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Abstract— Keyword search is considered to be an effective
information discovery method for both structured and semi-
structured data. In XML keyword search, query semantics
is based on the concept of Lowest Common Ancestor (LCA).
However, naive LCA-based semantics leads to exponential com-
putation and result size. In the literature, LCA-based semantic
variants (e.g., ELCA and SLCA) were proposed, which define
a subset of all the LCAs as the results. While most existing
work focuses on algorithmic efficiency, top-K processing for XML
keyword search is an important issue that has received very
little attention. Existing algorithms focusing on efficiency are
designed to optimize the semantic pruning and are incapable of
supporting top-K processing. On the other hand, straightforward
applications of top-K techniques from other areas (e.g., relational
databases) generate LCAs that may not be the results and
unnecessarily expand efforts in the semantic pruning. In this
paper, we propose a series of join-based algorithms that combine
the semantic pruning and the top-K processing to support top-K
keyword search in XML databases. The algorithms essentially
reduce the keyword query evaluation to relational joins, and
incorporate the idea of the top-K join from relational databases.
Extensive experimental evaluations show the performance advan-
tages of our algorithms.

I. INTRODUCTION

Keyword search is considered to be an effective information
discovery method for structured and semi-structured data
[1], [2], [3], [4], [5], [6], [7]. It allows users without prior
knowledge of schema and query languages to search. In XML
keyword search, the results of a keyword query are no longer
entire XML documents, but instead are XML elements that
contain all the keywords. The intuition is that keywords may
be found over multiple elements. The LCA of these elements
contains all the keywords and thus can be a result. Consider
the keyword query {XML, data} over the XML document
of Figure 1. Nodes 1.1.2.2.1 and 1.1.2.3.2 contain the two
keywords, and node 1.1.2 is their lowest common ancestor.
So the subtree rooted at 1.1.2 contains all the keywords and
is expected to be the result.

The naive LCA-based semantics is straightforward, but
leads to exponential computation and result size. Consider
two lists of nodes Lxml = {u1, u2, . . . , um} and Ldata =
{v1, v2, . . . , vn} containing two keywords {XML} and {data}
respectively. For any pair of ui, i ∈ [1,m] and vj , j ∈ [1, n],
there exists an LCA for them in the XML tree. In other words,
for this two-keyword query, the total number of the LCAs is
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m × n. More generally, for the naive LCA-based semantics,
the result size is exponential to the query size, though many
pairs may share the same LCA.

The several LCA-based semantic variants that have been
proposed specify a subset of the m× n LCAs as the results.
The most widely followed variants are ELCA [5], [8] and
SLCA [6], [9], [10], [11], [12]. The algorithmic challenge
of the semantic variants is to achieve the pruning without
computing all the LCAs. Most existing work [5], [8], [6], [9],
[11] focuses on this topic, addressing how to answer keyword
queries efficiently. The main idea is utilizing the document
order of XML elements to pre-prune LCAs so that result
candidate space is largely reduced.

While query semantics and algorithm efficiency have been
widely discussed, top-K keyword search in XML databases is
an important issue that very little work has concentrated on. As
is typical in the keyword search systems, a ranking function
can be defined [5], [13] to assign to results ranking scores,
and ranked results are returned to users. Top-K processing
aims to compute the results with highest scores first so that
execution can terminate earlier after the top K results have
been generated.

Existing algorithms focusing on efficiency cannot provide
effective support for top-K processing. These algorithms share
some common characteristics: inverted lists are sorted by the
document order. At least one list is scanned sequentially.
This behavior determines that results are generated in the
document order, rather than the order of ranking scores. All
the results must be generated in order to return the top K
results. Essentially, these algorithms are designed to optimize
the semantic pruning, and are incapable of supporting top-K
processing.

Top-K processing is not a new problem, and has been
extensively studied in other areas, e.g., information retrieval
and relational databases. Among the proposed algorithms,
the Threshold Algorithm (TA) [14] is the most well-known
instance. Given a set of ranked inputs and an aggregation func-
tion that aggregates local scores from individual inputs, TA
matches results from individual inputs and computes a score
threshold for unseen results. Generated results whose scores
are greater than the threshold are output without blocking.

A straightforward application of TA in XML keyword
search appears in RDIL [5]. It iteratively reads new nodes from
one keyword list sorted by the ranking scores of individual
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Fig. 1. An Example XML Tree

nodes, and looks up the other inverted lists to generate
results. Twig pattern queries with full-text predicates [15] also
incorporate a similar idea to support top-K processing. How-
ever, for the ELCA/SLCA semantics, all the straightforward
applications of TA are not effective. The key problem is the
non-trivial semantic pruning which involves complex compu-
tations: SLCA prunes the LCAs that are already ancestors of
other LCAs; ELCA prunes the LCAs whose keyword occur-
rences are the descendants of other lower LCAs. In general,
XML keyword query evaluation not only computes LCAs
of individual nodes, but more importantly needs to check
correlations between several LCAs. Applying TA’s intuition
naively loses the optimization of the semantic pruning and
makes it very expensive.

In summary, existing algorithms either (1) focus on the
top-K pruning, finding the LCAs that may not be ELCAs
or SLCAs and therefore unnecessarily expanding efforts in
checking irrelevant nodes, or (2) focus on the semantic
pruning, sacrificing the top-K performance. In this paper,
we propose a series of join-based algorithms that combine
both pruning schemes to support top-K keyword search in
XML databases. Specifically, we make the following technical
contributions:

1) We propose a join-based algorithm for computing XML
keyword query results, which essentially reduces query
evaluation to relational joins. The algorithm generates
all the results from the lowest level to the highest level,
making the semantic pruning very efficient.

2) We incorporate the top-K join from relational databases,
and propose a join-based top-K algorithm to compute
top K results of XML keyword queries. The algorithm
benefits from the efficient pruning of the general join-
based algorithm, and incorporates TA’s intuition to sup-
port top-K processing.

3) We implement the proposed algorithms, perform exper-
iments, and compare with existing approaches. Exper-
imental results demonstrate that our join-based algo-
rithms deliver superior performance not only for the se-
mantic pruning efficiency but also for top-K processing.

Moreover, given the mature models and techniques in
relational databases, our algorithms are more tractable
in real systems.

The rest of the paper is structured as follows: Section II
provides preliminaries of XML keyword search, introducing
formal definition of the query semantics, ranking functions,
and existing algorithms. Section III introduces the join-based
algorithm for evaluating XML keyword queries. Section IV
introduces the join-based top-K algorithm for the top K
results. Experimental results are reported in Section V. Section
VI reviews related work, and finally Section VII concludes the
paper.

II. PRELIMINARIES

A. Query Semantics

Consider a k-keyword query {w1, . . . , wk}. Let Lwi be the
list of nodes directly containing wi, and let lca(v1, . . . , vk) be
the LCA of nodes v1, . . . , vk. The LCAs of the k keywords
are defined as LCA(w1, . . . , wk) = LCA(Lw1 , . . . , Lwk

) =
{lca(v1, . . . , vk)|v1 ∈ Lw1 , . . . , vk ∈ Lwk

}.
The above definition enumerates all the combinations of

nodes in Lw1 through Lwk
, making the result size exponential

to the query size (though many combinations have the same
LCA). In the literature, LCA-based variants were proposed,
specifying a subset of LCA(Lw1 , . . . , Lwk

) as the result set.
ELCA semantics defines the result as a set of nodes that
contain at least one occurrence of all of the query keywords
either in their labels or in the labels of their descendant
nodes, after excluding the occurrences of the keywords in the
subtrees that already contain at least one occurrence of all
the query keywords. For example, in Figure 1, node 1.1.2
is an answer to the query {XML, data}. However, node 1.1
is not an answer, because its descendant 1.1.2 is already an
ELCA, and after excluding the keyword occurrences of 1.1.2,
the descendants of 1.1 only contain {data}. SLCA defines a
subset of LCA(L1, . . . , Lk) such that no LCA in the subset
is the ancestor of another LCA. In Figure 1, though 1.1 is the
LCA for 1.1.1.1 and 1.1.2.3.2, it is not an SLCA because its
descendant 1.1.2 is already an LCA for the two keywords.



The pruning schemes of ELCA and SLCA are non-trivial
and algorithmically complex. Given one combination of nodes
v1 ∈ L1, . . . , vk ∈ Lk and their LCA u = lca(v1, . . . , vk),
whether u is the result or not may be determined by another
combination v

′
1 ∈ L1, . . . , v

′
k ∈ Lk: if u is the ancestor of

lca(v
′
1, . . . , v

′
k), then u is not the SLCA; if u is the ancestor

of lca(v
′
1, . . . , v

′
k) and ∃i such that vi = v

′
i, then u is not

the ELCA. Efficient algorithms must optimize the semantic
pruning to avoid not only enumerating all the combinations
but also checking the correlations of all the LCAs in the
LCA(L1, . . . , Lk) space.

B. Ranking Function

XML contains abundant textual contents and structure in-
formation. How to rank XML keyword queries incorporating
both of them is an interesting problem that has been studied
in the literature, e.g. [5], [13], [16], [17]. Since this paper only
focuses on the algorithmic perspective, in this subsection, we
only introduce one ranking function that is widely adopted in
the XML keyword search scenario. Notice that the algorithms
we propose in this paper are not restricted to this function.

The basic idea of ranking keyword query results is that
individual nodes directly containing the keywords can be
viewed as “documents”. Local ranking scores are given based
on the “documents”, and are propagated to their ELCA or
SLCA. An aggregation function aggregates them into a global
score which is the final ranking score of the result subtree.

Given a node v and a keyword w, g(v, w) is a function that
assigns to v a local ranking score. The function g can take
multiple factors into account (e.g., IR score that evaluates the
content relevance and link-based score that evaluates the global
importance of the node), and combine them in an arbitrary
way.

Consider the k-keyword query {w1, . . . , wk}. Let vi, i =
1, . . . , k, be an occurrence of wi at depth li, and let node u at
depth l̃ be the ELCA/SLCA of vi’s. Let F (·) be the function
that combines g(vi, wi), i = 1, . . . , k, with damping factors
into a score of u:

score(u) = F (I1, . . . , Ik),

where Ii = g(vi, wi) × d(li − l̃), i = 1, . . . , k, and d(·) is a
decreasing function.

The combining function F (·) is expected to satisfy the
following property:

Monotonicity Let u and u
′

be two ELCAs/SLCAs for the
k-keyword query. If ∀i ∈ [1, k], Ii ≤ I

′
i , then score(u) ≤

score(u
′
).

Monotonicity is the assumption on which most top-K
processing algorithms are based. It is also true for most
existing ranking functions of XML keyword search. For ease
of exposition, we simply assume that F (·) is the sum function,
i.e., score(u) =

∑k
i=1 g(vi, wi)× d(li − l̃).

The function d(·) decreases the score of the keyword occur-
rence as its vertical distance to the ELCA/SLCA increases. It
reflects the intuition that compact subtrees are more important
because of the tighter relationship between keywords. Similar

intuition is also reflected in information retrieval [18]: for
the documents that contain all the keywords, if the keyword
occurrences in a document are within a short distance, that
document’s score tends to be higher than the documents whose
keyword occurrences are far away.

If the ELCA/SLCA contains more than one occurrences of
wj , i.e., vj

1, . . . , v
j
m, F (·) only takes the maximum score (after

applying the damping factor) of the occurrences as the input,
i.e., max{g(vj

1, wj)× d(lj1 − l̃), . . . , g(vj
m, wj)× d(ljm − l̃)}.

C. Existing Algorithms

Many algorithms were proposed to address how to evaluate
XML keyword queries efficiently. The basic idea is utilizing
the document order of the nodes in the inverted lists to
optimize the semantic pruning. Specifically, nodes in the XML
tree are identified by Dewey id’s. All the Dewey id’s are
shown within the parentheses in Figure 1. Then computing the
LCA of two nodes reduces to computing the longest common
prefix of their Dewey id’s. The inverted lists L1, . . . , Lk are
essentially joined to compute the prefixes of the Dewey id’s
that contain all the keywords.

Two types of algorithms were developed in the literature:
stack-based algorithms [5], [10], [6] and index-based algo-
rithms [6], [8], [11]. The stack-based algorithms follow the
idea of the merge join in relational databases, and scan the
Dewey id’s from the smallest to the largest. They use a stack to
online merge all the Dewey id’s and simultaneously compute
the longest prefixes that contain all the keywords. The index-
based algorithms, on the other hand, follow the idea of the
index join. Given a node v containing one keyword, let u
be the LCA for v and its closest nodes containing the other
keywords. The main observation is that any ELCA/SLCA
containing v cannot be lower than u. Thus, the algorithms look
up the inverted lists to locate v’s closest nodes containing the
other keywords, and further compute the ELCA/SLCA.

RDIL in [5] were proposed to support top-K keyword search
in XML. It iteratively retrieves new nodes from one inverted
list sorted by the local score, and looks up indices of the
other inverted lists to generate results. Essentially, it is very
similar to the index-based algorithms. However, RDIL has two
major problems. First, scanning nodes out of the document
order loses the semantic pruning optimization, and has to
check many irrelevant LCAs and their correlations. Second,
retrieving nodes by the order of the local score may not lead
to the results with high overall scores. Given a node containing
one keyword, even if its local score is very high, if the prefix
of its Dewey id containing the other keywords is very short,
the global ranking score will be penalized a lot by the damping
factor.

III. JOIN-BASED ALGORITHM

The goal of the join-based algorithms is to incorporate both
the semantic pruning and the top-K processing. We concentrate
on the efficient semantic pruning in this section. We will
further incorporate top-K ideas from relational databases in
the next section.



Ancestor-descendant relationships between LCAs are the
key for the semantic pruning of the ELCA/SLCA semantics:
any LCA must check its descendant LCAs (if there are
any). Existing algorithms utilize the order of the Dewey id
to efficiently capture ancestor-descendant relationships, and
consequently force the processing order to be the document
order. However, according to the query semantics, if LCAs
at low levels are generated first, LCAs at high levels can
be pruned directly based on previously generated LCAs. No
document order needs to be enforced. In the following, we
will show how to get rid of the document order, meanwhile
achieving the efficient semantic pruning.

A. Node Encoding

We first define a new encoding of nodes in the XML tree.
Each node in the tree is assigned a number, called JDewey
number, such that

1) the number is a unique identifier among all the nodes in
the same tree depth. In Figure 1, the JDewey numbers
are underlined under the nodes’ tags.

2) for two nodes v1, v2 in the same level, if v1’s JDewey
number is greater than v2, all the JDewey numbers of
the children of v1 are greater than the children of v2. For
example, consider two nodes v1(1.3.4) and v2(1.1.2) in
Figure 1. Nodes v1 and v2 are in the same level and v1’s
JDewey number (i.e., 4) is greater than v2 (i.e., 2). So
all the JDewey numbers of v1’s children (i.e., 4 and 5)
are greater than v2’s children (i.e., 2 and 3).

Given the JDewey numbers of the nodes in the XML tree,
the JDewey sequence of node v is a vector of JDewey numbers
on the path from the root to v. In Figure 1, the JDewey
sequences are shown under the tags.

At first glance, the JDewey encoding is very similar to the
Dewey id. Their common feature is that ancestor-descendant
relationships are implicitly captured in the encoding. The
major difference is how they uniquely identify a node in the
tree. Let S denote a JDewey sequence and S(i) denote the
ith JDewey number in S. Two parameters, i and S(i), can
uniquely identify the node, whereas the Dewey id requires the
whole vector.

The representation difference may result in different stor-
ages of the inverted lists. Figure 2 shows the inverted list
of {XML} in both encodings. Since individual numbers in a
Dewey id cannot identify nodes, in the inverted list, the whole
Dewey id must be encoded into a sequence of bytes and stored
integrally. In contrast, JDewey sequences can be broken into
individual numbers and the inverted list is stored by column,
as shown in Figure 2(a). Here a column corresponds to a level
in the XML tree, and numbers in that column identify nodes
at that level. In the next subsection, we will see how this
column-oriented storage facilitates query evaluation.

With the JDewey sequences, the lca(·) operator no longer
needs to match the longest common prefix. Given two nodes
v1, v2 and their corresponding JDewey sequences S1, S2, if i
is the largest number such that S1(i) = S2(i) = N , then node
N at level i is the LCA of v1 and v2.
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Fig. 2. Inverted lists in two encodings

An important feature of the JDewey encoding is that num-
bers in every column of an inverted list are sorted, if the
inverted list is ordered by the JDewey sequence, as shown in
Figure 2(a). More formally, the order of JDewey sequences is
defined as follows: S1 < S2 iff either (1) ∃j, S1(j) < S2(j),
or (2) S1 is the prefix of S2.

Property 3.1: Given two JDewey sequences S1 and S2, if
S1 < S2, then ∀i ≤ min{|S1|, |S2|}, S1(i) ≤ S2(i).

Proof: By the definition of the JDewey order, either (1)
S1 is the prefix of S2, or (2) ∃j, S1(j) < S2(j). For the
first case, the above property is obviously true. For the second
case S1(j) < S2(j), since S1(j) is the parent of S1(j+1) and
S2(j) is the parent of S2(j + 1), by the second requirement
of the JDewey number, S1(j + 1) < S2(j + 1). Similarly,
since S1(j) is the child of S1(j− 1) and S2(j) is the child of
S2(j − 1), S1(j − 1) ≤ S2(j − 1) (otherwise, S1(j) > S2(j)
which contradicts with the condition). By induction, ∀j ≤
min{|S1|, |S2|}, S1(j) ≤ S2(j).

Now we briefly discuss how to maintain the JDewey en-
coding. When nodes are removed from the XML tree, their
JDewey numbers and the corresponding JDewey sequences
are deleted. It is tricky when nodes are inserted into the
tree, as the second requirement of the JDewey number must
be satisfied. Consider inserting node v as a child of u. The
JDewey number assigned to v must be less than the nodes
at the same level whose parents’ JDewey numbers are greater
than u. Also it must be greater than the nodes at the same level
whose parents’ JDewey numbers are less than u. To address
this problem, extra spaces of the JDewey numbers are reserved
for u’s children. For example, in Figure 1, node 1.1.2 has two
children. With 2 extra numbers reserved for 1.1.2, the JDewey
number of the children of 1.3.4 is 6, instead of 4. Notice that
when all the reserved spaces of u are used, only a partial XML
tree needs to be re-encoded. In the example, if node 1.1.2
runs out of space when new nodes are added as its children,
only the subtree rooted at 1.1 needs to be re-encoded: update
1.1’s JDewey number to be the largest number in the second
level, and then corresponding numbers can be chosen for its
descendants.

Another concern of this new encoding is that it normally
takes more bytes to represent a JDewey sequence than a
Dewey id, because the JDewey number requires uniqueness
among all the nodes at the same level whereas the Dewey
id’s number only requires uniqueness among its siblings. In
the experimental section, we will show that with storage
optimization, the inverted index using the JDewey encoding



is around the same size as existing systems using Dewey id’s.

B. Pseudo Algorithm

Now we introduce a join-based algorithm, which reduces
keyword query evaluation to relational joins. For simplicity,
we focus on the ELCA semantics in the following. We will
briefly mention how to evaluate the SLCA semantics later.

Consider two lists of nodes Lxml = {S1
1 , S1

2 , . . . , S1
m}

and Ldata = {S2
1 , S2

2 , . . . , S2
n} containing {XML} and

{data} respectively. Let l1m = max{|S1
1 |, . . . , |S1

m|}, l2m =
max{|S2

1 |, . . . , |S2
n|}, and lm = min{l1m, l2m}. For two lists

of JDewey numbers, Lxml(lm) = {S1
1(lm), . . . , S1

m(lm)} and
Ldata(lm) = {S2

1(lm), . . . , S2
n(lm)}, if a JDewey number N

appears in both lists, then node N at level lm contains all
the keywords and is an LCA. In other words, Lxml(lm) on
Ldata(lm) computes the LCAs at level lm. In general, ∀l ≤ lm,
Lxml(l) on Ldata(l) computes the LCAs at level l. Notice that
for a pair S1

i ∈ Lxml, S
2
j ∈ Ldata, if S1

i (lm) = S2
j (lm), then

∀l < lm, S1
i (l) = S2

j (l). Thus, if S1
i and S2

j are joined once,
they should not be matched at higher levels.

According to the ELCA semantics, an ELCA should contain
at least one occurrence of all the keywords after excluding
the keyword occurrences of its descendant ELCAs. The LCAs
generated by Lxml(lm) on Ldata(lm) are also ELCAs, because
there cannot be any other LCAs lower than lm. For the
matched pair S1

i (lm) = S2
j (lm), since they are already the

occurrences of the generated ELCA and should not be the
occurrences of other higher ELCAs, S1

i and S2
j should be

excluded from Lxml and Ldata in the following processing.
Similarly, ∀l < lm, if some JDewey numbers are matched
through Lxml(l) on Ldata(l), their corresponding JDewey
sequences should be excluded. Then, the LCAs generated by
each join are also ELCAs.

Input : Lxml = {S1
1 , . . . , S2

m}, Ldata = {S2
1 , . . . , S2

n}
Output: Rmin{l1m,l2m}, . . . , R1, where Rl is a list of

ELCAs at level l

H1 ← ∅, the set of JDewey sequences that have been
erased from Lxml;
H2 ← ∅, the set of JDewey sequences that have been
erased from Ldata;
for l ← min{l1m, l2m} to 1 do

compute relational join Lxml(l) on Ldata(l) ;
foreach pair S1

i (l) = S2
j (l) do

if i /∈ H1 and j /∈ H2 then
Rl ← Rl ∪ {S1

i (l)} ;
H1 ← H1 ∪ {i} ;
H2 ← H2 ∪ {j} ;

end
end

end
Return Rl, l = min{l1m, l2m}, . . . , 1 if Rl is not empty ;

Algorithm 1: Join-based algorithm for computing ELCAs

Algorithm 1 shows the pseudo code for computing ELCAs.

In each iteration, the algorithm scans the two lists of JDewey
numbers and performs the join. The semantic pruning is done
by excluding matched JDewey sequences from the following
joins. Since the processing is bottom up, the correctness of
the semantics is guaranteed. In Section III-A, we mentioned
that the inverted lists are stored vertically. Thus, Algorithm 1
is I/O optimized. Moreover, the algorithm does not read the
whole JDewey sequences from the disk at once. Note that the
scan starts from l0 = min{l1m, l2m} (since it is obvious that
there is no ELCA lower than l0). This would save disk I/O
when the XML tree is deep and some keywords only appear
at high levels.

Example 3.1: Consider the two-keyword query {XML,
data}. The inverted lists are shown in Figure 3(a). Since
l1m = 6, l2m = 5, the join starts from the 5th column, i.e.,
{2, 3} on {1}. Since no matched number is found, there is no
ELCA at this level. Then move to the next column, as shown
in Figure 3(b), and join the next two lists of JDewey numbers,
i.e., {3, 5, 6} on {1, 2, 4}. Again no ELCA is generated.
In Figure 3(c), the join between {2, 3, 4, 5} and {1, 2, 4}
finds matched numbers {2, 4}. So the nodes numbered 2
and 4 at level 3 are the lowest ELCAs. Their corresponding
JDewey sequences should also be erased from the following
processing, as shown in Figure 3(d) and Figure 3(e). This
process repeats until it reaches the root level, and eventually
identifies the root as the last ELCA.

It must be explained that in the above example, number 1
appears twice in Lxml(1), as shown in Figure 3(e). Two pairs
would be matched if we follow the relational join semantics.
The two numbers in Lxml(1) correspond to the two nodes
(1.2.3 and 1.3.5.6) that are both occurrences of {XML}, and
the two matched pairs correspond to the same ELCA, i.e., the
root. Only one of them needs to be output. In other words, the
joins in our scenario follow the set semantics, instead of the
bag.

For the queries with k > 2 keywords, the algorithm
is the same, except that the initial value of l becomes
min{l1m, . . . , lkm} and at each level one join becomes k − 1
joins.

C. Join Optimization

In this subsection, we discuss join optimizations in three
aspects: join algorithms, join ordering, and dynamic optimiza-
tion.

Join algorithms. By Property 3.1, ∀l ∈ [1, min{l1m, l2m}],
Lxml(l) and Ldata(l) are sorted. Both the merge join and the
index join are available for the join plan. For the index join,
since each column is sorted, conceptually no additional indices
are required, though in practice sparse indices can be built over
columns to improve efficiency.

Having the two join algorithms, the main-memory complex-
ity of Algorithm 1 is given as follows. At each level, k − 1
joins are performed, where k is the number of the keywords.
For the merge join, the complexity is O(

∑k
j=1 |Lj |); for the

index join, the complexity is O(k|L1| log |L|) where |L1| is
the size of the shortest list and |L| is the size of the longest
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Fig. 3. An execution example of the join-based algorithm for ELCA

list. There are altogether min{l1m, . . . , lkm} columns. In the
worst case, all the keywords appear in the lowest level. Then
min{l1m, . . . , lkm} = d where d is the depth of the XML tree. If
all the joins use the merge join, the overall complexity would
be O(d·∑k

j=1 |Lj |); if all the joins use the index join, the over-
all complexity would be O(d · k|L1| log |L|). For comparison,
the complexities for the stack-based algorithms and the index-
based algorithms are O(d

∑k
i=1 |Li|) and O(dk|L1| log |L|).

The join-based algorithm can leverage existing techniques
from relational databases to choose the right join algorithm
for queries with various frequencies.

Join ordering. The join order has an important impact
on the join performance. A lot of efforts have been made
in relational databases. In XML keyword search, the cost
model for the join is greatly simplified. First, since all the
columns in the inverted lists are already sorted, the sort order
of intermediate results is also retained. Second, the join in
our scenario follows the set semantics. In general, |Lxml(l) on
Ldata(l)| ≤ min{|Lxml(l)|, |Ldata(l)|}, whereas in RDBMS,
in the worse case, result space can be the Cartesian product
of the input relations.

The simplification of the cost model implies a simple yet
effective join ordering scheme for XML keyword search. In
our system, the join order is always the left-deep join, from
the shortest inverted list to the longest inverted list.

Dynamic optimization. Besides query optimization at com-
pile time, the query plan can also be optimized dynami-
cally with accurate knowledge of run-time parameters. In
particular, we focus on choosing join algorithms dynamically.
Consider a three-keyword query {w1, w2, w3} and the join
order (Lw1(l) on Lw2(l)) on Lw3(l). If the intermediate result
size of the first join is orders of magnitude smaller than Lw3(l),
the second join would choose the index join; otherwise, the
second join would choose the merge join.

More importantly, the join-based algorithm provides an op-
portunity to choose join algorithms in different contexts. Algo-
rithm 1 processes nodes bottom up, and joins are performed for
each column. In the XML tree, different levels may correspond
to different contexts and thus have different join selectivities.
Consider the DBLP database where papers are organized by
conferences. Paper elements contain information about title,
authors, etc. Let w1={topk}, w2={rewriting} and w3={XML},
and assume |Lw1 | < |Lw2 | < |Lw3 |. In intuition, keyword co-
occurrences of {topk} and {rewriting} are few at paper level
because very few papers discuss these two topics at the same
time. However, at the conference level, their co-occurrences

become many because nearly all the database conferences
cover these two topics. In general, keyword correlation is a
concept bound to specific contexts. The selection of the join
algorithms should be context-aware. While it is hard to predict
keyword correlations in different contexts at compile time,
with dynamic optimization, join algorithms can be chosen on
the fly. In this example, at the paper level, the second join
will normally choose the index join because the result size
of the first join is very small. Then at the conference level,
it is likely that the second join will switch to the merge join
because the result size of the first join may be comparable to
|Lw3 |.

For comparison, the best effort the existing systems can
make is choosing the stack-based or the index-based algo-
rithms for individual keywords. Processing the entire Dewey
id integrally loses the fine granularity to identify different con-
texts, and therefore cannot achieve optimality in the execution.

D. Compression

Compression in relational databases improves the perfor-
mance significantly. Most recently, [19], [20] revisit this topic
in the context of column-oriented databases. In XML keyword
search, since the inverted lists are stored vertically and all the
columns are sorted, the same JDewey numbers are grouped
together and stored consecutively, as demonstrated in Figure
3(a). Two compression schemes in [19] are used in our system
to improve the performance. For the columns that contain a
large number of distinct values, e.g., Lxml(3) in Figure 3(a),
the first entry of each disk block is the original JDewey number
and every subsequent value is the delta from the first JDewey
number. For the columns that contain few distinct values,
e.g., Lxml(1) in Figure 3(a), duplicate JDewey numbers are
represented by triples (v, r, c) such that v is a JDewey number,
r is the row number where v first appears, and c is the number
of times v repeats.

The two compression schemes are very effective in saving
storage for the column-oriented inverted lists. The reason
the JDewey encoding requires more bytes than the Dewey
encoding is the uniqueness requirement of the JDewey number.
However, the first scheme only stores delta values within one
disk block, achieving a similar effect of the numbering scheme
of the Dewey encoding (i.e., relative position among siblings).
Furthermore, the second scheme compresses duplicate JDewey
numbers into one entry, leveraging the fact that word distribu-
tion is usually biased in different contexts. Consider the above
DBLP example. While {rewriting} rarely appears in network



conferences, it is a frequent term in database community.
Therefore, in the inverted list of {rewriting}, for the column
that corresponds to the conference level, the distribution of
the JDewey numbers mainly concentrates on a few distinct
values each of which corresponds to a database conference.
After the compression, same conferences only appear once
and the number of triples stored is relatively small. In the
traditional Dewey id, although the number assigned to a node v
requires less bits for representation, this number has to appear
in all the Dewey id’s of the descendants of v.

Column-oriented compression also improves the query eval-
uation efficiency. Recall that duplicate numbers in a column
only generate at most one result, as demonstrated in Figure
3(e). The second compression scheme groups the same value
in indexing time and saves the online computation.

E. Range Checking

In Algorithm 1, the semantic pruning is done by erasing
matched JDewey sequences from the inverted lists. In the
compressed columns, a triple corresponds a range that the
JDewey number spans. Thus, the semantic pruning can be
based on ranges rather than individual rows.
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Fig. 4. A snapshot of range checking

Consider a snapshot shown in Figure 4(a), where Bj , j =
1, . . . , 4 are four ranges of the JDewey sequences in Lxml(l)
that have been matched. Ak is the range of a JDewey number
N in column l − 1 that can join with some number(s) in the
other list Ldata(l − 1). According to the semantic pruning,
since the JDewey sequences within B2 and B3 are the keyword
occurrences of other lower ELCAs, they should be excluded
from Ak. In other words, if |Ak| > |B2|+|B3|, N is the ELCA
that contains the occurrence(s) of {XML} after the exclusion;
otherwise, N is not the ELCA.

Given a range Ak in column l− 1, we only need to search
the ranges within Ak in column l, and check their sizes. Notice
that the relationship between the ranges in column l and Ak is
either contained or disjoint. Cases in Figure 4(b) would never
happen. This is because the JDewey numbers in Bi or Bj

have the same value and thus have the same parent. Ak either
contains all of Bi and Bj or neither of them. Having this
property, the range checking is simply a binary search process
(searching the ranges within Ak). When the join of column
l− 1 finishes, all the sequences within Ak are excluded from
Lxml.

F. SLCA Evaluation

The SLCA semantics can also be evaluated through Algo-
rithm 1. The only difference is that for two matched JDewey
sequences S1

i (l) = S2
j (l), the SLCA pruning erases not only

S1
i from Lxml, but also S1

k such that ∃l0 < l, S1
k(l0) = S1

i (l0),
since S1

k(l0) corresponds to the nodes that are ancestors of
S1

i (l). With regard to the ranking checking, in Figure 4(a), all
the numbers within Ak are not SLCAs, regardless of whether
|Ak| > |B2|+ |B3|.

IV. JOIN-BASED TOP-K ALGORITHM

The efficient semantic pruning proposed in the previous
section is the base for top-K keyword search. Without the
document order enforcement, it is possible to apply the top-K
pruning to find top ranked results first. The join-based algo-
rithm processes nodes bottom up, and individual scores can
be updated when propagated upwards. In such a progressive
way, the top-K pruning is able to dynamically choose the most
promising nodes at each level, which makes the top-K pruning
more effective.

The join-based algorithm reduces XML keyword search
to relational joins. Intuitively, top-K keyword queries can be
evaluated through top-K joins. In this section, we first review
the top-K join problem from relational databases, and then
propose a join-based top-K algorithm to return the top K
results.

A. Review of Top-K Join in RDBMS

The top-K join problem in relational databases has been
addressed by [21], [22]. The basic idea of the algorithm is
as follows: scan each relation by the descending order of its
tuples’ ranking scores. Each time a new tuple is retrieved, join
this tuple with all the tuples seen from other relations. At any
time, a threshold for all the unseen results can be computed.
Generated results whose scores are greater than the threshold
are output without blocking.

Consider the following SQL query where the three relations
are already sorted by the scores, as shown in Figure 5.

SELECT R1.id
FROM R1, R2, R3

WHERE R1.id = R2.id AND R2.id = R3.id
ORDER BY R1.score + R2.score + R3.score
LIMIT K

The algorithm maintains a cursor for each relation, and scans
the relation by the order of the score. Figure 5 shows a
snapshot of the execution. Solid pointers denote cursors’
current positions. Three tuples from each relation have been
seen so far, and two results are generated. Next time when
tuple (4, 0.5) from R1 is retrieved, the join between (4, 0.5)
and the tuples seen from R2 and R3 is performed. Newly
generated results are put into the result set.

Let si denote the score of the next tuple to be retrieved
from Ri, and si

m denote the maximum score from Ri (in other
words, the score of the first tuple of Ri). Then the scores of all
the unseen results are bound by max{(s1 + s2

m + s3
m), (s1

m +
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s2 + s3
m), (s1

m + s2
m + s3)} = max{2.5, 2.4, 2.4} = 2.5. The

score of the result tuple (2, 2.5) is no less than the threshold,
and thus can be output, whereas (1, 2.2) is still blocked.

B. Top-K Star Join Algorithm

The top-K join algorithm in the literature is designed for
general join patterns. In XML keyword search, the join pattern
is only the star join, i.e., R1.a = R2.b = R3.c, instead of
the sequence join, i.e., R1.a = R2.b1 AND R2.b2 = R3.c.
Given the property of the star join, there is an opportunity
for further improvement. In the following, we propose a new
top-K algorithm which computes a tighter upper bound of the
unseen results for the star join.

Consider a k-relation star join R1.id = R2.id = . . . =
Rk.id. The algorithm works as follows: (1) maintain a cursor
for each relation, and let si be the score of the tuple right
after the cursor in Ri. Each time retrieve one tuple ti from
Ri. Ri is chosen in a round-robin way until the result size
reaches K. After that, Ri whose si is maximum is chosen. (2)
Put ti into the hash bucket. If there is a matched tuple t0 in
the bucket, increment t0’s score by ti’s score. If t0 has been
matched k−1 times (there is no match when it is put into the
bucket first time), move it from the bucket to the result set.

The threshold of the unseen results for the star join is
computed under two cases: (1) results whose id’s have not
been seen in any relation; (2) results whose id’s have been
seen in some relation(s), but not all. In other words, their id’s
reside in the bucket.
• For case 1, their threshold is

∑k
i=1 si.

• For case 2, the tuples in the bucket are grouped into
groups GP , P ⊂ {1, . . . , k}. All the tuples in GP have
been seen in Rj , j ∈ P . Let ms(GP ) denote the maxi-
mum score of the tuples in GP . Then the threshold of the
tuples in GP is ms(GP ) +

∑
j /∈P sj . The threshold of

all the tuples in the bucket is: maxP⊂{1,...,k}(ms(GP )+∑
j /∈P sj).

Since ms(GP )+
∑

j /∈P sj ≥ ∑
i∈P si+

∑
j /∈P sj =

∑m
i si,

we only need to consider the threshold of case 2. Therefore,
the threshold of all the unseen results is: maxP (ms(GP ) +∑

j /∈P sj), P ⊂ {1, . . . , k}.
For comparison, the threshold of the unseen results for

the traditional top-K join algorithm is: maxi(si +
∑

j 6=i sj
m)

where i = 1, . . . , k. For any i ∈ [1, k], let P be the subset
of {1, . . . , k} such that i /∈ P , then ms(GP ) +

∑
j /∈P sj

≤ ∑
j∈P sj

m +
∑

j /∈P sj ≤ si +
∑

j 6=i sj
m. Therefore, our

algorithm provides a tighter upper bound of the unseen results
for the star join. In Figure 5, if we use the new algorithm, two
tuples are currently in the bucket, i.e., tuple 3 has been seen
in R1 and R3, tuple 4 has been seen in R2, G{1,3} = (3, 1.0+
0.6) = (3, 1.6) and G{2} = (4, 0.8), as shown in Figure 5. If
they can be results in the future, their scores would be bound
by max{1.6+s2, 0.8+s1+s3} = max{2.0, 1.7} = 2.0. Thus,
the second result (1, 2.2) can also be output without blocking.
The tighter upper bound is attributed to the fact that the new
algorithm maintains the status of the partial results, i.e., the
tuples that are partially joined within a subset of the relations.
To compute the threshold of the partial results, only the scores
from the unjoined relations are estimated.

In the algorithm, the number of the groups in the bucket is
2k−2 in the worst case, which seems exponential to the query
size (number of relations). However, notice that the number
of tuples maintained in the bucket is bound by the number
of tuples seen so far. Recall that each time a new tuple is
retrieved, both the old and the new algorithms need to generate
all the valid join combinations with the tuples seen from
other relations. Maintaining the pool of all the tuples already
retrieved is the requirement for both algorithms. Grouping
within the bucket doesn’t increase the algorithm complexity.

C. Join-based Top-K Keyword Search

The idea of the join-based top-K algorithm for keyword
search is sorting the inverted lists by the ranking score and
using the top-K star join algorithm as the join plan. The joins
are performed bottom up and the semantic pruning is achieved
by the range checking. However, there exists a problem for
such schemes. Consider two nodes v1, v2 that directly contain
the keyword w. If v1 is at the level l1, v2 is at the level
l2 and l1 > l2, given the fact that g(v1, w) > g(v2, w),
the relationship between g(v1, w) × d(l1 − l2) and g(v2, w)
is unknown before the computation and the comparison. In
Figure 6, although the original score of the first JDewey
sequence is greater than the second, in the 4th column, the
relationship between 0.5×d(3) and 0.44 may be greater than,
equal to, or less than, depending on how fast the original
score decreases. This fact means that for Lxml, Lxml(l1) and
Lxml(l2) may have different orders of JDewey sequences with
respect to their ranking scores.

6531 0.44

1135431 0.5

Fig. 6. Two JDewey Sequences with ranking scores

To overcome this problem, JDewey sequences in Lxml are
grouped by their lengths, as shown in Figure 7. Within one
group, ∀S1, S2, if score(S1(l)) > score(S2(l)), score(S1(l−
l0)) > score(S2(l − l0)). In other words, there is an unique



order for JDewey sequences in one group. The number of
the groups is at most the height of the XML tree. This
scheme breaks Lxml into segments each of which is ordered
by the local ranking scores. The complete order of a column
can be reconstructed by merging segments online. In the
implementation, the algorithm maintains a cursor for each
segment. Recall that the top-K join algorithm only retrieves
one JDewey number from the column at one time. So the
algorithm picks one JDewey number with the highest score
from all the cursors at each iteration.
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Fig. 7. JDewey sequences grouped by their lengths

Similar to the general join-based algorithm, the join-based
top-K algorithm joins JDewey numbers by column. The only
difference is that the top-K star join algorithm is used as
the join plan. The generated results whose ranking scores are
greater than the threshold of the unseen results are output with-
out blocking. However, notice that the algorithm in Section IV-
B is for one join and only computes the upper bound of the
unseen results within the current column. Since ELCAs may
be generated by all the columns, we also need to compute
the threshold of the unseen results in other columns. More
precisely, if we are currently performing the join of column l0,
∀l < l0, we also need to compute the upper bound of ELCAs
at level l. The upper bound of the ELCAs at level l can be
computed as

∑k
i=1 si

m(l) where si
m(l) is the maximum score

in Li(l) and k is the number of keywords. In practice, we do
not need to compute all the columns. Instead, if (1) l < l0−1
and (2) ∀i ∈ [1, k], @S ∈ Li such that |S| = l, then we can
skip column l. This is because: if the above two conditions are
both true, ∀i ∈ [1, k], si

m(l) = si
m(l + 1)× d(·) < si

m(l + 1).
Therefore, the threshold of the unseen results in column l is
always less than the unseen results in column l + 1. On the
other hand, if ∃S ∈ Li such that |S| = l, there may be no
damping factor for si

m(l) and thus the upper bound of this
column must be computed.

Example 4.1: Consider again the query {XML, data}. Fig-
ure 7 shows the two inverted lists and the original ranking
scores of JDewey sequences. Assume the damping function
is d(∆l) = 0.9∆l. The joins for column 5 and 4 are first
performed, and no result is generated. Figure 8(a) shows the
status of the join for column 3. In the figure, two numbers
from Lxml(3) (i.e., 2, 3) and Ldata(3) (i.e., 2, 4) have been
retrieved and put into the hash bucket. Number 2 is matched
and further moved into the result set. Its score is 0.73+0.41 =
1.14. The threshold of the unseen results in column 3 is:
max{ms(G{1}) + s2(3), ms(G{2}) + s1(3)} = max{0.7 +

0.3, 0.5+0.4} = 1. We also need to consider the unseen results
in other columns, i.e., column 1 and column 2. Since both
Lxml(1) and Ldata(1) do not contain sequence S such that
|S| = 1, we only need to consider column 2. The maximum
scores from Lxml(2) and Ldata(2) are 0.7 ∗ 0.9 = 0.63 and
0.5 ∗ 0.9 = 0.45. So the threshold of the unseen results in
column 2 is 0.63 + 0.45 = 1.08, which is also less than the
node 2’s score. Therefore, node 2 at level 3 can be output.
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Fig. 8. A snapshot of the join-based top-K algorithm

When all the numbers in Lxml(3) and Ldata(3) are re-
trieved, number 4 in column 3 is also matched and its score is
0.33 + 0.5 = 0.88. However, it cannot be output at this point.
As shown in Figure 8(b), the upper bound of the unseen results
in column 2 is 0.63 + 0.27 = 0.9, which is greater than the
node 4’s score.

V. EXPERIMENTS

In this section, we experimentally evaluate the join-based
algorithms on DBLP and XMark data sets, and compare them
with the stack-based [5] and the index-based [8] systems. The
size of the DBLP document is 496MB. XMark is generated
with factor 1.0 and the size of the document is 113MB.
Considering the original DBLP XML tree is very shallow, we
group the papers firstly by conference/journal names, and then
by years. Xcerse and Lucene are used to parse the XML tree
and the textual contents. All the algorithms are implemented
using Java under JDK 5. Instead of using column-oriented
databases, we store the inverted lists directly on the disk. The
main reason is that the number of the keywords is very large
(more than 300,000 in DBLP) and most inverted lists are
very short. We also build sparse indices on the columns to
improve the efficiency of the index join. All the experiments
are performed on a Debian 2.40GHz PC with 1G memory.
Similar to the previous technical discussion, we only focus on
the ELCA semantics in the following. Query execution time
for the SLCA semantics is around the same as the ELCA
semantics for any algorithm.

A. Index Size

Table I shows the index sizes of different algorithms, where
IL denotes the inverted lists and sparse denotes the sparse
indices. As we can see, the JDewey encoding on which the
join-based algorithms rely does not introduce much space
overhead (and even saves spaces for the DBLP data set).
This is mainly due to the effectiveness of the compression,



TABLE I
INDEX SIZES OF DIFFERENT ALGORITHMS

DBLP XMark

Join-based IL sparse IL sparse
327MB 14MB 302MB 4MB

stack-based 392MB 267MB
index-based 2.1G 1.3G

Top-K Join IL sparse IL sparse
394MB 14MB 351MB 4MB

RDIL IL B+-tree IL B+-tree
392MB 446MB 267MB 252MB

as discussed in Section III-D. In the experiment, Dewey id’s
are also compressed by the coding scheme proposed in [6].

The index size of the index-based algorithm is extremely
large. This is because the implementation in [6], [8] uses a
single B-tree in BerkeleyDB. Each key entry in the B-tree is a
pair of a keyword and a Dewey Id. If the length of the inverted
list for a keyword is n, then this keyword occurs n times in
the B-tree, which costs a lot of space.

The lower half of Table I shows the index sizes of the two
top-K algorithms. In the top-K scenario, our algorithm has a
great advantage in terms of the index size. RDIL, as mentioned
in Section II-C, builds additional B-trees on top of the inverted
lists, which inevitably introduces much space overhead. On
the other hand, the core operation of the join-based top-K
algorithm is the hash join, and thus requires no additional
index.

B. Query Performance for the Complete Result Set

We compare the query performance of the three algorithms
for the ELCA semantics, varying both keyword frequencies
and the number of keywords. For each experiment, forty
queries within each frequency range are randomly selected.
The execution time in the figures is the average of the forty
queries executed 5 times. Furthermore, all the experiments
are on hot cache. For the index-based algorithm in [8],
BerkeleyDB provides an application-level cache mechanism.
The stack-based and the join-based algorithm use the cache
provided by the file system. Note that the sparse indices are
fairly small, as shown in Table I, and are always cached in
main memory.

Experimental results are shown in Figures 9(a) – 9(d). Due
to the space limit, only results from DBLP are listed. Results
from XMark are similar. In fact, query execution time mainly
depends on two factors: keyword frequencies and keyword
correlations. We vary the number of keywords from 2 to 5.
In all queries, the high frequency is fixed, i.e., 100k. The
low frequency varies from 10 to 10k. As we can see from
the figure, when the low frequency is extremely small (10 or
100), the execution time of our algorithm and the index-based
algorithm is in the same order of magnitude. However, when
the low frequency goes beyond 1000, the difference is obvious,
especially in Figure 9(d). For the queries in that range, our

algorithm already switches to the merge join. In fact, if we
force the query plan to use the index join, the performance
can be as bad as the index-based algorithm. The execution
time of the stack-based algorithm is always in the same order
of magnitude, regardless of the low frequency. This is because
the stack-based algorithms need to scan all the input lists. In
consequence, its execution time is bound by the keyword with
the highest frequency, which is fixed in the experiment.

We also evaluate the algorithms on keywords with the
same frequency, as shown in Figures 9(e) – 9(f). The stack-
based algorithm then performs slightly better than the index-
based algorithm, which can also be seen from their theoretical
complexities. In these experiments, the join-based algorithm
performs much better than the stack-based algorithm. This is
attributed to several reasons: first, the dynamic optimization
chooses the join algorithms based on the size of intermediate
results and may not stick to the merge join, though the input
inverted lists are around the same size. Since the correlations
between randomly selected keywords are normally low, only
the first join at each level chooses the merge join. Second, the
stack-based algorithms push Dewey id’s from all the inverted
lists into one stack. When pushing the Dewey id’s from
the same inverted list into the stack, the algorithm matches
their common prefixes and groups them online. For the join-
based algorithm, this process is actually done by the second
compression scheme in the indexing time which saves the
online computation.

C. Query Performance for the Top K Results

Now we evaluate the performance for the top K results
and compare three algorithms: the join-based top-K algorithm,
the general join-based algorithm that generates the complete
result set and RDIL. We first run the algorithms on queries
randomly selected in the previous experiments. The result
is shown in Figure 10(a). Overall, the performance of the
join-based top-K algorithm is worse than the general join-
based algorithm. When the low frequency is very small (10 or
100), it is even worse than RDIL. Interestingly, the execution
time of the join-based top-K algorithm decreases as the low
frequency increases. All these observations are attributed to
the keyword correlations. Conceptually, the join-based top-K
algorithm only performs well when the number of results is
fairly large. For the keywords with low correlations, the total
number of results is very small, and the algorithm ends up
with scanning all the input lists. Since the high frequency is
fixed in the experiment, the execution time is very large. On
the other hand, RDIL is similar to the index-based algorithms
and can terminate when the shortest list is completely scanned.
When the low frequency increases, the number of results also
increases. Therefore, it takes less time for the join-based top-K
algorithm to find the top 10 results.

While randomly selected queries have low correlations, we
manually pick a set of queries such as {sensor, network} and
{XML, keyword, search}, and run the three algorithms again.
The results are reported in Figures 10(b) and 10(c). Overall,
the join-based top-K algorithm is efficient. For most queries,
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Fig. 9. Query performance for the complete result set

the algorithm terminates much earlier than the general join-
based algorithm. This is very important in practice, because
the keywords input by users normally have medium or high
correlations. RDIL, on the other hand, is much less effective
in terms of top-K processing. The reasons were analyzed in
Section II-C.

The results in Figure 10 imply that the join-based top-K
algorithm and the join-based algorithm for complete results
are complementary to each other. The factor that determines
their relative performance is the keyword correlation, which is
also know as join cardinality in the relational join scenario.

D. Discussion on Hybrid Index

Since the algorithms for complete results and the top K re-
sults have strengths in different directions, it is straightforward
to design a hybrid index where score indices are built on top
of the inverted lists that are sorted by the JDewey sequence.
While this approach increases the index size, it makes the
three join plans (the merge join, the index join, the top-K
join) all available. Whether to choose the top-K join or not
will be mainly based on join cardinality estimation: the top-
K algorithm should only be used at the current level when
the result size is estimated to be large. Moreover, the join
algorithms are chosen based on columns and join cardinality
is re-estimated for different contexts.

Note that join cardinality estimation is a well-defined prob-
lem that has been widely studied in the context of relational
databases. A hybrid algorithm is also proposed in [5], com-
bining the stacked-based algorithm with RDIL. However, its
cost model is unclear, which greatly limits its practical usage.

VI. RELATED WORK

Extensive work has been done in LCA-based XML keyword
search [5], [6], [8], [10], [11], [9]. Most recently, much work

has been done in new problems in this area. For example,
[23] studies query evaluation over virtual views of XML.
The major difference with the LCA-based keyword search
is that given the view definition, the returned elements are
fixed, whereas the returned results of the LCA-based semantics
can be arbitrary elements in XML tree. [10], [12] study
the problem of how to return results with more semantics.
They firstly compute SLCAs using the index-based algorithm,
and then further infer relevant results by analyzing matched
patterns and XML structures.

Another set of work, e.g. [16], [17], [15], [9], [13], tries to
extend XQuery with the full-text predicates, combining both
the IR ranking mechanism and the XML tree structure to im-
prove search effectiveness. Keyword proximity search in XML
[7], [24] shares many similarities with LCA-based keyword
search. However, the semantic pruning is not considered in
their scenarios.

In addition to semi-structured data, there is also much
work on keyword search over structured data. DISCOVER
[3], DBXplorer [1] and BANKS [2] are the first three systems
presented to support keyword search in relational databases.
Their query semantics is that results of keyword queries
are sets of tuples that contain all the keywords and can be
connected through primary keys and foreign keys. Later work
follows this semantics and further focuses on two aspects:
efficiency [3] and effectiveness [4], [25]. The top-K processing
issue is also studied [22], [25].

Top-K queries in relational databases have been studied
for a couple of years. Existing work attacks the problem
from different dimensions: monotonic ranking functions [14],
[26], [27], [28], non-monotonic ranking functions [29], [25],
existence of materialized views [30], [31], [32]. More related
work to our scenario is the top-K join problem [21], [22],
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Fig. 10. Query performance for top 10 results

which considers the traditional SQL join semantics. In this
paper, we convert keyword search into relational joins. There
exists a good possibility to exploit more top-K processing
techniques from relational databases and apply them in XML
keyword search.

VII. CONCLUSION

Top-K keyword search in XML is an important issue that
has yet received very little attention. Existing algorithms either
focus on efficiency, generating results in the document order
rather than the ranking order, or simply apply the top-K
intuition from other areas, making the query evaluation very
expensive. In this paper, we proposed a series of algorithms
that incorporate both the efficient semantic pruning and the
top-K processing to support top-K keyword search. We pre-
sented a join-based algorithm that processes nodes bottom up
and reduces keyword query evaluation into relational joins.
Several optimizations were proposed to further improve its
efficiency. Then we incorporated the idea of the top-K join
from relational databases and proposed a join-based top-K
algorithm to compute top K results. Extensive experimental
results confirmed the advantages of our algorithms over pre-
vious algorithms in both efficiency and top-K processing.
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