Efficient Rewriting of XPath Queries Using Query Set
Specifications

Alin Deutsch
UC San Diego
deutsch@cs.ucsd.edu

Bogdan Cautis
Telecom ParisTech
cautis @telecom-paristech.fr

ABSTRACT

We study the problem of querying XML data sources that accept
only a limited set of queries, such as sources accessible by Web ser-
vices which can implement very large (potentially infinite) families
of XPath queries. To compactly specify such families of queries
we adopt the Query Set Specifications [19], a formalism close to
context-free grammars.

We say that query @ is expressible by the specification P if it
is equivalent to some expansion of P. @ is supported by P if it
has an equivalent rewriting using some finite set of P’s expansions.
We study the complexity of expressibility and support and identify
large classes of XPath queries for which there are efficient (PTIME)
algorithms. Our study considers both the case in which the XML
nodes in the results of the queries lose their original identity and
the one in which the source exposes persistent node ids.

1. INTRODUCTION

Current Web data sources usually do not allow clients to ask ar-
bitrary queries, but instead publish as Web Services a set of queries
they are willing to answer, which we will refer to as views . Main
reasons for that are performance requirements, business model con-
siderations and access restrictions deriving from security policies.
Querying such sources involves finding one or several legal views
that can be used to answer the client query.

Of particular interest is the case when the set of views is very
large (possibly exponential in the size of the schema or even infi-
nite), precluding explicit enumeration by the source owner as well
as full comprehension by the client query developer. In such sce-
narios, recent proposals advocate the owner’s specifying the set of
legal views implicitly, using a compact representation (in the same
spirit in which a potentially infinite language is finitely specified
by a grammar). Clients are unaware of the legal views, and simply
pose their query against a logical schema exported by the source
(the same schema against which the views are defined). While this
approach provides a simpler interface to source owner and client, it
raises a technical challenge, as now the system has to automatically
identify and extract from the compact encoding a finite set of legal
views that can be used to answer the client query.

This problem has been the object of several recent studies in a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Nicola Onose
UC San Diego
nicola@cs.ucsd.edu

Vasilis Vassalos
Athens Univ. of Economics and Business
vassalos @aueb.gr

relational setting [14, 21, 8], but has not been addressed for sources
that publish XML data (as is the case for most current Web Ser-
vices). Since our focus is on practical algorithms, we consider
sources that make XML data available through sets of views be-
longing to an XPath fragment for which the basic building blocks
of rewriting algorithms, namely containment and equivalence, are
tractable [16]. As a formalism for compactly representing large sets
of such views, we adopt a variation of the Query Set Specification
Language(QSSL) [19], a grammar-like formalism for specifying
XPath view families (see also [17]).

Expressibility and support. As in the literature on sources ex-
porting sets of legal relational queries [21, 8], we consider two set-
tings for query answering. The first one is when the client query has
to be fully answered by asking one legal query over the source, with
no post-processing of its result. The corresponding decision prob-
lem is called expressibility [8]: we say that query q is expressible if
it is equivalent to a view published by the source. The second set-
ting is when the capabilities of the source are extended by a source
wrapper [18] that intercepts the client query, finds an equivalent
rewriting for it in terms of the views, post-processes the results lo-
cally and returns the query result to the client. The associated prob-
lem is called support [8]: given a rewriting query language L, q is
supported by P if it has an equivalent rewriting in £r using some
finite set of legal queries supported by the source.

Expressibility and support generalize the problems of equiva-
lence and existence of a rewriting using views from the classical
case in which the set of views is explicitly listed to the case in
which this set is very large, potentially infinite, being specified im-
plicitly by a compact representation.

XPath rewriting. Earlier research [22, 15] on XPath rewriting
studied the problem of equivalently rewriting an XPath by navigat-
ing inside a single materialized XPath view. This is the only kind
of rewritings supported when the query cache can only store or can
only obtain copies of the XML elements in the query answer, and
so the original node identities are lost.

We have recently witnessed an industrial trend towards enhanc-
ing XPath queries with the ability to expose node identifiers and ex-
ploit them using intersection of node sets (via identity-based equal-
ity). This trend is supported by systems such as [5]. This de-
velopment enables for the first time multiple-view rewritings ob-
tained by intersecting several materialized view results. The single-
view rewritings considered in early XPath research have only lim-
ited benefit, as many queries with no single-view rewriting can be
rewritten using multiple views. In this paper, we consider both the
case in which the XML nodes in the results of the queries lose their
original identity (hence a rewriting can only use one view) and the
one in which the source exposes persistent node ids (and rewritings
using multiple views are possible).

EXAMPLE 1.1. Throughout this paper we consider the example

of a tourism agency that allows to find organized trips matching
user criteria. The set of allowed queries is specified by a compact
0SS encoding (to be described shortly). On the schema of views
published by the source, the client formulates a query qi1, asking
for museums during a tour in whose schedule there is also a slot
for taking a walk and which is part of a guided secondary trip:

q1: doc(T)//vacation//trip/trip[guide J//tour[schedule//walk [/museum

The system analyzes the query and the specification and finds two
views that may be relevant for answering q1. These are vi, which
returns museums in secondary trips for which there is a guide:

v1. doc(T)//vacation//trip/trip[guide |//museum

and v, which returns museums on a tour in which there has been
also scheduled a walk:

va: doc(T)//vacation//trip//tour(schedule//walk [/museum

q1 cannot be answered just by navigating into the result of vi
or into the result of va. The reason is that qi1 needs both to en-
force that the trip has a guide and that the tour has a walk in the
schedule. v1 or va taken individually can enforce one of the two
conditions, but not both, and navigation down into the view does
not help either, since the output node museum is below the trip and
tour nodes. Since no other views published by the source can con-
tribute to rewriting qi1, in the absence of ids, the system will reject
q1, as it is neither expressed, nor supported by the source.

However, if the views expose persistent node ids, we will show
that q1 can be rewritten as an intersection of vi1 and va.
Contributions. We study the complexity of expressibility and
support and identify large classes of XPath queries for which there
are efficient (PTIME) algorithms. For expressibility, we give a
PTIME decision procedure that works for any QSS and for any
XPath query from a large fragment allowing child and descendant
navigation and predicates. We show that support in the absence
of ids remains in PTIME, for the same XPath fragment for which
we studied expressibility. However, for this fragment, support in
the presence of ids becomes coNP-hard. This is a consequence
of previous results [7], showing that rewriting XPath using an in-
tersection of XPath views (a problem subsumed by support) is al-
ready coNP-hard. This is a major difference with respect to the
relational case, in which support and expressibility were proven
inter-reducible [8]. Since our focus is on practical algorithms, we
propose a PTIME algorithm for id-based support that is sound for
any XPath query, and becomes complete under fairly permissive
restrictions on the query, without further restricting the language of
the views. Our results are in stark contrast with previous results in
the relational setting [14, 21], where already the simple language
of conjunctive queries leads to EXPTIME completeness of expres-
sivity and support [8], but on the other hand is closed under inter-
section, which poses no additional problem.

Outline of the paper. The paper is structured as follows. Sec-
tion 2 presents the language of client queries (tree patterns) and the
language of query rewriting plans (tree patterns and intersections
thereof). Section 3 describes the query set specifications (QSS).
The problem of expressibility is analyzed in Section 4. The prob-
lem of support is studied starting from Section 5, first in the absence
of persistent ids and then in their presence (Sections 6, 7, 8). QSS
and rewriting language extensions are presented in Sections 9, 10.
Section 11 discussed related work and Section 12 concludes.

2. XPATH AND TREE PATTERNS

‘We consider an XML document as an unranked, unordered rooted
tree ¢t modeled by a set of edges EDGES (), a set of nodes NODES(¢),
a distinguished root node ROOT(t) and a labeling function ¢, as-
signing to each node a label from an infinite alphabet X.

(%oc(T)

(nas)
doc(T) vacation
(naz) (ny3) ®
. trip
(ny2)@ vacation (ntra)
trip .
(ner3) (irs) /P
i guide
(nt 1) tour
1 ¢ schedule (Mto2) tour (ng2)
o) (ns1) t02) N\ schedule
museum "*91 muselm walk % ns2)
(Mm1) (Mm2) (Nw1) walk
museun (Mw2)
(Nm3)
view vy view vg query q1

Figure 1: The tree patterns of queries v1, v2 and q;

We consider XPath queries with child / and descendant // navi-
gation, without wildcards. We call the resulting language XP, and
define its grammar as:

apath = doc(“name”)/rpath | doc(“name”)/ /rpath
rpath ::= step | rpath/rpath | rpath/ [rpath

step = label pred

pred = €| [rpath]|[.//rpath]| pred pred

The sub-expressions inside brackets are called predicates.

All definitions and results of this paper extend naturally when
allowing equality with constants in predicates. For presentation
simplicity, this feature will be ignored in the core of the paper, and
is briefly discussed in Section 9.

In the following, we will prefer an alternative representation for
XML queries widely used in literature, the one of tree patterns [16]:

DEFINITION 2.1. A tree pattern p is a non empty rooted tree,
with a set of nodes NODES (p) labeled with symbols from %, a dis-
tinguished node called the output node OUT(p), and two types of
edges: child edges, labeled by / and descendant edges, labeled by
//. The root of p is denoted ROOT (p).

Any XP expression can be translated into a tree pattern query and
vice versa (see, for instance [16]). For a given tree pattern query p,
xpath(p) is the associated XP expression.

EXAMPLE 2.1. Figure 1 shows the tree patterns corresponding
to v1, v2 and q1 from Example 1.1. Each node has a label and a
unique node symbol, written inside parenthesis. Output nodes are
distinguished in the graphical representation by a square.

The semantics of a tree pattern can be given using embeddings:

DEFINITION 2.2. An embedding of a tree pattern p into a tree
t over X is a function e from NODES(p) to NODES(t) that has
the following properties: (1) e(ROOT(p)) = ROOT(¢); (2) for any
n € NODES(p), LABEL(e(n)) = LABEL(n); (3) for any /-edge
(n1,n2) in p, (e(n1),e(n2)) is an edge in t; (4) for any //-edge
(n1,n2) in p, there is a path from e(n1) to e(nz) in t.
The result of applying a tree pattern p to an XML tree ¢ is the set:
{e(OUT(p))| e is an embedding of p into t }

DEFINITION 2.3. A tree pattern p; is contained in a tree pat-
tern pa iff for any input tree t, p1(t) C p2(t). We write this shortly
as p1 C pa. We say that p1 is equivalent to p2, and write p1 = po,
iff p1(t) = p2(t) for any input tree t.

The same notions are also used on XP expressions. A pattern p is
said minimal [3] if no pattern p’ = p can have fewer nodes than p.

DEFINITION 2.4. A mapping between two tree patterns pi, p2
is a function h : NODES(p1) — NODES(p2) satisfying properties
(2),(4) of an embedding (allowing the target to be a pattern) plus
three others: (5) for any n € MBN(p1), h(n) € MBN(p2); (6) for
any /-edge (ny1,n2) in p1, (e(n1), e(n2)) is a /-edge in pa.

A root-mapping is a mapping that satisfies (1). An output-mapping
is a mapping h such that h(OUT(p1)) = OUT(p2). A containment
mapping denotes a mapping that is simultaneously a root-mapping
and an output-mapping.

Previous studies [3, 16] show that for two tree patterns p; and pa,
p2 C py iff there is a containment mapping from p; into pa.

For a tree pattern p, we refer to the path starting with ROOT(d)
and ending with OUT(p) as the main branch of p. We refer to the
set of nodes on this path as MBN(p). We say that a pattern is linear
if it has no side branches. By MB(p) we denote the linear pattern
that is isomorphic with the main branch of p. We call predicate
subtree of a pattern p any subtree rooted at a non-main branch node.

Intersection. We consider in this paper the extension XP"' of XP
with respect to intersection, having a straightforward semantics. Its
grammar is obtained from that of XP by adding the following rule:

ipath ::= apath | apath N ipath
By XP" expressions over a set of documents D we denote those
that use only apath expressions that navigate inside D’s documents.

As in [6], a code is a string of symbols from ¥, alternating with
either / or //.

DEFINITION 2.5 (INTERLEAVING). A interleaving of a finite
set of tree patterns S is any tree pattern p; produced as follows:
1. let M = UpesMBN(p),
2. choose a code i and a total onto function f; that maps M
into ¥-positions of i such that:

(a) foranyn € M,LABEL(f;(n)) = LABEL(n)

(b) foranyp € S, f;(ROOT(p)) is the first symbol of i,

(c) foranyp € S, f;(OUT(p)) is the last symbol of i,

(d) for any /-edge (n1,n2) of any p € S, i is of the form

o fi(ma)/ fi(n2) -,
(e) for any //-edge (n1,n2) of any p € S, i is of the form
3. build the smallest pattern p; such that:

(a) @ is a code for the main branch of p;,

(b) for any n € M and its image n' in p; (via f;), if a
predicate subtree st appears below n then a copy of st
appears below n', connected by the same kind of edge.

Two nodes n1, na from M are said to be collapsed if fi(n1) =
fi(n2), with f; as above. The tree patterns p; thus obtained are
called interleavings of S and we denote their set by interleave(S).

EXAMPLE 2.2. One of the interleavings of vi and va from Fig-
ure 1 is q1, as v1 has a //-edge between nodes nir2 and nm1, which
allows the tour from va to appear as a direct parent of museum.

Considering also unions of tree patterns, having straightforward se-
mantics, one can prove the following intersection-union duality:

LEMMA 2.1. For any set of XP queries S = {q1,...,qn}, the
XP" expression M;q; is equivalent to the union Uinterleave(S).

The following also holds:

LEMMA 2.2. A tree pattern is contained in a union of tree pat-
terns iff it is contained in a member of the union. A tree pattern con-
tains a union of patterns iff it contains each member of the union.

The set of interleavings of a set of patterns S may be exponentially
larger than S. Indeed, it was shown that the XP"' fragment is not
included in XP (i.e, the union of its interleavings cannot always be
reduced to one XP query by eliminating the redundant interleavings
contained in others) and that an intersection may only be translat-
able into a union of exponentially many tree patterns (see [6]).
View-based rewriting. Given a set of views V), defined by XP
queries over a document D, by Dy we denote the set of view doc-
uments {doc(v)|v € V}, in which the topmost element is labeled

with the view name. Given a query r, expressed in a rewrite lan-
guage Lr (e.g., XP or XP"™), over the view documents Dy, we
define unfold(r) as the Lz query obtained by replacing in r each
doc(v) /v with the definition of v.

Given an XP query ¢ and a finite set of XP views V over D, we
look for an alternative plan r in L, called a rewriting, that can be
used to answer q. We define rewritings as follows:

DEFINITION 2.6. For a given document D, an XP query q and
XP views V over D, a rewrite plan of q using V is a queryr € Lr
over Dy. If unfold(r) = q, then we also say r is a rewriting for q.
According to the definition above, a rewrite plan r in XP is of the
form doc(v;)/v;, doc(v;)/v;/p or doc(vj)/v;/ /p.

Similarly, according to the definition of XP"', a rewrite plan r in
XP" is of the form r = (M., wiz), for each u;; being of the form
doc(vj) /vj, doc(v;)/vj;/pi or doc(v;)/vj//pi. Note that such a
query r is a rewriting (i.e., equivalent to q) iff

e cach query unfold(u;;) contains ¢, and
e by Lemmas 2.1 and 2.2, ¢ contains all the tree patterns (in-
terleavings) in interleave({unfold(u;;)}).

Further notation. We introduce now some additional notation,
which will be first used in Section 7 and can be skipped until then.
A /-pattern is a tree pattern having only /-edges in the main
branch. A /-predicate (resp. //-predicate) is a predicate subtree
that is connected by a /-edge (resp. //-edge) to the main branch.

We will refer to main branch nodes of a pattern p by their rank
in the main branch, i.e. a value in the range 1 to [MB(p)|, for 1
corresponding to ROOT(p) and IMB(p)! corresponding to OUT(p).
For a rank k, by p(k) we denote any pattern isomorphic with the
subtree of p rooted at the main branch node of rank k. By node, (k)
we denote the node of rank k in the main branch of p.

A prefix p' of a tree pattern p is any tree pattern that can be
built from p by setting ROOT(p) as ROOT(p’), setting some node
n € MBN(p) as OUT(p’), and removing all the main branch nodes
descendants of n along with their predicates. A suffix p’ of a tree
pattern p is any subtree of p rooted at a node in MBN(p).

We associate a name to each predicate in a pattern p (in lexico-
graphic order). For a given predicate P, by np we denote the main
branch node that is parent of P in q. By rp we denote P’s position
on the main branch, i.e., the rank of the node np. By gp we denote
the pattern formed by the node n p, as ROOT(gp), the pattern of P,
and the edge connecting them. By rootp we denote the node of p
representing the root of P’s pattern.

We also refer to the fokens of tree pattern p: more specifically,
the main branch of p can be partitioned by its sub-sequences sep-
arated by //-edges, and each sub-pattern corresponding to such a
sub-sequence is called a foken of p. We can thus see a pattern p as
a sequence of tokens (i.e., /-patterns) p = t1//t2// ... //tk. We
call 1, the token starting with ROOT(p), the first token of p. The
token ¢, which ends by OUT(p), is called the last token of p.

3. QUERY SET SPECIFICATIONS

We consider sets of XPath queries encoded using a grammar-like
formalism, Query Set Specifications (QSS), similar to [19].
DEFINITION 3.1. A Query Set Specification (QSS) is a tuple
(F, X, P,S) where
o F'is the set of tree fragment names
e X, with X N F = (is the set of element names
e S € Fis the start tree fragment name
e P s a collection of expansion rules of the form
FO = if or f(X) = 1f
where f is a tree fragment name, tf is a tree fragment and X
denotes the output mark. Empty rules, of the form f — (no
tree fragment) are also allowed.

f is called the left-hand side (abbreviated as LHS) and
tf is called the right-hand side (RHS) of the rule.
A tree fragment is a labeled tree that may consist of the following:

e clement nodes, labeled with symbols from %,

o tree fragment nodes n labeled with symbols from I,

e edges either of child type, denoted by simple lines, or of de-
scendant type, denoted by double lines,

o the output mark X associated to one node (of either kind).

In any rule, in the RHS one unique node may have the output mark
(X) if and only if that rule has the output mark on the LHS.
As a notation convention, we serialize QSS tree fragments as XP
expressions with an output mark (X), if present.

QSS expansions. A finite expansion (in short expansion) of a
QSS P is any tree pattern p having a body obtained as follows:

e starting from a rule S(X) — ff,

e apply on ¢#f the following expansion step a finite number of
times until no more tree fragment names are left: for some
node n labeled by a tree fragment name f, pick a rule defin-
ing f (i.e., f is the LHS) and replace n by the RHS of that
rule; if n has the output mark, use only rules with LHS f(X).

e set the node having the output mark as OUT(p).

We say that p is generated by P. Note that the set of expansions
can be infinite if the QSS is recursive.

DEFINITION 3.2 (EXPRESSIBILITY AND SUPPORT). For an
XP query q, a QSS P, and a rewriting language Lr we say that

1. g is expressible by P iff q is equivalent to an expansion of P.

2. q is supported by P in Lr iff there is a finite set V of XP
queries generated by P, with corresponding view documents
Dy, such that there is a rewriting of q formulated in Lr that
navigates only in documents from Dy .

The definition of support given above depends on the language
L in which the rewritings can be expressed. If rewritings are
expressed in XP, then all one can do is navigate inside one view.
However, if the source exposes persistent node ids, it becomes pos-
sible to intersect of view results. In this case, one can choose Lr
to be XP"' and use several views in more complex rewritings.

EXAMPLE 3.1. The QSS P below generates queries returning
information about museums that will be visited on a guided trip or
as part of a tour in whose schedule there is also allotted time for
taking a walk. Trips that appear nested are secondary trips.

(P) fo(X) — doc(T)/ /vacation/ | f1(X)
[1(X) — wrip/ f1(X)
f1(X) — trip|guide]/ /museum(X)
f1(X) — trip/ /tour([schedule/ [walk] /museum(X)

It can be checked that v1 and vz introduced before are among
the expansions of P. When considering vi and v2 as user queries,
we can also say they are expressed by P.

Consider the following client query q2, asking for museums that
have temporary exhibitions and are visited in secondary trips:

q2: doc(T)//vacation//trip/trip[guide J//museum|[temp].

q2 is obviously not expressed by P(there is no temp element node in
‘P). However, it is enough to filter the result of vi by the predicate
[temp] to obtain the same result as qo, hence q2 is supported by P:

g2 = doc(v1)/v1/museum|temp)

Consider the query q1 of Example 1.1. One can check that q1
cannot be answered by navigating into a single view. Suppose now
that the views expose persistent node ids. By using Lemmas 2.1,
2.2, one can check that the support of qi is witnessed by v1 and va:

q1 = doc(v1)/v1 /museum N doc(va) /va /museum.
Intuitively, this holds because q1 is one of the interleavings of v1
and v and all other interleavings are contained in q;.

Normalization. For ease of presentation, we introduce first some
normalization steps on the QSS syntax. First, the set of tree frag-
ment names that have the output mark (denoted unary) is assumed
disjoint from those that do not have it (denoted boolean). Second,
we equivalently transform all rules such that, in any RHS, tree frag-
ments have depth at most 1, and the nodes of depth 1 can only be la-
beled by tree fragment names (i.e., a RHS is a tree fragment formed
by a root and possibly some tree fragment children, connected by
either /-edges or //-edges to the root). For that, we may introduce
additional tree fragment names. After normalization, for [being a
labelin X, c1,...,cn, d1, . . ., dm being two (possibly empty) lists
of tree fragment names and g being a tree fragment name as well,
any non-empty rule falls into one of the following cases:
O = Uea,-oen0,-//di0)s -5/ /dm ()]

fX) = X)er()s---en(),-//d1(), -5/ /dm ()]

fX) = dea(s---5en(),//d1(), -,/ /dm O]/9(X)

fX) = deOy-- 000,/ /dr ()05 / /dm 0]/ /9(X)

For any fragment name f and rule
FX) = Uei Qs ooen, //di (), -/ /dm ()] edge g(X),

by vy we denote any possible expansion of f via that rule. By
v} we denote any pattern that can be obtained from the rule by (i)
expanding g into the empty pattern, and (ii) expanding the ¢;s and
the g;s in some (any) possible way. Note that U} has only one main
branch node (the root).

EXAMPLE 3.2. The result of normalizing the QSS P from Ex-
ample 3.1 is the following specification:

fo(X) — doc(T)// f1(X), f1(X) — vacation// fa(X)
f2(X) — trip/ f2(X), f2(X) — wrip[f70]// f5(X)
f2(X) — wrip// f5(X), f3(X) — tour[f4()]/ f5(X)
fa() — schedule// fs(), f5(X) — museum(X)
f6() — walk, f7() — guide

4. EXPRESSIBILITY

We consider in this section the problem of expressibility: given a
query ¢ and a QSS P encoding a set of views, decide if there exists
a view v generated by P that is equivalent to q.

Conceptually, in order to test expressibility, one has to enumer-
ate the set of views and, for each view, check its equivalence to q.
This is obviously unfeasible in our setting, since the set of views is
potentially infinite. But the following observation delivers a naive
algorithm: only views that contain ¢ have to be considered, and
there are only finitely many distinct (w.r.t. isomorphism) candi-
dates since containment mapping into ¢ limits both the maximum
length of a path (by the maximal path length in ¢) and the set of
node labels (by the ones of ¢). Therefore, one can decide express-
ibility by enumerating all the candidate views and checking for
each candidate if (a) it is equivalent to g, and (b) it is indeed an
expansion of P. However, this solution has limited practical inter-
est beyond the fact that it shows decidability for our problem, since
it is non-elementary in time complexity.

Our main contribution here is to provide a PTIME decision pro-
cedure for expressibility. The intuition behind our algorithm is the
following. We do not enumerate expansions, and instead we group
views and view fragments (which are assembled by the QSS to
form a view) into equivalence classes w.r.t. their behavior in the
algorithm for checking equivalence with ¢. Since there are fewer
(only polynomially many) possible behaviors, manipulating such
equivalence classes instead of explicit views or fragments thereof
enables our PTIME solution.

As a compact representation for equivalence classes, we use de-
scriptors. Informally, we use two kinds of descriptors for views or
view fragments:

e mapping descriptors, which record if some expansion of a
tree fragment name maps into a subtree of ¢,
o equivalence descriptors, which record if some expansion of
a tree fragment name is equivalent to a subtree of q.
The rest of this section is organized as follows.

We first observe that equivalence for tree patterns is reducible to
equivalence for a different flavor of patterns, boolean tree patterns
([16]). These are tree patterns of arity O (no output node) that test if
evaluating a pattern over an XML document yields an empty result
or not. Following this observation, for presentation simplicity, we
solve expressibility for boolean tree patterns (Section 4.1).

Then, in Section 4.2, we show how expressibility for tree patterns
(arity 1) can be reduced to expressibility for boolean tree patters.

4.1 Expressibility for boolean tree patterns

We study in this section expressibility for boolean tree patterns.
Their semantics, based on the same notion of embedding, can be
easily adapted from the case of arity 1: the result of applying a
boolean tree pattern p to an XML tree ¢ is either the empty set ()
or the set {ROOT(¢)}. In the first case, we say that the result is
false, in the latter, we say it is frue. Containment and equivalence
for boolean tree patterns are also based on mappings, with the only
difference that there is no output node.

In the remainder of this section all patterns (queries and views)
are boolean tree patterns. A QSS will have either rules of the form
f() - 1[01(), s ,Cn()7 //dl()a RS //dm()] or empty rules.

In order to clarify the role of descriptors and the equivalence
classes they might stand for, let us first consider how one can test
equivalence between a query g and view v. The classic approach for
checking this is dynamic programming, bottom-up, using boolean
matrices M that bookkeep mappings in both directions. M (n1,n2)
is true if the subtree rooted at 1 contains the one rooted at nz.

We prefer instead a variation on this approach, which will enable
our PTIME solution. Since wildcard is not used, equivalence be-
tween a query ¢ and a view v translates into g and v being isomor-
phic modulo minimization. Assuming that g is already minimized,
this means that v has to be g plus some redundant branches, i.e.

e ¢ is isomorphic to (part of) v, i.e. there is a containment
mapping 1) from g into v, and the inverse ¢! is a partial
mapping from v into g,

e the partial mapping ¢» ! can be completed to a containment
mapping from v into ¢

In the above, no two nodes of ¢ can have the same image under
1. In other words, some nodes of v have an “equivalence role”,
and there must be one such node corresponding to each node of ¢,
while the remaining nodes are redundant and it suffices to have only
a “mapping role”. This suggests that it is enough to build bottom-
up only one matrix M, for containment from subtrees of v into
subtrees of g, if in in parallel we bookkeep in another matrix details
about equivalence between subtrees. A field in the equivalence ma-
trix, E(n1,n2), for ny € NODES(v), nz € NODES(g), indicates
that the subtree v(n1) is equivalent with the subtree g(n2).

With these two matrices, checking v = ¢ by a bottom-up pass is
straightforward, by applying the following steps until fix-point:

Assuming that M (n1,n2) and E(n1, n2) are frue for any leaf nodes
n1 € NODES(v), n2 € NODES(g) having the same label,
A) For each pair (n1,n2), n1 € NODES(v), na € NODES(q)
having the same label set M (n1,n2) to true if:
1. for each /-child n of n; there exists a /-child n’ of na s.t.
M(n,n’) = true,
2. for each //-child n of n there exists a descendant n’ of na
s.t. M(n,n’) = true.

B) Similarly, for each pair of nodes (n1,n2), n1 € NODES(v)
n2 € NODES(q) set E(n1,n2) and M (n1,n2) to true if:

1. for each /-child n of nsy there exists a /-child n’ of ni s.t.
E(n,n') = true,

2. for each //-child n of ns there exists a descendant n” of n;
s.t. E(n,n’) = true,

3. for each /-child n of n; that was not referred to at step (1),
there exists a /-child n’ of ns s.t. M(n,n’) = true,

4. for each //-child n of n; that was not referred to at step (2),
there exists a descendant n’ of na s.t. M (n,n’) = true.

We are now ready to present our PTIME algorithm for express-
ibility. We will adapt the above approach for testing equivalence,
which builds incrementally (bottom-up, one level at a time) the
mapping and equivalence details, to the setting when views are
generated by a QSS by expanding fragment names. We will use
mapping and equivalence descriptors to record for each tree frag-
ment name if some of its expansions witnesses equivalence with or
existence of mapping into a part of the query. More precisely,

DEFINITION 4.1. For a fragment name f of a QSS P, a map-
ping descriptor is a tuple map(f,n), where n € NODES(q), indi-
cating that f has an expansion vy in ‘P that contains the subtree of
q rooted at node n.

An equivalence descriptor is a tuple equiv(f,n), where n €
NODES(q), indicating that f has an expansion vy in P that is
equivalent with the subtree of q rooted at node n.

Note that a descriptor equiv(f, n) will also tell us where the expan-
sion it stands for maps (or not) in q. In other words, once we have
an equivalence descriptor for a fragment name expansion, we can
infer all mapping descriptors for it.

EXAMPLE 4.1. Suppose that the data source publishes a modi-
fied version of the OQSS from Example 3.2, enforcing the possibility

of taking a walk on trips that contain tours. This translates into
replacing the last rule for fo with the rule (unnormalized):

fo(X) — tripl.// f6 0]/ / f3(X)-

A client interface generates and sends a query identical to v2 of
Example 2.1 to this source.

The proof of expressibility will consist in finding an equivalence
descriptor for the root of the tree pattern. To infer the existence
of this descriptor, we compute descriptors going bottom up in the
pattern and in the normalized QSS from Example 3.2.

We start with the leaves, for which we find di1 = equiv(fs, nm2)
and dy = equiv(fe,nw1), d5 = map(fe,nw1). Using da, we
can infer the descriptor ds = equiv(fa, ns1), which, together with
the descriptor for n.,1, enables a descriptor dy = equiv(fs,nto1).
Since nw1 is a descendant of nir3, we can use the mapping de-
scriptor d4 and the equivalence descriptor d4 to build a descriptor
equiv(fa,ners). This in turn enables a descriptor equiv(f1,ny2),
which leads to inferring a descriptor for the root: equiv(fo,na2).

Thus we can check that expressibility holds, even if v is not
isomorphic to any expansion of the QSS (since it has no predicate
on the node labeled with trip).

Our algorithm for testing expressibility will mimic the two steps
(A) and (B) above, applying them instead on QSS rules and frag-
ment nodes via descriptors. Given descriptors for the fragment
names in the RHS, we will infer new descriptors for the fragment
name on the LHS. The only notable difference with respect to the
approach for checking equivalence is for steps (B.1) and (B.2). For
a fragment name f and node n € NODES(q), fragment names chil-
dren of f in a rule may have several equiv descriptors, referring to
different nodes of q. We must choose one among them in a way that

does not preclude the inference of a descriptor equiv(f, n), when
one exists. For that, we will use a function tf-cover, which takes as
input a set of nodes NN, a set of tree fragment names C' and an array
L such that for every n € N, L(n) C C. It returns true if there
is a way to pick a distinct tree fragment name from each L(n), for
all n € N. This function is based on a max-flow computation and
its running time is O((|C| + |N|) * |C|). We refer the reader to
the extended version of this paper [9], Appendix A, for the detailed
definition of tf-cover.

The computation of descriptors (algorithm findDescExpr) starts
with productions without tree fragment nodes on the RHS and con-
tinues inferring descriptors until a fixed point is reached. It runs in
polynomial time because (a) there are only polynomially many de-
scriptors (their number is proportional to the size of the QSS multi-
plied by the size of the query), and (b) each incremental, bottom-up
step for inferring a new descriptor runs in polynomial time.
Algorithm findDescExpr(g, P):

A. Start with an empty set of descriptors R.

B. For each rule f() — (), node n € NODES(q), add to R the
descriptor map(f,n).

C. For each rule f() — [(i.e., the RHS has only one node) and
each node n € NODES(q) labeled by [, add to R the descriptors
equiv(f,n) and map(f,n).

Repeat until R unchanged:

D. For each rule f() — l[c1(), ..., ¢cn(),.//d1(),- -, .//dm ()],
add to R a descriptor map(f,n) if n is labeled by [and

e for each fragment name ¢; there exists a descriptor
map(c;,n') s.t. n’ is a /-child of n,

o for each fragment name d; there exists a descriptor
map(d;,n') s.t. n is a descendant of n.

E. foreachrule f() — {[c1(), ..., en(),.//d1()s.--,.//dm()]:
add to R the descriptors equiv(f,n) and map(f,n) if

1. tf-cover(N1,C, L) returns frue, where N; is the set of /-
children of n, C C {ci, ..., cn} is the set of fragment names
that have a descriptor equiv(c;,n’) forn’ € N; and, for each
n' € N1, L(n') C C is the set of fragments names that have
a descriptor equiv(c;,n’).

2. tf-cover(N2, D, L) returns frue, where N> is the set of //-
children of n, D C {di,...,dmn} is the set of fragment
names that have a descriptor equiv(d;,n’) for n’ € N and,
for each n’ € Na, L(n’) C D is the set of fragments names
that have a descriptor equiv(d;,n’).

3. for each fragment name ¢; ¢ C, there exists a descriptor
map(c;,n') s.t. n’ is a /-child of n,
4. for each fragment name d; ¢ D there exists a descriptor
map(d;,n') s.t. n' is a descendant of n.
THEOREM 4.1. A boolean tree pattern q is expressed by a QSS
P iff findDescExpr(q, P) outputs a descriptor equiv(S,RO0T(q)),
for S being the start fragment name of P. findDescExpr runs in
polynomial time in the size of the query and of the QSS.

Remark. The assumption that the input query ¢ is minimized -
which implies that no two nodes of ¢ can have the same image un-
der the v function described above - is important for our algorithm.
It allows us to avoid a bottom-up approach that might also have to
bookkeep mappings from the query into views. This would require
descriptors that pair a set of subtrees of ¢ with an expansion, lead-
ing to an exponentially large space for descriptors.

4.2 Expressibility for tree patterns
We now consider expressibility for standard tree pattern queries
(patterns with an output node).

It is well known from previous literature that problems such as
tree pattern containment and equivalence reduce to containment,
respectively equivalence, for boolean patterns. This is based on the
following translation: let s be a new label (from selection), for a
tree pattern p let po denote the boolean tree pattern obtained from
p by (i) adding a /-child labeled s below the output node of p, and
(i1) removing the output mark. From [16], for two tree patterns p
and p’, we have that p = p’ iff po = py.

A similar transformation can be applied for expressibility. Given
a QSS P, let Py be the QSS obtained from P by (i) plugging a /-
child labeled s below each node having an explicit label and the
output mark, and (ii) making all rules and tree fragment names
boolean by removing their output mark. Py generates boolean tree
patterns and, since P’s sets of unary and boolean tree fragment
names were assumed disjoint, Pp’s expansions have exactly one
s-labeled node. We can prove the following:

THEOREM 4.2. A tree pattern query q is expressed by a QSS P
iff the boolean tree pattern qq is expressed by the QSS Po.

5. SUPPORT

For the problem of support, the fact whether the source enables
persistent node ids (that are then exposed in query results) or not
has a significant impact on the rewrite plans one can build. In both
settings, with or without node ids, rewriting under an explicitly
listed set of views has been studied in previous literature. We will
now revisit them for support.

In the first setting, the identity of the nodes forming the result
of a query is not exposed in query results. By consequence, the
only possible rewrite plans consist in accessing a view result and
maybe navigating inside it (via query compensation). This setting
was considered in [22], and the rewriting problem was shown to be
in PTIME for XP. We study support in the absence of ids in Sec-
tion 5.1. Our main result is that support reduces to expressibility,
which allows us to reuse the PTIME algorithm given in Section 4.

In the second setting, for which rewriting under an explicit set of
views was studied in [7], data sources expose persistent node ids.
This enables more complex rewrite plans, in which the intersection
of view results plays a crucial role. We revisit this setting, for the
support problem, in Section 6. As our general approach, we will
apply the same kind of reasoning that was used for expressibility.
We will group views into equivalence classes w.r.t. crucial tests
for support and we will manipulate classes (encoded as view de-
scriptors) instead of explicit views. This will enable us to avoid the
enumeration of a potentially large space of views and rewrite plans.

5.1 Support in the absence of ids

When persistent identifiers are not exposed, a rewrite plan con-
sist in accessing a view’s result and maybe navigating inside it, and
this navigation is called compensation. This is why expressibil-
ity and support in the absence of ids remain strongly related, as
support simply amounts to finding a candidate view v which, via
compensation, becomes equivalent with the input query.

Let us first introduce as notation for this operation the compensate
function, which performs the concatenation operation from [22], by
copying extra navigation from the query into the rewrite plan. For
a view v € XP, an input query ¢, and a main branch rank £ in
g, compensate(v, g, k) returns the query obtained by deleting the
first symbol from = =xparh(q(k)) and concatenating the rest to v.
For instance, the result of compensating v = a/b with x = b[c][d]/e
is the concatenation of a/b and [c][d]/e, i.e. a/b[c][d]/e.

We can reformulate the result from previous literature as follows:

THEOREM 5.1 ([22]). Given a set of explicit views V, a query
q can be answered by V if and only if there exists a view v and main
branch rank k in q such that compensate(v, ¢, k) = q.

Going now to views encoded as QSS expansions, we reduce the
problem of support to expressibility, following the idea that support
amounts to expressibility by a certain “compensated” specification.

From a given QSS P, we will build a new QSS that generates,
besides P’s expansions, all their possible compensated versions
w.r.t. g. More precisely, given an input query ¢ and a QSS P,

let comp(P, q) denote the QSS obtained from P as follows:
For any rule yielding the output node, i.e., of the form

FX) = UX)[e1(),---5en0),-//dr () -+, / /dm ()],

for each rank k in ¢, add a new rule, of the form (with a little
departure from the normalized QSS syntax):

f(X) - compensate(l[q(), A c7l()7 //dl()v et '//d””()]v q, k)
We can prove the following:

THEOREM 5.2. A query q is supported by a QSS P if and only
if it is expressed by the QSS comp(P, q).

EXAMPLE 5.1. An example of support in the absence of persis-
tent ids has already been given in Example 3.1: g2 can be rewritten
by compensating vi with a temp predicate.

6. SUPPORT IN THE PRESENCE OF IDS
We consider in this section the problems of support in the pres-
ence of node ids, denoted in the following id-based support. First,
deciding the existence of a rewriting for an XP query under an ex-
plicit set of XP views becomes coNP-hard, as it was shown in [7].

THEOREM 6.1 ([7]). Testing if an XP query can be rewritten
using explicitly listed views, in the presence of ids, is coNP-hard.

As a corollary, it follows immediately that the same lower-bound
holds for id-based support.

COROLLARY 6.1. Id-based support for XP is coNP-hard.

Since our focus is on efficient algorithms for support, we next in-
vestigate the tightest restrictions for tractability. We consider the
fragment of extended skeletons (XPes), for which the rewriting prob-
lem was shown tractable in [7]. The restrictions imposed by the
XP., fragment on the input query were shown to be necessary for
tractability, as their relaxation leads to coNP-hardness. It is there-
fore natural to ask whether the support problem is also tractable for
input queries from this fragment. Note that one cannot do better,
i.e., obtain a decision procedure for queries outside this fragment,
since the problem of support subsumes the rewriting problem.

The remainder of this paper is thus dedicated to studying support
for extended skeletons, focusing on efficient (PTIME) solutions
that are sound in general (i.e., for any XP input query) and complete
under fairly general conditions, and this without restricting the lan-
guage of views (which remains XP). We show that id-based support
exhibits a complexity dichotomy: the sub-fragment of XP., repre-
senting queries that have at least one //-edge in the main branch,
denoted hereafter multi-token, continues to be in PTIME (Theorem
7.5), but the complementary sub-fragment that represents queries
with only /-edges in the main branch, denoted hereafter single-
token, interestingly, is NP-hard (see Theorem 8.1).

The fragment of multi-token queries is particularly useful in prac-
tice since often, for reasons such as conciseness or generality in the
presence of schema heterogeneity, one does not want to write all the
navigation steps on a document. After defining the fragment of ex-
tended skeletons, we consider in Section 7 support for multi-token
queries and, in Section 8, support for single-token queries.

Extended skeletons (XP.;). Intuitively, this fragment limits the
use of //-edges in predicates, in a way which can be summarized as
follows: a token ¢ of a pattern p will not have predicates that may
become redundant because of descendants of ¢ and their respective
predicates in some interleaving p might be involved in.

Let us first introduce some additional terminology. By a //-sub-
predicate st we denote a predicate subtree whose root is connected
by a //-edge to a linear /-path [that comes from the main branch
node n to which st is associated (as in n[...[.//st]]). [is called
the incoming /-path of st and can be empty.

Extended skeletons are patterns having the following property:
for any main branch node n and //-subpredicate st of n, there is
no mapping (in either direction) between the code of the incoming
/-path of st and the one of the /-path following n in the main branch
(where the empty code is assumed to map in any code).

For instance, expressions such as a[b//c]/d//e or a[b//c//d]/e//d are
in XP., while a[b//c]/b//d, a[b//c]/d, a[.//b)/c//d or a[.//b)//c are not.
XP., does not restrict in any way the usage of //-edges in the main
branch or the usage of predicates with /-edges only.

7. MULTI-TOKEN QUERIES

We consider in this section id-based support for XP., multi-
token queries. For presentation simplicity, we first limit the dis-
cussion to rewrite plans that are intersections of views (no com-
pensation before the intersection step). The extension to general
XP" plans, i.e., intersections of (possibly compensated) views, is
detailed in Section 7.4.

As in the case of expressibility, we think of views as grouped
into equivalence classes w.r.t. to crucial tests for support. We ma-
nipulate such classes, which are represented by view descriptors,
instead of explicit views, avoiding the enumeration of a potentially
large space of views and rewrite plans. Given that a QSS constructs
views by putting together fragments, we have to construct our view
descriptors from fragment descriptors, which represent equivalence
classes for fragment expansions.

This section is organized as follows. In order to clarify the role
of view descriptors and the equivalence classes they stand for, we
first revisit in Section 7.1 the PTIME algorithm of [7] for deciding
if an XP., multi-token query g can be rewritten by an intersection
of explicit XP views V already known to contain g. That algo-
rithm was based on applying DAG-pattern rewrite steps towards a
tree pattern and then checking equivalence with q. We reformulate
it into an algorithm (testEquiv) that applies individual tests on the
view definitions instead. Then, in Section 7.2, we introduce equiv-
alence classes for views w.r.t. the tests of testEquiv, and view de-
scriptors as a means to represent such classes. We reformulate the
testEquiv algorithm into a new algorithm, testEquivDesc, that runs
on view descriptors instead of explicit view definitions. Finally, in
Section 7.3 we give a PTIME sound and complete algorithm for
computing descriptors for the expansions of a QSS.

7.1 Rewriting with an explicit set of views

Let the input multi-token query g be of the form ¢ = ft//m//lt
where ft denotes the first token, [t denotes the last token and m de-
notes the intermediary part (m may be empty). LetV = {v1,...,vx}
denote a set of views such that ¢ C v; for each view v;. Let each
view v; be of the form v; = ft;//mi//lt;.

Notation. Let ft¢y denote the query obtained by “combining”
the first tokens ft1,..., ft, as follows: start by coalescing the
roots, then continue coalescing top-down any pair of main branch
nodes that have the same parent and label. This process yields a tree
because each first token ft; maps in the first token of ¢, ft, hence
each MB(ft;) is a prefix of MB(ft). Let Ity denote the query
obtained by “combining” lt1, . .., lt, similarly: start by coalescing
the output nodes, then continue by coalescing bottom-up any pair
of main branch nodes that have a common child and the same label.

EXAMPLE 7.1. For instance, for two views V = {v',v"'},

S
Il

doc(T) /vacation/trip|guide] | /tour /museum,
v = doc(T)/vacation|.//walk]/ |museum|gallery],

the result of combining their first tokens, respectively last tokens is

ftv doc(T') /vacation|./ /walk] /trip|guide],

Ity = tour/museum|gallery].
Given MB(ft), MB(It), if there exists a minimal (non-empty) pre-
fix of MB([t) that is isomorphic with a suffix of MB(ft), let MB(It)’
denote the pattern obtained from MB(It) by cutting out this prefix.
Then, let [, denote the linear pattern MB(ft)/MB(it)'. If I, is un-
defined by the above, by convention it is the empty pattern.

EXAMPLE 7.2. For instance, for the query
q = doc(T) /vacation|./ /walk] [tour/ [tour | museum,

lq is well-defined, as g = doc(T') /vacation/tour/museum.

Given MB(ft) and MB(m), if there exists a minimal (non-empty)
suffix of MB(ft) that is isomorphic with a prefix of MB(m), let
MB(ft),,, denote the pattern obtained from MB(ft) by cutting out
this suffix. If MB(ft)__ is undefined by the above, by convention it
is the empty pattern. Similarly, given MB(/t) and MB(m), if there
exists a minimal (non-empty) prefix of MB(lt) that is isomorphic
with a suffix of MB(m), let MB(lt), denote the pattern obtained
from MB(It) by cutting out this prefix. If MB(It), is undefined by
the above, by convention it is the empty pattern.
We are now ready to present our reformulation of the PTIME algo-
rithm of [7], which will test that NV C q. By Lemma 2.2, ¢ must
contain each possible interleaving ¢ of the set V or, in other words,
for each ¢ € interleave(V) the following should hold:
o the first token of g can be mapped in the first token of i s.t.
the image of ROOT(q) is ROOT (%),
o the last token of ¢ can be mapped in the last token of ¢ s.t.
the image of OUT(q) is OUT(3),
o the images of these two tokens in ¢ are disjoint,
o the intermediary part m (if non-empty) of ¢ can be mapped
somewhere between the two images in 4.

Algorithm 1 testEquiv(V, q)

1: leteach v; = ft;//m;//lt;, let g = ft//m//lt

2: compute the patterns fty and [ty

3: compute the pattern [,

4: compute the patterns MB(ft), and MB(lt),

5: if fty = ft and Ity = It then

6: if m is empty then for each v; € V

7: if MB(v;) does not map into [, then output true
8: else (m non-empty) for each v; € V

9: if v; can be seen as prefix; //m’ [/suffix; s.t.
10: m =m
11: prefix; root-maps into ft, suffix; output-maps into [t
12: MB (prefix;) does not root-map into MB(f1),,
13: MB (suffix;) does not output-map into MB(lt), .
14: then output true

We can prove the following:

THEOREM 7.1. For a multi-token XP query q and a set of XP
views V, testEquiv is a sound PTIME procedure for testing ¢ = NV.

For XP., multi-token queries, we can also prove completeness:

THEOREM 7.2. For an XP.s multi-token query q and a set of
XP views V), testEquiv is complete for testing ¢ = NV.

7.2 View descriptors

We detail now how one can perform the tests of algorithm testEquiv

even when abstracting away from the view definitions. The key
idea is that one does not need the complete definitions but only
the details used in these tests. With respect to these details, views
can be seen as grouped into equivalence classes and views from
the same class will be equally useful in the execution of the al-
gorithm. This idea will be exploited by our view descriptors. We

then reformulate testEquiv in terms of view descriptors in algorithm
testEquivDesc. More precisely, assuming we are dealing with ex-
pansions of a QSS P with start fragment name .S,

For line 5 of testEquiv. For the part fty, = ft: a first-token de-
scriptor will be a tuple ft(S, p), where p denotes any pattern that
can be built from a prefix of ¢’s first token ft by removing all its
predicates, except eventually for one. Such a descriptor indicates
that there exists an expansion v s.t. ¢ = v and v’s first token is of
the form p, plus eventually other predicates (ignored in the descrip-
tor). These descriptors represent partitions (equivalence classes) of
the space of views containing ¢ w.r.t. their first tokens and the pred-
icates on them. Each view will belong to at least one such class, but
may be belong to several (for different choices of predicates).

For the part Ity = [t: a last-token descriptor is a tuple 1t(S, p),
where p denotes any pattern that can be built from a suffix of ¢’s
last token [t by removing all its predicates, except eventually for
one. Such a descriptor says that there is an expansion v s.t. ¢ C v
and v’s last token is of the form p, plus eventually other predicates.

It is easy to see that the ft and 1t view descriptors allow us to
compute the patterns fty and lty, provided they verify fty = ft
and [ty = lt, without requiring the actual first and last tokens. The
domain of these descriptors is quadratic in the size of q.

For line 7 of testEquiv. An [-descriptor is a tuple 1(S), indicating
that there exists an expansion v verifying ¢ C v and Iy [Z MB(v).
(This type of descriptor is an alias for the condition of line 7, denot-
ing a partition of the space of views in two complementary classes.)

For lines 9-13 of testEquiv. An m-descriptor is a tuple m(S),
indicating that there exists an expansion v verifying ¢ C v and all
the conditions of lines 9-13.

We now reformulate testEquiv into an algorithm that runs on a set
of view descriptors D, instead of the explicit views V to which they
correspond. Unsurprisingly, the new algorithm follows closely the
steps of testEquiv, since descriptors are tailored to its various tests.

Algorithm 2 testEquivDesc(D, q)

: from all descriptors ft(S, p) € D compute the pattern ft,,
: from all descriptors 1t(S, p) € D compute the pattern Ity
if Ity = fr and Ity = ft then
if m is empty then
if there exists a descriptor 1(S) € D then output true
else if there exists a descriptor m(S) € D then output true

AN

THEOREM 7.3. For an XP query q, a finite set of XP views V
and their corresponding descriptors D, testEquiv(q,)V) outputs true
if and only if testEquivDesc(q, D) does so.

EXAMPLE 7.3. For the query qi in Example 1.1, ft = doc(T),
m = vacation//trip/trip[guide], It = tour[schedule//walk]/museum.

For the QSS P from Example 3.1 and its two expansions vi
and va, v1 can be represented by the descriptors ft(S, doc(T)),
1t(S, museum), m(S) too since vy has the form pref, / /m/ /suff;,
with pref, = doc(T) and suff;, = museum. Similarly, vz is rep-
resented by tt(S, doc(T)) and 1t (S, tour[schedule//walk [/museum).

Running on these descriptors, testEquivDesc will confirm that
there exists an equivalent rewriting for q1 using {vi,v2}.

7.3 View descriptors from a QSS

We present in this section a bottom-up algorithm (findDescSupp)
that runs on a QSS P and a multi-token query g, computing the
view descriptors (w.r.t. q) for the expansions of . Our algorithm
is sound and complete, running in polynomial time. Via Theo-
rems 7.3 and 7.1, findDescSupp delivers a sound PTIME algorithm
for support when the input queries are multi-token from XP. More-
over, via Theorems 7.3 and 7.2, it delivers a PTIME decision proce-
dure for support when the input queries are multi-token from XP,s.

We will describe findDescSupp by separate subroutines, one for
each of the four kinds of view descriptors (first-token descriptors in
Section 7.3.1, last-token descriptors in Section 7.3.2, I-descriptors
in Section 7.3.3 and m-descriptors in Section 7.3.4).

Since a QSS constructs views by putting together fragments,
we construct our view descriptors via fragment descriptors, which
represent equivalence classes for fragment expansions. Intuitively,
fragment descriptors bookkeep in the bottom-up procedure certain
partial details, on the expansions of fragment names, details that
allow us to test incrementally the various conditions of testEquiv.

To better clarify our choices for fragment descriptors, let us first
detail how the tests of testEquiv can be done in incremental manner.

Mapping and equivalence tests are naturally done bottom-up,
one node at time, and this translates easily into procedures that run
on the QSS and rely on fragment descriptors. We already presented
in Section 4 how one can test in this way the existence of con-
tainment or equivalence with g or parts thereof. We will handle
the tests of lines 5, 10 and 11 in testEquiv similarly, by descriptors
which record mapping or equivalence details.

For line 7, the non-existence of a containment mapping between
linear paths needs a slightly different approach. One can test incre-
mentally if a linear path [, is contained in a linear path l2 as follows:

o test if the last token of I2 maps in the last token of /1, such
that OUT(I) is the image of OUT(l2). Let k denote the start
rank (the upmost node) of this mapping image.

e bottom-up, for each intermediary token ¢ of /2, map ¢ in the
lowest possible' available (i.e. above k) part of I;. If no
such mapping exists, we can conclude the non-existence of a
containment mapping from [in ;. At each step, bookkeep
as k the start rank of that image of ¢ in [;.

e finally, if the previous set of steps did not yield a negative
answer already, a containment mapping of l» in /; does not
exist if and only if the first token of /5 cannot be mapped in
Iy s.t. (1) ROOT(ly) is the image of ROOT(I2), and (ii) the
image of this first token of l2 is above the current rank k.

A similar incremental approach, advancing one token at a time, can
be used for the tests in lines 12 and 13, as we are dealing again with
linear patterns. More precisely, a bottom-up approach as above can
be used in the case of MB(suﬁxj) and, symmetrically, a top-down
one can be used in the case of MB(prefix;).

Note that the approach above advances one token at a time, and
not one node at a time (which would have fitted nicely with how
views are built in a QSS). This is because we need to check that
all possible partial mappings fail sooner or later to go through to a
full containment mapping (for line 7), root-mapping (for line 12),
respectively output-mapping (for line 13). And the only way to
ensure that no mapping opportunity is prematurely discarded is to
settle on a mapping image in a descriptor, the lowest possible one,
only when a token is complete (i.e., its incoming edge is //).

We are now ready to detail how view descriptors are computed in
the algorithm findDescSupp. We start by assuming that all equiv
and map descriptors are pre-computed for the boolean fragment
names (as described in Section 4). In the same style, we com-
pute containment and equivalence descriptors for unary fragment
names (i.e. those with an output mark). More precisely, a descrip-
tor contain(f,n), for n € MBN(q), (resp. equiv(f,n)) denotes
that some expansion vy contains (resp. is equivalent to) the suffix
of g rooted at the main branch node n. Other types of fragment
descriptors will be introduced next. Examples illustrating the step-
by-step computation of descriptors are given in [9], Appendix G.

'As we handle one token at a time, choosing the lowest available
mapping image preserves all opportunities to find containment.

7.3.1 Computing first-token descriptors

For this part, we will use prefix descriptors for fragment names:

DEFINITION 7.1. Syntax: For a unary fragment name f, a pre-
fix descriptor is a tuple pref(f, p, k), for k being a rank in the range
110 [MB(ft)| and p denoting any pattern that can be obtained from
ft by keeping (a) a substring of the main branch, starting from rank
k, and (b) eventually, one predicate on that substring.

Semantics: There exists an expansion vy s.t. (a) vy has a con-
tainment mapping in the subtree of q rooted at the ft node of rank
k, and (b) vy has a first token which is of the form p plus additional
predicates, if any (they are ignored in the descriptor).

Step 1 of findDescSupp(g, P). Iterate the following steps:

L. For f(X) = ler(), - .. cn(), -/ /di(), -,/ /dm()]//9(X),
add a prefix descriptor pref(f,1,k) for each rank k, 1 <
k < [MB(ft)], s.t. nodeq(k) has label I, for which we can
infer that vy contains the pattern ¢(k), by the following tests:

e for each fragment name c; there exists a descriptor
map(ci, n), for n being a /-child of nodey (k),
e for each fragment name d; there exists a descriptor
map(d;,n), for n being a descendant of nodeg (k)
e there exists a containment descriptor contain(g, n) for
n being any main branch node of rank ¥’ > k in q.
Moreover, if for a /-predicate (resp. //-predicate) P on
nodeq (k) we have a descriptor equiv(c;, rootp) (resp.
equiv(d;,rootp)), add the descriptor pref (f, 1[P], k).

2. For £(X) = 1[es()s- - n()s o/ /s (), / [dm O]/ 9(X),
given a prefix descriptor pref(g,p’, k'), add a prefix de-
scriptor pref (f,1/p’, k), for k = k' — 1, if nodeq (k) has
label [and we can infer that vy contains ¢(k), as follows:

o for each fragment name c; there exists a descriptor
map(c;, n), for n being a /-child of node, (k),
e for each fragment name d; there exists a descriptor
map(d;,n), for n being a descendant of nodeq (k)
Moreover, if for a /-predicate (resp. //-predicate) P on
nodeq (k) we have a descriptor equiv(c;, rootp) (resp.
equiv(d;, rootp)), add also pref(f,1[P]/MB(p), k).

3. Whenever a descriptor pref{f,p,1) is obtained, for f = S, add
ft(S, p) to the set of view descriptors.

7.3.2 Computing last-token descriptors

We use for this part two kinds of fragment descriptors: suffix
descriptors and full-suffix descriptors.

DEFINITION 7.2. Syntax: For a unary fragment name f, a suf-
fix descriptor is a tuple suff{f, p), for p denoting any pattern that
can be obtained from It by keeping (a) a suffix of its main branch,
and (b) eventually, one predicate on that suffix.

Semantics: This descriptor says that (a) vy is a single-token
query, of the form p plus maybe other predicates (ignored by the
descriptor), and (b) vy contains the subtree of lt rooted at the main
branch node of rank IMB(It)| — [MB(p)| + 1.

DEFINITION 7.3. Syntax: For a unary fragment name f, a full-
suffix descriptor is a tuple fsuff(f, p, k), for k denoting a rank in q,
and p being a pattern as defined in Definition 7.2 above.

Semantics: There exists an expansion vy s.t. (a) vy has a last
token of the form p plus other predicates (if any), and (b) vy maps
in the subtree of q rooted at the main branch node of rank k.

Step 2 of findDescSupp(q, P):

We compute suffix descriptors similarly to the prefix ones. From
them, full-suffix descriptors are then computed bottom-up, by sim-
ple containment mapping checks. If a descriptor fsuff{f, p, 1) is ob-
tained, for f = S, we add 1t(S, p) to the set of view descriptors.
(For the explicit steps we refer the reader to [9], Appendix B.1.)

7.3.3 Computing I-descriptors

We have seen in Section 7.3 an incremental procedure that tests

the non-existence of a containment mapping for linear patterns bottom-

up, one token at a time. To run a similar test directly on the QSS
(whose expansions are revealed one node at a time), we need ad-
ditional bookkeeping, allowing us to chose mapping images one
token at a time. For this, we record at each step in the bottom-
up process the following: (i) the current first token of vy, (ii) the
lowest possible mapping image for the rest of vy (except its first to-
ken). This allows us to settle on the lowest possible mapping (in a
descriptor) only when the token is complete (we have its incoming
edge and it is a //-edge). To this end, we use partial I-descriptors.

DEFINITION 7.4. Syntax: For a unary fragment name f, a par-
tial I-descriptor is a tuple pl[f, ki1, (k2, p)], where k1 is a rank in g,
ko is a rank in lq and p is any substring of l,.

Semantics: There exists an expansion vy s.t. (a) vy contains the
subtree of q rooted at the main branch node of rank k1, (b) the main
branch of the first token of vy is p, and (c) kg is the start (upmost
rank) of the lowest possible output-mapping image of the rest of the
main branch of vy (i.e., except the first token, represented by p) into
lq. By convention, this rank is |lg| + 1 when vy has only one token
(the one described by p) and is O when there is no such mapping.

Step 3 of findDescSupp(q, P). Iterate the following steps:

1. Forrules f(X) — I(X)[e1(), - --
if we can infer that vy contains the subtree of g rooted at
OUT(q), add a descriptor pl[f, [MB(q)[, (|lq| + 1,1)]

2. For f(X) —1[...]/g(X), given a descriptor pl[g, k1, (k3,p")],

if we can infer that v¢ contains the pattern g(k] — 1):

e if f is not the start fragment name, add the descriptor

e otherwise, if there is no mapping of I/p’ into [, whose
image starts at ROOT(I,) and ends above k5, add the
descriptor 1(S) to the set of view descriptors.

3. For f(X) — 1[...]//g(X), descriptor pl[g, k1, (k3,p")],
for each rank k1, 1 < k1 < ki, s.t. we can infer that
e if f is not the start fragment name, find the lowest rank
ko, s.t. p’ has a mapping into I, whose image starts at
ko and ends above kj, where if k5 = |l4] + 1 above
means at k5 — 1; if no such value exists, set ko to 0.
Output the descriptor pl|f, k1, (kz,1)].
e otherwise, if there is no mapping of [//p’ into I, whose
image starts at ROOT(l,) and ends above kj, add the
descriptor 1(S) to the set of view descriptors.

7.3.4 Computing m-descriptors

For this part, we need to check that some view v; can be seen as
being of the form prefix; //m’/ /suffix;, s. t. m" = m and

e prefix; root-maps into ft but MB (preﬁxj) cannot root-map
into MB(ft), .,

e suffix; output-maps into /¢, but MB(suffix;) cannot output-
map into MB(lt), .

Each of these aspects of an expansion is captured by a different
type of fragment descriptor. We will output a view descriptor m(S)
when a rule f(X) — 1[...]//g(X) is available and when (via
fragment descriptors) we have that:

e g has an expansion v, that gives us the part m’/ /suffix,

o there exist views generated via that rule and vy, s.t. the part
above v, (in other words, the view obtained by expanding g
in the empty pattern) has the properties for prefix;.

We can use separate subroutines for each of these two items, and
then the overall step above will combine their individual results.

For the suffix; part, we use below m-descriptors:

cn()s-//dr(); -5/ [dm ()]

DEFINITION 7.5. Syntax: For a unary fragment name f, a be-
low m-descriptors is a tuple bm|[f, k1, (kz2, p)], where k1 and ks
denote ranks in g, and p denotes any substring of MB(q).

Semantics: There exists an expansion vy s.t. (a) vy contains the
subtree of ft rooted at the node of rank k1, (b) p is the main branch
of the first token of vy, and (c) kz is the start of the lowest possible
output-mapping image of the main branch of the rest of vy (besides
p) into MB(lt), ; by convention, k2 is [MB(q)| + 1 when vy has
only one token and is 0 when there is no such mapping.

Then, for the m part, we use partial m-descriptors:

DEFINITION 7.6. Syntax: For a unary fragment name f, a par-
tial m-descriptor is a tuple pm(f, k), where k is a number in the
range 1 to [MB(m)|, indicating a suffix of m.

Semantics: This descriptor says that (a) vy is of the form
m'//suﬁ‘ixj, s.t. m' is equivalent with m’s suffix having k main
branch nodes, and (b) suffix; has the properties described above.

For the prefix; part, we use above m-descriptors:

DEFINITION 7.7. Syntax: For a unary fragment name f, an
above m-descriptor is a tuple am|[f, k1, (k2,p)], where k1, ko de-
note ranks in q and p is any substring of MB(q).

Semantics when p is empty (denoted hereafter ‘—’): there exists
an expansion v of the QSS s.t. (a) v is of the form rest/ /vy, for
vy being an expansion of f (b) rest root-maps into ft such that its
image ends at the rank k1, and (c) the end (bottommost node) of the
highest possible root-mapping image of MB(rest) into MB(ft),
is k2, if no such mapping exists, by convention kz is [MB(ft), |+1.

Semantics when p # ‘—': there exists an expansion v of the QSS
s.t. (a) v is of the form rest/ |p Jvg, for p = MB(p'), (b) rest//p’
root-maps into ft such that the image of p' ends at the rank k1, and
(c) the end (bottommost node) of the highest possible root-mapping
image of MB(rest) into MB(ft), . is ka; by convention, if no such
mapping exists, kz is [IMB(ft), | + 1; when rest is empty k2 is 0.

Given arule f(X) — I[...]/g(X) or f(X) — I[...]//9(X),
we will use an am-descriptor for f to infer one for g.

Step 4 of findDescSupp(g, P).

Below m-descriptors are computed by a similar approach (one
token at time) as the one used for partial 1-descriptors. The above
m-descriptors are obtained similarly, but in top-down manner. Start-
ing from below-m descriptors, the partial m-descriptors are com-
puted bottom-up, by simple equivalence checks.

If for some fragment name g we computed both an above m-
descriptor am[g, k1, (IMB(ft), |+1, —)] and a partial m-descriptor
pm(g, |MB(m)|), we can add a descriptor m(S) to the set of view

descriptors. (For more details we refer the reader to [9], Appendix B.2.)

We can now prove the following:

THEOREM 7.4. Given a QSS P and a multi-token query gq, al-
gorithm findDescSupp is sound and complete for computing the
descriptors for P’s expansions. findDescSupp runs in polynomial
time in the size of the query and of the QSS.

By Theorems 7.4, 7.3 and 7.1, for a multi-token XP query g and
QSS P, given the descriptor set D := findDescSupp(q, P), q is
supported by P if testEquivDesc(q, D) outputs true.

Moreover, by Theorem 7.2, if q is in XPes, it is supported by P
(considering for now only rewrite plans that intersect views) if and
only if testEquivDesc(g, D) outputs true. We generalize these two
observations to support in XP"' in the next section.

7.4 Support with compensated views

We consider in this section general XP"' rewrite plans for sup-
port that, before performing the intersection step, might compen-
sate (some of) the views.

We show that support in this new setting can be reduced to sup-
port by rewrite plans which only intersect expansions of a QSS.
This allows us to reuse the PTIME algorithms given in Section 7
(testEquivDesc and findDescSupp) and to find strictly more rewrit-
ings, namely those that would not be feasible without compensa-
tion. Thus we obtain a sound algorithm for support on XP multi-
token queries in the rewrite language XP"'. This algorithm becomes
complete when the input query is from XP.s.

Our reduction relies on the same QSS transformation, comp(P, q),
used in Section 5.1, which builds expansions with compensation.

EXAMPLE 7.4. Suppose that the QSS of the source in Exam-
ple 3.1 is modified to return the guided trips themselves instead of
the museums of those trips, by changing the third rule into rule R3:

(R3): f1(X) — trip(X)[guide)].
and obtaining a new QSS Pa. Then, one of the expansions of P2 is:
v3: doc(T)//vacation//trip/trip[guide]
A query plan that rewrites q2 using compensated views is
doc(v3) /vs /trip/museum N doc(va) /ve /museum.

We can infer this rewriting by compensating Rs with a navigation
to a museum child, which leads to a QSS identical to P.

We can prove the following:

THEOREM 7.5. Given a QSS P and a multi-token XP query q,
let D := findDescSupp(q, comp(P, q)).
1. Algorithm testEquivDesc(q, D) is sound for support in XP", i.e.,
q is supported by P in XP"' if testEquivDesc(q, D) outputs true.
2. testEquivDesc(q, D) is also complete if q belongs to XPes, i.e. q
is supported by P in XP" iff testEquivDesc(q, D) outputs true.
Remark. In a setting in which one needs to also find a witness for
support, this can be done by bookkeeping at each step besides des-
criptors a representative, an arbitrarily chosen view or view frag-
ment from the equivalence class. More details can be found in [9].

8. SINGLE-TOKEN QUERIES

We consider in this section the remaining sub-fragment of XP.,
namely single-token queries. We show that id-based support be-
comes NP-hard (Theorem 8.1). Contrast this with both id-support
for queries that have at least one //-edge in the main branch, and the
rewriting problem for single-token XP.s queries under an explicit
set of views, for which PTIME decision procedures exist.

THEOREM 8.1. For an XP., single-token query q and a QSS
P, deciding if q is supported by P in XP" is NP-hard.
The surprising dichotomy between support for single-token and
multi-token extended skeletons is rooted in their differences on the
respective tests for equivalence with an intersection of views.

First, for the single-token case, it is easy to see that support can
hold only if some view’s main branch is equivalent to ¢’s /-edges
only main branch. Otherwise, one could easily exhibit interleav-
ings that do have //-edges in their main branch, hence cannot be
contained in g. With this, building interleavings amounts basically
to deciding where to collapse main branch nodes from the various
views on a linear path with /-edges only. Intuitively, it is now less
a matter of how to order main branch nodes of the views, and more
of choosing for each node a coalescing option among the few avail-
able. By consequence, a candidate interleaving ¢ (i.e., one that is
equivalent to ¢ and contains all other interleavings) might combine
(put under the same main branch node) predicates coming from dif-
ferent views at all levels of the main branch. When q has several
tokens, this is true only for the candidate’s first and last tokens (built
by combining in the only way possible the first and last tokens of
the views), while the section in between has to be entirely present
(isomorphic modulo minimization) in some view.

The proof of Theorem 8.1 is given in [9]. We also give an ex-
ponential-time algorithm that decides support for XP.s single-to-
ken queries (the best we can hope for given the NP lower bound).
Finally, we give in a sound PTIME algorithm for this problem.

9. QSS WITH PARAMETERS

We consider now an extension to QSS with input parameters for
text values (denoted QS.S*) and correspondingly, an extension of
XP to text conditions. We modify the grammar of XP as follows:
pred = €| [rpath] | [rpath = C||[.//rpath]|[./ /rpath = C] | pred pred
where C' terminals stand for text constants. Every node in an XML
tree ¢ is now assumed to have a text value fext(t), possibly empty.
The duality with tree patterns is maintained by associating to ev-
ery predicate node m in a pattern p a test of equality test(n), that
is either the empty word or a constant C'. The notions of embed-
ding, mapping and containment can be adapted in straightforward
manner to take into account text equality conditions.

The definition of QSS¥ can be obtain from Definition 3.1 by
adding the following: “a leaf element nodes may be additionally
labeled with a parameterized equality predicate of the form = #i,
where #1i is a parameter and ¢ is an integer”.

EXAMPLE 9.1. Let us add to P from Example 3.1 the rule
f1(X) — tripmaxprice = #1]/ /museum(X)
Using this rule, we can generate the view vy that retrieves muse-
ums on trips for which the maximum price is a parameter #1:

va: doc(T)//vacation//trip/trip[maxprice=#1 |//museum

A user query q3 that asks for museums with temporary exhibi-
tions on secondary trips that cost at most $1000

q3: doc(T)//vacation//trip/trip[maxprice=1000]//museum(temp]
is then supported by the QSS, because it can be rewritten as
doc(va) /va /museum|temp](1000)

where parameter #1 is bound to the value in parenthesis (1000).

We can show that all the tractability and hardness results presented
in the previous sections remain valid when text conditions and pa-
rameters are added to the setting. Only minor adjustments are nec-
essary in order to reuse the same PTIME algorithms for expressibil-
ity and support (modulo the new XP syntax and the adapted defi-
nitions of mapping and containment). Given a query g, the input
@SS will be transformed into a QSS P’ by replacing each = #i
parameter occurrence by an explicit text equality condition = C,
for each constant C' appearing in ¢. Further details are omitted.

10. TRACTABILITY BOUNDARIES

We consider now extensions to the rewrite language and to the
query set specifications, asking whether the efficient algorithms of
the previous sections can be adapted to deal with them.

Compensated rewriting plans. We consider in this section more
complex rewrite plans for support, beyond XP", taking the com-
pensation idea one step further. More precisely, we consider the
rewrite language XP™¢ which, after the intersection step, might
compensate again for equivalence with the input query. We capture
XP™¢ by adding the following rules to the grammar of XP:

cpath | (cpath)| (cpath) /rpath | (cpath)/ [rpath

ipath =
= apath | apath N cpath

cpath =
Revisiting Definition 2.6, a rewriting 7 in the language XP™"¢ is
now of the form Z = ([, ; wi;), Z/rpath or I/ /rpath, with each
u;; being of the form doc(v;)/v; /pi or doc(v;)/v;/ /pi.
EXAMPLE 10.1. Consider the query qa below that extracts the
temporary exhibitions from the data about museums visited on the
same tour trips as in query qi:

qa: doc(T)//vacation//trip/trip[guide J//tour[schedule//walk [/museum/temp

There is no rewriting of qa using only an intersection of views
generated by P, since there is no mention of temporary exhibitions
in P. However, if we allow the intersection to be compensated, q
can be rewritten as the intersection of vi and va, followed by a
one-step navigation:

(doc(v1)/v1/museum N doc(v2) /ve /museum) [temp.

We prove that support in XP™*° becomes NP-hard even for multi-
token XP., queries:

THEOREM 10.1. For a multi-token XP.s query q and a QSS P,

deciding if q is supported by P in XP™"° is NP-hard.
The intuition behind this result is that an XP™*° rewriting r for a
query ¢ amounts to finding a rewriting r’ in the simpler language
XP" for a prefix of ¢ and then compensating r’ with the remainder
of g. Even if ¢ were multi-token, ' may correspond to a prefix of
g that is in fact single-token, hence the complexity jump.

In [9] we also show that support in XP"™*“ can be solved in exponen-

tial-time for XP., input queries, i.e. optimal for practical purposes.

QSS with forest RHS. We consider now an extension to the
query set specifications, which allows forests of tree fragments on
the RHS, i.e., expansion rules of the form f — ¢f1,... ¢ fk.

We call the set specifications in this language QSS™. With this
added feature, we show that expressibility and support become NP-
hard, even for very restricted tree patterns, without //-edges.

THEOREM 10.2. Expressibility is NP-hard for QSS™, even for
XP queries and views without //-edges. Support is NP-hard for
QSS™, for XP queries and views without //-edges in predicates.

We refer the reader to [9] for further details. There, we also show
that QS.S™ expressibility can be solved in exponential time.

11. RELATED WORK

XPath rewriting using only one view [22, 15] or a finite, explic-
itly given set of views [5, 4, 20, 7] was the object of several studies.
To the best of our knowledge, we are the first to address the prob-
lem of rewriting XPath queries using a compactly specified set of
views. The specifications are written in the Query Set Specifica-
tion(QSS) language [19], which was also the basis for building a
QBE-like XPath interface in a software system for managing bio-
logical data [17]. The QSS language presented in [19] has a differ-
ent syntax from the one we adopted here and in [9] we show how
that syntax can be compiled into ours.

Expressibility and support were studied in the past for relational
queries and sets of relational views specified by Datalog programs
[14, 21, 8]. The work on relational views [8] shares with our pa-
per the idea of grouping the views in a finite number of equiva-
lence classes w.r.t their behavior in a rewriting algorithm. Similar
is also the strategy of computing these classes (represented by de-
scriptors) bottom-up from the specification of the sets of views.
However, relational and XPath queries exhibit very different be-
haviors. For instance, support and expressibility were shown to be
inter-reducible in PTIME for relational queries and views [8], and
thus share the same complexity (EXPTIME-complete). This is no
longer the case for XP queries in the presence of node Ids: express-
ibility is in PTIME (see Section 4), while support is coNP-hard.
The PTIME results we obtain make crucial use of the tree shape of
XPath queries and require problem-specific restrictions that do not
follow from the relational work.

For implementing security policies, a complementary approach
to specifying sets of views consists in annotating the DTD of the
source with access annotations that can be used to allow/disallow
access to parts of the data [11]. The system infers one view over
the input document that conforms to the annotations and publishes
the DTD of this view. Clients are allowed to ask any queries over
the view DTD. This architecture is designed for security scenarios
and does not extend to querying sources with limited capabilities.

12. CONCLUSION
We study the problems of expressibility and support of an XPath

query by XPath views generated as expansions of a Query Set Spec-
ification. Since we focus on efficiency, we consider only PTIME
algorithms, ensuring that they are sound in general and identifying
the most permissive restrictions under which they become com-
plete. We find that for XPaths corresponding to the fragment hav-
ing child and descendant navigation and no wildcard, expressibil-
ity can be solved in PTIME. For support, the complexity analysis is
more refined, as it depends on the rewriting language. In the case in
which the XML nodes in the result of the views lose their original
identity, we are able to give a PTIME algorithm for support. If the
source exposes persistent node ids, which enable rewritings that in-
tersect several views, we show that the problem becomes NP-hard
unless fairly permissive restrictions on the user query are placed.
We present a sound PTIME algorithm that also becomes complete
under the restrictions.

13. REFERENCES

[1] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of
asynchronous discrete event systems: Datalog to the rescue! In
PODS, pages 358-367, 2005.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[3] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Tree
pattern query minimization. VLDB J., 11(4), 2002.

[4] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou.
Structured materialized views for XML queries. In VLDB, 2007.

[5] A.Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A
framework for using materialized XPath views in XML query
processing. In VLDB, 2004.

[6] M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath
fragments. Theor. Comput. Sci., 336(1), 2005.

[7]1 B. Cautis, A. Deutsch, and N. Onose. XPath rewriting using multiple
views: Achieving completeness and efficiency. In WebDB, 2008.

[8] B. Cautis, A. Deutsch, and N. Onose. Querying data sources that
export infinite sets of views. In ICDT, 2009.

[9] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos. Efficient rewriting
of XPath queries using Query Set Specifications, 2009. TR
CS2009-0941, UCSD. Available from
http://db.ucsd.edu/index.jsp?pageStr=publications.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[11] W. Fan, C. Y. Chan, and M. N. Garofalakis. Secure XML querying
with security views. In SIGMOD Conference, pages 587-598, 2004.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[14] A.Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries
using limited external query processors. JCSS, 58(1), 1999.

[15] B. Mandhani and D. Suciu. Query caching and view selection for
XML databases. In VLDB, 2005.

[16] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. J. ACM, 51(1), 2004.

[17] S. Newman and Z. M. Ozsoyoglu. A tree-structured query interface
for querying semi-structured data. In SSDBM, pages 127-130, 2004.

[18] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman.
A query translation scheme for rapid implementation of wrappers. In
DOOD, 1995.

[19] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou. The Query
Set Specification Language (QSSL). In WebDB, pages 99-104, 2003.

[20] N. Tang,]J. Yu, T. Ozsu, B. Choi, and K. Wong. Multiple materialized
view selection for XPath query rewriting. In ICDE, 2008.

[21] V. Vassalos and Y. Papakonstantinou. Expressive capabilities
description languages and query rewriting algorithms. J. Log.
Program., 43(1), 2000.

[22] W. Xu and Z. M. Ozsoyoglu. Rewriting XPath queries using
materialized views. In VLDB, 2005.

APPENDIX
A. THE FUNCTION TF-COVER

We define here the helper function tf-cover, used in the algo-
rithms for deciding expressibility. tf-cover takes as input a set of
nodes NN, a set of tree fragment names C' and an array L such that
for every n’ € N, L(n’) C C. It returns true if there is a way to
pick a distinct tree fragment name from each L(¢), forall: € N.

The function is implemented by solving the following max-flow
problem with integer values. The flow network has a source s and
a sink ¢. Suppose C' = {c1,...cp}and L = {L1,... Ly }. There
are edges with capacity 1 from s to n nodes ci, c2,...c,. There
are also k nodes L1, . .. Ly and for each ¢; such that ¢; € L;, there
is an edge with capacity 1 from c; to L;. Finally, there is an edge
with capacity 1 from each L; node to the sink t.

As shown in [10], if all capacities are integers, the Ford-Fulkerson
algorithm will find a max-flow that assigns an integer to every edge.

If the maximum flow returned is less than n (at least one L(3)
is not “covered”), tf-cover returns false. Otherwise (the max-flow
is n), it returns true. If we want to also keep a view that witnesses
expressibility, it is enough to know what edges between a c; and
an L; have a flow of value 1. This is possible because the Ford-
Fulkerson algorithm gives the value of the flow on each edge.

B. MULTI-TOKEN QUERIES

We explain here in detail how we compute the last-token de-
scriptors (defined in Section 7.3.2) and the m-descriptors (defined
in Section 7.3.4).

B.1 Computing last-token descriptors

For any rank k in p, by cut(p, k) we denote the prefix of p having
k main branch nodes.

Step 2 of findDescSupp(q, P):

A. We compute suffix descriptors by iterating the following steps:

1. For f(X) — U(X)[e1(), .- en(),-//da(), -+, -/ /dm ()],
add a descriptor suff (f, 1) if we can infer that v contains the
subtree of [t rooted at OUT(It).
if for a /-predicate (resp. //-predicate) P on OUT(It) we have
a descriptor equiv(c;, rootp) (resp. equiv(d;, rootp)), add
also suff (f, 1[P]).

2. For f(X) — lci(),..-cn(),.//d10),-- -,/ /dm()]/g(X),
given a descriptor suf f (g, p’), add a descriptor suff (f,1/p")
if, for k = |[MB(q)| — |p’|, we can infer that v contains the
pattern [t(k).
if for a /-predicate (resp. //-predicate) P on node; (k) we
have a descriptor equiv(c;, rootp) (resp. equiv(d;, rootp)),
add also suff (f, 1[P]/MB(p’)).

B. Compute full-suffix descriptors by iterating the following:

1. For f(X) = le1(), - . cn(), -/ /da(), -5/ /dm]/ /9(X),
given a suffix descriptor suf f (g, p), add a full suffix descrip-
tor fsuff (f, p, k) for each rank k£ < |MB(q)| — |MB(p)| s.t.
we can infer that vy contains the pattern ¢ (k).

2. For f(X) = 1[e1() - en(), ./ /dr(); - -5 -/ /dm)]/ 9(X),
given a full-suffix descriptor fsuf f(g,p, k'), add a descrip-
tor fsuff (f, p, k), for k = k' — 1, if we can infer that vy
contains the pattern g(k).

3. For f(X) = l[e1(),---en();-//di()s - -5/ /dm)]/ /9(X),
given a full-suffix descriptor fsuf f(g,p, k'), add a descrip-
tor fsuff (f, p, k) for each rank k < k' s.t. we can infer that
vy contains the pattern q(k).

4. Whenever a descriptor fsuff(f,p,1) is obtained, for f =
S, add 1£(S, p) to the set of view descriptors.

B.2 Computing m-descriptors

Step 4 of findDescSupp(g, P). Apply the the following steps:
A. Compute below m-descriptors by iterating the following steps:

1. Forrules f(X) — I(X)[c1(),--.¢en(),-//d1()s---,.//dm ()],

if we can infer that vy contains the subtree of ¢ rooted at
OUT(q), add a descriptor bm[f, [MB(q)|, ((IMB(q)| + 1,1)].

2. For f(X) — I[...]/g(X) and a descriptor bm|[g, k1, (k3,p")],
if we can infer that v; contains the pattern [#(k] — 1), add the
descriptor bm[f, k7 — 1, (k,1/p’)].

3. For f(X) — I[...]//g(X), a descriptor bm/[g, k1, (k3,p")],
for each rank k1, k1 < ki, s.t. we can infer that v ¢ contains
the pattern It(k1),
find the lowest possible rank k» in MB(it),, s.t. the token p’
has a mapping into MB((t), = starting at k2 and ending above
k5, where if k5 = [MB(q)| + 1 above means at k5 — 1; if no
such rank is found, set k2 to 0.
add a below m-descriptor bm[f, k1, (kz2,1)].

B. Compute partial m-descriptors by iterating the following steps:
1. For f(X) —1[...]//g(X), given a below m-descriptor
bm|g, k1, (kz,p')] s.t. (i) k3 is already 0, or (ii) p’ cannot be
mapped anywhere above k5 in MB(It),,
if we can infer that v} is equivalent with m’s suffix of size 1,
add the partial m-descriptor pm(f, 1).

2. Foreither f(X) — I[...]/g(X) or f(X) = 1[...]//9(X)
given a partial m-descriptor pm(g,n'): if we can infer that
the query cut(vs,n’ 4 1) is equivalent with the suffix of m
of size n = n’ + 1, add a descriptor pm(f, n).

C. Compute above m-descriptors by iterating the following steps:

1. From start fragment names f and either rules
JX) =1]/g(X) or f(X) —1[...]//9(X)
if we can infer that v} root-maps into ft, add a descriptor
am|g, 1, (0,1)] (respectively am([g, 1, (1, —)]).

2. For f(X) — I[...]/g(X) and a descriptor am|[f, k1, (k3,p)]:

e ifp'isnot -’: if we can infer that v'; root-maps in f(k}+
1), add a descriptor am|[g, kj + 1, (k2, p’/1)]

e ifp'is “-’: for each rank ki, k1 > ki, s.t. we can infer
that v root-maps in the pattern ft(k1),add a descriptor
am|g, ki, (k3,1)].

3. For f(X) —I[...]//g9(X), a descriptor am|[f, k1, (k3, p')]:

o ifp'is not -’: if we can infer that v; root-maps in the
pattern ft(k7 + 1), add a descriptor

am[g7 kgl. +1, (k27 _)]
for the highest rank k2, k5 < ko < [MB(ft), |, s.t. p’/l
has a mapping into MB(ft), starting below ks, where if
k% = 0 below means rank 1, and ending at ko; if no such
mapping exists set k2 to [MB(ft), |+ 1.

e ifp'is *-’: for each rank ki1, k1 > ki, s.t. v} root-maps
in the pattern ft(k1), add

am[g7 ki, (k27 7)]
for the highest rank ka2, ky < k2 < |[MB(ft),, |, s.t. the

token [has a mapping into MB(ft), at rank ks; if no
such mapping exists set ko to [MB(ft) |+ 1.

D. Finally, for a fragment name g, given both

e a partial m-descriptor pm(g, [MB(m)]|)

o an above m-descriptor am|g, k1, (IMB(ft), |+ 1,-)],
add a descriptor m(S) to the set of view descriptors.

C. SINGLE-TOKEN QUERIES

We first give the proof of NP-hardness for support when ¢ is a
single-token XP., query. Then, we describe a sound, tractable al-
gorithm for this problem, and we show how it can be extended to an
exponential-time sound and complete algorithm for this problem.

Proof of Theorem 8.1

PROOF. We use a reduction from the minimum set-cover prob-
lem [12]. Let (U, S, k) be an instance of this problem, with & =
{e1,...,en} denoting the universe, S = {S1,...Sm} denoting
the sets s.t. .S; C U for each S;. We want to know whether there
exists a subset S’ of S, of size at most &, that can cover U (i.e. each
element of U belongs to at least one set of S”).

The reduction takes as input the set ¢/ and S (size |S| x |S|) and
the value k (size lg(k)).

Let p be the biggest exponent s.t. 27 < k and let bpb,—1 ... bo
be the binary representation of k.

We build the following instance of the support problem. We de-
fine the QSS as follows:

e the tree fragments
F={S,set, f.g, fo, S5 I oo F i Syt
Fo—rse o S £SY
e the alphabet & = {root, out,a,b,e1,...,em}
e S is the start fragment
o the set of productions P defined as follows:

1. the start productions
S(X) — root/f(X)
and
S(X) — root//g(X)
2. f(X) — a/a/alQ]/a/out(X)

Where () denotes the pattern obtained as follows: let L;,
i = 0, p, denote the pattern formed by ¢+ 2 nodes labeled
b followed by the predicate [e1,. .., e,]. For example,
Lo = blbles, ..., en]]-

Then, we define @ as

Q = b[Lp][Lp-].. . [L1][Lo].

3. 9(X) —albl//ex, ...,/ /enll/alfs]/a/ [out(X)
4 fo = B[fE, FI21 s S S

5. Vi = 0,ps.t. b; = 1, we have the productions
FE = O VR =0

7 — blset]
6. Vi = 0, ps.t. b; = 0, we have the production
fi—0
7. VS; ={e,- .., e} € S we have the production
set — bleyy, ..., e;]
8. finally we have the production
set — ()

This QSS produces two families of views. The first one, by the
fragment name f, contains only one member (vs), which has a
main branch root/a/a/a/a/out, and a Q predicate on the third
a-node.

The views from the second family of views, by the fragment
name g, have the main branch root//a/a/a//out, the predicate
b[//e1,//ez2,...,//exn] on the first a-node and a predicate pro-
duced by fs on the second a-node. fs produces branches of length
at most p + 2 followed by elements e1, . .., ep.

Let now g be the single-token XP., query

q =root/a/alb]//ex,/ /e ..., //en]]/alQ]/a/out.

It is easy to see that all the views generated by the QSS contain g:
vy maps obviously in g and all the other views have a containment
mapping into ¢ since, by construction, any pattern produced by f
can be mapped into Q.

We now consider if g is supported, which amounts here to testing
if the intersection of all the views is contained in q. Note that ¢ will
contain any interleaving which, for at least one view vy, collapses
the third a-node of v, with the fourth a-node of v. This is because
such an interleaving would be of the form

root/a/albl/ /e, //e2, ..., //en]ll...1/alQIQ[.]/a/out

where Q' is produced by fs and is actually redundant (can be min-
imized away).

So the only interleavings that remain to consider are those in
which all the third a-nodes of v, views are collapsed with the third
a-node of vy. These interleavings are of the form

root/ab]//ex,//ea,. .., //en]l/alQ][...]/alQ]/a/out

We can see now that g contains these interleavings if and only if
among the predicates Q' produced by f there exists one into which
the pattern b[//e1, //e2, ..., //exn] can map. But this is possible
if and only if all the elements ey, . . . , e, are present in @', and this
happens if and only if there exists a cover of maximal size k for the
setd. [

We now discuss the sound, tractable algorithm for support in this
setting. For presentation simplicity, we first limit the discussion
to rewrite plans that are intersections of views (no compensation
before the intersection step). We start by considering how one can
check the existence of a rewriting using a finite set of explicitly
listed views.

We introduce first some new notation. For a pattern p and a node
n € MBN(p), by SP,(n) we denote the subtree rooted at n in p.

For the to-be-rewritten query g and a predicate P in g, for a view
v let NP denote the set of main branch nodes of v having a predi-
cate P’ s.t. (i) the pattern of P’ is equivalent to some subtree of g,
and (ii) the pattern gp contains the pattern vps.

We are now ready to formulate a sound, tractable algorithm which,
for a set of explicitly listed views V, tests if an equivalent rewriting
exists for a single-token query gq.

The tests will ensure the opposite containment mapping, i.e., that
g contains each possible interleaving of the views. Section C.1 will
then detail how one can verify these properties even when abstract-
ing away from the view definitions, by using view descriptors, and
in Section C.2 we show how descriptors can be inferred even when
views are defined as the expansions of a QSS.

For a view v; verifying the conditions of lines 7-9, we say that
v; contributes P in the intersection. We can prove the following:

THEOREM C.1. For an XP single-token query q and a set of XP
views V containing q, testEquiv is a sound PTIME procedure for
q=nNV.

PROOF SKETCH. When ¢ has only /-edges in the main branch,
among the views of V there must be at least one having the same

Algorithm 3 testEquiv(V, q)

begin
for each predicate P in ¢ and each view v; € V
compute the set of nodes N{;

1:

2:

3

4: if there exists a view v; € V s.t. MB(v;) = MB(q) then

5: if for all predicates P in ¢

6 there exists a view v; € V s.t.

7 for all containment mappings ¢ from MB(v;) into MB(q)
8 the node n p is an image under ¢

9: the node n € v; for which ¢(n) = np isin Nli
10: then output true '
11: end

main branch as ¢q. With this, the intersection yields only inter-
leavings having as main branch that linear path with /-edges only.
The only remaining issue is whether all of ¢’s predicates will be
“present” at each interleaving, thus enabling a containment map-
ping from ¢. This follows from conditions (lines 7-9) which imply
that, in any interleaving ¢, a predicate into which P can map will
be present at ¢’s main branch node of rank rp.

Testing conditions (lines 7-9) for each predicate P in g can be
easily translated into a containment mapping test. [

C.1 Descriptors

Again, the key idea for checking support when views are defined
by a QSS is that, in order to test the conditions of the algorithm
testEquiv, one does not need the detailed definitions of the views
but only some particular details on them. This idea will be ex-
ploited by our view descriptors. More precisely, assuming we are
dealing with expansions of a QSS P with start fragment name .5,

For the condition of line 4. For a view v containing g, a view de-
scriptor mb(S) will indicate that the pattern representing the main
branch of v is equivalent with MB(q).

For the conditions of lines 7-9. A direct but expensive (com-
plexity-wise) solution for this part would be specify in a descriptor
the set of predicates P the view contributes, according to lines 7 —
9. But it suffices instead to consider predicates individually. By a
descriptor pred (S, P) we denote a view v which contains ¢ and
contributes predicate P. The fact that a certain view may contribute
several predicates is irrelevant, as it is enough to know that there
exist covering views for each of them (not necessarily distinct).

Note that descriptors partition the set of views into equivalence
classes with respect to the tests of testEquiv: two views having dif-
ferent definitions but yielding the same descriptors will be equally
useful for these tests.

Now, we can easily rephrase testEquiv into an algorithm that runs
directly on the set of view descriptors D, instead of the explicit
views V to which they correspond.

Algorithm 4 testEquivDesc(D, q)

1: if there exists a descriptor mb(S) € D then
2: if for all predicates P in q

3: there exists a descriptor pred(S,P) € D
4

5

then output true
: end

We can prove the following:

THEOREM C.2. For a single-token query q, a finite set of views
V containing q and their corresponding descriptors D, testEquiv(q,V)
outputs true if and only if testEquivDesc(q,D) does so.

C.2 Descriptors from a QSS program

We present in this section a bottom-up algorithm that computes,
for a QSS and a single-token query g, all the view descriptors for
all the QSS expansions.

As before, we need fragment descriptors in order to perform in-
crementally the tests of testSupp. While this is straightforward for
the test of line 4, the conditions of lines 7 — 9 require special treat-
ment. More precisely, given a view v; and a query g, we rephrase
this part into testing the non-existence of a containment mapping
(with a twist) between MB(v;) and MB(q) (i.e., linear patterns).
Note that this is something we already know how to do from the
multi-token case. For that, since there is always at least one con-
tainment mapping from MB(v;) into MB(g), we will change some
of the labels in MB(v;) and MB(q) in order to test if there are map-
pings violating the conditions of lines 7 — 9.

Assuming that the set of nodes quj is not empty, let p denote
the label of np and let I’> denote a new label derived from it. For
this new label, let us consider the following variation to the usual
definition of a mapping: a node of label I’ can map into a node of
label I p. This variation will be called hereafter P-mapping. Based
on this, containment P-mapping is then defined in the usual way.
Using this new label, let relabel (P, v;) denote the pattern obtained
from v; by relabeling with I’> the nodes that were labeled Ip in v,
and were not in the set Nj; . Also, let ¢’ denote the pattern obtained
from ¢ by relabeling the node np by Ip.

It is now easy to see that testing the conditions of lines 7 — 9
amount to testing the non-existence of a containment P-mapping
from MB(relabel(P,v;)) into MB(g'). And this can be done on an
explicit view v; by the same bottom-up approach, which advances
one token at a time, described in Section 7.3.3.

For each predicate P, we describe a subroutine that finds the de-
scriptors pred(P). The mb() one will be obtained as a side-effect
of these subroutines. We assume that the map, equiv, contain de-
scriptors are already pre-computed. Besides those, we will use only
one kind of fragment descriptors, called intermediary descriptors.

DEFINITION C.1. Syntax: An intermediary descriptor w.r.t. a
fixed predicate P in q for a unary fragment name f is a tuple
interm|f, ki, (k2,p)], where k1 and ko are ranks in the main
branch of q, and p denotes any linear substring of MB(q) or MB(q').

Semantics: Such a descriptor says that

® vy contains the subtree of q rooted at the main branch node
of rank k1,

o p is the main branch of the first token of relabel (P, vy),

e ko is the start rank (i.e., the upmost node) of the lowest possi-
ble output P-mapping image of the rest of the main branch of
relabel (P, vy) (besides t) into MB(q'); by convention, ks is
IMB(q)| 4+ 1 when vy has only one token (the one described
by t) and is O when there is no such P-mapping.

Algorithm findDescriptors:

For each predicate P in g, repeat until fix-point:
1. forrules f(X) — I(X)[c1(),---cn,.//d1()s. ;. //dm ()],

if we can infer that vy contains the subtree of g rooted at

OUT(q), add a descriptor interm|f, [MB(q)|, (]IMB(q) + 1|,1)].
2. forrules f(X) — lci(),...cn,.//d1(),.--,.//dm()]/g(X),

given a descriptor interm|g, k1, (kb, p')], for k1 = k7 — 1,

if we can infer that v contains the subtree ¢(k1), then

(a) ifl # lp, add a descriptor interm|[f, k1, (k,1/p’)],

(b) if I = lp: add a descriptor interm|f, k1, (k5,lp /p’]

(i) if P is a/-predicate and there exists a descriptor equiv(c;, n)

S.t.

e the pattern gp contains the pattern [/xpath(SPq(n)),

e the pattern SP4(n) root-maps in the subtree of ¢ rooted
at some /-child of nodey(k1),

or (ii) if P is a //-predicate and there is a descriptor equiv(d;,n)

S.t.
e the pattern gp contains the pattern I/ /xpath(SPq(n)),
e the pattern SP4(n) root-maps in the subtree of ¢ rooted
at some descendant of nodeg (k1).
(c) otherwise, add the descriptor interm|f, k1, (k5,15 /p’)].

If f is the start fragment name S, if k7 — 1 = 1 and if we can
infer that vy contains g,

(a) if k5 = 0 or the token [/p’ does not have a P-mapping
image in MB(q') starting at ROOT(q") and ending above
k3, where if k5 = |[MB(q)| + 1 above means at k5 — 1,
add a view descriptor pred(P)

(b) moreover, if |I/p’| = |MB(gq)| (which here means
MB(vs) = MB(q)), add also the descriptor mb(S) to
the set of view descriptors.

3. for f(X) = l[c1(), .. Cny-//d1()y- ../ /dm()]//9(X),
given a descriptor interml|g, k1, (k3,p’)], for each rank k1,
1 < k1 < ki, s.t. we can infer that vy contains g(k1),
find also the lowest possible rank k2, 1 < ko < k%, such that
the token p’ P-maps into MB(q") starting at k2 and ending
above kjy, where if k5 = [MB(q)| + 1 above means at k5 — 1;
if no such rank is found, set ks to 0.

(a) if I # lp, add a descriptors interm|[f, k1, (kz2,1)],
(b) if I = lp: add the descriptor interm|[f, k1, (k5, 1p]

THEOREM C.4. For an XP.s single-token query q and a set of
XP views V containing q, testEquiv is a sound and complete pro-
cedure for g = NV.

Then, the approach based on view descriptors instead of view
definitions remains the same. Regarding support, in order to ac-
cess the necessary details w.r.t N, we will introduce a new kind a
fragment descriptor, which will record what nodes of ¢ map in an
expansion of a tree fragment name. More precisely,

DEFINITION C.2. For a fragment name f, a set C of /-siblings
in q, a set D of //-siblings in q, and a node n from q, a q-mapping
descriptor denotes a tuple g — map(f,C, D,n). It says that (i)
there exists an expansion vy which root-maps in the subtree of q
rooted at n, (ii) for each n; € C, there exists a root-mapping m;
of the subtree of q rooted at n; into vy, and (iii) for each n; € D,
there exists a mapping m; of the subtree of q rooted at n; into vy.

Any of the three components C, D or n might be empty.

Note that the space of ¢ — map descriptors is exponential in the
size of q. They can be computed, in worst-case exponential time,
in bottom-up manner straightforwardly.

With these descriptors, we modify findDescriptors as follows:

e For the steps (2.b.i) and (3.b.i): if there is a descriptor ¢ —
map(c;, C, D,n) s.t. rootp € C and nis achild of nodeq (k1).

e For the step (2.b.ii) and (3.b.ii): if there is a descriptor ¢ —
map(d;,C,D,n) st. rootp € D and n is a descendant of
nodeq(k1).

findDescriptors is sound and complete for computing the de-
scriptors of the QSS expansions. It thus enables a sound and com-

(i) if P is a /-predicate and there exists a descriptor equiv(c;, n) Plete algorithm for support (via restEquivDesc).

S.t.
e the pattern gp contains the pattern [/xpath(SPq(n)),

e the pattern SP4(n) root-maps in the subtree of ¢ rooted
at some /-child of nodey(k1),

or (ii) if P is a //-predicate and there is a descriptor equiv(d;, n)

s.t.
e the pattern gp contains the pattern [/ /xpath(SPq(n)),

e the pattern SP4(n) root-maps in the subtree of ¢ rooted
at some descendant of nodey (k1).

(c) otherwise, add the descriptor interm|f, k1, (k5,1p)].

When f = S, if the token [does not P-map into MB(q")
starting at rank 1 and ending above ks (i.e., k2 = 0 or k2 =
1), add a descriptor pred (S, P) to the set of view descriptors.

THEOREM C.3. Given a QSS P and a single-token query q,
algorithm findDescriptors is sound and complete for computing the
descriptors for ‘P’s expansions. It runs in polynomial time in the
size of the query and of the OSS.

C.3 Decision procedure for support

We describe in this section a sound and complete algorithm for
support on single-token XP., queries, which will run in exponential
time in the size of the query. For this, we will relax the definition
of the N set as follows: for the to-be-rewritten query ¢ and a
predicate P in g, for a view v, NP will now denote the set of main
branch nodes of v having a predicate P’ s.t. the pattern gp contains
the pattern vp/.

With this adjustment, let test Equiv’ denote the corresponding
procedure. We can prove the following:

Dealing with compensated views. We use the same comp(P, q)
construction to deal with plans that intersect compensated views.

D. SUPPORT IN XP"¢

We sketch in this section an EXPTIME sound and complete pro-
cedure for support on XP. queries in XP""°,

We first introduce some additional notation. A lossless prefix p
of g is any pattern obtained ¢ by “moving up” the output mark, i.e.,
setting as the output node any main branch node and interpreting
what follows that node as predicate (side) branches.

We can prove the following:

THEOREM D.1. An XP.s query q is supported by a QSS in
XP"™ ¢ iff some lossless prefix of q is supported by that QSS in XP".

This enables the following EXPTIME decision procedure for
support in XP™°: test XP"' support for each lossless prefix, us-
ing either the PTIME decision procedure of Section 7 (if the prefix
is multi-token), or the EXPTIME one of the previous section (if the
prefix is single-token).

E. EXTENSION TO QSS+
Proof of Theorem 10.2, first part.

PROOF. We start with expressibility. We detail our proof for
boolean tree patterns. The one for patterns of arity 1 is similar.

We use a reduction from the minimum set-cover problem [12].
Let (U, S, k) be an instance of this problem, withtd = {e1,...,e,}
denoting the universe, S = {Si,...Smn} denoting the sets s.t.
S; C U for each S;. We want to know whether there exists a
subset S’ of S, of size at most k, that can cover the entire U (i.e.
each element of U/ belongs to at least one set of S”).

The reduction takes as input the set ¢/ and S (size |S| x |S|) and
the value k (size lg(k)).

Let p be the biggest exponent s.t. 27 < k and let bpb,—1 ... bo
be the binary representation of k.

We build the following instance of the expressibility problem.
We define the QSS as follows:

o the tree fragments
F ={S,set, f}, 571, e
L f L £)
e the alphabet ¥ = {a,e1,...,em}

0 —1 —2 0
7fp7f11)7—17f11)7—17"'3fp—13

e S is the start fragment
o the set of productions P defined as follows:
— the start production
S — a(X)fF, =1 fL O
- Vi =0,ps.t. b; = 1, we have the productions

= T Ve =10,

12— set
- Vi =0, ps.t. b; = 0, we have the production
fi=0

- VS; ={e,...,e; } € S we have the production

set — €1y, €y

— finally we have the production
set — ()

The QSS grammar builds boolean queries having a root node
labeled a with children nodes having e-labels. It is easy to see that
the generated queries have branches corresponding to a choice of
at most k sets from S (outputted by the expansion of the at most k
set fragment names).

Let now ¢ be the boolean tree pattern ale1][ez2] . . . [en].

First, note that all the queries generated by the QSS program
contain g. In order for g to be expressed by this program, there
must exist a choice of at most k£ sets from S that covers all the
elements, e1, ..., e,. Hence expressibility holds if and only if we
can find in S a cover of U of maximal size k. [

Proof of Theorem 10.2, second part.

PROOF. For support, we adapt the previous reduction from the
minimum set-cover problem as follows:
The start production is now

S(X) = b/ [alFIFPA] - [F1110)/ fe(X),

while fragment names expand as before. This program generates
views having a main branch b//a//c and having various [e;] pred-
icates on the a node.

The query g for which we want to test support is

b//alel]...[en]//c.

It is easy to see that all the views contain g, hence g is supported if
and only if the intersection of all the generated views is equivalent
to q. By using results from [7], this is the case if and only if one of
the views, call it v, contains all others views. When this condition
holds, v is equivalent to g if and only if its a node has all the pred-
icates [e1], ... [en]. But one such view exists if and only if there
exists a cover of maximal size k. [

E.1 Expressibility for general QSS

We show that the NP lower bound for expressibility is tight for
practical purposes, since expressibility can be decided in exponen-
tial time. We can prove the following:

THEOREM E.1. Expressibility can be decided in exponential
time in the size of the query and of the views.

We discuss the approach for deciding QSS expressibility (and
support) for boolean patterns. Dealing with tree patterns by the
same algorithm can be then done in the style of Section 4.2.

We now use fragment descriptors defined as follows:

DEFINITION E.l1. For afragment name f and a set N of nodes
Jfrom q, a mapping descriptor for the pair (f, N) (written map(f, N))
says that there exists an expansion vy (which can be a tree or a for-
est) and a mapping m of vy into q such that the roots of trees in vy
are mapped into the nodes in N.

DEFINITION E.2. For a fragment name f, a node n € q and
a set N of same-edge sibling nodes children of n, an equivalence
descriptor for the pair (f, N) (written equiv(f, N)) says that there
exists an expansion vy (a tree or a forest) satisfying the following:

e some |N| trees among those in the forest vy are equivalent to
the subtrees rooted at the nodes of N in q,

e ifthe nodes N are connected by a /-edge to n, the remaining
trees in vy map into q such that the images of their roots are
either among the nodes of N or among other /-siblings of the
nodes of N,

e otherwise (i.e. the nodes N are connected by a | /-edge ton),
the remaining trees in vy map into q such that the images of
their roots map below n in q.

Note that in these descriptors we do not bookkeep the number
of trees in the expansion v¢. We only keep track of the subtrees
of ¢ into which they can map (for mapping descriptors) or of the
sibling subtrees in ¢ with which their are equivalent (for equiva-
lence descriptors). Also note that an equivalence descriptor implies
a mapping one, for the same fragment name and set of nodes.

The space of distinct descriptors is O(|G| x 2!?!), hence expo-
nential in the size of the query and polynomial in the size of the
program.

E.2 Computing descriptors

For a given query ¢ and a QSS G, we can compute all the cor-
responding descriptors as described below. The computation starts
from the productions with no tree fragment nodes and continues
inferring descriptors until a fixed point is reached, close in spirit to
bottom-up parsing as in the CYK algorithm [13] or to bottom-up
Datalog evaluation [2]. Each step of this process will run in time
worst-case exponential in the size of g and G.

Algorithm findDescriptors:

1. start with an empty set of descriptors D.

2. for each production f — (), add to D all the descriptors of
map(f,{n}),forn € q.

3. for each tree production f — tf, such that #f has only ele-
ment nodes, compute (by the definitions) and add to D all the
possible descriptors map(f, {nq}) and equiv(f,{nq}).

4. for each tree production f — tf:

(a) infer new mapping descriptors for f as follows:
For fi,... fi being the tree fragment nodes appearing
in tf, for all possible combinations of existing mapping
descriptors, ¢ = (map(fi,N1),...,map(f1,N1)), let
t f. denote the tree pattern obtained from ¢ f by replacing
each tree fragment node f; by a set of trees that are iso-
morphic copies of the subtrees of g rooted at the nodes
listed in IV;.
For each mapping v of ¢ f. into g, add to D the descriptor
map(f, {1y (ROOT(¢f.)}). Note that by a naive iteration
over the space of descriptors this step can be executed in
time exponential in the number of tree fragment nodes,
k. But a polynomial time approach is possible by deal-
ing with the mapping descriptors in bulk (similar to how
mappings algorithms work).
(b) infer new equivalence descriptors for f as follows:

Let ci,..., ¢, be the /-children of ROOT(¢f) and let
di,...dm be its //-children (either list can be empty).
Using their associated descriptors, build a new descriptor
equiv(f,{nq}) (and implicitly map(f, {nq})) for each
node n, € g such that:

i. there exist some fragment names C' = {¢;,, ..

{c1,...,cn} and equivalence descriptors

ci; b C

equiv(ciy, Niy), . . ., equiv(ci;, Ni,),
such that the set IV, of /-children of n satisfies
N, = Ny U~-'UN1'J.,

ii. there exist some fragment names D = {d;,,...d
{di,...,dn}, and equivalence descriptors

equiv(diy, Niy), - .., equiv(di;, Ni;),

} C

j =

such that the set N, of //-children of n, satisfies
N// :Nil U--'UNij,

iii. all remaining fragment names c¢; ¢ C' have mapping
descriptors of the form map(c;, Ny), for Ng being a
set of /-children of nq

iv. all remaining fragment names d; ¢ D have mapping
descriptors of the form map(d;, N7), for N] being
a set of descendants of n.

The above step can be done by iterating over the descrip-
tors of the cs and ds. Hence this step can be completed in
worst-case exponential time in the size of the query and
program.

5. for each forest production f — g1,. .. gk:
(a) for any combination of mapping descriptors
map(g1, N1), . ..map(gr, Ni)
add to D the descriptor
map(f, N1 U---U Ng).
(b) for any combination of descriptors

¢ = equiv(gi,, Ni,), - . - equiv(gi,, Ny),
map(ng—l) N7'1+1)7 ce 7map(gik) le)

for (i1,...,41,%41,...,%x) being any size k permuta-
tion, add to D the descriptors

equiv(f,N;; U---UNy,)

map(f:Nil U"'UNil)

when one of the following conditions is verified:
i. all the nodes in IV;,, ..., N;,, N; N;, are /-
siblings in ¢
ii. all the nodes in N;,,..., N;, are //-siblings in g,
children of some node ny, while the nodes in the sets
Nij -+, Niy are all somewhere below ng in gq.

This step can executed in time worst-case exponential in
the size of the query and program.

1419

6. if any new descriptors have been inferred, go back to step 4.
We can prove the following:

THEOREM E.2. Expressibility holds iff findDescriptors outputs
an equivalence descriptor for the start tree fragment, of the form
equiv(S,ROOT(q)). findDescriptors runs in exponential time in
the size of the QSS and of the query.

F. THE REWRITE ALGORITHM FORMULTI-

TOKEN QUERIES IS SOUND
Proof of Theorem 7.1:

PROOF SKETCH. The first condition ensures that any interleav-
ing ¢ starts by a /-pattern into which ft has a containment mapping
and ends by a /-pattern into which /¢ has a containment mapping.

Let us now consider the case when ¢’s intermediary part m is
empty, i.e., ¢ is of the form ft//It.

In this case, condition (line 7) guarantees that in any interleaving
i the images of ft and [t (by the containment mappings mentioned
above) are disjoint: If [, is the empty pattern, this is immediate.
Otherwise, since I, £ MB(v;), this means that (a) no interleavings
with main branch [, can be built, and furthermore (b) no interleav-
ings with an even shorter main branch (that would be obtained by
cutting a bigger prefix from MB(t)) can be built either. By the fact
that these two containment mappings have disjoint images, their
union yields a containment mapping from ¢ into ¢, hence ¢ C q.

We now consider the case when m is not empty.

For this case, besides the fact that in any interleaving ¢ the images
of ft and It must be disjoint, the rest of ¢ (the m part) must also
map somewhere between these images. All this is guaranteed by
the conditions of lines 9- 13.

First, v; has a sub-query m’ which, considered in isolation, is
equivalent (i.e. isomorphic modulo minimization) with m. Then,
conditions (lines 12- 13) imply that in any interleaving ¢ of the
views, nodes from the m’ part of v; cannot be collapsed with nodes
from the first or last tokens of the various views. More precisely,
they imply that the minimal prefix (resp. suffix) of MB(It) (resp.
MB(ft)) cannot be collapsed with the part of MB(m) to which it
is isomorphic (by the definition of MB(ft),, and MB(lt),). By
the minimality property, if there are some coalescing opportunities,
the ones that are ruled out here must be among them. Hence the
part fty (by which ¢ starts) and the part [¢y, (by which 7 ends) are
disjoint, and there are at least |m’| main branch nodes in between.

Then, the rest of ¢, m, will also map in between, since m maps
in any pattern resulting from the interleaving of m’ with other view
parts (we can compose the mapping from m to m’ with the onto
function by which ¢ is built). It follows easily that ¢ has a contain-
ment mapping into any interleaving ¢ of N).

We now consider how one can verify conditions (lines 7, 9- 13)
in polynomial time. For (line 7), the non-existence of a containment
mapping between two linear paths could be easily translated into a
containment mapping test.

Then, conditions (lines 9- 13) amount to the following:

e finding the views that have a sub-query equivalent to m (an
equivalence test) and, for each of them,

e checking the non-existence of the two mappings (even though
prefix; root-maps into ft, hence MB(prefix;) also root-
maps into MB(ft), and suf fixz; output-maps into [¢, hence
MB (suf fix;) also output-maps into MB(ft)).

The first item is immediate. Then, for lines 12- 13, since we are
dealing again with linear patterns, testing if the two mappings fail
can be done using a bottom-up (in the case of MB(suf fiz;)) re-
spectively top-down (in the case of MB (prefiz;)) procedure as the
one described in Section 7.3, advancing one token at a time. [

Proof of Theorem 7.2:

PROOF. The proof is essentially a reformulation of the part of
the proof of Theorem 4.5 from [7] that concerns multi-token queries
from XP.s. The difference is that testEquiv does not apply rewrit-
ing rules on an intersection (denoted DAG pattern) of tree patterns
(views), but verifies directly on the views conditions that are nec-
essary for the existence of a rewriting.

For an XP query v, let s(v) denote the XP.s query obtained by
pruning out the //-subpredicates that do not obey the XP.s condi-
tion. s(v) is called the extended skeleton of v.

First, in order to reuse the proof of Theorem 4.5 from [7] we
show that a query ¢ from XP.s is equivalent to an intersection of
XP views v, . . ., v if and only if ¢ is equivalent to the intersection
of their extended skeletons. The if direction is immediate since
Nsv; T Nis(v;). For the only if direction it suffices to see that
since ¢ is an extended skeleton, any containment mapping from ¢
into N;v; will actually use only parts that are not violating the XP
condition. This means that a containment mapping from ¢ into N;v;
gives also a containment mapping from g into N;s(v;).

Then, if the conditions of line 5 do not hold, one can build in-
terleavings ¢ of the views that are not contained into g, for which
either ft does not root map into ¢’s first token or ¢ does not root
map into ¢’s last token or both. This, by Lemmas 2.1 and 2.2, would
imply that g is not supported.

If ¢ has only 2 tokens (i.e., the middle part m is empty), then
MB(q) is of the form MB(ft)//MB(lt). If the test of line 7 does
not hold, it means that [, is non-empty and, moreover, all the main
branches of the views have containment mappings into it. But these
containment mappings point to an interleaving ¢ of the views hav-
ing a main branch shorter in length than MB(q), i.e. |MB(7)| <
[MB(q)|. This implies that ¢ does not contain ¢, hence g cannot
have a rewriting using the intersection of the views.

Assuming now that ¢ has more than 2 tokens (m is non-empty),
each of the views v; can be seen as prefiz;//mid;//suf fiz;,
where prefix; root-maps into ft, suf fiz; output-maps into [t
and mid; maps into m while m may or may not map back into
mad;. Now, if m does not map back into any of the mid; patterns,
we can again exhibit an interleaving ¢ of the views vy, ..., v, not
contained into ¢. This is based on the following Lemma (used in
the proof of Theorem 4.5 from [7]).

LEMMA El. Ifthe XP.s patterns are of the formv; = ft//p;//lt,

1 < ¢ < n, then Nyv; is equivalent to one tree pattern (one of its
interleavings) iff there is a query among them, v;, having an inter-
mediary part p;j such that all other p; map into p;.

The lemma implies that the intersection N;v; is equivalent to the
tree pattern ¢ only if at least one middle part mid; is equivalent to
m. Otherwise, an interleaving ¢ of v1, . . . , v, contradicting support
can be built by looking at the intersection N; ft//mid; / /It and its
interleavings.

W.lo.g. let us assume there is only one such view v; of the
form v; = prefixz;//mid;//suf fix;, with mid; = m. Let us
also assume that MB(ft), = is not empty, hence there is an overlap
between MB(ft) and MB(m) and that MB(prefix;) does root-map
into MB(ft),,. We use the overlap to construct an interleaving ¢
that cannot be contained into ¢; the construction will be detailed in
the remainder of this proof.

By the above assumptions, MB(v;) will have a containment map-
ping in the main branch of a query ¢’ obtained from ¢ by using the
overlap of ft with m, i.e. coalescing the end of the former with
the start of the latter. ¢’ is of the form ft'//m'//lt, where ft'
is ft plus maybe some other /-steps, and m’ is only a suffix of
m (more precisely, m minus its first token). It is easy to see that
MB(q") [Z MB(q) since the former has fewer main branch nodes
but, by the assumptions, MB(q") C MB(v;).

Finally, we consider the intersection

I = (Nigs ft'//midi/[1t) N q'.

We have ft'//m/ /it C I C Njv;. Each mid; maps into m, but
m does not have an inverse mapping, while m/’ is a proper suffix of
m. By Lemma F.1, it follows that

I# ft')/m]/lt,

hence I [Z ft'//m//lt. This means that the tree patterns in I must
have some interleaving i = ft'//mid//It that is not contained
in ft'//m//lt, hence m does not map into mid. But this ¢ will
not contained into ¢ = ft//m//lt either, since ft//m cannot be
mapped into ft'//mid. This is because at most m except its first
token (call it ¢) can be mapped in the mid part but not m entirely,
while ft//t cannot be mapped into ft’ (the latter was obtained by
coalescing some nodes of ¢ with nodes of ft, hence has fewer main
branch nodes than ft//t).

Since i C Njv; but ¢ [Z g, we have that Njv; £ q.

We can deal in similar manner with the general case when sev-
eral views v; might be such that mid; = m and when the sec-
ond condition of Line 13 is the one that is not verified by some of
them. [

Proof of Theorem 7.3:

PROOF SKETCH. The fragments of patterns in the set of ft and
It descriptors computed by testEquivDesc contains all the main
branches and relevant predicates of first and last tokens of views.
By relevant, we mean here those that appear in ¢ (in ft and [t),
since they are all required if fty = ft and Ity = It. (The fact
that query equivalence means isomorphism modulo minimization
is important here.)

It follows immediately that testEquiv and testEquivDesc compute
the same ft,, and Ity patterns when these two equivalence tests hold.
The following tests are trivially equivalent, by the definition of 1
and m descriptors. [

Proof of Theorem 7.4:
PROOF SKETCH.

First-token descriptors. Step 1 of findDescSupp computes, bot-
tom up, all suffixes of a prefix plus, eventually, one predicate. It
stores them in the second field of the pref descriptor. When the
position k£ = 1 is reached, it means that a main branch of a first
token, plus maybe a predicate, has been computed. This justifies
the inferrence of an ft descriptor that has the same p pattern as the
pref(f, p, 1) descriptor. We infer all such descriptors because we
explore bottom-up all paths that could represent the first-token in
an expansion of the QSS.

Last-token descriptors. This case is symmetrical to the first-
token descriptors.

I-descriptors. Partial 1-descriptors are computed starting from
the base case of rules that have no tree fragment names (Step 1).
Then it records bottom up patterns and ranks in ¢ and [, inferring
partial 1-descriptors that satisfy Definition 7.4. It infers all such
descriptors because, intuitively, a partial 1-descriptor for smaller
ranks in ¢ and [, exists only if there are partial I-descriptors for
higher ranks, i.e., corresponding to “lower” fragments of the main
branches of the tree patterns. And, by the same reasoning, if no
mapping can be inferred while going “up” in the pattern (case in
which an 1 descriptor is inferred), it guarantees the non-existence
of a containment mapping.

m-descriptors. Below m-descriptors are computed in a very
similar way to partial 1-descriptors. And, using similar arguments,

it can be shown that the algorithm computes all below m-descriptors.

The computation of partial m-descriptors follows exactly the con-
ditions in their definition. Above m-descriptors are also computed
as a bottom-up evaluation, checking the conditions from Defini-
tion 7.7. Finally, having a partial m-descriptor pm/(g, [IMB(m)|)
and an above m-descriptor am|g, k1, (JMB(ft), | + 1, —)] justi-
fies the introduction of an m descriptor, as it guarantees that some
views generated by the QSS satisfy the conditions from lines 9-13
in Algorithm testEquiv.

It can easily be verified that the number of descriptors is poly-
nomial, as they are defined using positions, subpatterns or patterns
constructed in PTIME from the query and the specification. The
computation of each descriptor is PTIME, as it amounts to simple
tests on polynomial size patterns. Hence the computation of all
descriptors is done in PTIME. [

Proof of Theorem 7.5:

PROOF SKETCH. 1. Soundness follows from the observation

that follows after Theorem 7.4 and from the fact that comp(P, q))

generates compensated views.

2. Follows from Theorem 7.2 and from the fact that comp(P, q))
generates views having all the compensation that may be used
by a mapping from ¢ into an interleaving of views.

O

G. OTHER EXAMPLES

EXAMPLE G.1. Testing non-containment for linear patterns.
Consider the following two patterns:

g1 = doc(T)/vacation/trip/ [tour/tour/ | museum,
g2 = doc(T)//vacation/ /tour//tour//museum.

We can test that q1 [q2 by the procedure described in Section 7.3
as follows: start by mapping q2’s last token, museum into qi’s
last token. The start rank k of this mapping is |q1|, i.e. k = 6.
Then, bottom-up (or right to left on the XP expression) we pass to
q2’s token tour [tour and we map it in the lowest possible image
above rank 6. This is at rank 4, which becomes the new value of k.
Similarly, we map the other token vacation of q2 and k becomes 2
and finally we map the first token of q2, doc(T") ar rank 1 in q.
Consider now the query

gs = doc(T)/ /activity/ [vacation/ | museum.

When testing whether qi1 T g3, the bottom-up procedure stops out-
putting false when the mapping of qs’s token activity is not pos-
sible above the rank 2, where its vacation token had a mapping
image.

EXAMPLE G.2. First-token descriptors. On our running ex-
ample, i.e., query q1 from Example 1.1 and the normalized QSS P
from Example 3.2, we obtain first-token descriptors as follows:

On the rule fo(X) — doc(T)// f1(X),

e for q’s main branch node at rank k = 1,
o we already have a fragment descriptor contain(f1,nv,),
e we have no c;, dj branches,

e hence we can infer a fragment descriptor pre f (fo, doc(T'), 1).

Then, by step 1.3 of findDescSupp we get the view descriptor
ft(doc(T), fo).

EXAMPLE G.3. Last-token descriptors. On our running exam-
ple, we obtain last-token descriptors as follows:

e we compute suffix descriptors as follows:

— onthe rulefs(X) — museum(X),

— by the step 2.A.1 of findDescSupp we get the fragment
descriptor di = suf f(fs, museum),

e we also have the mapping descriptors da = equiv(fr,ng,),
dy = map(fa,ns,), dy = equiv(fa,ns,)

Sfrom dy and ds, for the rule f2(X) — trip[fz()]//f(5)(X)
we get the full-suffix descriptor ds = fsuf f(f2, museum,4),
as the rank of node ny., is 4.

From ds and the rule f1(X) — vacation// f2(X) we then
getds = fsuf f(f1, museum,2).

Finally, from d4 and the rule fo(X) — doc(T)//f1(X) we
then get ds = fsuf f(fo, museum, 1), which leads to the
view descriptor 1t (fo, museum).

e on another thread of computation, for the rule f3(X) —

tour|fa]/ f5(X), using d1 and ds, by the step 2.A.2 of findDescSupp

we get: (a) the suffix descriptor

ds = suf f(fs,tour/museum), and (b) since we have dj,
for the predicate P = [schedule//walk] the suffix descrip-
tor dg = suf f(fs,tour[schedule//walk]/museum)
Then, from dg and the rule fo(X) — tour//fi(X) we get
the full-suffix descriptor

d7 = fsuf f(f2, tour[schedule//walk]/museum,4),
From d7 and the rule f1(X) — vacation// f2(X) we then
getds = fsuf f(f1,trip[schedule//walk]/museum, 2).
Finally, from dg and the rule fo(X) — doc(T)//fi1(X) we
then get dy = fsuf f(fo, trip[schedule//walk]/museum, 1),
which leads to the view descriptor

1t(fo, trip[schedule//walk]/museum).

EXAMPLE G.4. m-descriptors. On our running example, we
obtain m-descriptors as follows:

o we first obtain the below m-descriptor bm(fs, 6, (7, museum)),
as [MB(q)| = 6.

e we then get to partial m-descriptors:
From the rule f2(X) — trip[fr()]/ fs(X), since MB(It),,
is the empty pattern, from d2 = equiv(fr,ng,) we get the
fragment descriptor pm(f2, 1) (as the size of the main branch
of m’s prefix trip[guide] is 1).
Then, from the rule f2(X) — trip/ f2(X) and from pm(f2, 1)
we get another partial m-descriptor, pm/(fa, 2).
Finally, from the rule f1(X) — vacation// f2(X) and from
pm(f2,2) we get the partial m-descriptor pm(f1,3). Note
that [IMB(m)| = 3.

e we compute above m-descriptors as follows:
Starting with rule fo — doc(T)// f1(X), since v}, is doc(T),
we get the above m-descriptor am(f1,1, (1, —)). Note that
since MB(ft), is empty, IMB(ft) |+ 1isindeed 1.

e finally, using the two descriptors pm(f1, 3), am(f1, 1, (1, —)),
we obtain the view descriptor m(fo).

H. COMPILATION AND NORMALIZATION

We assume Query Set Specifications given as in [19], i.e. speci-
fying tree pattern queries with one output. We preprocess an input
QSS in two stages. In the first stage, we make the output explicit
and in the second one we normalize the specification such that there
are no 7, * or + occurrence constraints.

The result of the compilation stage (subsequently used during
normalization) is a QSS with bindings, which is similar to a QSS
except that instead of result node names it uses variables to specify
the result node (in the style of Datalog for trees introduced in [1]).
Tree fragment names on the left hand side of a rule may carry a
variables bound in the tree fragments from the right hand side. A
variable from a tree fragment can either be bound to an element
node or to a tree fragment node. If it is an element node, then
the variable bindings are given by the matches of that node into a
document and that node will be a result node when it appears in an
expansion. If it is a tree fragment node f, then its variable bindings
come from rules in which f appears on the left hand side. We will
also use a syntax of the form

FX) = i(V1), - 1y, (Vi)

denoting that Y; is empty or it is a variable bound somewhere in
the tree fragment if;.

An expansion of a QSS with bindings is obtained in a similar way
to one for a regular QSS, by replacing non-terminals with the body
of the rule in which they appear and keeping the correspondence
between variables from the left hand side and from the right hand
side.

THEOREM H.1. For any QSS G there is a QSS with bindings G
and without ?, * or + occurrence constraints such that G produces
the same expansions as G'.

PROOF. We show below the compilation and normalization steps
that build G’ from G. O

H.1 Compilation

For the first stage, we start by inferring which tree fragments may
contribute to the output and record this using ‘#” annotations/flags.
A tree fragment that contains an element whose name is among the
result node names, gets the # and so does the tree fragment name
on the left hand side of that production. Then we propagate # flags,
until reaching a fix point: if a tree fragment name has #, then all
its right-hand-side occurrences in the QSS get # (together with the
tree fragment in which they appear); the tree fragment names on
the left of those rules also get a #. The number of #’s is at most the
number of tree fragments plus the number of rules. And each # can
be computed in linear time in the size of the rule in which that tree
fragment appears.

Then we replace # flags with variables in the following way.

Arule f — g1,...,9n, in which f has no #, is compiled into
O = 91055920

For arule f — g1,...
more complicated.

,gn in which f has # set, it is slightly

Let gi1, ..., gir be the tree fragments on the right that have #,
and contain a tree fragment node that has a #. For each g;;, in this
set having ¢ tree fragment nodes with #, enumerated in some fixed
order, we add the rule

f(Xpi) = 910, -+, 9in(Xpi), - -

where the X ,; variable is bound to the i tree fragment node of g;,,
having a #.

Let gj1, ..., gjm the tree fragments on the right that have # and
also have result element nodes.

Then, for every g;, having r result nodes, enumerated in some
fixed order, we create r rules

F(Xpi) = 910, in(Xpi)s - -

in which the variable X,; is bound to the 5™ result node of g;y,.

The number of rules in the grammar obtained through this com-
pilation process may increase by at most the number of nodes in
the original grammar. Each new production can be built in linear
time in the size of the original production it comes from.

,gn(), where 1 <4 <t

,gn(), where 1 < i <r

H.2 Normalization

At this stage we have a QSS with output specified by variables,
such that any tree fragment with ? or * occurrence constraint has no
output variable. (Those with + may have output.) We then rewrite
this grammar into one without ?, or 4. The transformation rules
are given below:

e 7 constraint: Any tree fragment node of the form ¢()? is re-
placed by a new fragment name f() and the rules below are
added:

O —90 (1)
f0— 2

Any rule containing a g(X)? such that the X is the output of
the rule is replaced by a rule in which g(X') has no occurrence
constraint.

e x constraint: Any tree fragment node of the form g()x is re-
placed by a new fragment name recg() and the rules below
are added:

recg() — g(), recg() 3)
recg() — 4

Any rule containing a g(X)* such that the X is the output of
the rule is replaced by a rule in which g(X') has no occurrence
constraint.

e 4 constraint:

Any tree fragment node of the form g(X)+ is replaced by a
new fragment name recg(X) and the rules below are added:

recg(X) — g(Y), recg(X))
recg(X) — g(X), rech() (6)
recg(X) — g(X) @)
rech() — g(Y'), rech() (8)
rech() — g(Y) €))

where Y N X = () and rech is a new fragment name.

Please note that transformations 1-9 can be done in linear time
in the size of the QSS. In the following, we will consider that our
specification is already normalized, i.e. there are no occurrence
constraints.

