infobox on Arnold Schwarzenegger’s page (Figliyeontains in-
formation about his office, family, birthday, party and religious af-
filiation, and more.

Permission to make digital or hard copies of all or part of thkafor mensions on the data specifying the matching context for the query
personal or classroom use is granted without fee providatidbpies are keywords. The intuition is that occurrence of the same keyword
not made or distributed for profit or commercial advantage aatidhpies in different fields or in different values is likely to have different

bear this notice and the full citation on the first page. Toyooiherwise, to meanings. For example, a group @bver nor infoboxes with
republish, to post on servers or to redistribute to listguies prior specific !

permission and/or a fee. California” in the of f i ce field is semantlcglly different f.rom a
WebDB'10 Indianapolis, IN USA group where the same keyword occurs inlthe t hpl ace field.
Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.



Furthermore, even within the “Californi& of f i ce cluster, there

is a significant difference between infoboxes with values “Governor
of California” in theof f i ce field and “Governor of Baja Califor-
nia” in the same field.

In order to give users a full picture of the possible clusters of
the query results we adopt a notion @fncept lattice[17] over
the clusters of infoboxes. Ouniversal navigational latticUNL)
encodes all possible ways to group the records in the query result
according to their features. We developed a GUI that allows users
to navigate th&JNL and interact with it by including and excluding
the clusters from the result list.

TheUNL usually grows super-linearly with the size of the result,
so we introduce a pruning technique that filters out features that
occurred fewer times than a user-defirfiedture support threshold
(FST). Besides reducing theNL size, pruning greatly speeds-up
the UNL construction and makes the result easier for users to work
with. In a typical sessionf'ST is initially set relatively high, to
filter out the long tail of features and allow the user to focus on
large clusters of structurally homogeneous records. Then, the user
can accept or reject some of these clusters, which consist entirely of
results or non-results, respectively. Finally, the user can recompute

{{ Infobox Governor

| name= Arnold Schwarzenegger

| nick = Governator

| image = Arnold Schwarzenegger 2004-01-30.jpg

| imagesize= 200px

| order = 38th

| office = Governor of California

| term_start = November 17, 2003

| lieutenant = {{nowrap|[[Cruz Bustamante]]<small>
(2003-2007)</small>}}<br/>{{nowrap|[[John Garamendi]]
<small>(2007-present)</small>}}

| predecessor= [[Gray Davis]]

| successor

| order2 = Chairman of the [[President’s Council on
Physical Fitness and Sports]]

| term_start2 = 1990

| term_end2= 1993

| president2= [[George H. W. Bush]]

| birth_date = {{birth date and age|1947|07|30}}

| birth_place = [[Thal, Austria|Thal]], [[Styria]], [[Austria]]

| nationality = [[Austria]][[United States|American]]

| party = [[Republican Party (United States)|Republican]]

| spouse= {{nowrap|[[Maria Shriver]] (1986-present)}}

| religion = [[Roman Catholic]]

B

Figure 1: Sample Wikipedia Infobox in WikiText format.

the UNL with a lower F'ST over the remaining objects after the ex-
clusion of already accepted or rejected records. The last two steps
can be repeated iteratively allowing the user to zoom in on progres-
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sively smaller clusters in order to look for structural outliers.

The final result of a WKIANALYTICS query is a table with a
key column (name of the wiki page) and a value column for every
keyword specified as an extraction, by the special “!" character.
For example, query “California governor religion!”, which is our
running example throughout this paper, returns pairs of governors’
(page) names and religious affiliations. The resulting feeds can
be joined and aggregated by mashup tools like Yahoo Piped
Damiap5], or visualized by services like Swiveand Many Eye$

This paper focuses on the formalism and algorithms behind W
ANALYTICS, in particular its clustering features ahéNL. For

more details on system architecture and user interaction, please re-

fer to [5] as well as our extended versiod].[ The rest of the paper
is organized as follows. In the next section, we formalize<\W
ANALYTICS data and query model. Secti@rdescribes clustering
features while in Sectiod, we define the Universal Navigational
Lattice and give algorithms for its construction and visualization.
Experimental results are shown in Sect®nRelated work is dis-
cussed in Sectiofi and we conclude in Sectioh

2. DATA AND QUERY MODEL

We model a Wikipedia infobox as a record that comprises of a
set offields Given a record, we denote by'ld(r) its set of fields:
Fld(r) = {(f.name, f.value)|f € r}. We also denote by. N
the set of all field names of. Each record has a typetype that
identifies a set of possible field names for records of this type; i.e.,
r.type maps to a superset of N. We assume that records don'’t
have duplicate field names and that field values are strings.

We model a collection of record® as auniversaltableU. This
table contains a column for every distinct field nameRn i.e.,
the set of column names id is C'ol(U) U{r.N|Vr € R}.

In addition, we add a specialype column toU to represent the
record type information. Each recorde R corresponds to a row
in U. Therefore, a table cell;; contains the field valug,.value
for field fi under record;, such thatf;,.name = Col(U);. The
cell value is null if no suchyy, exists in record-;.

thtt p: // pi pes. yahoo. com
2http://wwv\/. swi vel . com
Shtt p: // manyeyes. al phawor ks. i bm conlf manyeyes
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Figure 2: Wikipedia Infoboxes are sparse: Distribution of fields pemier
of infobox instances in which they occur.

EXAMPLE 2.1. Afragment of the universal tabléfor Wikipedia

infoboxes is shown in Figui& The full universal table would com-

prise around18, 000 columns and approximateB00, 000 rows* .

However, only 0.08% of its cells would have non-null values¢
~18,000 distinct fields

. Fields

e R G Bl

Documents ™~
Governor  Govemorof 38" Roman

Infobox Id1

California Catholic ~0.5M
InfoboxId2  President - 40 [[President of Baptized
the United States]] [[Presbyte infoboxes

rian]]

Figure 3: Fragment of the Wikipedia infobox universal table.

We consider keyword queries where a quéry= (k1, ..., k»)
defines three category of keywords: keyword&?) that appear
in matching records, keywordd(Q) that should not appear in
matching records, and keyword¥ @) that identify the result as
columns ofU. For our running example above, we have théf)) =
{“governor”, “California” } andR(Q) = {“religion” }.

A keywordk appears in recorgd, or k € r, if k appears in either
one of its field names or valueg:f; € Fld(r)|k € fi.name V
k € fivalue} # @. We say that aecord » matches a query
Q = (ki,...,ky) if Vk; € C(Q) U R(Q) thenk; € r, and
Vk; € N(Q) thenk; ¢ r.

“The infoboxes were extracted as a subset of templates embedded
in pages of November 2009 snapshot of the Wikipedia.
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Given a data collection of record®, the candidate result set
of @ on R, denoted byQ(R), is the set of records that match
Q(R) = {r € R|r matches Q}. We denote by’ld(R) the set of
all field names in the collection across all records in the collection:
Fld(R) = {f.name|vr € R, f € Fld(r)}.

Note that such a feature s&f? might contain features with refer-
ences to records that match with one or few keywords specified in
the user query. To deliver a meaningfaf to the user, we restrict
the set of features induced lgy overR to those features that refer
to a subset of records that have a higher relevance to the query.

To derive a complete answer set that satisfies an information need DEFINITION 3.1. (Restricted universal table Let Q be a

corresponding to quer®, the user may choose to iteratively refine
the candidate result set by adding or removing groups of records.

We denote this feedback selection process over the candidate set o

records for user with o,,(Q(R)). Finally, the query result is a
tableT’, which is the result of extracting the query specified return
values after the user selection by projecting on the fields matched to
R(Q); by abuse of notation, we also refer to these fieldR&3):

T = TR(Q)Ukey(R) (0u(Q(R)))

The record keykey(R) is used only for presentation of records.
We used Wikipedia page title as a key.

3. CLUSTERING FEATURES

query andQ(R) its candidate result. The corresponding universal
iable U? restricted toQ(R) identifies only the sub-part &f that
orresponds to records @)(R): UR = {U;|Vi,; € Q(R)}. o

Finally, we revisit the definitions faF and 7 feature sets. We
restrict them to apply only on the subtat}® c U. For instance,
F9 stands for the features induced by quérpn records(R).

EXAMPLE 3.1. Figure 4 shows a subset of the restricted uni-
versal tableU® for our running example query. The columns rep-
resent some fieldg/pe, f1,..., f5 of R that contain hits with one
of the query keywords, whereas the rows represent documents in
QMR) = {1,2,3,10,20,21,22,23} that contain all the query

To help users identify the final result subset of the candidate set, ke(ywords. We have indicated with a check mark the correspond-
we cluster the records that pass the keyword search filter based onpg fie|gs where the keywords hit the documents (while omitting the
their types, as well as field names and values that contain the key-,.tyal field contents). Tableshows the matching featurg®® to-

words. Our goal is to produce clusters that the user will easily
identify as entirely relevant or entirely irrelevant to the query.

Given a candidate resu®(R) we define the following three
categories of clustering features, which will be used to summarize
and slice the result set. First, it is often important to know the type
of records inQ(R). We say thaF" : type = k is atype featureor
recordr if r.type = k.

Second, the keyword may occur in different fields belonging to
various records. In order to distinguish which is the figldhat
keywordk hits, we say thak® : k € f is acontainment featuréor
recordr if f € Fld(r) A (k € fnameV k € fvalue).

Finally, the field matching a keyword might correspond to a va-
riety of distinct textual values, which may be important in parti-
tioning the search results. Intuitively, a partition with value “Gov-
ernor of California” in the "office" field, will be relevant to our
running example query, unlike a partition with value “Governor of
Baja California” in the same field. In order to distinguish between
such partitions, we say th&f : f = s is anequality featurefor
recordr if f € Fld(r) A fvalue = s.

Each feature uniquely determines a cluster of records that have
this feature. Formally, we define faature association function
Cf . {F',F°,F*}* — R that clusters a set of record accord-
ing to features. For instanc€*(F) is a set of records that have
featureF'. For a given set of feature€” associates the set of all
records conforming with the features as follows:

C*¥(F1,...,F,) = {r € RIVi € [1,n], F; is a feature of r}

Thus,CR(F, ..., F,) =), C*(F).
We introduce next the set of all featur@® inducedby a query
QonR asFQ = {F¥|Vk € Q} , whereF* is the feature set in-

duced by an individual terrh. F* corresponds to all cells of table
U that contain a match with keywotd It consists of the following

components: the type feature SEt over U, the containment fea-
ture setF<, which identifies all fields irJ that have a match ok,
and the equality feature s&t’, which identifies what values do the
fields inU match withk. Their formal definitions are:

Fr=F UF(k)UFe(k)
F' = {F' : type = term|Vterm € Myype(U)}
F(k)={F : ke fIVj,f € Uy A(k € fnameV k € fwalue)}
Fe(k) =A{F®: f = fwalue|Vj, f € Uy j A (kE € f.name V
V k€ fualue)}

gether with their associated cluste€®(®) overUR.

Fields

Infoboxtie!
Documents—1_

1 v v

2 v v v

3 v v

10 v

20 v v v v

21 v

22 Y v

23 v

Figure 4: Universal tabldJ® for example3. 1

FeaturesFQ ClustersC?(®)
F1 = {F*: type = governor} {1,2,3}
Fy = {F°: “Governor” € f1} {1,2,10}
F3 ={F¢: fi = “Governor of California”} | {1,2,10}
Fy = {F¢: “governor” € fa} {2,3,20,21}
F5 = {F¢: “governor” € f3} {20, 22}
Fs = {F¢: fa = “religion”} {20, 22,23}
Fr = {F°: “california” € f5} {20}

Table 1: Features and Clusters for Examplé

4. UNIVERSAL NAVIGATIONAL LATTICE

Since we cannot predict which combination of features will be
important to the user, we generate all possible clusterings of records
by all sets of features. We do this compactly and efficiently, by
organizing the clusters into a lattice structure calleduhiversal
navigational lattice(UNL). The clusters inUNL are connected
with each other based on the subsumption relationship of features.

Given a set of restricted featurg=? that are relevant to query
Q, the powerset of features oF? forms a lattice(L, <) with
the following two binary operations: (1) join/j is the union of
features, and (2) meet\] is the intersection of features such that
Va,b € L wherea = {F;|F; € F} andb = {F;|F; € F?} then
aVb=JF;anda A b= () F;, respectively.

The partial order relatiorg, on the elements af is defined as
the subset relationship between feature sets. The bottom element of
L corresponds to the empty set, while the top element is the union
of all features. Moreover, the way we defined the join operation
implies that the cluster associated withv b corresponds to all



records satisfying both feature setandb, that isCQ(R)(a Vb) = that have the same cluster by merging their feature sets. Finally,

COR) (a) N COR) (b). we add the new node to the graph lattice (lines 17-19) in case the
DEFINITION 4.1. (UNL) We define the universal navigational cluster does not exist (the default rule).

lattice UNL over the meet-semilattice 0, <) (i.e., ifa, b are fea- EXAMPLE 4.2. Construction of the lattice graph starts with

ture sets with non-empty cluster of records then b is also a the generation of the following nodes, ns, no as a result of ap-

non-empty cluster feature set) with the following properties: (i) plying rule R;. This is shown in Figuréb. Each node is the re-
a feature seg(Re) UNL is the description of a non-empty cluster gyt of taking the union of the features sets of the parents and of
of recordsC™"™(a); (i) no two elements have the same cluster get intersecting the record clusters of the parents. For instance,

of records, i.e.Va,b € UNL thenC?®)(a) # C¥™)(b). In n7.F = n1.F Una.F while nz.I = ni.I N ny.I. All combina-
other words, each element WNL is a unique feature set and has  tions for which the cluster set is empty are not part of the lattice as
a unique cluster of records. ° stated by ruleR;. Next, the algorithm generates the combination

Let us note thatNL is not closed under the join operation, i.e., P&ween nodesr andn; for which rule R2 applies. Since their
if a,b are non-empty cluster feature sets it does not mean that acluster intersection coincides with the cluster for nade/, the
non-empty cluster fo \ b exists inUNL all the time. We consider ~ N€W combination is merged onto as shown in Figuréc. Simi-
that elements o/NL are organized on levels based on the number a1y this is observed for generating the combination betwegn

of features they contain. For instance, an element with four features@nd 73 Figure 5d shows the complete lattice graph where new
is considered to be on level four WNL. nodes get generated for unique feature sets and unique clusters, or

) just merged with existing nodes. o
4.1 Construction of unL

We now describe an efficient algorithm that constructs a Univer-
sal Navigational Lattice. The pseudocode of this algorithm, called
compute_unl is shown in Figure.

We capture the lattice as a direct acyclic graph (DAG) data struc- lin
ture, UNL = (N, E). Each node: € N is characterized by a set
of featuresn. F' and the corresponding cluster of records that have
all these features.] = C2™) (n.F). Alink (n1 — na) € E
connects two nodes such that.I D nq.I andn;.F C na.F.

Our algorithm constructs the lattice grapftNL bottom-up, in-
ductively, level by level such that levdl,_; generates the next
level L, and possibly some nodes on the higher levels. This strat- di
egy avoids generating all combinations of nodes. Therefore, it ben-
efits from pruning the nodes as early as possible if they do not agree
with the definition of UNL, i.e. they correspond to duplicate or
empty clusters of records.

The algorithm starts at lines 2-4 by generating the first lattice
level, and posQS|ny othe_r nodes bch(%r;sohd_atlng the set c_)f individ- are simultaneously in “indirect ancestor" relationship, and remove
ual featuresF™, and their cluster§ , which were previously them remove frong.
constructed by scanning the search engine results. The consolida-
tion of features is required BYNL property (ii), as defined above. EXAMPLE 4.3. Our sample lattice graph contains four such
Thus, functionconsolidate_features, in line 2, builds a lattice  redundant links closing generalized triangles. They are shown with
node for each distinct cluster of records, and groups all features tha dotted red lines in Figur&e. For instance, the direct links — ng
characterize that cluster onto that node. Due to space constraintsis redundant sincewy can be reached from. via n;. Intuitively,
please check oug] for the pseudocode of supporting functions.  this is translates in better user navigation and answer discovery
since the user wants to explore the collection in a gradual manner,
i.e., explore records from very generic groups to more and more
focused groups. Jumping directly from to ng omits the inter-
mediate group ofiz. Otherwise, the user may go to- instead.
Eventuallyng can be reached if the user is not satisfied with

Note thatUNL encodes all sets of features even though not every
set corresponds to a node. For examplg,, F>} is not a node but
the set corresponds ig;.I sincen;.F is their smallest superset.
In the end, the algorithm eliminates all the redundant edges in
e 20. TheUNL edges represent cluster relationship, which is
transitive. Consider an edge= (n1,n2), such that there is a path
from ny to ns that does go through. This edge does not encode
any new information, since it can be reconstructed from the path.
We remove such edges frodN\L to keep it compact and simplify
its presentation.
Functionremove_generalized_triangles computes a set of in-
rect ancestors for each node- the ancestor nodes nfexcluding
its direct parents. We do this in one pass over the lattice by em-
ploying breadth first search graph traversal starting from the roots
(nodes without parents) of the lattice graghlL, and processing
the nodes only if all their descendants have been visited previously.
In the end, we identify all links i (“parent" relationships) that

EXAMPLE 4.1. Building on our running example, the initial
feature sets are computed as in Talile After going through the
consolidation process, the lattice consists of the following nodes
n1 — ne as displayed in Figuréba. Each noden in the lattice
has associated two sets: the set of featurgs and the cluster of
recordsn.I under the context of the features. In particular, node .
na consolidates features, and Fs (i.e.,no.F = {F», F3}) as a 4.2 Presentation ofunL
result of characterizing the same cluster set/ = {1,2,10}. © UNL lends itself to many ways of presentation and user interac-

) ) S ) tion, such as faceted search or OLAP style slicing and dicing. We

The algorithm continues by considering all possible groups of chose tree-based presentation approach, similar to directory fold-
records by all sets of features. Lines 5-8 construct all subsequenters \where clusters are shown as parents of their sub-clusters. For
levels of the lattice by extending the current level with one more gach cluster we display its size and the full set of features. The user
feature as part of the previously consolidated nodes. At each step,.5, expand or collapse any tree node, as well as select or unselect
a new lattice node is created. It consists of merging the features any cluster for the final result.
sets of the underlying nodes while taking a set intersection over  \yg gptain the tree shape by a depth-first traversallE, start-
their clusters (line 9). For each such new potential node, the al- jnq from each of its root nodes. In practice, most of the lattice nodes
gorithm applies two pruning rules based on the properties of UNL 516 ell connected so there are relatively few roots. For every node,
definition. Rule {2,), in line 10, disregards the node if it stands for  jis children are ordered in the descending order of the cluster size.
an empty cluster. Ruleifz), in lines 11-15, consolidates all nodes  p sample user interface is explained in more detail$]n [
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(e) Removing redundant links frodNL.

Figure 5: Construction ofJNL Universal Navigational Lattice Graph.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate performance ofthéL construction
algorithm. We show that despite the exponential complexity of the
algorithm, judicious use of"ST-based pruning helps us achieve
on-line level performance. We have not yet performed a formal
user-interaction evaluation, but we have positive experience from
the in-house use of the tool in the context of a larger proj2@jt [

We ran the WK1 ANALYTICS system on a Centrino Duo 2.2GHz
laptop with 2GB of RAM. The tables below show how the lattice
parameters vary witli"ST for queries with different selectivities
on Wikipedia. Table2 reports results for our running example,
Q1 ="governor California religion!”. As expected, the construc-
tion time and the size dfNL increase with the decrease BST

since the number of features after consolidation increases.

To stress WKIANALYTICS, we have focused on less selective
queries. For instancé). as shown in Tabl& matches to approxi-

algorithm compute_unl(F?, C?R))
input: featuresF<, clustersC?™)
output: universal navigational lattice NL
begin

1 N={o} E={2}

2 initial_nodes = consolidate_features(F®, C?R))
3 for each noder € initial_nodes do
4 N+=n
5 for each levelevel = 2..|F9| do
6 for each noder; € N do
7 if (|n1.F| == level — 1) then
8 for each nodew, € initial_nodes do
9 constructhew N ode :
{ F = nl.FUnQ.F, I = nl.Iﬁng.I}
10 if (newNode.I == {}) then continue
11 oldNode =find oldNode € N such that
oldNode.I == newNode.l
12 if (oldN ode exists)then
13 oldNode.F'+ = newNode.F
14 E+ = (n1 — oldNode)
15 E+ = (n2 — oldNode)
16 else
17 N+ = newNode
18 E+ = (n1 — newNode)
19 E+ = (n2 — newNode)

20 remove_generalized_triangles(N, E)
22 return (N, E) asUNL

end
Figure 6: UNL construction algorithm

FST=20| FST=15| FST=10| FST=5| FST=0
#docs inUQ 82 82 82 82 82
#fields inUQ | 19 19 19 19 19
# features after 7 9 11 16 76
consolidation
|N| 19 35 53 79 151
|E| 31 66 106 163 278
# roots 1 1 1 1 1
constructUNL | 2ms 5ms 9ms 27ms 163ms

Table 2: QueryQ: = “California governor religion!"

results of a few hundred to a couple of thousand of answers at a
time, as it is hard to find larger groups of semantically similar in-
foboxes.

We present))- in Table 3 and we notice big impact of'ST
on the size and construction time of tReNL. Without use of
FST, we could not support on-line ad-hoc querying. Indeed, for
FST = 0 there are over 2,000 clusters available for browsing, and
the UNL takes almost 2 minutes to compute. BringiRgT" to 15,
we experience reasonable search parameters, i.e., construction time
of about 1 second and 465 nodes.
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the other hand, query languages such as SQL, XPath, XQuery, and
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