
Policy-Aware Sender Anonymity in Location Based
Services

Alin Deutsch ∗, Richard Hull †, Avinash Vyas ∗, Kevin Keliang Zhao ∗
∗ UC San Diego {deutsch,avyas,kezhao}@cs.ucsd.edu

† IBM Research hull@us.ibm.com

Abstract— Sender anonymity in location-based services (LBS)
attempts to hide the identity of a mobile device user who sends
requests to the LBS provider for services in her proximity (e.g.
“find the nearest gas station” etc.). The goal is to keep the
requester’s interests private even from attackers who (via hacking
or subpoenas) gain access to the request and to the locations of
the mobile user and other nearby users at the time of the request.
In an LBS context, the best-studied privacy guarantee is known
as sender k-anonymity. We show that state-of-the art solutions
for sender k-anonymity defend only against naive attackers who
have no knowledge of the anonymization policy that is in use. We
strengthen the privacy guarantee to defend against more realistic
“policy-aware” attackers. We describe a polynomial algorithm to
obtain an optimum anonymization policy. Our implementation
and experiments show that the policy-aware sender k-anonymity
has potential for practical impact, being efficiently enforceable,
with limited reduction in utility when compared to policy-unaware
guarantees.

I. INTRODUCTION

Recent years have witnessed increased demand for Location-
Based Services (LBS), which answer requests of mobile device
users for services in their proximity (e.g. “find the nearest gas
station”, “Thai restaurant”, “hospital”). While some such LBS
providers are available in wireless networks since 2001 [1], their
proliferation has been limited, among other reasons, by privacy
concerns.

In this paper we address one such concern, which pertains
to hiding the identity of the sender of more sensitive requests
(e.g. for the local campaign headquarters of a given political
party, spiritual center for a given religion, etc.) in order to keep
her interests private. The sender’s identity must be protected
even against attackers who, via hacking or subpoenas, gain
access to a) the request (from the LBS provider’s log) and b)
to the locations of the mobile user and other nearby users at
the time of the request (from the wireless service provider) and
c) who know the “design” of the system used to provide this
protection. The assumption c) about the attackers is based on a
well accepted principle of designing a private and secure system
- “The design is not secret” [24]. This is indeed a realistic threat
since an attacker with subpoena powers (e.g. a federal agency)
or a disgruntled ex-employee can obtain the “design” of the
system.

In the context of LBS, the best-studied identity protection
measure is known as sender k-anonymity [17], which is intended
to guarantee that the request log and precise location informa-
tion are insufficient to distinguish among the actual requester
and k-1 other possible requesters. Typical sender anonymization
algorithms [16], [23], [17], [27] are based on hiding the sender’s

precise location in the request, substituting instead a cloak, i.e. a
region containing this location. The cloak is usually chosen from
among regions of a pre-defined shape (circular, rectangular,
etc.), to include at least k-1 other mobile users. To maximize the
utility of the answer to the service request, usually the tightest
cloak containing k users is picked. We refer to these utility-
maximization policies of choosing cloaks as k-inside.

In the version of sender k-anonymity provided by the k-
inside policies [16], [23], [27], the principle that the design
of a system is not secret is ignored. Therefore, such privacy
guarantee does not hold against an attacker who knows the
“design” i.e. the policy used to pick the cloaks for locations.
The next example illustrates how an attacker who knows the
cloaking policy (“policy-aware” attacker) can identify the sender
when the cloaks are selected using a k-inside policy.

Example 1. Figure I shows the 2-inside policy obtained
using the algorithm described in [23] for the location database
of Table I. The algorithm assumes a static quad-tree based
partitioning of a geographic space and uses quadrants and sub-
quadrants (combination of two adjacent quadrants) as possible
cloaks. For a given requester, the algorithms picks the smallest
cloak (containing the requester) that contains k-1 other users.
For k=2 the algorithm cloaks A and B to R1, C to R3 and
S and T to R2. Since each of these cloaks contains at least 2
locations this is a 2-inside policy. Assume there is an attacker
that has access to the location database D1 (via hacking or
subpoena) and is “design-aware” i.e. knows the 2-inside policy
used to provide sender 2-anonymity. If this attacker observes an
LBS service request with cloak R3, he can identify the sender
as C!. ¤

���� � ����� 	
 ��	�

�

Fig. 1. 2-inside policy

userid locx locy
· · · · · · · · ·

Alice 1 1
Bob 1 2

Carol 1 4
Sam 3 1
Tom 4 4
· · · · · · · · ·

TABLE I
LOCATION DATABASE D1

The privacy guarantee of the k-inside policy have been refined

by additional constraints such as k-reciprocity[17] and k-sharing
[11]. We show (in Section VII) that since the policy-aware
attacker is not considered, these additional constraints also fail
to provide sender k-anonymity.

As described later in detail, to preserve sender k-anonymity
against a policy-aware attacker, in some cases the cloak used for
a location needs to be bigger (and include more than k locations)
than the cloak picked by a k-inside policy. As a result, a
cloaking that provides policy-aware sender k-anonymity (policy-
aware cloaking) may have reduced utility in comparison to a
k-inside policy. Moreover unlike k-inside policies where one can
find the utility-maximizing (optimum) cloaking for each user by
considering a small subset of all the users, for optimum policy-
aware cloaking one has to consider all the users (as described
later in Section IV), which is computationally more expensive
than optimum k-inside policy. Hence policy-aware sender k-
anonymity trades utility and performance for stronger privacy.
In this paper, we describe our findings on identifying the “sweet
spot” in this tradeoff.
Our contributions. In addition to showing that k-inside poli-
cies achieve sender anonymity only against attackers who are
policy-unaware, and is not proof against policy-aware attackers,
our contributions include the following.

[1] We formalize the classes of policy-unaware and policy-
aware attackers, and define a novel, stronger privacy guarantee:
sender anonymity against policy-aware attackers. We prove
formally that this guarantee strictly subsumes sender anonymity
against policy-unaware attackers.

[2] We study the problem of finding, among all policy-aware
sender k-anonymizations of a set of mobile users, one with
optimum utility. We show that the problem of finding optimum
policy-aware sender k-anonymity depends upon the type of
cloaks used. In particular, we show that when the cloaks are
circles whose centers are selected from a given set of points,
the problem is NP-complete, but becomes PTIME for cloaks
picked from among the quadrants of a quad-tree-based partition
of the map (a common choice in state-of-the-art anonymization
solutions [16], [23]).

[3] We implement and evaluate experimentally our optimum
policy-aware anonymization algorithm. Even though finding
optimum policy-aware anonymization is computationally costly
in comparison to finding optimum k-inside policy (that uses the
same cloak types) we show that our algorithm is practical and
scales extremely well with the number of service requests: it
takes less than 1 second to anonymize 250k requests from users
in the San Francisco Bay area (using a single anonymization
server) and can scale up to 1 million requests using 16 servers
in parallel.

[4] As stated earlier, the policy-aware cloaking may result
in some loss of utility in comparison to a k-inside policy
(that uses the same cloak type). We show empirically that the
utility reduction traded for the stronger privacy guarantee is
reasonable: the average cloak area is at most 1.7 times the
average area of the tightest cloaks used for policy-unaware
anonymity.

Scope of the paper More recently, several extensions to
sender k-anonymity has been proposed, such as allowing user

specified k (in [14], [11]) and defending against trajectory-
aware attacker [6], [27], [11] where the attacker has knowledge
of when multiple requests have originated from the same (a
priori unknown) user, even if they are sent at different times and
from different locations. While these extensions are important,
our work improves upon the foundations of these extensions,
namely make it policy-aware. We leave as future work the
extension of the policy-aware sender k-anonymity to handle
trajectory-awareness and user-specified k.

Paper outline The remainder of the paper is organized as
follows. In Section II, we show how we model an LBS. We
define sender anonymity and the classes of attacks it defends
against in Section III. Section IV gives our PTIME algorithm
for finding a policy-aware anonymization of maximum utility.
In Section V we describe how we utilize the inherent parallelism
in the problem to obtain greater scalability and report on the
experimental evaluation in Section VI. We discuss related work
in Section VII and conclude in Section VIII.

II. LBS MODELS

This section introduces a basic model of providing location
based services, based on information about user locations pro-
vided by a wireless network. It then describes modifications and
additional components required for privacy support.

A. Basic LBS Model

Wireless “Communications Service Providers” (CSPs) can
derive the approximate location of user devices, through a
variety of mechanisms, including triangulation based on signal
strength or time-delay to multiple cell towers, and GPS capa-
bilities on the device. In the US, the E911 Requirement [3]
mandates that CSPs provide the necessary infrastructure to
determine the location of mobile devices within a range of 50
to 300 meters, depending on the technology used. This infras-
tructure must be available when users call the emergency 911
number, but can also be used to support other services, including
location-based information services. It is now common for CSPs
to include specialized network components, which are called
Mobile Positioning Center (MPC) in the CDMA standard, that
serve as a logically centralized point that provides access to
device locations for E911 and other location based services.

An abstract model is used here to study location-based
services and their privacy characteristics. For simplicity, we
model a geographic area as a 2-dimensional space and user’s
location as integer coordinates within this 2-dimensional space.
There are four core elements in the delivery of a location-
based service: the user making a request, typically called
the sender, the (wireless) Communication Service Provider,
denoted as CSP, the Mobile Positioning Center operated by the
CSP, denoted as MPC, and the Location Based Service (LBS)
provider, denoted as LBS. We view the CSP to be a trusted agent
that operates the MPC. Although in practice the MPC provides
the approximate location of each user’s device, for simplicity
we take the value produced by the MPC as the device’s exact
location. A sender’s request for a location-based service is
processed by the CSP, which obtains the user’s location from
the MPC and forwards the request to the LBS.

We abstract from the fact that location is usually determined
only on demand, and assume in our investigation that the
locations of all devices are eagerly computed and available.
This eagerness assumption is appropriate in connection with
the study of privacy guarantees, since we target attackers who
might be able to reconstitute all device locations, perhaps by
hacking in real-time, by hacking logs, or by subpoena-induced
cooperation of the CSP.

Location Database In the abstract model, for simplicity we
assume that the device locations made available by the MPC
are stored in a relational database, called the location database.
(This database might be virtual.) Although its actual schema can
vary from CSP to CSP, it is essentially equivalent to a single
relation schema

D = {userid, locx, locy}.
Here, the domains of attributes locx and locy are the domains of
x and y coordinates in the 2-dimensional space used to model
the geographic region.

In the current paper, we assume that the location database
is updated periodically (e.g., every 30 seconds) to reflect the
movement of users. Multiple location-based requests can be
made against each snapshot. Thus the state of a location
database over a period of time can be modeled as a sequence
of different instances of schema D.

We represent the set of all possible instances of D by D.
An example instance D1 ∈ D is shown in the Table I, and
illustrated diagrammatically in Figure I.

The following definition allows us to focus on the precise
information associated with a sender’s request for a location-
based service. (In the following section we describe how this
request might be modified by the CSP to provide privacy
protections before forwarding to the LBS.)

Definition 1. A service request is a tuple 〈u, (x, y), V 〉 where
u is a sender identifier, (x, y) are coordinates in 2-dimensional
space and V is a vector of name-value pairs. We say that the
service request is valid w.r.t a location database D if 〈u, x, y〉 ∈
D.

Intuitively, the name-value pairs contain the categories and
specifics of the sought services.

We define the function id(SR) that returns the user id in the
service request and another function loc(SR) that returns the
location co-ordinates (x, y).

Although a service request SR itself is created by the CSP,
based on a request from a sender u, we sometimes refer to SR
as having been sent by u.

Example 2. The following are examples of service requests sent
respectively by users Alice, Bob, Carol, Sam, and Tom:

SRa = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉,
SRb = 〈Bob, (1, 2), [(poi, groc), (cat, asian)]〉,
SRc = 〈Carol, (1, 4), [(poi, rest), (cat, ital)]〉,
SRs = 〈Sam, (3, 1), [(poi, rest), (cat, ital)]〉,
SRt = 〈Tom, (4, 4), [(poi, cinema), (cat, drama)]〉.

(Here “poi” stands for “point of interest”, “cat” stands for
“category”, “rest” stands for “restaurant”, etc.) All five service

requests are valid w.r.t. the location database instance D1 of
Table I. ¤

In the abstract model, the service requests are created by
the CSP using a combination of a request for information
from a user, along with the user’s location as provided by the
MPC. We will therefore assume for our ongoing discussion that
each service request is valid w.r.t. the current location database
instance.

B. Privacy-conscious LBS Model

In realistic privacy solutions, the goal is not to hide infor-
mation from everybody, but rather to minimize the number of
parties one needs to trust to achieve the desired communication.
The fundamental assumption underlying the privacy-conscious
LBS model studied here is that the CSP is a trusted party, and
nobody else is. In particular, the LBS is not trusted, reflecting
the fact that it is usually a third-party provider that is not under
the CSP’s control.

We extend the basic LBS model of Subsection II-A to support
mobile users in accessing the LBS without revealing their
identity to anyone except for the CSP. Users rely on the CSP to
ensure this goal. While we assume that the CSP can be trusted
to perform the privacy-ensuring computations and not log them,
we will assume that attackers may be able to obtain information
about the locations of individual users at different times. (This
might arise due to hacking, or to subpoenas, if the CSP is
logging user locations for the purposes of advertising or service
personalizations.) For the worst case, then, we assume that the
sequence of location databases is available to the attacker.

In the privacy-conscious LBS model, a user sends a location-
based request to the CSP over a channel that is assumed to
be secure (this is typically the case in cell phone networks).
The CSP constructs the corresponding service request SR, and
based on this, will send a request on behalf of the user to an
LBS L. The CSP cannot sent SR itself, because this includes
the sender’s identity, which would be revealed to both the
LBS provider (which may be an attacker) and to any potential
attackers listening on the channel. Also, simply removing the
sender identity from SR does not suffice, because the identity
can be obtained by examining the location database (which is
assumed to be available to attackers). While there are many
approaches to anonymize a request SR so that it does not reveal
the requester’s identity, for the current investigation we shall use
the following classical one.

Definition 2. An anonymized request is a tuple 〈rid, ρ, V 〉
where rid is a unique request identifier, ρ is a connected, closed
region in the plane, and V is a vector of name-value pairs. If ρ
is a rectangular region with vertical and horizontal sides, then
we also denote this anonymized request as

〈rid, (x1, y1, x2, y2), V 〉
where (x1, y1) ((x2, y2)) specifies the southwest (respectively
northeast) corners of a rectangular region.

From now on we refer to these regions in anonymized
requests as cloaks. We also define a function reg(AR) that
returns the cloak from an anonymized request AR.

Example 3. The following is a list of anonymized requests,
whose cloaks are depicted in Figure I.

ARa = 〈167, (0, 0, 1, 2), [(poi, rest), (cat, ital)]〉
ARb = 〈168, (0, 0, 1, 2), [(poi, groc), (cat, asian)]〉
ARc = 〈169, (0, 0, 2, 4), [(poi, rest), (cat, ital)]〉
ARs = 〈170, (2, 0, 4, 4), [(poi, rest), (cat, ital)]〉
ARt = 〈171, (2, 0, 4, 4), [(poi, cinema), (cat, drama)]〉 ¤

Definition 3. We say that an anonymized request AR =
〈id, ρ, V 〉 masks a service request SR = 〈u′, (x′, y′), V ′〉 if
the location (x′, y′) is an element of the cloak ρ and V=V’.

Example 4. For each x in {a, b, c, s, t}, the anonymized request
ARx of Example 3 masks the service request SRx of Example 2.
¤

Instead of sending a service request SR to the LBS provider,
the CSP forwards to the LBS provider an anonymized re-
quest that masks SR. The next section discusses how such
anonymized requests are constructed.

III. POLICY-AWARE K-ANONYMITY

Prior research considers anonymization algorithms that cloak
the sender’s location with a region covering the location of
k − 1 additional mobile users [16], [23], [27]. The intention
is that an attacker who observes the anonymized request and
has access to the location database can not reduce the number
of possible senders below k, since there are k potential service
requests, one for each of the senders covered by the cloak
of the anonymized request, that could have lead to the same
anonymized request. While the cloaking algorithms proposed
in the literature use different cloak shapes (quadrants [16],
[23], minimum bounding circles [27], etc.) they agree in one
important aspect: to maximize utility of the service, the tightest
cloak that includes k users is picked. We term this class of
cloaking policies as k-inside policies.

The results in this section are motivated by the observation
(described in Section I) that if the attacker is aware of the k-
inside policy used by the CSP, then for some location databases
he is able to reduce the number of possible senders below k,
defeating the purpose of anonymization. We set out to defend
against such “policy-aware” attackers (for general classes of
cloaking policies, including but not limited to the k-inside
policy). To this end we need to formalize the classes of
policy-aware and -unaware attackers. In turn, this requires the
formalization of the notion of cloaking policy, as the CSP’s
method of obtaining an anonymized request AR from a service
request SR and a given location database instance D.

Definition 4. A policy is a deterministic procedure P that takes
as input a location database instance D and a service request
SR, and outputs an anonymized request AR:

P : {instances of location database} × {service requests}
→ {anonymized requests}.

A policy P is masking if for every service request, the location
specified in the service request lies within the cloak in the
anonymized request it is mapped to. Formally,

∀D ∀SR loc(SR) ∈ reg(P (D,SR)).

In this investigation we consider only masking policies, so
from now on we use the term policy to refer to a masking
policy.

Example 5. Assume that the current location database instance
is D1, as shown in Table I. The policy P1 for the service requests
shown in Example 2 is as follows:

P1(D1, SRa) = ARa P1(D1, SRs) = ARs

P1(D1, SRb) = ARb P1(D1, SRt) = ARt

P1(D1, SRc) = ARc

where ARa, ARb, ARc, ARs, ARt are the anonymized requests
of Example 3 and the cloaks used in these anonymized requests
are shown in Figure I (where reg(ARa) = reg(ARb) = R1,
reg(ARc) = R3 and reg(ARs) = reg(ARt) = R2). ¤

The Attacker Model We now proceed to formalizing the
privacy guarantee of policy-aware sender k-anonymity. To this
end, we need a framework for describing what an attacker
knows about the policy being used by the CSP to anonymize
requests. At the one extreme, an attacker may know exactly
which policy is being used; as formally defined below these
will be called “policy-aware” attackers. At the other extreme of
interest here, an attacker may know only that the policy is based
on the use of some family C of possible cloaking regions (e.g.
rectangles, quadrants of a given quad tree, circles with center
from a given set). Given such a family C, we let PC denote the
set of all policies that use cloaking regions from C. As formally
defined below, attackers who know only that the policy used is
an element of PC for some set C will be called “policy-unaware
(relative to C)”.

We target a strong, information-theoretic definition of privacy.
To this end, we model attackers as a function taking certain
input to launch the attack. There are no limiting assumptions on
the computational resources expended to compute this function.
The only assumptions are on what input the function has
(intuitively, the information that the attacker sees). We classify
this input into two groups as follows.
Design time: Even before the attacker observes any anonymized
request, he may know
• the targeted level k of sender k-anonymity, and
• the family of candidate policies P (which in our study is

typically either a singleton, or a set PC for some family C
of cloaking regions)

Run time: The attacker can observe (or reconstruct after the
fact, via log hacking or subpoenas)
• the instance D of the location database (corresponding to

a snapshot of all of the sender locations), and
• the set of anonymized requests made against this snapshot.

Notice that hacking attacks may be unable to reconstruct the
entire location database. If sender k-anonymity is provided
under the above assumptions, then it is also provided if the
attacker has only partial knowledge of D.

The attack function models the following attack: starting from
the observation of a set A of anonymized requests and the full
knowledge of the location database D, the attacker “reverse
engineers” the anonymized requests to obtain the possible
service requests masked by A and compatible with the candidate

policies in P . We capture this result of the attack by defining
the notion of Possible Reverse Engineering (PRE) of a set of
anonymized requests.

Definition 5. Consider a family of policies P , a location data-
base D and a set of anonymized requests A = {ARi}1≤i≤n. A
Possible Reverse Engineering (PRE) π of A w.r.t. D and P is
a function from anonymized requests to service requests such
that
• π(ARi) is valid w.r.t. D for all 1 ≤ i ≤ n, and
• there exists some P ′ ∈ P , such that P ′(D, π(ARi)) =

ARi for each 1 ≤ i ≤ n.

Intuitively, a PRE π associates with every anonymized request
AR in A a possible service request that could have generated
AR, based on some fixed policy P ′ from the family of candi-
dates P . We represent the set of all PREs of a set A w.r.t. D
and P as PRE(A,D,P).

Sender k-anonymity We are now ready to define sender
k-anonymity. Intuitively, this will capture the property that,
even if the attacker uses the available information to flawlessly
compute (no matter at what computational cost) all PREs of
the observed set of anonymized requests, these PREs still point
to at least k possible senders for each anonymized request.
We consider it a breach of sender k-anonymity if the attacker
succeeds in reducing the set of possible senders to fewer than k.
We first define sender k-anonymity as a property of a set A of
anonymized requests w.r.t. a location database D and a family
of policies P . Since the anonymized requests are obtained using
a policy P , it is easy to extend the definition as a property of
a policy P .

Definition 6 (Sender k-Anonymity). Let P be a family of
policies and D a location database. Let A be a finite set of
anonymized requests obtained using a policy P ∈ P . We say
that A provides sender k-anonymity against P-aware attackers
on D if there are PREs π1 . . . πk ∈ PRE(A,D,P) such that
for each AR ∈ A and each pair i, j satisfying 1 ≤ i < j ≤ k,
id(πi(AR)) 6= (id(πj(AR)).

We say that policy P provides sender k-anonymity against P-
aware attackers on D if for each finite set S of service requests
(valid w.r.t. D), the set of anonymized requests {P (D, SR) |
SR ∈ S} provides sender k-anonymity against P-aware attack-
ers on D.

We say that P provides sender k-anonymity against P-aware
attackers if for every location database D, P provides sender
k-anonymity against P-aware attackers on D.

Since our attacker model is parameterized by the family
of candidate policies P and the set of observed anonymized
requests A, by varying these sets one can enumerate different
classes of attackers and the corresponding flavors of sender
anonymity. In this paper we focus on two extremes.
• A policy-unaware attacker (relative to family C of possible

cloaking regions) does not know which particular cloaking
policy in PC is used by the CSP, and observes only one
anonymized request.

• A policy-aware attacker knows the specific policy P used
by the CSP, and is able to observe and memorize all

anonymized requests.
We show next that the class of policy-aware attackers

is strictly more powerful (in terms of breaching sender k-
anonymity) than the class of policy-unaware attackers.

Example 6. Let’s revisit Example 1 of Section I. It can
be easily observed that for the users of Table I the pol-
icy P1 in Example 5 is based on the cloaking described
in Example 1 When the policy-unaware attacker observes
ARc and tries to reverse engineer the service requests that
could have generated it. He finds 3 PREs π1(ARc) = SRc

and π2(ARc) = 〈Alice, (1, 1), [(poi, rest), (cat, ital)]〉 and
π3(ARc) = 〈Bob, (1, 2), [(poi, rest), (cat, ital)]〉 with distinct
users, Alice, Bob and Carrol. So policy P1 provides sender 2-
anonymity against policy-unaware attackers on D1. In contrast,
the {P1}-aware attacker who observes ARc can construct
only one PRE, involving Carol, whose identity is completely
compromised. Thus the {P1}-aware attacker breaches sender
2-anonymity in a case when policy-unaware attacker cannot.
¤

In the remainder of the paper we target an anonymization
algorithm that preserves sender k-anonymity against the class
of policy-aware attackers. Such an algorithm will also defend
against policy-unaware attackers. This claim is formalized be-
low (for proof see[12]).

Proposition 1. Let A be a set of anonymized requests obtained
using policy P on location database D. If A provides sender
k-anonymity against a policy-aware attacker on D, it also
provides sender k-anonymity against a policy-unaware attacker
on D.

Sender k-Anonymity and k-inside Policies We first check
the privacy provided by some of the cloaking algorithms pro-
posed in the literature [16], [23], [27] against the two classes
of attackers introduced above. As it turns out, they only defend
against policy-unaware attackers.

Recall that all of these algorithms implement a k-inside
cloaking policy, which we use to obtain generic results that
hold for all algorithms in this class.

The following example shows a 2-inside policy that provides
sender 2-anonymity against policy-unaware attackers.

Example 7. For location database instance D1 of Figure I,
the policy P1 of Example 5 uses cloaks R1, R2 and R3 to
anonymize the service requests. Since each of these cloaks
contains at least 2 locations, P1 is a 2-inside policy. Now
recall from Example 6 that the policy-unaware attacker could
not reduce the set of possible senders of each request to less
than 2. ¤

We can show that the finding in Example 7 is not accidental:

Proposition 2. A k-inside policy provides sender k-anonymity
against policy-unaware attackers.

In contrast, recall that Example 6 illustrates a case in which
a k-inside policy does not provide sender k-anonymity against a
policy-aware attacker, leading to the following claim (for proof
see[12]).

Proposition 3. Not all k-inside policies provide sender k-
anonymity against policy-aware attackers.

Since by Proposition 3, the prior anonymization algorithms
do not satisfy our goal of defending against policy-aware
attackers, we need to search for a novel algorithm.

Before presenting this algorithm in Section IV, we illustrate
a policy that does provide sender 2-anonymity against policy-
aware attackers.

Example 8. For the location database instance D1, we describe
a policy P2 for the service requests shown in Example 2:

P2(D1, SRa) = 〈167, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRb) = 〈168, R3, [(poi, groc), (cat, asian)]〉,
P2(D1, SRc) = 〈169, R3, [(poi, rest), (cat, ital)]〉,
P2(D1, SRs) = 〈170, R2, [(poi, rest), (cat, ital)]〉, and
P2(D1, SRt) = 〈171, R2, [(poi, rest), (cat, thai)]〉.

The cloaks R2 and R3 used in these anonymized requests are
those depicted in Figure I. The readers can check that P2

provides privacy against {P2}-aware attackers since for each
anonymized request one can construct 2 PREs using policy P2.
¤

IV. OPTIMAL K-ANONYMITY

For the same location database, there may exist several
policies that provide policy-aware sender k-anonymity, raising
the obvious question of which one to use. In this section we
address the problem of finding the policy of highest utility to
the users. Prior work on policy-unaware anonymity proposes
that one way to maximize utility is to minimize the cloak area.
A smaller cloak allows for more efficient processing of range
queries (e.g. find gas stations within 2 miles) at the LBS as well
as more efficient filtering of results at clients. Since we don’t
know a priori the users who are going to send a request at a
given snapshot of location database, we compare policies for
the case when every user sends a request.

Cost of a policy We introduce the cost of a policy to
quantitatively capture the fact that the utility is maximized as the
cloak area is minimized. We define the cost of an anonymized
request AR as the area of its cloak reg(AR). Given a location
database D and a set S of service requests valid w.r.t. D, the
cost of S under P is defined as

∑
SR∈S cost of P (D,SR). The

cost of a policy P on D, denoted Cost(P,D), is computed as
the cost of the set of service requests obtained if every user in
D issues precisely one request (of immaterial parameters); it is
the cost of the set of service requests

S = {〈u, (x, y), V 〉| (u, x, y) ∈ D}
where V is some arbitrary vector of name-value pairs.

Optimal policy We next focus on the problem of obtaining,
for a given location database D, an optimal (cost-minimal)
policy that provides sender k-anonymity against policy-aware
attackers. We show that the complexity of this problem depends
upon the type of cloaks used in the anonymization. In particular
we show that the problem is NP-complete if the cloaks are
of circular shape, and are picked by choosing the center from
a given set of points (e.g. public landmarks such as libraries,
train stations or cell towers) and by choosing the radius freely. It

comes therefore as a pleasant surprise that the problem becomes
PTIME for a version in which cloaks are picked among the
quadrants of a quad-tree-based partition of the map.

We first detail the circular-cloak version of the problem.
Let D be an instance of location database and SC be a set
of possible centers. Find a policy-aware sender k-anonymous
policy P that minimizes Cost(P,D). P uses circular cloaks,
each centered at some point from SC, with no restriction on
the radius. We call this problem Optimal Policy-aware Bulk-
anonymization with Circular cloaks. We find the following
negative result.

Theorem 1. Optimal Policy-aware Bulk-anonymization with
Circular cloaks is NP-Complete.

Note that the NP-completeness is in the size of the location
database, meaning that optimal policy-aware anonymization is
practically infeasible.

There is good news, however, if we consider a different
type of cloaks from which the policy may choose. This result
has high practical impact, since the cloak type in question is
already widely used in the literature. We consider cloaks picked
from among the quadrants corresponding to a quad-tree-based
partitioning of a planar area. The quad tree is a well-known
structure for organizing spatial data, and it has been used in
a number of anonymization solutions [16], [23]. As the name
suggests, it is a tree in which every non-leaf node has exactly 4
child nodes. In a quad tree representation of a (square shaped)
map, the root node represents the entire map. The region is then
divided equally into 4 non-overlapping square quadrants, each
of whom represents a child node of the root. Each quadrant is
then again divided into 4 equal sub-quadrants that correspond
to grandchildren of the root. This four-way splitting goes on
until the desired level of granularity for the minimum region is
reached.

A policy that anonymizes locations to cloaks represented by
nodes of the quad-tree representation of a given map is known
as quad-tree policy.

This brings us to our main finding.

Theorem 2. An optimal quad-tree policy providing sender
k-anonymity against policy-aware attackers can be found in
PTIME.

In the remainder of this section, we describe a PTIME
algorithm to find an optimal quad-tree policy.

A. Reducing the Policy Search Space

Given a map with its associated quad tree T , and a location
database D, it is easy to see that the space of all quad-tree
policies cloaking locations in D by nodes in T is exponential
in the size of D. This rules out solutions based on enumerating
all policies.

Intuitively, the following key observation reduces the search
space to polynomial size: both the property of being policy-
aware sender k-anonymous, and the cost of the policy depend
only on how many locations are cloaked by each node N of
the quad tree T , being indifferent to which particular locations
are cloaked by N . Calling policies equivalent if every quad tree

node cloaks the same number of locations under both policies,
one need not enumerate individual policies, enumerating policy
equivalence classes instead. It turns out that only polynomially
many such classes need to be inspected.

Equivalent Policies We formalize this intuition next. Given
location database D and quad tree T , two policies are equivalent
under D, T if every node N of T cloaks the same number of
locations from D under both policies. When D and T are clear
from the context, we may not mention them. The following jus-
tifies why we need not discriminate among equivalent policies.

Lemma 1. If policies P1, P2 are equivalent under D, T , then
(a) P1 and P2 have the same cost; and
(b) P1 provides policy-aware sender k-anonymity on D if and

only if so does P2.

B. A First-Cut Algorithm

For simplicity of exposition, we start by presenting a first-cut
PTIME algorithm derived in the most direct way from the in-
sight that equivalence classes suffice. We leave its optimization
to [12].

Configurations. The first-cut algorithm manipulates equiv-
alence classes of policies. It represents an equivalence class
by keeping track for each quad tree node of the number of
locations it cloaks. For technical convenience, this is done by
equivalently tracking for each node N the number of locations
that are located within N yet are not cloaked by N or any of its
descendants. It is easy to translate between the two equivalence
class representations.

Definition 7. Let D be a location database, and T be a quad
tree rooted at node r. Let d(m) denote the total number of
locations from D that occur in the quadrant m. A configuration
C of T is a function from the nodes of T to natural numbers,
such that
(i) for every leaf node m in T , C(m) ≤ d(m); and

(ii) for every internal node m, C(m) ≤ ∑4
i=1 C(mi),

where m1 . . . m4 are the children of m.
We say that C is complete if C(r) = 0.

Item (i) of Definition 7 simply states that a node can be used
to cloak at most as many locations as contained in its quadrant
(since we only consider masking policies). Item (ii) states that
the number of locations not cloaked by m’s children is higher
than the number of locations not cloaked by m, which is an
immediate consequence of the fact that each child quadrant is
contained in its parent.

Note that, given a policy, location database D and quad tree
T , and a configuration C for T , we can exhibit in linear time one
of the policies C represents (by arbitrarily selecting the C(m)
locations for each node m). The first-cut algorithm’s strategy
is to find a minimum-cost configuration, then exhibit (in linear
time) one of the policies represented by it, picked nondeter-
ministically.1 Note that a configuration is exponentially more

1For the sake of conciseness, in the following we overload the term policy to
denote functions from user locations to cloaks (instead of from service requests
to anonymized requests as in Definition 4). The two notions of policy are inter-
reducible.

succinct than an explicit listing of the policies it represents; if
we focus on any node m alone, there are exponentially many
ways to pick C(m) locations among those occurring in m.

Before explaining how the desired configuration is found, we
address two technical issues that need to be solved to allow
the first-cut algorithm to manipulate configurations without
materializing policies (except for outputting the result). First,
how to compute the cost of the represented policies without
materializing them. Second, how to check if a configuration
corresponds to policy-aware sender k-anonymous policies.

Computing Cost from Configurations. We define the cost
of a configuration as the cost of the policies it represents
(uniquely defined by Lemma 1(a)). This cost can be computed
without materializing any represented policy, using the follow-
ing function.

Definition 8. Let D be a location database instance and C be
a configuration of a quad-tree T. We define the cost of C on D,
denoted Costc(C, D), as

Costc(C, D) :=
∑

n∈nodes(T)

f(n,C)

where f(n,C) is given by

f(n,C) =

{
(d(n)− C(n))× area(n), n is leaf
((

∑4
i=1 C(ni))− C(n))× area(n), n is internal

where n1 . . . n4 are the children of n and area(n) is the area of
the quadrant corresponding to quad node n.

We can show that the configuration cost is precisely the cost
of the represented policies:

Lemma 2. Given a location database D, a quad tree T , a quad-
tree policy P based on T and a configuration C representing
P ’s equivalence class, we have Costc(C, D) = Cost(P, D).

Checking Sender Anonymity from Configurations. We
turn to checking if the policies in the equivalence class rep-
resented by a given configuration are policy-aware sender k-
anonymous, without materializing them. By Lemma 1(b), either
all represented policies qualify, or none does. It turns out that
it suffices to check directly that the configuration satisfies a
property we call k-summation.

Definition 9. (k-summation) Let D be a location database
instance and C a configuration of a quad tree T rooted at n. C
satisfies k-summation if
• for a leaf node m

(i) if d(m) < k, then C(m) = d(m).
(ii) if d(m) ≥ k, then either C(m) = d(m) or

C(m) ≤ (d(m)− k).
• for an internal node m let ∆ =

∑4
i=1 C(mi),

where m1 . . . m4 are the children of m

(iii) if ∆ < k, then C(m) = ∆.
(iv) if ∆ ≥ k, then either C(m) = ∆ or C(m) ≤ (∆−k).

Intuitively, in Definition 9, clause (i) states that if node m’s
quadrant contains less than k locations, none of them can be
cloaked by m lest k-anonymity be compromised. The cloaking

responsibility for all d(m) of them is “passed up” to m’s
ancestors (C(m) = d(m)). By clause (ii), if there are at least
k locations, then either all of them are passed up, or at most
d(m)−k (since at least k must be cloaked together to preserve
k-anonymity). ∆ represents the number of locations whose
cloaking responsibility is passed up from m’s children to m.
If there are too few of them (less than k) then they cannot
be cloaked by m, who in turn passes the responsibility to its
ancestors (in clause (iii)). Otherwise, m has the choice of either
cloaking none of them (C(m) = ∆ in clause (iv)), or cloaking
at least k and passing up at most ∆− k.

Lemma 3. Let T be the quad-tree representation of a map and
D be an instance of the location database for that map. If C
is a configuration of T and P a policy in the equivalence class
C represents, then P is policy-aware k-anonymous on D if and
only if C satisfies the k-summation property.

Algorithm Bulkdp. Lemmas 2 and 3 justify an algo-
rithm that explores the space of configurations satisfying k-
summation, in search for a complete minimum-cost configu-
ration under Costc.

The exploration is carried out as follows. Recall from Defini-
tion 8 that the cost of configuration C of a quad tree T rooted at
m depends only on the number C(m) of locations not cloaked
by T ’s nodes, and is independent of the cloaking at the nodes
outside of T . For this reason, it suffices if the search space
includes, for every quad tree node m, all possible numbers u
of locations whose cloaking responsibility is passed up to m’s
ancestors. That is, all possible values u for C(m). For each such
pair (m,u), the minimum cost is computed among all possible
configurations C ′ of T with C ′(m) = u. To this end, the
algorithm considers all possible counts u1, . . . , u4 of locations
passed up to m by its children m1, . . . , m4, and recursively
computes the corresponding minimum cost for each (mi, ui)
pair.

Redundant cost re-computation for m, u pairs is avoided by
storing the result in the corresponding cell of a bi-dimensional
matrix M indexed by quad tree nodes and by values for u. To
enable the easy retrieval of the min-cost configuration from M ,
the entries for node m carry, besides the minimum cost, some
bookkeeping information relating to the configurations at the
children of m.

This yields the following dynamic programming algorithm
Bulkdp that, given quad tree T and location database D, fills
in a configuration matrix M of dimension |T | × |D|, where
|T | denotes the number of nodes in T and |D| the number of
locations in D. Each entry M [m][u] in the matrix is a tuple
of the form 〈x, u1, u2, u3, u4〉, pertaining to a configuration
C for the quad sub-tree rooted at m, such that C(m) = u,
Costc(C,D) = x, and C(mi) = ui where m1, . . . , m4 are
the children of m. The algorithm traverses the quad-tree T
bottom-up starting from its leaf nodes, and for each node m
and 1 ≤ u ≤ n fills in the entry M [m][u] using the rows for
m1, . . . , m4.

Notice that it is easy to retrieve in polynomial time a
minimum-cost complete configuration from M , by a top-down
traversal of T . First, pick a minimum-cost entry in the row

corresponding to the root of T . This entry lists for each child
mi of the root the value C(mi) = ui leading to the minimum
cost. Now inspect for each mi the corresponding row in M ,
picking again a minimum-cost entry, and continue recursively
until all leaf nodes are reached.

Algorithm 1 Bulkdp

1: for 1 ≤ m ≤ |T | do
2: for 1 ≤ u ≤ |D| do
3: M[m][u] := 〈∞, 0, 0, 0, 0〉 {initialize}
4: for all node m ∈ T do
5: if (m is a leaf node) and (d(m) < k) then
6: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
7: else if (m is a leaf node) and (d(m) ≥ k) then
8: M[m][d(m)] := 〈0, 0, 0, 0, 0〉
9: for 0 ≤ u ≤ d(m)− k do

10: M[m][u] := 〈area(m)× (d(m)− u), 0, 0, 0, 0〉
11: else {m is a non-leaf node}
12: let m1,m2,m3,m4 are children of m
13: for all u in F(m) do
14: pick u1 ∈ F (m1), u2 ∈ F (m2), u3 ∈ F (m3),
15: u4 ∈ F (m4) that minimize the quantity
16:
17: x :=

∑4
l=1 M1[ml][ul]+

area(m)× ((
∑4

l=1 ul)−u)
18: where

F (m) denotes the set [0..(d(m)− k)] ∪ {d(m)},
and M1[i][j] returns the first component of the
tuple at M [i][j]

19:
20: M[m][u] := 〈x, u1, u2, u3, u4〉
21: return M

Function F (m) in line 13 limits the possibilities of the
number of locations whose cloaking can be passed up by m.
Notice that it rules out the values d(m) − k + 1 through
d(m)−1 since these imply cloaking less than k locations at m,
which would immediately compromise k-anonymity. Quantity
x is the minimum cost among all configurations C with k-
summation for which C(m) = u. This is computed from the
costs of the configurations at the 4 children, and the term
area(m)×((

∑4
l=1 ul)−u), where (

∑4
l=1 ul)−u is the number

of locations actually cloaked by m. Recall that the cost is found
in the first component of the tuple stored in the matrix entry,
whence the need for the projection operation M1.

Notice how the algorithm mirrors the definition of the k-
summation property (Definition 9) to ensure that only configu-
rations satisfying k-summation are considered. By Lemma 3,
these configurations represent only policy-aware sender k-
anonymous policies. For instance, line 6 corresponds to case
(i) in Definition 9, which prescribes that no locations are to be
cloaked by m (all d(m) locations occurring in its quadrant are
passed up, C(m) = d(m)). Thus by Definition 8, the resulting
cost is 0, which is what line 6 fills into the first component of
M [m][d(m)]. Similarly, line 8 gives the cost corresponding to
the case in the first disjunct of line (ii) of Definition 9; line 10
corresponds to the second disjunct. It’s easy to see that:

Lemma 4. Algorithm Bulkdp computes in each
M [m][u] = 〈x, u1, u2, u3, u4〉 the minimum configuration cost x
among all configurations C with k-summation where C(m) = u
and where C(mi) = ui, with m1, . . . ,m4 the children of m.

By the above discussion, the information in M suffices to
retrieve in PTIME a minimum-cost configuration.
Complexity analysis. The running time of Algorithm Bulkdp

is dominated by steps 13-17 , which, for internal node m,
ranges each of u, u1, u2, u3, u4 over at most |D| values (since
F (n) ≤ d(n) ≤ |D| for every n), resulting in O(|D|5)
iterations. Summing up over all nodes m of the quad-tree, we
obtain the complexity of Bulkdp in (O|T ||D|5). Lemma 4 and
this complexity analysis directly imply Theorem 2. While poly-
nomial, and thus a welcome surprise in contrast to Theorem 1,
the degree 5 is impractically high given the large size of the
location database, which is why we consider optimizations in
Section V
Incremental Maintenance of M . Algorithm Bulkdp computes
the optimal policy for a snapshot D of the location database
starting from scratch (hence the name). As the users of the
mobile network move around, the location database snapshot
changes from D to D′ at the next snapshot. Any optimal policy
computed at snapshot D may not remain optimal for D′, or
may not provide policy-aware sender k-anonymity to users in
D′. One can simply re-compute the optimal policy from scratch,
calling algorithm Bulkdp on D′ and T . Alternatively, if there
are a large number of users in D but only few of them move
between consecutive snapshots it makes sense to consider incre-
mental re-computation of the optimal configuration matrix for
D′ starting from the optimal configuration matrix for D. This
is easily accomplished by running the same bottom-up steps as
algorithm Bulkdp, with the added twist that the algorithm starts
only from the quad tree leaves m whose quadrants now contain
a changed number d(m) of locations.

V. OPTIMIZATIONS

While the first-cut algorithm Bulkdp is polynomial, it is far
from practical yet, since a degree of 5 is prohibitive given the
typical sizes of location databases (the location database of a
wireless service provider in the San Francisco Bay may contain
about one million users). In this section, we describe a series of
optimizations of the naive algorithm to achieve practical running
time, while guaranteeing to preserving the optimal cost.

From Quad to Binary Trees. The algorithm described in
[16] pioneers the idea of using quadrants of a quad-tree as
cloaks. In a quad-tree, if cloaking a location to a node does not
provide the desired k-anonymity, the next possible option is the
parent node. Since the parent node is 4 times the size of a child
node, the granularity of cost increase is large. The cloaking
policy in Casper [23] reduces this granularity by considering
semi-quadrants as cloaks (where a semi-quadrant is obtained
by splitting a quadrant into two rectangles, either vertically or
horizontally). The cloaks obtained in this approach are never
larger than the cloaks obtained with the original quad-tree, and
on average the cloak size is reduced.

While [23] uses this idea to improve utility, we additionally
exploit it here to improve running time. We too allow cloaks to

be chosen among both the original quadrants of quad tree T ,
and their semi-quadrants. To this end we define a modified tree
whose nodes are of either shape. It is a binary tree B obtained
from T as follows. For each node m in T , let its 4 children in
T be mNW ,mSW ,mSE ,mNE , where the subscript gives their
location (Southeast, etc.) in m. We divide m into two vertical
semi-quadrants (rectangular) sW in the West and sE in the East.
In B, m becomes the parent of sW and sE , sW the parent of
mNW ,mSW , and sE the parent of mSE ,mNE . Notice that each
node in B has only 2 children, each non-leaf quadrant node is a
parent of two semi-quadrants, and each non-leaf semi-quadrant
is a parent of two quadrants. Casper chooses between vertical
or horizontal sub-quadrants at run-time, while for simplicity we
statically partition quadrants into vertical semi-quadrants only.

We adapt the Bulkdp algorithm to this binary tree. The only
change required is in step 5 of the algorithm. When computing
each entry M[m][u] of the optimum configuration matrix we
have to iterate through the configurations of two children only
(compared to four in Bulkdp). This reduces the complexity of
the loop to O(|D|2) from O(|D|4), and that of the algorithm
to O(|B||D|3).

Note that the cost of the optimal binary-tree based policy for
a given location database instance may be different from the
optimal cost of the original quad-tree based policy. If the size of
a leaf node is kept the same in the binary tree and quad tree then
the binary tree will need to have twice the height of the quad-
tree to cover the same region. If k is also kept the same, than
the cost of an optimal binary tree based policy is not more than
the cost of an optimal quad tree policy, since any policy-aware
anonymous quad tree policy is also a policy-aware anonymous
policy for the binary tree. The remaining optimizations in this
paper focus on the binary tree.

From O(|B||D|3) to O(|B|(kh)3). For any node m of the
binary tree, in the for loop of step 5, Bulkdp inspects (d(m)−
k + 1) sub-tree configurations (all possible configurations that
satisfy k-summation) for the sub-tree rooted at m. We realize
that some of these configurations need not be considered, as
they are guaranteed to be sub-optimal.

In fact we claim the following lemma (proven in [12]):

Lemma 5. For a node m with height h(m) (where the height
of the root is 0), any configuration in which m passes up to its
ancestors the cloaking responsibility for more than (k+1)h(m)
but less than d(m) locations, is not optimal.

By Lemma 5, it suffices to compute (k + 1)h(m) configu-
rations, by simply replacing function F in step 5 of algorithm
Bulkdp with function F ′(m) = [0..((k + 1)h(m))] ∪ {d(m)}.

With this insight, the number of columns required in the
optimum configuration matrix M becomes at most kh, where
h is the height of the tree. In step 5, for a non-leaf node m, the
algorithm computes O(kh) configurations and to compute each
such configuration, the “pick” action iterates over O(kh) config-
urations of m’s two children. This leads to a new upper bound
of the overall running time, O(|B|(kh)3). Note that if we fix a
minimum area corresponding to the leaves of the tree, the height
depends only on the area of the covered map, and, remarkably,
we find a complexity upper bound that is independent of the

size of the location database! However, this upper bound is only
of theoretical interest, since we actually implement yet another
optimization: we do not eagerly materialize all nodes of the
binary tree. Instead, we split a (semi-)quadrant only if it contains
sufficient users to maintain anonymity. In our experiments, we
observed that the number of materialized nodes |B| does depend
on the size of the location database.

From O(|B|(kh)3) to O(|B|(kh)2). Again we focus on the
FOR loop in step 5 of the Bulkdp algorithm. We observe that,
across iterations of the loop, the “pick” command will repeat-
edly inspect certain configurations of m’s children. For example,
if one iteration works on the M entry for (m,u), inspecting
for instance (m1, u1) and (m2, u2) such that u1 + u2 = u
for some v, then the next iteration (m,u + 1) will inspect the
cases (m1, u1+1), (m2, u2) and (m1, u1), (m2, u2+1), among
others. The idea is to reuse this computation across iterations.
To this end, we stage the computation in 2 parts. In the first
stage we iterate over the O(kh) configurations of both children
to compute a temporary matrix temp. An entry temp[m][j] in
this matrix stores the minimum cost c of having j = l1 + l2
un-anonymized locations in the two children m1 and m2 of m
(with l1 in m1 and l2 in m2).

temp[m][j] := min
l1+l2=j

{M [m1][l1] + M [m2][l2]} .

There are O(kh) entries in this matrix and the complexity of
this stage is bounded by O((kh)2). In the second stage, we
create O(kh) configurations using the O(kh) entries of temp.

x := min
j=i or j≥i+k

{temp[m][j] + (j − i)× area(m)} .

Thus the running time for the second stage is also bounded by
O((kh)2). Therefore the overall complexity of the modified
step 5 is O((kh)2) and the overall complexity of the algorithm
is O(|B|(kh)2).

Complexity Analysis in terms of |D|. Our complexity anal-
ysis so far was carried out for precision in terms of the size and
height of the quad tree. While a gross upper bound for |B| and h
is |D|, leading to cubic running time in |D|, the real values of h
and B depend on the skew of the locations in D. For instance, if
the location distribution is uniform, it follows that |B| ∈ O(|D|k)
and h ∈ O(log(|D|k)), and the overall running time becomes
O(k|D| log2(|D|k)), i.e. linear for practical purposes in both
k and |D|. It turns out that this analysis is highly robust
to relaxing the assumption on uniformity. Our experiments in
Section VI-A confirm the above formula even for realistic data
whose distribution is quite skewed from uniform: 1.75 million
locations reflecting the actual population density in the entire
San Francisco Bay Area. The only examples we could create
to force non-linear behavior are contrived.
Parallel Anonymization. We next explore a powerful technique
for scaling the anonymization algorithm to cover large areas.
The result is based on the key observation that the spatial
nature of the problem features inherent parallelism that is easily
exploited: just partition the region into sub-regions, putting each
under the jurisdiction of an independent anonymization server.
The servers run in parallel, each maintaining their own binary

tree and location database, and seeing only requests issued in
their jurisdiction. The policy in this distributed setting is a
master policy which anonymizes a location l by referring to
the policy constructed by the individual server under whose
jurisdiction l falls.

One concern is that the obtained anonymization cost may
no longer be optimal. To see why, consider cases when the
best way to anonymize location l by server 1 is to issue a
cloak that spans the jurisdiction of server 1 and its neighboring
server 2. Since server 1 does not have access to the requests and
location database in server 2, it will use a different, larger cloak,
completely contained within its own jurisdiction. However these
cases occur only on the border of jurisdictions, and the case
when the spanning cloak is unavoidable requires very low
population density at the borders. We therefore expect only
a minimal divergence from the optimal cost. We verify this
expectation experimentally in Section VI-D, showing that the
system throughput can be effectively increased as more servers
are added, while the cost remains within 1% of the optimum.

Assuming a fixed pool of servers, we would like to partition
the map into jurisdiction so as to balance server load (the num-
ber of locations per server). We show that this is satisfactorily
achieved even by an unsophisticated partitioning scheme. We
adopt a greedy scheme which, given a location database and
a binary tree B, picks jurisdictions from among the nodes of
B. The greedy partitioning algorithm starts with the root as the
only jurisdiction in the list L. At every step, the algorithm picks
a node from the list, all of whose children have either 0 or at
least k locations. If multiple such nodes exist, pick the one with
the higher number of locations. The node is then replaced in L
with its children. This repeats until the size of the list reaches
the desired number of servers. Intuitively, we first greedily split
the nodes with the highest number of locations, to balance the
number of locations falling in each jurisdiction.

Our experiments reported in the next Section VI uncover
the potential of parallel anonymization solutions. Note that in
this work we do not advocate re-partitioning the map upon
every location database snapshot, but instead picking a few
representative snapshots and performing a static partition for
each. The representatives pertain to various times of the day
such as rush hours, night time, business hours, etc. In future
work, we will study the systems issues related to the dynamic
maintenance (and load re-balancing) of the server pool for
highly dynamic fluctuations of the population density.

VI. EXPERIMENTS

We next verify experimentally that our optimized algorithm
scales well with the size of the location database, and that the
stronger privacy guarantee comes at a reasonable cost increase.
Platform All our experiments were performed on an Intel
Pentium4 3.20GHz machine running Linux with 2GB memory.
Location Data We set out to generate location data starting
from a real-life map, using a real distribution of population
density. Figure 2(a) illustrates the population density for the
San Francisco Bay area in 1990, and is available from [7].
Unfortunately, the actual data values are not available, which
is why we generated them as follows. We obtained a data set

(a) Population Density (b) 5000 Street Intersections

Fig. 2. Street intersections and Population density

of street intersections in the same region (available at [8]).
This dataset contains about 175k street intersection points. We
conjectured that the population density is highly correlated with
the intersection density. We validated this conjecture by plotting
a random sample of 5000 points from this dataset (shown in
Figure 2(b)), and observing that it is roughly similar to the
actual population density graph of Figure 2(a).

We inserted 10 locations around each intersection using a
Gaussian distribution with standard deviation of 500 meters. We
obtained a Master dataset of 1.75 million locations. We believe
this number to be realistic, since although the total population of
the San Francisco Bay area is around 7M, it corresponds to the
maximum market share at national level for any single national
wireless provider (according to the statistics published in [2]).
To scale the size of the location database for our experiments,
we draw random samples of increasing sizes (100k, 200k etc.)
from the Master data set.

(a) Complete view (b) Zoomed-in view

Fig. 3. Tree structure built on 1M data

Warm-up experiment: shape of the quad tree. Recall from
Section V that the binary tree is not computed eagerly; we
split a (semi-)quadrant only if the resulting children contain
sufficient users to maintain anonymity. Figure 3(a) illustrates
the tree structure built on the 1M sample of the master file
with k = 50. It plots the quadrants and semi-quadrants in a 2-
dimensional plane. The height information is presented by the
gray scale, so that nodes of greater height are brighter. It turns
out that a binary tree of maximum height 20 suffices to cover
1M locations, with no leaves containing more than 50 locations.
Even when growing |D| to 1.75M locations, the height of the
tree never reaches 25. As expected, the denser areas lead to
greater height, showing that the algorithm exploits the larger
density to materialize finer-grained (semi-)quadrants, which in

turn lead to smaller cloaks and better utility. Figure 3(b) gives a
zoomed-in view at a portion of the map, illustrating the variation
of leaf (semi-)quadrant sizes as a function of population density.

A. Bulk Anonymization Time
In this experiment we evaluate the running time of our algo-

rithm (the optimized version) varying the size of the location
databases, the anonymization degree k, and the number of
anonymization servers. Figure 4(a) shows, for fixed k = 50,
the running time for computing an optimum configuration with
increasing location database size, with one curve per number
of servers. The horizontal axis shows the number of locations
while the vertical axis shows the time in seconds. The running
time is linear in the number of locations |D| for up to 1.75M
locations, as predicted by the complexity analysis at the end of
Section IV. Notice that 16 servers can bulk anonymize 1.75M
locations in less than 1s, and 32 servers in less than 0.5s. We
note that this is extremely good scalability, especially since our
experiment stress-tests the algorithm to sizes of the location
database that far exceed the ones reported in prior work on
policy-unaware sender anonymity: at most 300K in [17].

0 12345678 0 0 . 5 1 1 . 5R unni ngTi me(sec)
N u m b e r o f U s e r s (m i l l i o n s)

1 2 4 8 1 6 3 2
(a) Running time vs |D|

0 12345678 0 5 0 1 0 0R unni ngTi me(sec)
K

1 2 4 8 1 6 3 2
(b) Running time vs k

Fig. 4. Linear running time in |D| and k

Next, we inspect how the running time scales with k, keeping
the number of locations fixed at 1M. Figure 4(b) shows that the
time increases quasi-linearly (really sub-linearly) with k, again
as predicted by the analysis at the end of Section IV.

B. Cost Overhead of Stronger Privacy
We expect that the stronger privacy guarantee will result

in higher cost, by requiring larger cloaks in the anonymized
requests. To evaluate the increase in cost from policy-unaware
to policy-aware sender k-anonymity, we compared the Cost
(in Definition IV) of the optimum policy-aware sender k-
anonymous policy obtained using our algorithm, with that of
• Casper: since it is the state-of-the-art policy-unaware

anonymizing system based on semi-quadrants [23], and our
binary tree optimization was inspired by it.

• Optimum policy-unaware binary tree (PUB): since it uses
the same type of cloak as our algorithm and a comparison
would give a good measure of the penalty of stronger
privacy.

• Optimum policy-unaware quad tree (PUQ): since this was
the first system [16] that proposed to use quad-tree based
cloak to provide (policy-unaware) sender k-anonymity.

We could not use the original implementation of Casper in
our experiments since the interface allows no bulk anonymiza-
tion: Casper reads the input one location tuple at a time and

for each location generates the cloak using only locations read
up to that point. Instead of changing the original code, we
decided to build a prototype of Casper based on the basic
algorithm described in [23]. We did not implement the adaptive
algorithm since it only affects the running time and not the size
of the cloak. We also implemented the policy-unaware quad-
tree policy described in [16] that finds the smallest quadrant that
contains the requesting location and at least k-1 other location
as the cloak. We implemented the same approach over a binary
tree to obtain an optimum policy-unaware binary tree.

Figure 5(a) shows the comparison of average cloak areas
obtained using the 4 algorithms described above. The horizontal
axis represents the number of locations in the location database,
and the vertical axis represents the average area (in square
meters) of anonymized regions. k is fixed at 50. As expected,
Casper has the minimum average cost among all the policies
since it can select between horizontal or vertical semi-quadrants
in contrast to fixed horizontal or vertical semi-quadrants selected
by the policy-unaware binary tree. The cost of policy-aware
sender k-anonymous policy is nearly identical to that of the
policy-unaware quad-tree, and is at most 1.7 times that of
Casper.

024681 01 21 4
0 0 . 5 1 1 . 5A verageA rea(k m2)

N u m b e r o f L o c a t i o n s (m i l l i o n s)
P U QP A BP U BC a s p e r

(a) Average cloak area for various
policies

0 12345 0 1 0 2 0 3 0 4 0 5 0R unni ngTi me(sec)
N u m b e r o f U p d a t e s (t h o u s a n d s)B u l kI n c r e m e n t a l

(b) Incremental Maintenance time
for |D| = 1M, k = 50

Fig. 5. Parallel and Incremental Anonymization

C. Incremental Maintenance

We have also studied the performance of incrementally
maintaining the optimum configuration matrix M from (the
optimized version of) algorithm Bulkdp. For the case of 1M
locations and k = 50, we varied the number of locations that
move from one snapshot of the location database to another.
To this end, we randomly selected a set of distinct users
updated their locations to a point at a randomly selected distance
(bounded by 200 meters, that represents the maximum possible
movement within 10 seconds) in a randomly selected direction.
Figure 5(b) shows the comparison of performance of incremen-
tal maintenance with bulk re-computation. As expected, the time
for incremental maintenance of M is always below that of the
bulk re-computation as we increase the percent of moving users.
However, we were surprised to notice that, once this percentage
reaches 5%, the two times become virtually identical, and there
is no gain in incremental maintenance. This is because most
binary tree leaves require updating in that case, and incremental
degenerates into bulk anonymization.

D. Utility Loss in Parallel Anonymization

Recall from Section V that one concern when splitting the
map into jurisdictions is the sub-optimal utility due to cases

when the best cloak to anonymize a location is missed because
it spans jurisdictions. As discussed in Section V, we predict in
general only a minimal divergence from the optimal cost. We
verified this expectation experimentally by a stress test in which
we increased the number of jurisdictions beyond reasonable
limits: despite the above experiment showing that 16 suffice.
Up to 2096 jurisdictions, the measured cost was identical to
that of the optimal policy for the single-jurisdiction case, while
the cost overhead for up to 4096 jurisdictions remained less
than 1%.

VII. RELATED WORK

In the context of LBS, the two aspects of user privacy that
have received the most attention are location privacy [5] and
sender anonymity. The line of work on location privacy is
complementary to this paper, as location privacy refers to hiding
the precise location of the user (one is not required to hide the
identity of the user) while sender anonymity refers to hiding the
identity of the user (one is not required to hide the location, on
the contrary, one assumes it falls in the attacker’s hands). As
described in the introduction, the extensions to user-defined k
and trajectory-aware attacker are out of the scope of this paper
and we leave them as future work.

Extensions of k-inside. Most of the proposals for sender
anonymity are based on k-anonymity [26]. While a majority of
these [16], [23], [27] are simply based on the k-inside policy
(described earlier, and shown to not defend agaisnt policy-
aware attacks), some use variations. In [14], the cloaking policy
ensures that at least k − 1 other users issue LBS requests
from the cloaked region. It’s been shown [16], [17], [11]
that a k-inside policy fails to provide sender k-anonymity to
“outlier” locations in some cases. To address this issue in k-
inside policies, additional constraints of k-reciprocity [17] and
k-sharing [11] have been proposed. k-reciprocity requires that
among the ≥ k locations inside the cloak R of a location x, at
least k−1 have x in their cloak, while k-sharing requires that at
least k− 1 of them have R as their cloak. We found that these
additional constraints also fail to provide sender k-anonymity
against a policy-aware attacker.

Consider the cloaking algorithm in [11] that takes into
account the requesting locations to generate cloaking groups (set
of locations that are cloaked to the same region). For locations
in Figure 6(a), if the first request is made by C the algorithm
groups C with B where as if the first request is made by B then
it puts B and A in the same cloaking group to satisfy 2-sharing
property. In the case when the initial request contains the cloak
corresponding to {C, B}, a policy-aware attacker can infer that
the sender is C!

Next, consider a cloaking algorithm that generates circular
regions centered at the base station nearest to the cloaked
location. As shown in Figure 6(b) user Alice is closest to station
S1, hence her cloak is centered at S1. User Bob is closest to
station S2 so his cloak is centered at S2. Since both users are
inside the intersection of both circular cloaks, this cloaking
satisfies 2-reciprocity. When a policy-aware attacker observes
the cloaking region centered at S1, he can infer that the only
possible sender is Alice!

�
�
��

�
� � � ���	�
������� � �
������� � �
(a) with 2-sharing

� ��� ��
•���

(b) with 2-reciprocity

Fig. 6. Privacy breach

Utilitity-maximizing cloaking. The problem of finding op-
timum k-anonymous cloaking that preserves privacy against a
policy-unaware attacker has been considered (in [17]) to be NP-
hard, by borrowing the results [22] from data k-anonymity. In
[14] the authors study the problem of finding optimum cloaking
using a minimum bounding box as the cloak and found it to be
NP-hard and thus provide an approximate algorithm. Moreover
it only uses the locations with pending requests for generating
the cloak, as a result the cloak size can be quite large as not all
users in a small region are expected to use LBS at nearly same
time. The FindMBC algorithm in [27] computes the minimum
bounding circular cloak that preserves privacy against a policy-
unaware attacker. By Theorem 1, extending it to optimal policy-
aware anonymization is likely hard.

Data k-anonymity.
One may argue that some of the algorithms developed for

data k-anonymization can be applied to the location database,
to reduce sender k-anonymization to the classical data k-
anonymization problem. Data anonymization algorithms come
to mind that are based on generalization [25], [18], [13]. They
require as input a generalization hierarchy for the anonymized
data. One could conceptually use quad-tree based regions to
represent such a generalization hierarchy for the location data.
However, the reduction from sender to data k-anonymization
is inadvisable since the problem of finding the minimum-cost
data anonymization is known to be NP-complete [22], leading
to algorithms for optimal anonymization that run in time hn,
where h is the height of the generalization hierarchy (quad-tree
for us) and n is the number of tuples (the size of the location
database for us). As we show here, more headway can be made
by exploiting the additional structure of the problem, namely
that the data to be anonymized is location data.

Some of the recent proposals [20], [4], [9], [10] for k-
anonymizing data are based on clustering techniques. Most of
these clustering algorithms [20], [9], [10] use a static distance
metric where the cost of including a point x in a cluster C
is independent of the cost of including another point y in
C. For location data, since the cost model uses the area of
anonymizing regions, the point farthest from the center of the
cluster determines (and thus affects) the cost for other points in
the cluster. This precludes a reduction from sender anonymity
to cluster-based data anonymity. The cost model in a recent
proposal [4] takes care of this situation and thus its proposed
clustering algorithm is a candidate to be investigated in future

work for cloak generation in sender anonymity.
Private Information Retrieval [15] starts from the inital idea

of having the requests mention no location information at all.
The LBS sends all n points of interest from the entire map and
the client filters them locally. An optimization consists in using
cryptographic techniques that allows the sender to include its
exact location in encrypted form, and the LBS to return

√
n

points of interest which include the ones closest to the sender.
The result is directly obtained in encrpyted form and its clear
form is hidden even from the LBS.

This solution addresses a different point in the space of
possible trade-offs of privacy versus feasibility. It achieves
maximal anonymity since all senders are cloaked by the entire
map area. The price to pay includes costly adoption, low
throughput, and limited billing model. Adoption is hindered by
the need to change the operation of current LBS to include
cryptographic query evaluation. Throughput is impacted be-
cause cryptographic query evaluation is expensive: [15] reports
20-45 seconds per query when the LBS maintains 65K points
of interest . This time is lowered to 6-12 seconds per query
when the computation is parallelized over 8 servers, depending
on the length of the encryption key. Scaling to (tens of)
thousands of requests per snapshot would therefore lead to
either unacceptably slow response or prohibitively expensive
massive parallelization. Secondly, the LBS’s business model is
limited because it does not know what query answers it returns.
This precludes insertion of relevant ads, and rules out a Google-
like model in which advertisers/service providers are charged by
the volume of their ads/service postings reaching users. Since
the LBS does not know what query answers it returns, this
precludes insertion of relevant ads, and rules out a advertising-
based business model in which advertisers/service providers are
charged by the volume of their ads/service postings reaching
users.

In contrast, our solution trades privacy (k is typically much
lower than the number of all users) for feasibility: It requires
virtually no change in existing LBS interfaces, whose input is
essentially the one we describe above. It provides per snapshot
a sub-second initialization time to bulk-anonymize over one
million users, after which individual queries can be served
in milliseconds. Indeed, serving a query requires looking up
the location’s cloak according to the computed policy, then
evaluating a nearest-neighbor search for this cloak. Our experi-
ments show that cloak lookup takes 0.3–0.5 ms. In [23], Casper
reports 2ms per nearest-neighbor query when k = 200 and
there are 10K points of interest, using GIS indexing techniques.
Adopting Casper’s GIS-based query evaluation results in a per-
snapshot throughput increase of 3 orders of magnitude over the
cryptographic query evaluation of [15]. Finally, flexible billing
is facilitated since the LBS knows which advertisers/service
providers to charge as it knows the query results.

Beyond k-anonymity: l-diversity and t-closeness
Taking a page from recent developments that improve on

data k-anonymity, it is natural to ask if there are corresponding
extensions of the notion of sender k-anonymity. The ansewer is
positive, in the following sense. In data k-anonymity, there is a
class of attacks based on counting the frequency of sensitive at-

tribute values in the anonymized table. L-diversity [21] defends
against the situation when all tuples in an anonymized group
share the same sensitive attribute value, in which case they
are all compromised. T-closeness [19] goes beyond, defending
even against attacks that compare the frequency of sensitive
attribute values in the whole table against the frequency of
sensitive attributes in individual anonymized groups. Whenever
the two frequencies differ, the attacker learns something about
the secret, and this fact is considered a privacy leak. The
analogous attacks in our setting would consist of counting in
each snapshot the number of duplicate requests, grouping by
cloaking area and request values. For instance, the (unlikely)
event of observing in a snapshot as many identical requests
from the same cloak as the number of locations residing in it
at that time exposes all senders. This assumes that a sender can
issue a single request per snapshot, which is reasonable given
the short snapshot duration.

The following simple modification of our approach to sender
k-anonymity precludes the same class of frequency-based at-
tacks as l-diversity and t-closeness: the anonymization server
caches the query results returned by the LBS, indexed by the
anonymized request. This means that the LBS does not even
see duplicate anonymized requests during the same snapshot,
and therefore cannot count their frequency (nor can it log it
and thus make the count available to hacking or subpoena). For
queries about stationary points of interest (most businesses and
tourist attractions), the anonymizer can use the cache for a long
time, thus precluding counting even across multiple snapshots.
To adjust for the appearance and disappearance of points of
interest, it suffices to flush the cache at infrequent intervals
(for instance once a day). To help the LBS with billing, the
anonymizer can keep a total count and submit it to the LBS at
cache flushing time.

VIII. CONCLUSION

We introduce the notion of sender k-anonymity against
policy-aware attackers. This privacy guarantee is stronger than
the sender k-anonymity in prior work, which defends against
policy-unaware attackers only. Our results show that the novel
guarantee strikes a pragmatic balance in the trade-off between
strength of the privacy guarantee, utility, and running time for
enforcement.

We also show the considerable amenability of the problem
to parallelization, which reduces the anonymization time while
preserving the optimal utility in virtually all cases. Indeed,
dividing the San Francisco Bay area among 4K servers –far
more than needed since 16 suffice– leads to only 1% divergence
of the cost from the optimum. 16 servers already provide
anonymization time of about half a second for 1 million users.

REFERENCES

[1] Au’s GPS cell phone shows how to get to McDonald’s.
http://www.mobilemediajapan.com/headline2.asp?page=AU/KDDI.

[2] Verizon News Center: 4Q and Full-Year 2008.
http://news.vzw.com/news/2009/01/pr2009-01-27.html.

[3] Wireless 911 Services.
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,
D. Thomas, and A. Zhu. Achieving anonymity via clustering. In PODS,
2006.

[5] A. R. Beresford and F. Stajano. Location privacy in pervasive computing.
IEEE Pervasive Computing, 2(1):46–55, 2003.

[6] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against location-
based personal identification. In SDM, 2005.

[7] P. W. Bowen. DIGITAL ATLAS OF CALIFORNIA.
http://130.166.124.2/CApage1.html.

[8] T. Brinkhoff. A framework for generating network-based moving objects.
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator.

[9] J.-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymization
using clustering techniques. In DASFAA, 2007.

[10] C.-C. Chiu and C.-Y. Tsai. A k-anonymity clustering method for effective
data privacy preservation. In ADMA, pages 89–99, 2007.

[11] C.-Y. Chow and M. F. Mokbel. Enabling private continuous queries for
revealed user locations. In SSTD, volume 4605 of LNCS. Springer, 2007.

[12] A. Deutsch, R. Hull, A. Vyas, and K. Zhao. Policy-aware sender
anonymity in location based services. TR CS2009-0939, UCSD, 2009.
http://www.cse.ucsd.edu/users/avyas/Tech-Report/full-version.ps

[13] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for
information and privacy preservation. In ICDE, 2005.

[14] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized
anonymization model. In ICDCS, pages 620–629, 2005.

[15] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private
queries in location based services: anonymizers are not necessary. In
SIGMOD, 2008.

[16] M. Gruteser and D. Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In MobiSys, 2003.

[17] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing location-
based identity inference in anonymous spatial queries. IEEE Trans. on
Knowl. and Data Eng., 19(12):1719–1733, 2007.

[18] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-
domain k-anonymity. In SIGMOD, 2005.

[19] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In ICDE, pages 106–115, 2007.

[20] J.-L. Lin and M.-C. Wei. An efficient clustering method for k-
anonymization. In PAIS, pages 46–50. ACM, 2008.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. `
-diversity: Privacy beyond κ -anonymity. In ICDE, 2006.

[22] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity.
In PODS, 2004.

[23] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query
processing for location services without compromising privacy. In VLDB,
2006.

[24] J. H. Saltzer. Protection and the control of information sharing in multics.
Commun. ACM, 17(7):388–402, 1974.

[25] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-
tion and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):571–588, 2002.

[26] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[27] T. Xu and Y. Cai. Location anonymity in continuous location-based
services. In GIS, 2007.

APPENDIX

