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ABSTRACT
We consider the problem of keyword search in XML databases
under the excluding lowest common ancestor (ELCA) se-
mantics. Our analysis shows that ELCA semantics may
lead to conflict with keyword proximity concept, and under
such semantics, lower ELCAs are preferable because lower
elements tend to be more specific. However, existing algo-
rithms (stack-based and index-based) do not provide effi-
cient support either for this the lower the better intuition
or for general ranking functions, which is mainly due to the
fact that generated results follow the document order. In
this paper, we propose a join-based algorithm to compute
complete ELCAs, which achieves complexity optimality for
queries with various frequencies, as well as guarantees that
lowest ELCAs are generated first. More importantly, we
shed the new light on the connection between relational join
and XML keyword search. Basically, many mature tech-
niques in relational databases can be leveraged in this sce-
nario to optimize query plan and improve execution effi-
ciency. We further adopt the idea from top-K join in re-
lational databases and propose a top-K algorithm for one
type of ranking functions. Extensive experimental results
demonstrate that the proposed algorithms outperform ex-
isting systems.

1. INTRODUCTION
Keyword search has been proven an effective informa-

tion discovery method for unstructured data (e.g. textual
documents), semi-structured data (e.g. XML databases),
and structured data (e.g. relational databases). For semi-
structured and structured data, keyword search allows users
without prior knowledge of schema and query languages
(e.g. SQL for relational databases and XQuery for XML
databases) to exploit the data. The high level intuition of
query semantics of keyword search in semi-structured and
structured data is that keywords can spread over multiple
elements or tuples in the databases. A result of the query is
a set of elements or tuples that contain all the keywords and

“connect” with each other in some way. In XML databases,
because of the hierarchical structure of XML tree, the con-
nection is captured by the common ancestor of elements.
Figure 1 shows a fragment of a XML tree. For the query
{XML, data}, node 1.1.2.2.1 and node 1.1.2.3.2 contain the
two keywords separately, and node 1.1.2 is the ancestor con-
necting them. So node 1.1.2 is expected to be the result.

LCA semantics has become prevalent in XML keyword
search scenario. Serval previous work has proposed different
semantic variances, e.g. SLCA, ELCA, MLCA, VLCA, and
efficient algorithms to compute results [11, 28, 29, 25, 18].
In this paper, we focus on the ELCA semantics. We analyze
the semantics and existing algorithms, showing that ELCA
semantics may lead to conflict with keyword proximity con-
cept, and all existing algorithms do not provide efficient top
K support for general ranking purposes.

1.1 Semantics Analysis
According to the ELCA semantics originally proposed in

[11], the result of keyword query is a set of nodes that contain
at least one occurrence of all of the query keywords either in
their labels or in the labels of their descendant nodes, after
excluding the occurrences of the keywords in the subtrees
that already contain at least one occurrence of all the query
keywords. For example, in Figure 1, node 1.1.2 is an answer
to query {XML, data}. However, node 1.1 is not the answer,
because its descendant 1.1.2 is already an ELCA. After ex-
cluding the subtree rooted at 1.1.2, node 1.1’s descendants
only contain keyword {data}.

Generally, common ancestors reflect how close keywords
are connected in the XML tree. However, the ELCA seman-
tics may lead to conflict with proximity concept. Consider
three nodes in Figure 1, v1(1.3.4.4), v2(1.3.4.5.3.1.1) and
v3(1.3.5.6). By intuition, v1 and v3 is closer than v1 and v2,
because v2 needs to trace more steps upward to meet with
v1. This statement is also true for existing proximity mea-
sures, e.g. number of edges in the subtree that connects all
the keywords. However, if we follow the ELCA semantics,
1.3 is no longer the result, because its descendant 1.3.4 is
already an ELCA.

The above example reveals that ELCA semantics has some
inherent differences with proximity concept, which can lead
to different results. The intuition behind the ELCA seman-
tics implies the the lower the better rule: in the hierarchical
tree structure, people tend to believe that lower elements
contain more specific information, and thus are more im-
portant than higher elements. In the above example, v1 and
v2 are in one section which is more specific than chapter.
On the other hand, proximity is another measure reflecting
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Figure 1: Example XML Tree

different intuition. Since v1 and v2 are two sections under
one chapter that directly contain the keywords, people may
think they are a good summarization of this chapter and
thus the whole chapter should be returned. In contrast, v3

is only a footnote and may have nothing to do with the
content of this section.

Therefore, we argue that the lower the better rule and
proximity rule reflect different ranking purposes in XML
databases. Under the ELCA semantics, people tend to pre-
fer results at lower level. In the next subsection, we analyze
existing algorithms for ELCAs, showing that none of them
provide efficient support to return top results, either for the
lower the better rule or for general ranking functions.

1.2 Algorithms Analysis
Many algorithms have been proposed to efficiently com-

pute ELCAs and its variances. Most of them reply on the
following two ideas:

1. Nodes in the XML tree can be represented by Dewey
Id, e.g. 1.1.1 of Title node under chapter 1.1 in Fig-
ure 1. Then computing LCA of two nodes becomes
computing the longest common prefix of two Dewey
Ids. Specifically, stack is used to process all the nodes
in the document order. Nodes are pushed into the
stack one by one. When some node v is to be pushed,
all the nodes in the stack that are not ancestors of
v are popped out. Popped nodes containing all the
keywords are identified as ELCAs. In Figure 1, when
node 1.2.3 is to be pushed into the stack, all the nodes
under chapter 1.1 are popped out. And node 1.1.2 is
outputted as a result.

2. The second idea notices the fact that given a node v
containing one keyword, it is very likely that the com-
mon ancestor for v and its closest nodes (in document
order) containing other keywords is also an ELCA.
In Figure 1, node 1.1.2.2.1 contains {data}, and node
1.1.2.3.2 is its closest node containing {XML}. Their
common ancestor is also an ELCA for the query. Fol-
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Figure 2: Processing Order of Existing Algorithms
for ELCA

lowing this direction, for nodes containing one key-
word, index lookup (binary search) is used to locate
their closest nodes containing other keywords, and fur-
ther computes ELCAs. Since binary search is fast and
does not need to scan all the nodes containing other
words, this type of algorithms can be very efficient if
some keyword’s frequency is much lower than others.

In implementation, these two ideas share some common
characteristics: nodes for each keyword are sorted by their
encodings, and at least one list are scanned sequentially.
This behavior determines that ELCAs are generated in the
document order, rather than the ranking order. In Figure 2,
ELCA n1 in subtree 1 is generated first, and then n2 in
subtree 2, and so on. This fact means that all the exist-
ing algorithms replying on these ideas cannot provide an
efficient support for top-K processing, no matter what the
actual ranking function is. In Figure 2, n2 is expected to
be better than n1, either for the lower the better rule or the
proximity rule. However, there is no way to generate n2

first. Generally, we have to wait until all the ELCAs are
generated in order to return top K results.

RDIL in [11] is the first algorithm proposed to return
the top K results according to its ranking function. Each
time it reads a new node from one list sorted by the ranking
score, and looks up indices of other lists to generate ELCAs.
Essentially, it is very similar to index-based algorithm. The
major problem is that individual nodes with higher ranking



scores may not lead to results with higher overall ranking
scores.

It also must be explained that although our analysis fo-
cuses on the ELCA, it is also applied to work for other se-
mantics, e.g. SLCA: the order of generated results in those
systems also follows the document order.

1.3 Contribution
In this paper, we propose a series of join-based algorithms

to return ELCAs, either following the lower the better rule
(generating lowest ELCAs firstly) or according to one type
of ranking functions. More importantly, we shed light on
the connection between XML keyword search and relational
join. Many mature techniques in the relational area, e.g.
join ordering, join cardinality estimation, can be leveraged
in this scenario. Specifically, we make the following technical
contributions:

1. We analyze the semantic conflict between ELCA and
keyword proximity, and identify the lower the better
rule and proximity rule for different ranking purposes
in XML keyword search.

2. We propose a join-based algorithm to compute com-
plete ELCAs. Similar to relational join, join-based al-
gorithm dynamically choose join plan and thus can
achieve performance optimality for various queries. Mean-
while, the algorithm guarantees that lowest ELCAs are
generated first. We also propose several optimizations
to further improve the efficiency.

3. We adopt ideas from top-K join in relational databases,
and propose a new join-based algorithm to compute
top-K ELCAs according to one type of ranking func-
tions. The algorithm scans all the lists by the descend-
ing order of their ranking scores, and incrementally
generates ELCAs. At any time, upper bound of un-
seen results can be estimated, and those results greater
than the bound can be outputted without blocking.

4. We implement proposed algorithms and perform ex-
tensive experiment. Comparisons with other approaches
validate our superiority. Moreover, given the mature
models and techniques in relational join literature, our
algorithms are more tractable in real systems.

The following of the paper is organized as follows: Sec-
tion 2 defines a new encoding of nodes in XML tree which
join-based algorithms reply on. Section 3 introduces the
algorithm for computing complete ELCAs and its imple-
mentation details for the performance purpose. Section 4
discusses the details of the top-K algorithm for one type of
ranking functions. Experimental results are reported in Sec-
tion 5. Section 6 reviews related work. Section 7 concludes
the paper with high level comparison and summary.

2. NODE ENCODING
In this section, we define a new encoding for nodes in

XML tree. Each node in the tree is assigned a number,
called JDewey Number, such that

1. the number is an unique identifier among all the nodes
in the same level. In Figure 1, JDewey Numbers are
underlined numbers under node’s tag.

2. for two nodes v1, v2 in the same level, if v1’s JDewey
Number is greater than v2, all the JDewey Numbers
of the children of v1 are greater than the children of
v2. Consider two nodes v1(1.3.4) and v2(1.1.2) in Fig-
ure 1. v1 and v2 are in the same level and v1’s JDewey
Number (4) is greater than v2 (2). So all the JDewey
Numbers of v1’s children (i.e. 4 and 5) are greater than
v2’s children (i.e. 2 and 3).

Given JDewey Numbers of all the nodes in XML tree,
a JDewey Sequence of node v is a path vector of JDewsey
Numbers from the root to v. In Figure 1, all the JDewey
Sequences are shown under node tags.

Although JDewey Sequence is very similar to Dewey Id,
there is an important difference between them with respect
to computing common ancestors. Let S denote a JDewey Se-
quence, S(i) denote the ith JDewey Number in S. Given two
nodes v1, v2 and their JDewey Sequences S1, S2, if S1(i) =
S2(i) = N , node N at the ith level is the common ances-
tor of v1 and v2. Here, we only need to compare the ith
JDewey Numbers in S1 and S2 to identify the ancestor,
without considering the prefix of the first i − 1 numbers.
This is because only two parameters, JDewey Number and
depth, are needed to identify a unique node in the tree.

The order of two JDewey Sequences is defined as below:

1. S1 = S2 iff |S1| = |S2| and ∀i ≤ |S1|, S1(i) = S2(i),
where |S| denotes the length of S.

2. S1 < S2 iff either (1) ∃j, S1(j) < S2(j), and ∀i < j,
S1(i) = S2(i), or (2) S1 is the prefix of S2.

For example, for two JDewey Sequences S1 = 1.2.3 and
S2 = 1.3.5.6 in Figure 1, S1(2) = 2 < S2(2) = 3 and ∀i < 2
(i.e. i = 1), S1(i) = S2(i) = 1. So the order of the two
JDewey Sequences is: S1 < S2.

Property 2.1. Given two JDewey Sequences S1 and S2,
if S1 < S2, then ∀i ≤ min{|S1|, |S2|}, S1(i) ≤ S2(i).

Proof. By the definition of order, S1 is either the prefix
of S2, or ∃j, S1(j) < S2(j) and ∀i < j, S1(i) = S2(i). For the
first case, the above property is obvious true. For the second
case S1(j) < S2(j), since S1(j) is the parent of S1(j + 1),
S2(j) is the parent of S2(j + 1), by the second requirement
of JDewey Number, S1(j + 1) < S2(j + 1). By induction,
∀(j +k) ≤ min{|S1|, |S2|}, S1(j +k) < S2(j +k). Therefore,
∀i < min{|S1|, |S2|}, S1(i) ≤ S2(i).

For multiple XML documents, document id is attached to
the head of JDewey Sequences, and uniqueness of JDewey
Number at one level is only required within each document.
For JDewey Sequences from different documents, the above
property does not hold. However, it has no influence on the
keyword search, because we do not need to consider ELCAs
across documents and algorithm is only applied on JDewey
Sequences within individual documents.

One concern of this encoding is that it normally takes
more bytes to represent a JDewey Sequence than tradi-
tional Dewey Id, because JDewey Number requires unique-
ness among all the nodes at the same level whereas in Dewey
Id number assigned to a node only requires uniqueness among
its siblings. However, in the experiment part, we will show
that index based on JDewey Sequence is around the same
size as existing systems.



3. JOIN-BASED ALGORITHM FOR COM-
PLETE ELCAS

As mentioned in introduction, ELCA semantics implies
the lower the better rule. Our goal is to generate lowest
ELCAs first. The key to this problem is the processing order
of input nodes: if input nodes are sorted and processed in
the document order, it is no doubt that generated ELCAs
also follow the document order. Instead, we need to process
nodes vertically, from lowest level to top level.

The basic idea of Join-based algorithm is as follows. Given
nodes v1, v2 whose JDewey Sequences are S1 and S2 respec-
tively, let l be the maximum number such that S1(l) =
S2(l) = N , then node N at level l is the lowest common
ancestor of v1 and v2. Consider two nodes S1 = 1.1.2.2.1
and S2 = 1.1.2.3.2 in Figure 1. Since S1(3) = S2(3) = 2
and S1(4) 6= S2(4), node 2 at 3rd level is the LCA for S1

and S2. Starting from tails of S1 and S2, we scan JDewey
Numbers from right to left. At some point, if two JDewey
Numbers from two JDewey Sequences are the same, this
number corresponds to the LCA for the two nodes.

3.1 “Pseudo” Algorithm
Consider two lists of nodes L1 = {S1

1 , S1
2 , . . . , S1

m}, L2 =
{S2

1 , S2
2 , . . . , S2

n} containing two keywords respectively. Let
l1m = max{|S1

1 |, . . . , |S1
m|} and l2m = max{|S2

1 |, . . . , |S2
n|}.

Starting from l = min{l1m, l2m}, we retrieve all the JDewey
Numbers at level l from two lists, i.e. L1(l) = {S1

1(l), . . . , S1
m(l)}

and L2(l) = {S2
1(l), . . . , S2

n(l)}. Then L1(l) 1 L2(l) com-
putes the ELCAs at level l. Recall that by property 2.1,
∀l ∈ [1, min{l1m, l2m}], L1(l) and L2(l) are already sorted.
Therefore, both merge join and index join are available for
the join plan.

Algorithm 1 shows the pseudo code of the algorithm. The
algorithm iteratively scans JDewey Numbers from two lists
at each level and computes the common numbers. Those
common JDewey Numbers correspond to the ELCAs at that
level. Since the scan is bottom up, lowest ELCAs are gener-
ated first. Notice that those JDewey Sequences that are al-
ready descendants of generated ELCAs should be excluded
from following processing (line 6,10,25 and 30) because of
the ELCA semantics.

Example 3.1. Consider two-keyword query {XML, data}.
Initial inverted lists are shown in Figure 3(a). Since l1m =
7, l2m = 5, join starts from the 5th column, i.e. {2, 3} 1 {1}.
Since no matched number is found, there is no ELCA at
this level. Then we move the next column, as shown in
Figure 3(b), and join two lists of JDewey Numbers, i.e.
{3, 5, 6} 1 {1, 2, 4}. Again no ELCA is generated. In Fig-
ure 3(c), join between {2, 3, 4, 5} and {1, 2, 4} finds matched
numbers {2, 4}. So nodes numbered 2 and 4 at level 3 are
the lowest ELCAs. Their corresponding JDewey Sequences
should also be “erased” from the following processing, as
shown in Figure 3(d) and Figure 3(e). This process repeats
until reaches the root level, and finally identifies root as the
last ELCA.

Astute readers may already notice that in the above ex-
ample, at root level, two results would be generated, if we
follow the join semantics in the relational databases. This is
because two nodes (1.2.3 and 1.3.5.6) can be the occurrences
of the keyword {XML} for the root. Therefore, join seman-
tics needs to be modified in our scenario. More formally,

in the join L1(l) 1 L2(l), if there is a matched number N
appearing C1 times in L1(l) and C2 times in L2(l), then
only one result (node N at level l) is outputted and all the
corresponding JDewey Sequences are removed from L1 and
L2.

Algorithm 1: Join-based algorithm to compute ELCA

Input : L1 = {S1
1 , . . . , S2

m}, L2 = {S2
1 , . . . , S2

n}
Output: Rl, l = min{l1m, l2m}, . . . , 1, where Rl is a list

of ELCAs at level l

H1 ← ∅, H2 ← ∅;1

for l ← min{l1m, l2m} to 1 do2

if |L1(l)| ≈ |L2(l)| then /* merge join */3

j1 ← 1, j2 ← 1;4

while j1 ≤ |L1(l)| && j2 ≤ |L2(l)| do5

if j1 ∈ H1 then6

j1 ← j1 + 1;7

continue;8

end9

if j2 ∈ H2 then10

j2 ← j2 + 1;11

continue;12

end13

if S1
j1(l) < S2

j2(l) then j1 ← j1 + 1;14

else if S1
j1(l) > S2

j2(l) then j2 ← j2 + 1;15

else16

H1 ← H1 ∪ {j1}, H2 ← H2 ∪ {j2};17

Rl ← Rl ∪ {Sj1(i)};18

end19

end20

end21

else if |L1(l)| << |L2(l)| then /* index join */22

j1 ← 1;23

while j1 ≤ |L1(l)| do24

if j1 ∈ H1 then25

j1 ← j1 + 1;26

continue;27

end28

binary search S1
j1(l) in L2(l);29

if ∃j2, S2
j2(l) = S1

j1(l) && j2 /∈ H2 then30

H1 ← H1 ∪ {j1}, H2 ← H2 ∪ {j2};31

Rl ← Rl ∪ {Sj1(i)};32

end33

j1 ← j1 + 1;34

end35

end36

end37

For the query with k(k > 2) keywords, the algorithm is the
same, except that the initial value of l becomes min{l1m, . . . , lkm}
and at each level one join becomes k − 1 joins. In this pa-
per, join ordering is only determined by the sizes of input
lists, from the shortest to the longest, though more advanced
techniques from relational databases can be applied.

Two highlights of the algorithm are worth to be men-
tioned. Firstly, the algorithm does not read the whole JDewey
Sequences from the disk at once. Instead, it reads JDewey
Numbers “column by column”. Notice that scan starts from
l0 = min{l1m, l2m}, because it is obvious that there is no
ELCA at the levels lower than l0. This would save disk
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Figure 3: Execution example of top-K algorithm

I/O when the XML tree is deep and some keywords only
appear at higher level. Secondly, unlike stack-based and
index-based algorithms whose computation operations (and
thus the complexity) are fixed regardless of keywords’ fre-
quencies, join-based algorithm chooses join plan dynami-
cally (line 3 and 22) according to the relative sizes of lists.
For example, after the first join, depending on the size of in-
termediate results, following joins may choose plan different
from the first join. Moreover, the join plan is chosen based
on column level, rather than the query level: join plan of
next column may be totally different from current column.

Below we give the main-memory complexity of the algo-
rithm. At each level, k − 1 joins are performed, where k is
the number of the keywords in the query. For the merge
join, the complexity is O(

Pk
j=1 |L

j |); for the index join, the

complexity is O(k|L1| log |L|) where |L1| is the size of the
shortest list and |L| is the size of the longest list. There are
altogether min{l1m, . . . , lkm} columns. For the worst case,
all the keywords appear in the nodes at the lowest level.
Then min{l1m, . . . , lkm} = d where d is the depth of the XML
tree. Therefore, the whole complexity of the algorithm is:
O(d · min{

Pk
j=1 |L

j |, k|L1| log |L|}). For comparison, the
complexity for stack-based algorithm and index-based al-
gorithm are O(d

Pk
i=1 |L

i|) and O(dk|L1| log |L|). A major
advantage of index-based algorithm is that when the fre-
quency of one keyword is orders of magnitude lower than
others, index-based algorithm is normally much faster than
the stack-based algorithm because it avoids full scan of all
input lists. However, for the case where all the keywords’
frequencies are around the same, one scan of all the lists may
be better. Our algorithm decides the join plan one the fly,
and thus can achieve the optimality for queries with various
frequencies.

The correctness of the join-based algorithm can be easily
verified. Since the algorithm scans JDewey Numbers bottom
up, ELCAs at lower level will be generated first. Also, since
the algorithm filters out those sequences that are already de-
scendants of generated ELCAs, ELCAs generated later will
only take nodes as occurrences exclusively to themselves.

3.2 Index and Implementation
In the above subsection, we discuss a general join-based

algorithm to compute ELCAs. However, implementation di-
rectly based on pseudo code in Algorithm 1 faces two chal-
lenges:

1. Same numbers may repeat many times in one column,
especially at higher level, e.g. 3 and 1 repeats twice
in L1(2) and L2(2). It not only increases the index
size, but more importantly reduces the join efficiency,
as in join operation scanning repeated numbers only
generates at most one ELCA.

2. Since join are performed column by column, within
each list, JDewey Sequences are expected to be stored
by column as well. However, lengths of columns are
variable because of variable lengths of JDewey Sequences.
As in Figure 3(a), L1(7) contains only 1 number, whereas
L1(1) contains 4 numbers. Variable-length columns
make us lose row number information (a.k.a variable
j1, j2 in Algorithm 1) which is used for filtering in the
algorithm (line 6,10,25 and 30).

In this subsection, we discuss the implementation details
and how to address these two problems efficiently.

3.2.1 Inferring Row Numbers
A naive solution to the above problems is: (1) fill all the

empty positions in JDewey Sequences with padding values,
which makes all the JDewey Sequences having the same
length. (2) For repeated numbers (including both JDewey
Numbers and padding values), it is straightforward to com-
press them using two variables Ni and Ci, where Ni is the
value of the number and Ci is the count. So [1, 1, 1, 1] in a
column is stored as [1(4)].

In the join-based algorithm, we need the row information
to filter out those JDewey Sequences that are already de-
scendants of generated ELCAs. Therefore, given a specific
JDewey Number in a compressed column, row numbers must
be inferrable. The above solution works well for the merge
join, because it scans all the columns from the head to the
tail. Given the row number of the head, all the following row
numbers can be easily inferred. However, it doesn’t work for
the index join. Index join locate the matched value by bi-
nary lookup. Without context information, row numbers
cannot be inferred directly.

To overcome this problem, we replace the count Ci with
row number of the next unique JDewey Number Ni+1 in
the column, and record the row number of the first JDewey
Number in each disk block. When a JDewey Number is
matched by binary lookup in a block, and we move t steps
backward to see row number r, then the row number of the
matched JDewey Number is r + t − 1. For the worst case,
we only need to scan the whole block.

Example 3.2. Assume the original column of JDewey Num-
bers is V = [0, 0, 0, 5, 5, 5, 6, 6, 0, 7, 7, 8, 8, 8]. It is compressed
as Vc = [5,−7, 6,−9, 0, 7,−12, 8,−15] where negative num-
bers represent the row number. The row number of the head
is r0 = 4 because the first JDewey Number is in the 4th row.
Assume matched value is 7. The nearest row number to its
left is −9 which is t = 2 steps backward. So the row number
of 7 in original column is 9+2−1 = 10. Furthermore, since
the value following 7 is another row number, 7 also repeats
in the original column. Recall that this value points to the
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row of the JDewey Number following 7 (i.e. JDewey Num-
ber 8). So the largest row number of 7 is 12 − 1 = 11. In
other words, the range of JDewey Number 7 in this column
is between row 10 and row 11.

3.2.2 Range Checking
For the join of each column, Algorithm 1 (line 5,9,24 and

30) checks each row and filters out those JDewey Sequences
that are descendants of existing ELCAs. In practice, since
our column is compressed and same JDewey Numbers are
grouped together, checking and filtering can be based on
range rather than individual rows. Moreover, in implemen-
tation, checking is only performed when some JDewey Num-
ber is matched. The reason is that number of matched
JDewey Numbers is normally much smaller than the input
size. For performance purpose, this operation can be de-
ferred until necessary.

Consider a snapshot shown in Figure 4(a). Bj , j = 1, . . . , 4
are four ranges of JDewey Sequences in L1 that are already
occurrences of {XML} under generated ELCAs. Ak is the
range of a JDewey Number N in column l − 1 that can join
with a value in the other list L2(l−1). By the ELCA seman-
tics, range Ak should exclude all the occurrences of {XML}
under existing ELCAs. Thus, those ranges within Ak in col-
umn l (i.e. B2, B3) should be excluded from Ak. In other
words, if |Ak| > |B2|+ |B3|, N is an ELCA that contains the
occurrence(s) of {XML} after excluding occurrences under
other ELCAs; otherwise, N is not an ELCA because it con-
tains no occurrences of {XML} for itself, but only for other
existing ELCAs.

Given a range Ak in column l− 1, we only need to search
those ranges within Ak in column l, and check the size of
the ranges. Notice that the relationship between ranges in
column l and Ak can only be either contained or disjoint.
Cases in Figure 4(b) can never happen. This is simply be-
cause JDewey Numbers in Bi or Bj have the same parent.
Ak either contain all of Bi and Bj or none of them. Having
this property, range checking is only a binary search process
(searching the ranges within Ak). When the join of column
l− 1 finishes, ranges within Ak (i.e. B2, B3) are replaced by
Ak.

3.2.3 Index Structure
We design a two-level index structure: master index (MI)

and sequential index (SI). SI is purely a sequence of JDewey
Numbers in compressed form, and MI is the index of SI. Fig-
ure 5 shows a fragment of the index structure, corresponding
to L1 in Figure 3(a).

… [1]…[3,0,5,6][2,3 4,5]…[1,-5]…

block i block i+1

token: XML

lev7 [1]: (3, f)

…...

lev4 [4]: (1,f)

lev3 [4]: (1,f,2) (3,f,4)

…...

lev1 [2]: (1,t)

Figure 5: A fragment of two-level index

Each entry in MI corresponds a keyword/totken and con-
tains metadata of each column. Each column in the entry
points to the disk position where that column starts. Num-
ber within the square bracket is the number of values of
a column after compression. Round brackets contain the
metadata of the blocks the column spans. The first num-
ber in the round bracket is row number r0 of the head of
the column segment in this block. The second number is
a boolean variable purely for the performance purpose: if
the column segment in this block is uncompressed, and the
matched value is at the position of p, then the row number
of the value can be given directly by r0 +p without scanning
backward. The third number is the first JDewey Number of
the column segment in this block. (If the column spans only
one column, then the third number is omitted.) For the in-
dex join, block heads are first looked up to locate the block
where the value might be in. The located block is then read
from disk for further binary search. If MI is cached in main
memory, the I/O complexity of a single index join is O(1)
(if that disk block is not cached).

Example 3.3. In Figure 3(a), L1(3) = {2, 3, 4, 5} and
spans two disk blocks as shown in Figure 5. Two heads of
the two column segments are 2 and 4, and their row num-
bers are 1 and 3. Also, this column is not compressed. So
the metadata for the blocks are (1, f, 2) and (3, f, 4). If the
searching value is 5, two block heads {2, 4} are first looked
up, and second block is located. Then binary search within
this block matches 5 at the position 2. Since column in this
block is not compressed, its row number is given directly by
3 + 2 − 1 = 4 without backward scanning.

4. ALGORITHM FOR TOP-K RESULTS
In Section 3, we discussed the algorithm to compute com-

plete results. The order of generated results follow the depth
of the tree, from lowest to highest, which normally reflects
people’s expectation of more detailed results. Other than
that, people may also want to incorporate other factors
in ranking. For example, IR score evaluates the relevance
between the content of the node and query; link analysis
score evaluates the importance of a node, independent of
the query. In such case, top-K algorithm becomes more im-
portant, because people normally only cares about a very
few top ranked results.

4.1 Formal Definition of the Ranking Func-
tion and Constraints

Before discussing algorithm details, we first formally de-
fine the ranking score of ELCAs and the constraints the



ranking functions are expected to satisfy. Given a keyword
w, g(v, w) is a global function that assigns v a ranking score
evaluating its relevance with respect to w. g(·) can take any
factors into account, e.g. IR score, link-based importance
or the depth in the tree, and combine them in an arbitrary
way.

Consider a query with k keywords w1, . . . , wk. Assume
node v̄ is an ELCA at the level l̄, and vi at the level li is
the occurrence of wi under v̄, i = 1, . . . , k. F (·) is function
that combines g(vi, wi), i = 1, . . . , k into a score of v̄.

Ranking Function F (·) combines g(vi, wi), i = 1, . . . , k
with damping factor :

score(v̄) = F
“

g(v1, w1) × d(l1 − l̄), . . . , g(vk, wk) × d(lk − l̄)
”

d(·) is a decreasing function that reduces the importance of
the occurrence of the keyword as its vertical distance to v̄
increases. It reflects the intuition that compact results are
more preferable because of the tighter relationship between
keywords.

Notice that if v contains more than one occurrences of
wj , i.e. vj

1, . . . , v
j
m, F (·) only takes the maximum score (with

damping factor) of the occurrences as input, i.e. max{g(vj
1, wj)×

d(lj1 − l̄), . . . , g(vj
m, wj) × d(ljm − l̄)}.

The combining function F (·) are expected to satisfy the
following constraint:

Monotonicity v1 and v2 are two ELCAs at level l̄1 and l̄2
respectively. Their occurrences of the keywords are vi

1

and vi
2 (i = 1, . . . , k). If ∀i ∈ [1, k], g(vi

1, wi) × d(li1 −
l̄1) ≤ g(vi

2, wi)×d(li2− l̄2), then score(v1) ≤ score(v2).

Monotonicity is the assumption the following top-K algo-
rithm replies on. It is also true for most existing ranking
functions. In the following discussion, we simply assume
F (·) is the sum function, i.e. score(v̄) =

Pk
i=1 g(vi, wi) ×

d(li − l̄).

4.2 Review of Top-K Join Algorithm in Rela-
tional Databases

Top-K join problem in the relational database has been
addressed by [17, 12]. The high level idea of the algorithm is
as follows: scan each relation by the descending order of its
tuples’ ranking scores. Each time a new tuple is retrieved,
join between this tuple and all the tuples seen from other
relations is performed. At any time, a threshold for all the
unseen results can be estimated. Generated results whose
scores are greater than the threshold can be outputted with-
out blocking.

Consider the following SQL query where three relations
are already sorted by scores, as shown in Figure 6.

SELECT R1.id
FROM R1, R2, R3

WHERE R1.id = R2.id AND R2.id = R3.id
ORDER BY R1.score + R2.score + R3.score
LIMIT K

The algorithm maintains a cursor for each relation, and
scans the relation by the order of scores. Figure 6 shows
a snapshot of execution. Solid pointers denote cursors’ cur-
rent positions. Three tuples from each relation have been
seen so far, and two results are generated. Next time when
tuple (4, 0.5) from R1 is retrieved, join between (4, 0.5) and
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Figure 6: Snapshot of relational top-K join

tuples seen from R2 and R3 is performed, and newly gener-
ated results are put into result set.

Let si denote the score of next tuple to be retrieved from
Ri, and si

m denote the maximum score from Ri (in other
words, the score of the first tuple of Ri). Then scores of all
unseen results are bounded by max{(s1 + s2

m + s3
m), (s1

m +
s2+s3

m), (s1
m+s2

m+s3)}, i.e. max{2.5, 2.4, 2.4} = 2.5. Score
of result tuple (2, 2.5) is no less than the threshold, and thus
can be outputted, whereas (1, 2.2) is still blocked.

4.3 Top-K Algorithm for XML Keyword Search
In XML keyword search, generating ELCA is a join pro-

cess and thus intuitively can directly apply the top-K join
algorithms from relational databases. However, those top-
K join algorithms are designed for general join patterns.
In our scenario, the join pattern is only the star join, i.e.
R1.a = R2.b = R3.c . . ., instead of the sequence join, i.e.
R1.a = R2.b1 AND R2.b2 = R3.c1 AND . . .. Given the
property of the star join, there is an opportunity for fur-
ther improvement on the threshold estimation. Further-
more, ranking scores of JDewey Sequences are decreased
by damping factor when we move to higher level. There
would be no unique order of JDewey Sequences in Li. In
the following, we address these two problems separately.

4.3.1 Top-K Algorithm for Star Join
Consider k-relation join R1.id = R2.id = . . . = Rk.id.

The new algorithm works as follows: (1) Maintain a cur-
sor for each relation, and let si be the score of the tuple
right after the cursor in Ri. Each time retrieve one tuple ti

from Ri. Ri is chosen in a round-robin way until result size
reaches K. After that, Ri whose si is maximum is chosen.
(2) Put ti into the hash bucket. If there is a matched tuple
t0 in the bucket, add the score of ti to t0. If t0 has been
matched k − 1 times (there is no match when put into the
bucket first time), move it from the bucket to the result set.

The threshold of unseen results for star join is estimated
under two cases: (1) results whose id’s have not been seen in
any relation; (2) results whose id’s have been seen in some
relation(s). In other words, the corresponding tuples are
already in the bucket.

• For case 1, their upper bound can be estimated as
Pk

i=1 si.

• For case 2, tuples within bucket be grouped into 2k−2
groups GP , P ⊂ {1, . . . , k}. All the tuples in GP have



been seen in Rj , j ∈ P . Let ms(P ) denote the maxi-
mum score of tuples in GP . Then the upper bound of
tuples in GP is ms(P )+

P

j /∈P sj . The upper bound of

the whole bucket is: maxP⊂{1,...,k}(ms(P )+
P

j /∈P sj).

Since ms(P ) +
P

j /∈P sj ≥
P

i∈P si +
P

j /∈P sj =
Pm

i si,
we only need to consider the upper bound of tuples in the
bucket. Therefore, the upper bound of unseen results is
estimated by maxP (ms(P ) +

P

j /∈P sj), P ⊂ {1, . . . , k}.
Note that for the top-K join algorithm for general join,

upper bound estimation is: maxi(s
i +

P

j 6=i sj
m) where i =

1, . . . , k. ∀P ⊂ {1, . . . , k}, ms(P ) +
P

j /∈P sj ≤
P

j∈P sj
m +

P

j /∈P sj ≤ si +
P

j 6=i sj
m where i /∈ P . Therefore, for the

star join, the above algorithm provides tighter upper bound
estimation for the unseen results. In Figure 6, if we use the
new algorithm for star join, two tuples are in the bucket,
G{1,3} = (3, 1.0+0.6) = (3, 1.6) and G{2} = (4, 0.8). If they
can be results in future, their score would be bounded by
1.6 + s2 = 1.6 + 0.4 = 2.0 and 0.8 + s1 + s3 = 1.7 respec-
tively. Thus, the second result (1, 2.2) can also be outputted
without blocking. The reason of tighter upper bound is that
we maintain those partial results, i.e. tuples that partially
joined within a subset of relations. To estimate the upper
bound of partial results, only scores from those unjoined
relations are estimated.

In the algorithm, we maintain 2k − 2 groups within the
bucket, which seems exponential to the query size (number
of relations). However, notice that number of tuples main-
tained in the bucket is bounded by the number of tuples seen
so far. Recall that each time new tuple is newly retrieved, all
new valid join combinations with tuples seen from other re-
lations are generated. Thus, we have to maintain the pool of
all tuples already retrieved. In other words, grouping within
bucket doesn’t increase the algorithm complexity. In imple-
mentation, more groups only increase the overhead of upper
bound estimation. For queries with a large number of key-
words, this problem can be solved in two dimensions. In first
dimension, we limit the number groups within the bucket:
for k relations, we do not maintain all GP ’s, P ⊂ {1, . . . , k},
but only those P ’s such that |P | is less than a threshold

p0. For those tuples in bucket that used to belong to P
′
,

|P
′
| > p0, we randomly assign them to one group GP where

P is the largest maintained subset such that P
′
⊃ P . Es-

sentially, this modification balances a trade-off between cost
and accuracy: it reduces upper bound estimation overhead,
but increases the upper bound of unseen results. In second
dimension, we break one bucket into two, corresponding to
R1 1 . . . 1 Rd k

2 e and Rd k
2 e+1 1 . . . 1 Rk respectively. Tu-

ples generated from two joins (buckets) are further joined.
In such case, number of groups we maintained reduces to

2 · (2d k
2 e − 2).

4.3.2 Top-K algorithm for XML Keyword Search
Consider two nodes v1, v2 that directly contain the key-

word w. If v1 is at the level l1, v2 is at the level l2 and
l1 > l2, given the fact that g(v1, w) > g(v2, w), the relation
between g(v1, w)×d(l1 − l2) and g(v2, w) is unknown before
actual computation and comparison. In Figure 7, although
the original score of the first JDewey Sequence is greater
than the second, for the 4th column, the relation between
0.5 × d(3) and 0.44 can be either greater than, equal to,
or less than, depending on how fast the original score de-

6531 0.44

1135431 0.5

Figure 7: Two JDewey Sequences with ranking score
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lengths

creases. This fact means that for the JDewey Sequence list
Li, Li(l1) and Li(l2) can have different orders of JDewey
Sequences with respect to their ranking scores.

To remedy this problem, JDewey Sequences in Li are
grouped by their lengths, as shown in Figure 8. For the
JDewey Sequences’ within one group, ∀S1, S2, if score(S1(l)) >
score(S2(l)), score(S1(l − l0)) > score(S2(l − l0)). So there
is an unique order for JDewey Sequences in one group. The
number of groups is at most the height of the XML tree. Ba-
sically, this scheme breaks Li into segments each of which
is ordered by the original ranking scores. Complete order of
the column can be easily given by merging segments online.
In implementation, we maintain a cursor for each segment
of Li. Recall that the top-K algorithm only retrieves one
JDewey Number from the column at one time. So at each
iteration, the algorithms picks one JDewey Number with
highest score from cursors and feed it into the bucket.

Similar to the algorithm generating complete ELCAs, the
top-K algorithm joins JDewey Numbers column by column,
from lowest to highest, to guarantee the ELCA semantics.
The only difference is that for each column, top-K star join
algorithm is used as join plan. After a join for one column,
all the ELCAs at that level are generated. At any time,
those generated results whose ranking scores are greater
than the upper bound of unseen results can be outputted
without blocking. However, notice that the algorithm in
Section 4.3.1 is for one join and only gives the upper bound
estimation of unseen results within that column. Since EL-
CAs can be generated by all the columns, we need to es-
timate upper bound of unseen results in other columns as
well. More precisely, if we are currently performing join for
column l0, ∀l < l0, we also need to estimate the upper bound
of ELCAs at level l. Upper bound of ELCAs at level l can be
estimated as:

Pk
i=1 si

m(l) where si
m(l) is the maximum score

of column l in list Li(l) and k is the number of keywords.
In practice, we do not need to compute all the columns. In-
stead, if (1) l < l0 − 1 and (2) ∀i ∈ [1, k], @S ∈ Li such
that |S| = l and score(S) = si

m(l), then we can skip column
l directly. This is because: if the above two conditions are
true, ∀i ∈ [1, k], si

m(l) = si
m(l+1)×d(·) < si

m(l+1). There-
fore, upper bound of unseen results in column l is always
less than unseen results in column l+1. On the other hand,
if ∃S ∈ Li such that |S| = l and score(S) = si

m(l), there is
no damping factor for si

m(l) and thus upper bound of this
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Figure 9: Snapshot of top-K algorithm

column must be computed.

Example 4.1. Consider again the query {XML, data}.
Figure 8 shows the two lists L1, L2 and their original rank-
ing scores. Assume the damping function is d(∆l) = 0.9∆l.
Joins for column 5 and 4 are first performed, and no result
is generated. Figure 9(a) shows the status of the join for
column 3. In the figure, two numbers from L1(3) (i.e. 2, 3)
and L2(3) (i.e. 2, 4) have been retrieved and put into the
hash bucket. 2 is matched as an ELCA and further moved
into the result set. Its score is 0.73+0.41 = 1.14. Similar to
Section 4.3.1, upper bound of unseen results within column
3 is estimated as the maximum of two values: estimation of
number 3 from L1 (i.e. 0.7+ s2(3) = 0.7+0.3 = 1), and es-
timation of number 4 from L2 (i.e. 0.5+s1(3) = 0.9). Thus,
upper bound of unseen results within column 3 is 1, which is
less than node 2’s score. We also need to consider the unseen
results in other columns, i.e. column 1 and column 2. Since
both L1 and L2 do not contain sequence S, |S| = 1, we only
need to consider column 2. The maximum scores from L1(2)
and L2(2) are 0.7∗0.9 = 0.63 and 0.5∗0.9 = 0.45. So upper
bound of unseen results in column 2 is 0.63 + 0.45 = 1.08,
which is also less than node 2’s score. Therefore, node 2 at
level 3 can be outputted.

When all the numbers in L1(3) and L2(3) are retrieved,
node 4 is also identified as an ELCA and its score is 0.33 +
0.5 = 0.88. However, at this point, node 4 cannot be out-
putted. As in Figure 9(b), the upper bound results in column
2 is 0.63 + 0.27 = 0.9 which is greater than node 4’s score.

5. EXPERIMENTS
In this section, we experimentally evaluate proposed join-

based algorithms on DBLP and XMark data set, and mainly
compare our algorithms with two existing systems: stack-
based [11] and index-based [29]. The size of XML document
of DBLP is 496MB. XMark is generated with factor 1.0 and
the size of the document is 113MB. Considering the original
DBLP XML tree is very shallow with a depth of 5, we group
the papers firstly by conference/journal names, and then
by years. Xcerse and Lucene are used to parse the XML
tree and textual contents respectively. All the algorithms
are implemented using Java under JDK 5. Experiments are
performed on a Debian 2.40GHz PC with 1G memory.

5.1 Index Size
Table 1 shows the index sizes for different algorithms.

As we can see, for algorithms generating complete ELCAs,
the new node encoding which join-based algorithms reply
on does not introduce much space overhead (or even saves

Table 1: Index Size for Different Algorithms
DBLP XMark

Join-based
MI SI MI SI

14MB 327MB 4MB 302MB
stack-based 392MB 267MB
index-based 2.1G 1.3G

Top-K Join
MI SI MI SI

14MB 394MB 4MB 351MB

RDIL
inv. list B+-tree inv. list B+-tree
392MB 446MB 267MB 252MB

spaces for DBLP data set), though it normally requires more
bytes to encode a single node. This can be due to several
reasons: firstly, in actual XML databases, some portion of
nodes have a large number of siblings. It means that al-
though traditional Dewey Id only requires uniqueness among
siblings, number of bytes required for the corresponding level
is still large. Secondly, in our index, compression is applied
when lists of JDewey Sequences are stored by columns. To
our observation, compression is highly effective for higher
levels. For a node at higher level, even number of its sib-
lings is very small, the number assigned to this node as the
identifer among its siblings has to appear in all the Dewey
Ids of its descendants. In contrast, in our index, this node’s
identifier only appears once in one inverted list of a keyword.

Index size for index-based algorithm is extremely large.
This is because the implementation in [28, 29] uses a single
B-tree in BerkeleyDB. It means that each key entry in the
B-tree contains the keyword and Dewey Id. If the length of
inverted list for a keyword is n, then this keyword repeats n
times in the B-tree, which is a huge waste.

The lower half of Table 1 shows the index sizes for top-K
algorithms. In top-K scenario, our algorithm has a great
advantage in terms of space. RDIL, as mentioned in Sec-
tion 1.2, requires both inverted lists and B+-tree because it
retrieves new node from one list sorted by the score and then
looks up other lists by B+-tree. This inevitably introduces
much space overhead. On the other hand, the core opera-
tion of our top-K algorithm is hash join, and thus does not
require any additional index.

5.2 Query Performance for Complete ELCAs
We compare the query performance of three algorithms

for complete ELCAs, varying both keyword frequencies and
number of keywords. For each experiment, twenty queries
within each frequency range are randomly selected. Execu-
tion time in the figures is the average of the twenty queries
executed 5 times. Furthermore, experiments are on hot
cache. For index-based algorithm in [29], BerkelyDB al-
ready provides a cache mechanism. For join-based algo-
rithm, index is a sequential file, and our implementation
replies on the file system cache directly. Note that in Ta-
ble 1, Master Indices (MI) for both data sets are fairly small.
Thus, MI is always cached in main memory. Stack-based
algorithm, on the other hand, does not benefit a lot from
cache, because it always needs to scan all the input lists.

Experiment results are shown from Figure 10(a) to Fig-
ure 10(d). Due to the space limit, only results from DBLP
are listed. Results from XMark are highly similar. In fact,
query execution time mainly depends on two factors: key-
word frequencies and keyword correlations. We vary number
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Figure 10: Query Performance For Complete Results

of keywords from 2 to 5. In all queries, highest frequency
is fixed, i.e. 100k. Low frequency varies from 10 to 10k.
As we can see from the figure, when low frequency is ex-
tremely low (10 or 100), execution time of our algorithm
and Index-based algorithm is in the same order of magni-
tude. However, when the low frequency goes beyond 1000,
the difference is obvious, especially in Figure 10(d). For
the queries in that range, our algorithm already switch to
the merge join. In fact, if we force the query plan to in-
dex join, the performance can be also as low as index-based
algorithm. Furthermore, index-based algorithm implemen-
tation replies on a single B-tree. Though BerkeleyDB pro-
vides cache mechanism buffering top level internal nodes,
there is a large amount of waste, as explained in last sub-
section, making index lookup less efficient. That is also why
for queries with medium frequencies (Figure 10(c)), the per-
formance difference between two algorithms is obvious, even
join-based algorithm still chooses index join plan. Execution
time of stack-based algorithm is always in the same order
of magnitude, regardless low frequency. This is because the
algorithm needs to scan all the input lists, and in the above
experiments highest frequency is fixed.

We also evaluate algorithms on keywords with same fre-
quencies, as shown in Figure 10(e) and 10(f). Stack-based
algorithm then performs slightly better than index-based
algorithm, which can also be seen from their theoretical
complexities. In these experiments, join algorithm performs
much better stack-based algorithm, though their theoreti-
cal complexities seem same (for merge join). This can be
contributed to several reasons: in Section 5.1, we mentioned
that numbers of nodes at higher level must appear in each
Dewey Ids of their descendants. When nodes are pushed into
stack one by one, stack-based algorithm actually matches
these common numbers and groups them online. In con-
trast, our index already compresses these common numbers
into one value and thus saves online computation. Further-
more, even all input lists have the same size, the join plan

may not stick to merge join. If the size of intermediate re-
sults is very small (for multiple joins), later joins will switch
to index join. In fact, this happens often, because at lower
levels, number of ELCAs is usually very small.

5.3 Query Performance for Top-K ELCAs
Now we evaluate top-K algorithm. We first run the al-

gorithm on queries randomly generated in previous exper-
iments. However, the performance of top-K algorithm is
generally worse than the join-based algorithm generating
complete results. The key is the keyword correlation issue.
Conceptually, top-K join algorithm only performs well when
the number of results is fairly large. For the keywords with
low correlation, it normally takes very long scan to generate
one result. In such case, there is no way for top-K algorithm
to beat join-based algorithm optimized for complete results.

To overcome this limitation, we manually picked a set of
queries with high keyword correlation, such as {sensor, net-
work}, {XML, keyword, search}, and run three algorithms for
comparison: top-K algorithm proposed in this paper, join-
based algorithm generating complete results and RDIL. The
results are shown in Figure 11. Overall, top-K algorithm
is effective for keywords with high correlations: for most
queries, the algorithm can terminate much earlier than join-
based algorithm. RDIL is much less effective in terms of top-
K processing. RDIL retrieves a new node from one list with
highest score among all unseen nodes, and lookups other
lists to compute ELCA. The problem is that the longest
common prefix of Dewey Id of this node with nodes in other
list can be very short. In the ranking function, damping
factors will penalize it a lot, even its original score is very
high.

Results for top-K algorithm imply that top-K algorithm
and join-based algorithm are complementary to each other,
in terms of performance. The factor that determines their
relative performance is the keyword correlation, which is also
know as join cardinality the join scenario.
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Figure 11: Query Performance For Top 10 Results

5.4 Discussion on Combined Index
Since algorithms for complete results and top-K results

have strengths in different direction, it is straightforward to
come with a combined index, building score index on top of
Li ordered by the JDewey Sequence. While this approach
increases the index size, it makes three join plans (merge
join, index join, top-K join) all available. Whether choose
top-K join or not will be mainly based on join cardinality
estimation: top-K algorithm should only be used for current
column when the result size is estimated to be very large.
Moreover, join plan can be chosen based on column level and
other factions can also be taken into account. Recall that
we need to estimate upper bound of results in all columns
in top-K algorithm. If upper bound of some higher level is
overwhelming large (imagine that in Figure 1 user’s query
exactly matches the title of the book), all the results below
that level will be blocked. In that sense, there is no reason
to perform top-K join for lower levels any more.

Note that in the join context, join cardinality estimation is
an explicit problem and there are already many approaches
in the literature. In [11], a hybrid algorithm is also proposed,
combining stacked-based algorithm with RDIL. However, it
faces the problem that it is unclear how to estimate cost and
choose the right algorithm, which greatly limits its practical
usage.

6. RELATED WORK
Keyword search in XML attracts much attention. First

set of work, e.g. [11, 28, 29, 20, 25, 18], takes LCA’s vari-
ations (e.g. ELCA, MLCA, SLCA) as query semantics and
proposes different algorithms computing results. Major in-
tuition of these algorithms is similar to stack-based [11] and
index-based [29] algorithms, and thus their algorithm com-
plexities are the same as these two. Join-based algorithm
in this paper can also be adapted those similar semantics.
Another set of work, e.g. [3, 2, 26, 18, 4], tries to extend

the XQuery with keyword search operators, combining both
IR ranking mechanism and tree structure information to im-
prove search effectiveness.

Keyword proximity search in XML [14, 16] shares many
similarities with LCA-based keyword search. However, there
are some major differences distinguishing them. Firstly,
LCA semantics may lead to conflict with proximity, as an-
alyzed in the beginning of this paper. Secondly, there is no
exclusion requirement for keyword proximity search: unlike
most LCA semantics which require one node can only appear
in one result, in keyword proximity search, different results
can share some common structure. More generally, keyword
proximity search takes the XML tree (with references) as a
general graph. Hierarchy structure isn’t considered much in
these applications.

Mostly recently, much work has been done in new areas
in XML keyword search scenario. For example, [24] stud-
ies query evaluation over virtual views of XML. The major
difference with LCA keyword search is that given the view
definition, the returned elements in [24] is fixed, while the
returned results of LCA-based semantics can be arbitrary
elements in XML tree. [20, 21] study the problem of how to
return results with more semantics. They firstly computes
SLCAs using index-based algorithm, and then further in-
fers relevant results by analyzing match patterns and XML
structures.

Beside semi-structured data, there is also much work on
keyword search over structured data. DISCOVER[15], DBX-
plorer[1] and BANKS[7] are first three systems presented to
support keyword search in relational databases. Their query
semantics are similar: the query is a set of keywords and
the results are sets of tuples that contain all the keywords
and can be connected through the primary and foreign keys.
Later work generally follows this semantics and further fo-
cuses on two aspects: efficiency and effectiveness. [12] incor-
porates IR-style ranking and proposes algorithms to return
top K results efficiently. [19, 22] focus on the effectiveness
and take into account more IR heuristics in the ranking func-
tion. [22] also proposes a Top-K algorithm which handles
with non-monotonic ranking function.

Top-K query in relational databases has been widely stud-
ied for a couple of years. Existing work attacks the problem
from different dimensions: monotonic ranking functions [10,
8, 6, 23], non-monotonic ranking functions [27, 22], exis-
tence of materialized views [13, 9, 5]. These work mainly fo-
cuses on the functions that combine multiple values from at-
tributes of relation(s) and doesn’t involve other operations.
More related work to our scenario is the Top-K join prob-
lem[17, 12], which considers the traditional SQL join seman-
tics. In this paper, we convert keyword search into relational
join. Thus, there exists possibility to exploit more top-K
processing techniques from relational database in XML key-
word search scenario.

7. CONCLUSION
In this paper, we addressed the problem of keyword search

in XML databases, under the ELCA semantics. By intu-
ition, users tends to prefer those lower ELCAs because they
reflect more specific information and data. However, none
of existing algorithms provide efficient support for this in-
tuition due to the fact that the order of generated results
follows the document order. We proposed a join-based algo-
rithm to compute complete ELCAs efficiently. We demon-



strated the superiority of our algorithm over existing algo-
rithms in both theoretical analysis and experimental results.
Essentially, join-based algorithm is orthogonal to stack-based
and index-based algorithms: in visual perception, join-based
algorithm generates results vertically, from bottom level to
top level, whereas stack-based and index-based algorithms
generate results horizontally, from leftmost subtree to right-
most subtree; in implementation, join-based algorithm joins
node encodings (JDewey Sequences) by column, whereas
stack-based and index-based algorithms “join” (computing
longest common prefix) node encodings (Dewey Id) by row.
We also presented a top-K algorithm for one type of ranking
functions. The algorithm adopts the idea from top-K join
algorithms in relational databases and is optimized for XML
keyword search scenario.

A more fundamental contribution of this paper is that
we revealed a promising point where the relational join and
XML keyword search intersect. Many techniques in the re-
lational databases can be migrated to the XML keyword
search scenario. For example, our system can decide the
join plan on the fly and achieve optimality for queries with
various frequencies.
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