
Do-It-Yourself Database-Driven Web Applications
Keith Kowalzcykowski

app2you, Inc.

keith@app2you.com

Kian Win Ong
CSE Dept.

UC San Diego

kianwin@ucsd.edu

Kevin Keliang Zhao
CSE Dept.

UC San Diego

kezhao@cs.ucsd.edu

Alin Deutsch
CSE Dept.

UC San Diego

deutsch@cs.ucsd.edu

Yannis Papakonstantinou
CSE Dept.

UC San Diego

yannis@cs.ucsd.edu

Michalis Petropoulos
CSE Dept.

SUNY Buffalo

mpetropo@cse.buffalo.edu

1. INTRODUCTION
UCSD’s app2you project [15] (commercialized as app2you.com)
and its successor FORWARD project [11]1 belong to the emerging
space of Do-It-Yourself (DIY), custom, hosted, database-driven
web application platforms that empower non-programmer
business process owners to rapidly and cheaply create and evolve
applications customized to their organizations’ data and process
needs. The hoped-for outcome of DIY platforms is paralleled to
the emergence of spreadsheets in the 80s and of graphical
presentation tools in the 90s [1]. Before the arrival of tools such as
powerpoint, polished presentations had to be prepared by graphics
professionals. PowerPoint enabled us to do them ourselves.
Generally DIY application platforms provide an application
design facility (also called application specification mechanism)
where the application owner (also called process owner and
business architect [20] specifies the application by manipulating
visible aspects of it or by setting configuration options. A simple
early example of DIY creation was form builders, where the
owner introduces form elements in a form page and the platform,
in response, creates a corresponding database schema.
A DIY platform must maximize the following two metrics: First,
how wide is its application scope, that is, what computation,
collaboration on a process, and pages (presentation) can be
achieved by applications specified using the platform’s design
facility? Second, how easy is the specification of an application
using the platform’s design facilities? When the ease increases the
technical sophistication required by the owner decreases, and non-
programmer process owners are increasingly enabled. The two
metrics present an inherent tradeoff. At the one extreme, building
applications using Java, Ajax and SQL provides unlimited scope,
but does not provide ease of specification. Platforms such as Ruby
on Rails [17] and WebML [3] make specification easier and
faster, but still not easy enough to enable non-programmer
owners. At the other extreme, creating an application by copying
an application template, as done for example in Ning [13], is very
easy but the scope of the platform is limited to Ning’s finite
number of templates. DIY platforms are between these two
extremes of the scope/ease trade-off (see Section 4 for a
discussion of particular platforms).
This1paper focuses on human-centric [20] database-driven web
applications, i.e., applications whose

1 Supported by UCSD’s von Liebig Center for the commercialization of
technology and NSF OCI 0721400 is collaboration with SDSC.

• entire state is captured by the application’s database as
opposed to also having out-of-database state that is
accessed by the application by interfacing to
corresponding external systems.

• the state changes (and correspondingly the business
process progresses) in response to user actions on the
web pages. We do not consider the possibility that, say,
an automated data feed produces data asynchronously
and without user request.

Furthermore the paper makes only brief mention of the
customization of the front-end’s visual and interface aspects.2

In an app2you/FORWARD application users with potentially
different roles and rights interact on a web-based process.
Depending on the state of the process/application, each user has
rights to access certain pages, read certain records in them and
execute requests, which often pertain to reported records.

The presented general framework captures a broad scope of
workflows and applications but achieving its full scope requires
knowledge of SQL. The limited framework is the subset that can
be generated by the DIY design facility and is the focus of the
paper. Its essential limitation is that the core queries are SPJ
queries, including the possibility of EXISTS conditions in the
WHERE clause. An overlay of aggregation and calculation, which
captures Excel functionality, can also be added on the core limited
framework, without disrupting the design facility.

The limited framework presents an excellent scope/ease-of-
specification tradeoff point: The DIY design facility, which is
tuned to the limited framework, enables the easy specification of
applications by “business architects” [20], that is, application
owners that are not programmers but have the sophistication to
reduce their business process into web pages by specifying, in a
WYSIWYG fashion and in response to easy-to-understand
prompts, properties of the pages such as who can access each
page, what is the page’s main function, what happens in response
to an action.3

3 An advantage of supporting both a general and a limited framework is

that even when the non-programmer business process owner cannot
create or fully customize the entire web application (typically because
parts of the application require the functionality of the general
framework) app2you still enables a much more efficient collaboration

L
a
a
W
a
w
p
a
th
c
s
a
in
a
s

4

F

Fi

F
Let us first co
applications thro
application. Mor
We use a simp
application for T
where ~1000 sta
packages, in ord
app2you applica
hem, schedule

candidates met t
select the top 50
any user with
nformation rega

and list of foun
submission. Th

between the bu
programmer own
and workflow, w
IT and specialist
with outside ser
other such aspec
architect can then

Users must first
reach the page of

Figure 1 Submi

igure 2 Evaluat

Figure 3 Adviso
onvey informall
ough a redacted
re real world exa
plified and mo
TechCrunch50

artups submitted
der to present th
tion was used to
multiple roun

the reviewers on
0 startups. At p
a registered ac

arding her startup
nders.4 Every us
he submitted s

usiness process o
ner creates himsel
which corresponds
ts provide assistan

rvices, code for co
cts that belong to
n build the rest of

pass from a typic
f Figure 1.

t Startup Pag

te Startups P

r Comments Pa
ly the scope o
version of a re

amples are found
odified version
(TC50) 2008 [

d requests, along
hemselves and th
o collect the sub

nds of appointm
nline to demo th
age Submit St
ccount can pre
p, which include
er is constraine
startups are d

owner and IT sp
lf the bulk of the
s to the limited fr
nce in elaborate g
omplex functions,
the general frame
the process.

cal login and signu

ge

age

age
of limited sco

eal-world app2yo
d in the Appendi

of the app2yo
19], a conferen

g with informatio
heir products. T
bmissions, revie
ments where t
heir products, an
tartup (Figure
epare and subm
es the name, log
ed to at most o
displayed on t

pecialists: The no
 application’s pag

ramework, while t
graphics, integrati
, complex SQL a
ework. The busine

up page before th

pe
ou
ix.
ou

nce
on
he
ew
the
nd
1)

mit
go,
ne

the

on-
ges
the
ion
and
ess

hey

Evalua
reviewe
of them
solicit c
reviewe
on the
advisor
The inv
him to
availab
Interv

submitt
the rev
intervie
submitt
page, w
which
applica
great
applica
Do-It-Y
The gen
design
design,
each sp
commo
automa
specific
engage
ease-of
multipl
describ
automa

Many
develop
used by
are cur
fundam
applica
app2yo

Due to
facility
resoluti
app2yo

5 In the

ate Startups p
ers, each of who
m: submit a rev
comments from
ers), in which ca
Advisor Com

rs;5 invite the s
vitation results to
 visit the Sche

ble interview slo
view Slots pag

ted choices are
viewers post the
ew slot as part
ted demo review
where reviewers
50 startups ar

ation evolved du
value of the

ations to evolve a
Yourself Design
neral goals of th
facility are typi
 where the own
pecification acti
on and semantic
ate their implem
cation at a high

in schema des
f-use specificatio
le novel DIY sp
bed in this pape
atically infer the

of the reporte
ped by UCSD’s
y app2you.com
rrently under d

mental problems
ations, as obse
ou.com.

the highly inter
we suggest tha

ion video at h
ou.

actual application

page (Figure 2)
om can execute

view consisting
one or more ad

ase the startup su
ments page (F

startup submitter
o the candidate r
edule Appoint
ts, submitted by
ge, and lets the

reported on the
ir grade for the
of the second

ws are reported o
s can now mak
re the most pr
uring a period of

Do-It-Yoursel
as the business p
n Facilities of

he app2you and F
ical in easy-to-u
ner immediately
on. (ii) Wizards
cally meaningfu
mentation. (iii)
h level where t
sign or databas
on goals has re
pecification tec

er, and the cons
schemas and qu

ed techniques
s app2you proje
users, while ot

development in
faced by owne

erved by real

ractive, WYSIWY
at the reader w
http://www.vime

there were solicita

, which is acces
three requests o
of Notes for e
dvisors (essentia
ubmission will b

Figure 3) to th
r to schedule an
receiving an ema
tment page, wh
y the reviewers o
invited startups

e Grade Demo p
e demo given at

review round.
on the Evaluate
ke an informed
romising ones.
f two months, in
lf approach in
process evolves.

app2you & F
FORWARD Do

use systems: (i) W
y experiences th
s that suggest to

ul specification
Wizards that

the user does n
se queries. Sati
equired the intr
hniques, which

struction of algo
ueries that fuel th

of this paper
ect and consequ
ther techniques

FORWARD a
ers in their effo
l world exper

YG nature of the
watches the 10-m
eo.com/2075363

ations to other rev

ssible by all
on each one
ach startup;

ally external
be displayed
e particular
n interview.
ail notifying
hich reports
on the Post
choose one

of them
(see

Figure
4). The

page, where
t the agreed
Finally, the
e Startups

decision of
The actual

ndicating the
n allowing

FORWARD
o-It-Yourself
WYSIWYG
he result of
o the owner
options and
explain the
not have to
sfying such

roduction of
are briefly

orithms that
he pages.

have been
uently were
(see below)
and resolve
orts to build
rience with

e DIY design
minute high
, password

iewers.

The first technique, already used extensively by app2you users, is
page-driven design (Section 3.2), which provides to the owner a
WYSIWYG model of the pages. The owner specifies properties of
the pages that have immediately visible effects on the page. For
this contribution we borrowed techniques from the
WYSIWYG/automatic design of database schemas by the creation
of respective input forms as done in form-builders even before the
web. We expanded with the WYSIWYG specification of forms
and requests that operate within the context of reported records
(for example, every input form, such as solicit action and
invite action on Evaluate Startups, operates within the
context of a submitted startup). We also launched wizards for
specifying properties by answering questions, expressed in easy-
to-understand language referring to the pages and the requests that
happen on them. app2you in response creates automatically the
pages’ structure (called page sketches, Section 2) and the
underlying schemas and queries, therefore relieving the business
process owner from designing the database layer, which is one
level away from the layers that she understands, namely, the
application page layer and the overall workflow. Hiding database
schemas, queries, constraints and other low-level details is
facilitated by an architecture where high level, easy-to-explain
derived properties of the page sketch hide hard-to-understand
complex primitive properties (Section 3.1).

By observing the users’ design efforts we found out that the
inherent difficulty (in comparison to, say, a spreadsheet) in
producing a WYSIWYG model for a collaborative application is
that the pages typically behave differently depending on which
user accesses them and the application state. The resulting
enhancement to page-driven design (Section 3.2) allows the owner
to experience the page’s function as if she were a suggested
sample user of it. The FORWARD project pushes this concept
further by prompting the user to assume the role of such sample
user and to perform particular suggested actions that reveal
properties of the pages’ operation that would otherwise not exhibit
themselves. Forcing the use of the application also leads to
collecting sample data, which become useful in exhibiting the
operation of other pages also.

Figure 4 TechCrunch50 Workflow Visualization

(in ppt; see video demo for the actual one)
Page-driven design by itself still turns out to be insufficient for
allowing the owner to reduce a non-trivial multistep process she
has in mind into a working application. In order to appreciate the
difficulty that non-programmer owners face, visualize a database-
driven application as a workflow. Figure 4 shows the workflow
visualization of the functionality of the TC50 application. User
groups are on the left. The rows in Figure 4 visualize access
rights, that is, which pages are accessible by which user group.
Intuitively, it is easy for the owner to specify in a single
specification action what appears as a single transition in the

workflow graph, such as the solicit edge. Unfortunately, a
major shortcoming of DIY online databases, which is not resolved
by page-driven design alone, is that they require the owner to
decompose a single user action in the process into coordinated
activity in two pages. For example, in page Evaluate Startups
the user submits the solicited advisor’s name. Page Advisor
Comments has a too-complex-for-non-programmers query that
filters startup submissions according to whether the currently
logged-in user appears in a solicitation related to this startup. The
FORWARD technique that will resolve this problem is the
workflow-driven design extension (Section 3.3) to the page-driven
paradigm.
Finally, in Section 3.4, we discuss work-in-progress on a
semiautomatic creation of reports. The goal is a report building
interface that

• suggests semantically meaningful joins of various data sets;
or joins of the currently reported data with other collected
data sets of the application

• does not suggest joins that would lead to provably redundant
information on the report

• explains to the owner the (potentially nested) involved data
sets and joins by referring to names that appear in the
application; avoids causing confusion with details of how the
pages are normalized in tables

• requests minimal information in the form of plain multiple
choice menus

• discovers the best placement of information on the report in
order to illustrate associations and constraints between the
reported data sets.

In effect the interface must compensate for the minimality of the
owner-provided information with algorithms that detect and
perform complex nested report creation operations.
Section 2 presents the part of the general framework that pertains
to database-driven applications and the limitations of the limited
framework. It argues why both the general and the limited scopes
can capture many practical applications. Section 3 briefly
describes an array of design techniques. Section 4 discusses
related work.

2. FRAMEWORK AND SCOPE
An app2you application is described by its application sketch,
which is defined by the general app2you framework. The general
app2you framework, which is used in the rest of the paper,
captures purely database-driven applications, i.e., it ignores
interfacing with external services and systems, which is
functionality captured by the under development general
framework in the FORWARD project.
The sketch is modified by the owner when the application is in
design mode. The sketch consists of primitive properties
(collectively called primitive sketch) and derived properties,
where the former are more low level (e.g., queries, constraints)
and their settings cannot be derived by the settings of other
properties. For ease of specification the non-programmer owner
typically does not access the primitive sketch aspects directly,
since deconstructing a process into primitive aspects tends to
require CS sophistication. Rather the non-programmer owner
indirectly accesses them via the derived properties, which explain
at a high level common questions and options, using wizards and
other components of the DIY design facility (Section 3).

Everyone
(login required)

Advisor
Comments

Grade Demo

Schedule
Appointment

Invited
Startups

Reviewers

Advisors

Post Interview
Slots

submit

invite

solicit

submit

submit

submit

review
Evaluate
Startups

submit

Submit
Startup

The primitive sketch consists of page sketches, user group
definitions, a database schema and general properties, such as the
application name and path.
Each page sketch has a URL, a page context, which captures the
request parameters (and the types of their values) that are expected
upon requesting this page, and a top-level unit.
A unit generally has fields, a mode, requests and one visual
template for each mode. Atomic fields generally display data of
corresponding parameters of the context.

1.1 Reports
Iterator fields are important for the generation of reports. They
have a query, which is typically parameterized by the context c
and retrieves from the database tuples t1,..., tn that have schema t
and correspond to the records displayed by the iterator. The
iterator has its own unit, which contains the displayed fields of the
retrieved tuples. Such unit operates within context c+t, which is
the concatenation of c (i.e., the context within which the iterator
operates) and t (i.e., the context that the iterator generates). The
unit of an iterator field may recursively contain its own nested
iterators.
For example, the top-level unit of the Evaluate Startups page
(Figure 2) has an iterator field, whose unit contains the atomic
fields Startup Name, Logo, and Business Plan. This iterator
runs a query SELECT * FROM Submit_Startup, where
Submit_Startup is the automatically inferred table that collects
the non-nested fields of the startup submission form (see Figure
1). It also contains the (nested) iterator field Founders, whose
unit, in turn, contains the atomic fields Name and Title. The
query of the iterator Founders is SELECT * FROM Founders
WHERE Founders.Parent=? and the parameter (?) is instantiated
by the Submit_Startup.ID of the query result of the containing
iterator.
The general framework allows iterator queries to be arbitrary SQL
queries over the schema, typically parameterized by values of the
context. In this way SQL experts can utilize SQL’s full power.
The limited framework queries (lqueries) are SPJ queries with
EXISTS predicates), that is, queries of the form SELECT * FROM
OuterJoinExpression WHERE BooleanCondition, where the
condition may be parameterized with values from the context and
may also involve EXISTS(SubQuery) predicates where the
parameterized SubQuery is recursively an lquery. Applications of
the limited framework use only lqueries and corresponding
constraints, which are generated by the DIY facility. A DIY-built
application however may go outside the limited framework and
into the general framework by selectively utilizing “manually”
written queries and constraints for a few complex functionalities.
App2you will soon also allow calculated fields to be associated
with queries. In the limited framework such queries will capture
the typical functionality of Excel spreadsheets. In particular, a
calculated field may:
1. Compute a new “scalar” value from values of the context.

For example, if the context has attributes First Name and
Last Name then the calculated field Name may be calculated
as concat(Last Name, “,”, First Name).

2. Compute an aggregate value by applying an aggregate
function over a (potentially hidden) nested iterator of the
page. For example, the non-programmer owner may include
in Evaluate Startups a calculated field Number of
Founders that performs the count function over the
Founders iterator fields.

3. Combinations of the two above.

Lqueries, scalar calculations and aggregates capture the needs of
most typical reporting applications and even the needs of
relatively unusual request-controlling constraints, such as “each
startup may receive at most 5 advisor reviews”. Therefore the
limitation leads to small scope loss. At the same time, this
limitation enables ease of specification benefits: First, the design
facility automates the creation of reports (see Section 3.4) for
lqueries. Second, filtering and aggregation uses DIY interfaces
that have proven themselves in other settings (e.g, spreadsheets).
Third and most important, lqueries enable the easy and efficient
computation of the context created by each report tuple, therefore
enabling the automatic inference of the database commands
associated with contextual requests, such as the submit, invite
and solicit, i.e., requests that appear in the context of reported
data, as explained in Section 1.2.
Note that for DIY simplicity the design facility focuses on pages
with a single iterator at the top level unit of the page. Such pages
are called report pages.

1.2 Contextual requests
A unit may also contain zero or more requests. Intuitively, a
request combines an HTML input form with information on the
effects of submitting the form. In particular, a request contains (i)
zero or more input fields (ii) a mechanism of submitting the form
(e.g. a button) (iii) a constraint, represented by a yes/no query (see
discussion below on representation of queries), whose semantics
is that the request is applicable only when the constraint is
satisfied, and (iv) a list of effects.
The most common effect of executing a request is an update on
the database; this will be the only effect discussed in detail next.
In the general framework such effect is captured by an SQL
statement, which is possibly parameterized by the context. In the
limited framework the database effect is automatically inferred by
the DIY design facility: It is an insertion in the database of the
values collected by the input fields. It is described in the sketch by
(i) naming the database table that takes the insertion and (ii)
mapping the input fields to type-compatible attributes of the table.
If the form contains repeated nested forms, such as the Founders
in the Submit Startup form that contains Name and Title pairs,
then each nested form is mapped to a corresponding database
table. Note that the inserted record also includes system attributes
such as the auto-generated ID, the submitter and creation
timestamp of the record.
Other effects of a request may be (i) sending an email, described
by a template (in the style of MS Word mail merge) whose
placeholders can refer to both the input fields of the form and the
system attributes and (ii) causing a navigation to another page,
which can be used to produce confirmation pages and forms
submission processes that span multiple pages.
For example, the data submission form of Figure 1 is a request. Its
effect is inserting the collected data in tables Submit_Startup
and Founders and sending a confirmation email. It has the
constraint that the currently logged-in user has not submitted a
startup already. The solicit and invite of Figure 2 are the
buttons of respective requests.
A feature that sets the scope of app2you applications apart from
the scope of online databases (see Section 4) is the ability of
reports to have nested requests, which operate in the context of the
reports. For example, the solicit request in Figure 2 operates
within the context created by the containing report iterator. Such a
nested request is said to be an annotation of its report iterator. A
nested request differs from a top level request as follows: First,
when it inserts in the database it may map values from its context
into attributes of the insertion table. For example, when the

solicit request is executed it stores a tuple in a table
Solicitation and this tuple has a foreign key attribute that
stores the ID of the startup submission within whose context the
particular nested request operates. Second, its constraint and its
side effects may also utilize the context. For example, the invite
action is associated with a constraint that there may be at most one
invitation for each startup.
Note the following important interplay between lqueries and the
automatic inference of the insertions happening when a request is
issued: lqueries enable automatic inference of a compact context
for the nested requests that appear within reports fueled by such
lqueries. In particular, each record produced by a lquery creates a
context consisting of the IDs of the few database tuples that joined
together to result in it. This, in turn, enables fully automatic
inference of an efficient database insertion performed when the
nested request is activated. In particular, the insertion stores the
IDs of the compact context along with the input fields of the
request and the system attributes. This, in turn, leads to ease of
specification since the non-programmer owner does not have to
specify what part of the context of a nested request will be stored
with the insertion.
Note that the DIY design facility is facilitated by
iterator+request field combos where the iterator part of the combo
ranges over requests created in response to the request part of the
combo. For example, the iterator+request field Advisor
Comments in Figure 3 combines the submit request with an
iterator showing the comments collected by the submit request.

1.3 User group definitions
In the limited framework user groups (such as Invited
Applicants, Advisors and Reviewers) are identified as a pair
consisting of a report page and a field (of such report) whose
values are user identities. The submitter is typically such a field.

1.4 Visual Templates
The visual template of a unit uses placeholders [10] that refer to
its fields. During runtime, such placeholders are replaced by
actual values. App2you provides a list of built-in visual templates
that are automatically revised during design time to capture
changes on the structure of the page, the forms and the reports.
For example, when a new field is added on the report, the visual
template of the report is automatically revised to display the new
field. Due to space limitations we will not discuss visual templates
in further detail.

3. DO-IT-YOURSELF DESIGN FACILITY
We focus on three key DIY-enabling techniques of the design
facility and the architecture that enables them: page-driven design
(Section 3.2), workflow-driven design (in progress, Section 3.3)
and automatic creation of complex reports (in progress, Section
3.4). We use the following principles as a scorecard for the DIY
design facility.

• Prefer to provide concrete explanations of sketch properties
using WYSIWYG feedback and verbalization of prompts and
options that refers to pages, requests and other highly visible
properties of the page; rather than being abstract and making
references to database terms.

• Prefer to provide a high-level specification from which
primitive properties can be generated, rather than a low-level
specification of primitive properties that requires the owner
to deconstruct high level concepts into low level concepts.

• Prefer to summarize and enumerate design options to focus
on common cases, rather than provide an unstructured, high

degree of freedom. “Advanced user”, less prominent
interfaces should cater to the less common cases.

3.1 Derived Properties
Often an important combination of primitive properties must be
explained to a non-programmer owner at a high level, which is
close to the non-programmer’s understanding of the workflow and
the function of the pages. Therefore the derived properties
interface reads the primitive sketch and exports derived properties
and corresponding common options (called derived options) for
their settings. When the owner chooses an option the derived
properties interface translates it back to the primitive sketch. We
describe next a simple example of a derived property,
exemplifying the concept. Derived properties become paramount
in the following sections.
For example, recall that a user of the Submit Startup page may
submit only one startup. Once she makes her submission, the form
of Figure 1 disappears. At the primitive sketch level, this behavior
is achieved by a non-obvious primitive property: The constraint
associated with the form checks that the set of startup submissions
of the currently logged-in user is empty. Understanding the
behavior of the Submit form at this level is fairly complex.
Therefore the page wizard offers a derived property asking the
much more obvious question of Figure 5.
The combination of a primitive sketch with a derived properties
interface produces many benefits on scope and ease of
specification:

• It enables the incremental addition of derived properties in
the platform, as common cases that lend themselves to higher
level explanations emerge, without disrupting existing
applications. Indeed, applications created before the
introduction of a new derived aspect in the platform can
benefit from its introduction: The derived properties interface
reads their primitive sketch and exposes a high level derived
property.

• It enables a 90/10 rule where the design facility first poses
common questions, often relying on derived properties and
derived options in order to express them. At the same time,
the wide scope enabled by the primitive sketch is available.

3.2 Page-Driven Design
The first step towards providing a high-level specification is to
allow the process owner to design her application through the
WYSIWYG model of pages, as opposed to engaging in low-level
web and database programming. Various properties of pages are
either specified by direct visualization on the pages, or via
answering simple questions about the page. The design facility in
response automatically creates the page's form/request and iterator
structure, underlying schemas and queries.
Through the high-level specification, page-driven design relieves
the owner from specifying data structures in the abstract while en
route to construct pages. Moreover, explaining the design options
available at the page level promotes easy comprehension,
especially if they are explained directly in terms of the application
layer that are easily perceived by the owner such as what is the
report/form structure of the pages. Lastly, page-driven design
facilitates immediate feedback on whether a design satisfies the
owner's requirements, since the owner can both inspect and
experience the page directly.

3.2.1

T
p
s
a
g
r
g
a
b
T
e
c
p
s
in
a
e
c
a
in
F
S
d

•

•

•

1 Page Wiza

Figure 5
The page wizard
prompts with sim
such as the page
access the page
granted to sys
required) (Figu
granted to custo
accessed by a gr
by placing the pa
The page wizard
enumerating a li
commonly occur
presentation form
speed up the des
nclude forms th

and tabular repor
edit/remove the
case is not fully
always customiz
ndependently.

Figure 5 shows t
Submit Startu
defaults for the fo

• The submit
max one p
startup.)

• The displa
user has
(Each appl
submitted.)

• The edit a
also set to
off otherw
startup info

ard

Page Wizard fo
d is the starting
mple questions
name, URL, and

e. For example,
stem-defined g
ure 5), whereas
om group Revi
roup is also visu
age in the approp
d prompts for th
ist of templates
rring combinati

mat and action r
sign of common

hat allow each u
rts where each u
records she sub
applicable to th

ze the page by

the Private Fo
up page. The t
following derived

t property of th
per user. (Each

ay property of t
 submitted t
licant can only

and remove pro
on if user
wise. (Each app
she has submitte

or Submit Sta
g point of page
about page-spe

d the groups tha
, access to Sub
group Everyon
access to Evalu
iewers. Allowi
ualized on the w
priate swim-lane
he main functio
, where each te
ion of page pro
rights. Template
n cases. Such co
user to submit at
user sees all rec
bmitted, etc. W

he scenario at ha
overriding ind

orm template us
template provid
d properties:

he page’s form i
h applicant can

the page’s iterato
the record,
y see the start

operties of the p
 has submitte
plicant can only
ed)

rtup Page

e-driven design.
ecific informatio
at are authorized
bmit Startup
ne (no logi
uate Startups
ing a page to
workflow diagra
e (row).
on of the page b
emplate bundles
operties includin
es are provided
ommon cases m
t most one recor
cords but can on
here the commo

and, the owner c
dividual properti

sed in creating t
des the followin

is set to on, bu
n only submit o

or is set to on i
off otherwis

tup info she h

page’s iterator a
ed the record
edit or remove t

It
on,
to
is
in
 is
be

am

by
s a
ng
to
ay
rd,
nly
on
an
ies

the
ng

ut
ne

if
se.
has

are
d,
the

Whene
the ow
The rec
more
Startu
submit
owner t

3.2.2 W
After th
the pag
a WYS
drags-a
upload
request
For eac
field is
added
corresp
determi
is creat
is alloc
HTML
as imag

The ow
nested
page.

3.2.3
While
WYSIW
page-dr
specific
reporte
the Rev
within
annotat
which
intuitiv
An ann
compon
created
area co
to Foun
of the

6 As we
create
invi

ver the submit
wner to optionall

cord name help
specifically. Fi
up. It starts wi
tted at Subm
to Startup.

WYSIWYG Des
he basic properti
ge wizard, the ow
SIWYG fashion
and-drop input

prompts, drop
t form of the pag
ch input compon
s added to the
to the schema

ponding to the r
ines the data typ
ted through an i
cated for binary

file input form
ges.

Figure

wner may also in
tables, such as

DIY creation
existing form

WYG design fo
riven design
cation of nested
d records. On th
views, the soli
the context of
tion by the DIY
is associated w

vely annotate the
notation is cre
nent into a repor

d when a multi-
orresponding to a
nders. In this w
Reviews annota

e will see in Sec
ed by the introduct
te) into a report.

aspect is on, th
ly assign a nam
s the system ph
igure 5 shows
ith a system-pr
it Startup, w

sign
ies of the page h
wner can custom
n. To create ne

components su
pdown boxes, c
ge (Figure 6).
nent dragged into

request, and a
of the databas

request are inse
pe of the field. F
image upload co
y data, data can

element, and su

6 WYSIWYG P

ntroduce repeati
s the Founders

n of nested re
builders and

or (pure) input
to also enco
requests that op

he Evaluate St
cit and invite
a startup. A ne

Y design facility
with input forms
e data of the repo
eated by the d
rt.6 For example
line textbox for
a startup, exclud

way the owner vi
ation to be a sta

tion 3.3.1, more
tion of a workflow

e page wizard a
me to the record
hrase questions

the wizard f
roposed default
which is later

have been specif
mize the form of
ew input fields,
uch as text bo
check boxes et

o the form, a co
corresponding

se table where
erted. The input
For example, the
omponent, there
n be submitted
ubmitted data ar

Page Design

ing nested data
s on the Submi

equests
online databas
forms, app2yo

ompass the W
perate within the
tartups page f
e nested requests
ested request is
y if it is a submi
s, since the data
ort.
drag-and-drop o
e, the Reviews a
r Notes is drop
ding the area co
isually specifies
artup. Had she

generally, nested

w action (such as th

also prompts
ds collected.
and options
for Submit

of Record
set by the

fied through
f the page in
 the owner

oxes, image
tc. into the

orresponding
attribute is
the records
component

e Logo field
fore storage
through an

re displayed

by creating
t Startup

ses employ
ou advances
WYSIWYG
e context of
for example,
s all operate
also called
it requests,
a it collects

of an input
annotation is
pped into an
orresponding
s the context
accidentally

requests are
he solicit,

dropped it into the area for Founders, she would have seen a
multi-line text box for each founder, which creates an immediate
visual indication of the mistake. Recall that the design facility
automatically infers the database insertions that will be issued
when a review is submitted. For example, the insertion of a review
will lead to inserting in the underlying table Reviews a record that
contains the values collected by the input fields, system attributes
and a foreign key that refers to the startup that provides the
context for the particular review. The updates issued when a
review is edited are computed similarly.

3.2.4 Experiencing the page
WYSIWYG design is not sufficient since there are properties that
are not immediately evident from the page’s visual appearance.
For example, how many submissions can a user make? Can a user
see which other users have submitted?
The inherent difficulty faced by an owner of a collaborative
application (as compared to an owner of a spreadsheet) in
comprehending the behavior of an application and verifying it
against her requirements, is that pages typically behave differently
depending on what data has been submitted and who accesses the
data. The design facility takes a number of steps towards resolving
this problem. First, it makes every feature that is available in use
mode also available during design mode. The fact that the page
sketches are interpreted, instead of requiring a design-compile
cycle, facilitates this. Second, it always prompts the owner to
submit sample data and make requests so that corresponding
records can be shown on report pages. The third step is to prompt
and help the owner assume the role of particular sample users in
order to visualize the behavior of properties that would otherwise
be hidden.
The system suggests to the owner to experience a page as a
sample user if it recognizes that certain properties of the page
cannot be explained by the owner’s current WYSIWYG
experience. For example in Submit Startup, the system
suggests the experience submit as a sample user in order to
explain to the owner the following properties:

• The display property of the page is set to on.7 The owner
understands this when she sees that the startup info record
submitted by the sample user is displayed on the page.

• The submit property of the page’s request form is set on,
but max one per user. The owner understands this when
she sees that the request form and button disappears once she
submits a startup info record.

• The edit and remove properties of the page’s iterator are set
to on.8

Note however, that the experience of the first sample user does not
fully explain whether the display, edit and remove properties
are unconditionally or conditionally on. For example, does the
iterator display all records submitted, or only records submitted by
the current user? Therefore, the design facility subsequently
engages the owner to experience as a second sample user. The
experience shows that in this the page, each user can only see, edit
and remove records she has submitted. If this is contrary to

7 The display aspect of a page is a derived aspect that asks whether a page

that has a form also has a report iterators that displays the data submitted
at the form.

8 The edit and remove aspects of a page are derived aspects that ask
whether the report iterator of the page provides the built-in actions edit
and remove.

requirements, the owner can then either select another template, or
customize the individual properties defaulted by the template.
When the records displayed by iterators and the requests that are
available are controlled by complex conditions, it is harder to
reason about what sample data and sample users are needed in
order to experience a page. For example, obtaining the experience
of a solicited advisor at the Advisor Comments page requires
that (i) at least one (sample) solicitation has been made and (ii) the
owner uses the Advisor Comments page as if she were the
solicited advisor. When the conditions have been introduced in
response to workflow-driven design, as described next, it is easier
to reason about such sample users and data.
Note that in practice sample data are not needed when the first
pages of the application have actually gone in use and have
already obtained actual data.

3.3 Workflow-Driven Design
In the workflow visualization of an application (see Figure 4),
which is under design and development in the FORWARD
project, edges (also called transitions) capture requests that
happen on the page at the source of the edge and affect the
experience and rights of a user on the page at the target of the
edge. The starting points of a workflow are data collection pages,
such as Submit Startup and Post Appointment Slots that
provide requests collecting new records without implicit or
explicit references to other records. The records may be reported
on the data collection page itself, or appear on reports that
combine data collected from one or more pages. Reports, such as
Evaluate Startups, may allow their user to act on individual
reported records (review, solicit or invite). Formally, there
is an edge from page P1 to page P2 labeled with request a1 if
executing a1 on P1 may change
1. the read rights of a user u on P2, that is, u can read on P2 a

record r as a result of a1. For example, the submit edge from
page Submit Startup, accessible to Everyone (login
required), to page Evaluate Startups, accessible to
reviewers, denotes that reviewers gain read rights to a startup
once the request is submitted.

2. the action rights of a user u on P2, that is, u can perform a
request a2 on P2 as a result of a1. For example, the solicit
edge indicates that upon executing the solicit on
Evaluate Startups a user (in this case the solicited
advisor) can read and comment on a startup submission at the
Advisor Comments page.

3. the access rights of a user u on P2, that is, u gains access on
page P2. For example, the invite edge of Figure 4 indicates
that upon executing the invite request on Evaluate
Startups a user (in this case the startup submitter) gains
access to the Schedule Appointment page.

An implementation that visualizes the workflow also allows
drilling down into the nature of the edges so that the owner can
tell which type of right is affected by the edge, why it is affected,
etc.
Some workflow transitions correspond to application functionality
that is easily built using page-driven design. For example, the
submit edge from Submit Startup happens because the owner
ordered at the page wizard that the Evaluate Startups reports
the data collected on Submit Startup.
However, process owners often want to capture more elaborate
workflow logic, which leads to application functionality that
cannot be easily-built in page-driven design. Consider in Figure 4
the solicit edge from page Evaluate Startups to page

A
m
U
(r
th
A
c
S
lo
fr
th
S
F
W

T
c
T
S
I
a
fr
a

D
a
ta
e
d
in
w
W
s
o
o
d
E
A
f

3.3.1
T
a
th
c
v
1

2

Advisor Comme
may solicit revie
Using page-driv
request) to Eva
he advisors to s
Advisor Comme
comments, by in
Startups page,
ogged-in user is

from; not a simp
he query buildin
SELECT *
FROM Submit_S
WHERE EXISTS

The Solicitati
column) by the
The SS_ref col
Startup. The ro
ID of an advisor
advisor is the c
friendly the que
above query is to

F
Deconstructing a
a single user req
ask for the pro

enhance the desi
driven design wh
nto a single D

workflow transiti
Workflow-driven
set of Workflow
of Figure 7, whic
other component
decides to drop
Evaluate Star
Action wizard.
formulate queries

1 Workflow
The requiremen
automatically inf
he following pr

correspondingly
visualization:
1. The action

workflow tr
2. The type of

can typicall
which the re

ents, accessible
ews for each star
en design, the
luate Startu
olicit reviews fr
ents page, for
nitially report all
, and then keep
s one of the ad
ple condition to
ng GUI is. Indeed

tartup
 (SELECT *

FROM Solic
WHERE SS_r
AND route_

ions table folds
reviewers for e

lumn is a forei
oute_to column
r and the condit
currently logge

ery building of
oo hard to be con

igure 7 Workflo
a single workflow
quest, into the a
ocess owner. Fo
ign facility’s pa
here all of the a

DIY task perfor
ion.
n design is initia
w Actions com
ch can be dragg
t. For the soli
p the Route
rtups page, w

The wizard sa
s like the one ab

w Wizard
nt for the w
fer or ask the pro
roperties of the
of the transitio

on the curren
ransition.
f record involve
ly be automatic
equest was introd

to advisors. H
rtup from a subs
owner has to a
ps so that revie
rom. Then she n
r the advisors
l the startups fr
p only those wh
dvisors chosen to
o state regardles
d, the query in S

citations
ref = Submit_
_to=<current

s the advisors c
each Startup (
gn key referrin
n is a foreign ke
tion makes sure
d-in user. No
the design faci

nceived by a non

ow-Driven Desi
w transition, whi
above design ste
or that reason,
age-driven desig
above design st
rmed on the st

ally experienced
mponents, shown
ged-and-dropped
cit example, t
to Users co

which triggers t
aves the owner

bove.

workflow wizar
ocess owner abo
e workflow act
on that appears

nt page that co

ed in the workfl
ally inferred fro
duced

ere, the reviewe
set of the advisor
add an annotatio
ewers can choo
needs to create t

to submit the
om the Evaluat
here the current
o solicit a revie
s of how friend

SQL is:

_Startup.ID
 user>)

chosen (route_t
(SS_ref column
ng to the ID of
ey referring to t

e that the solicit
matter how us

ility becomes, t
n-programmer.

ign
ich corresponds

eps is not a trivi
FORWARD w

gn with workflow
eps are integrat
tarting page of

by the owner as
n on the right si
d on a page as an
the process own
omponent on t
the Create Ne
r from having

rd is to eith
out one or more
ion (request) an
in the workflo

orresponds to t

low action, whi
om the context

ers
rs.
on

ose
the
eir
te
tly
ew
dly

to
n).
f a
the
ted
ser
the

to
ial

will
w-
ted
f a

s a
de
ny

ner
the
ew
to

her
of
nd
ow

the

ch
in

3. Th
4. Ho

on
the
the
is
inf

5. De
qu
be
the
the

6. Ho
As an e
Route
propert
comme
Propert
and-dro
(see Fig
the ow
page; th
is a St
questio
which
running
of the R
record
group
which
the ow
Commen
owner
Adviso

Once th
a soli
drop-do

3.4 A
Section
pages
shown
workflo
high le
reports
low-lev
join con
Since r
automa
previou
facility
designi
minima
options
Let us
Startu
on Ad
Startu

Figure
during
for exte
to exte

he user group tha
ow exactly the a
n the correspond
e access rights,
e affected user g
implied by the

formation is nee
epending on the
uestions about
ecome relevant.
e record readabl
e page where the
ow the affected u
example, let us
 to Users acti
ties, while the
ents from advisor
ty 1 is answered
ops the Route t
gure 7) into the

wner dropped th
herefore the type
tartup record.

ons. Property 3
user group to r

g example is Adv
Route to User
(Startup record
(Advisors). Pr
is the page whe

wner will answe
nts. Property 6
chooses to sen
ors group.
he owner exits t
cit request in t
own box that ref

Automated R
n 3.2 has demon
can generate a
how raising the

ows can ease th
evel of specifica

powered by co
vel implementat
nditions and sele
report pages ar

ated report crea
usly specified b
 is able to pro
ing complex
alism with algo
s and automate im
s consider how
ups page with t
dvisor Comme
ups is shown in
8a shows the W
which the owne

ending the page
ending Evalua

at will be affecte
action will affect
ding records. Tha

the read rights
group on the tar
e choice of the
eded.
e answer to the
the exact imp
For example, if
le by users of th
e users will read
user group will b
consider what th
ion should do,
owner customi

rs.
d purely by the
to Users action
page. Property 2

he workflow ac
e of record invo
 The wizard c
comes from as

route Startup r
visors. Propert
rs action, whose
d) becomes read
roperty 5 come
ere Advisors w
er that is a ne
is addressed by

nd an email to

the wizard, the s
the context of e
ferences the advi

Report Cre
nstrated how the

database schem
e specification l

he design of req
ation, it is desir
omplex queries,
tion details of q
ection condition
re created after
ation can lever
by the owner.
ovide the owne
reports, while
rithms that offe
mplementation d

w the owner c
he comments th
ents. Such a
Figure 8b.

WYSIWYG desig
er selects the Re

e. For example, t
ate Startups

ed by the action.
t the rights of the
at is, will the ac
and/or the actio

get page. In mo
e action and no

above question
plementation of

the workflow a
he affected grou

d the record?
be notified of the
he workflow wi
in the spirit of

izes the reques

fact that the ow
n from the Comp
2 is inferred by
ction in Evalu
lved in the work
an proceed in
sking the owne
records. The an
ty 4 is implied by
e effect is that t
dable by users of
es from asking
will read Start
ew page, name
y a last question

the relevant u

system automati
each Startup, a
isors, as shown i

eation
e high-level spec
ma, while Secti
level to that of

quests. In keepin
rable for owner

without having
queries such as
s.

data collection
rage semantic
Consequently,

er a minimal in
 compensating
er semantically
details.
can extend the
hat advisors hav
an augmented

gn of Evaluate
eport tab and s
the first option

with data on

e user group
ction change
on rights of
st cases this
o additional

n, additional
f the rights
ction makes
up, which is

e action?
izard for the
f the above
st to solicit

wner drags-
ponents list
the fact that
ate Plans
kflow action
a series of

er to decide
nswer in the
y the choice
the involved
f the chosen

the owner
tup records;
ed Advisor
n, where the
users of the

ically places
along with a
in Figure 2.

cification of
ion 3.3 has

f application
ng with this
rs to design
g to specify
projections,

n pages the
information
the design

nterface for
g for this

meaningful

Evaluate
ve submitted

Evaluate

 Startups,
sees options
corresponds
n Advisor

C
w
a

F
th
S
C
p
T
th
S
e
o
T
d
e
c
T
e
c
p
f

3
W
li
is
fr
a
F
th
e

Comments. The i
will cause the sy
an amalgamation

Figur

Figure 8b shows
he system has
Solicitations
Comments. Notic
point, next to cor
Through the WY
he owner receiv

She can then p
extraneous fields
over, or repeat th
This minimal int
designing report
explanatory deta
conditions.
To enable this h
employed variou
challenge lies in
possible joins, to
for the common c

3.4.1 Genera
When the owner
ist of options by
s the core mech

from enumerated
arbitrarily compl
For each pair co
he report page

example) and an

intuitive underst
ystem to produce
n of both pages.

(

(

re 8 Automated
Evaluate St

that after the ab
introduced advi
 iterator’s unit
ce that the exte
rresponding solic

YSIWYG interfa
ves immediate v
perform further
s and iterators, d
he design activity
terface is intende
ts. Sophisticated
ails for an opt

igh degree of ea
us DIY feature

n intelligently re
o produce a sum
case.

ating Joins
r selects the Rep
y first generating
hanism by whic

d options, rather
lex Boolean cond
omprising an ite

to be extended
n iterator or a r

tanding is that s
e a more comple

(a)

(b)

d Report Extens
tartups Page

bove-mentioned
isor comments
with data colle

ension was plac
citations.

ace (and appropr
visual feedback
r customization,
deleting the exte
y of extending th
ed to capture the
d owners may
tion in order t

ase for the owne
es and heuristic
estraining the in
mmarized enum

port tab, the sys
g a (finite) list o
ch ultimately th
than specify join
ditions.
rator b of the b
d - Evaluate
request e of any

electing an optio
ex report, which

sion on

option is selecte
by extending t

ected by Adviso
ced at an optim

riate sample data
of the extensio

, such as hidin
ension and startin
he page.
e common case
choose to obta
o customize jo

er, the system h
cs. The technic
finite space of a
eration of optio

stem produces t
of join paths. Th
he owner choos
n conditions usin

base page, (that
 Startups in t
y extension pag

on
is

ed,
the
or

mal

a),
on.
ng
ng

of
ain
oin

has
cal
all

ons

the
his
ses
ng

is,
the
ge,

app2yo
path is

where F
Some e
Startu
Commen
assume
1. FC

FC
2. FC

FC
3. FC

FC
The fl
parame
FC(i) is
is nest
joined w
The jo
attribut
join-pa
key attr
groups,
accessib
where
be they
such as
Note th
iterator
infinite
same it
choosin

3.4.2
The list
useful
path, ap
and use
redunda
For ex
discard
page Ev
A cons
path is
already
that sat
vn) in F
vn and
of redu
Note th
general
a resul
accomp

ou attempts to fi
a left-deep relat

FC(b) …

FC(i) is the flat c
example join pat
ups page and
nts page are t
e the Advisor C
C(Evaluate_Star

⋈[lhs.startu
C(Founders)
C(Evaluate_Star

⋈[lhs.startu
C(Advisor_Comm
C(Solicitation)

⋈[lhs.startu
 AN

C(Advisor_Comm
at context of

eterized query. If
s simply the que
ed within itera
with the query p

oin conditions c
tes. Currently, th
irs: (1) between
ributes (2) betw
, and Submitte
ble by said user
the majority of

y surrogate keys
s email addresses
hat the generate
r can only occur
e number of path
terator, so that t
ng the same e for

Detecting Re
t of join paths g
enough to prese
pp2you makes a
es view equivale
ant information

xample, join pa
ded, since there
valuate Start

servative definiti
redundant if it

y an iterator y su
tisfy the schema
FC(x) has a corr
vice versa. We

undancy.
hat such a defin
lly, reports wher
lt of different
plished by es

ind join paths th
ional join of the

⋈cn FC(in) ⋈
context of an ite
ths between base

d extension ite
the following.
Comments page a
rtups)

up_id = rhs.star

rtups)

up_id = rhs.star
ments)

up_id = rhs.star
ND lhs.route_to =
ments)
an iterator i
f i is the top-lev
ery producing th
tor h, then FC

producing the rec
cn are conjuncti
he system consi
n id attributes,

ween email attrib
ed By / Edite
r groups. This re

join conditions
s generated by th
s.
d join paths do
once in the path

hs. The exceptio
the owner can m
r subsequent ext

edundant Join
generated is finit
ent as options to
a hypothetical ex
ency to test whet
on the page.

ath 1 is provab
is already a Fou
tups.
ion of redundan
t leads to a new
uch that for all
a and its constra
responding tuple
currently invest

nition does not
re a database tab
join conditions
sentially reduc

hat connect b an
form:

⋈cn+1 … FC(e)

rator i.
e iterators on the
erators on the
For the sake o
also shows the F

tup_ref]

tup_ref]

tup_ref
= rhs.submitted_

is its correspo
vel iterator of the
he records displa
C(i) is FC(h) ap
cords displayed i
ions of equaliti
iders two types
and correspond

butes correspond
d By attributes

eflects the comm
involve unique

he database or n

 not contain cy
h), otherwise ther
on is that b and e
make arbitrary s
tension rounds.

ns
te, but not all jo
o the owner. Fo

xtension of the b
ther the extensio

bly redundant a
unders iterator

ncy is the follow
w iterator x, wh
possible databa
aints, each tuple
e ty in FC(y) tha
tigate additional

prevent self-join
ble occurs multip
s. The redunda
cing all const

nd e. A join

e Evaluate
e Advisor
of example,
ounders.

_by]

nding non-
e page, then

ayed in i. If i
ppropriately
in i.
ies between
of attribute

ding foreign
ding to user
s of records

mon intuition
e identifiers,
natural keys

cles (i.e. an
re can be an
e can be the
self-joins by

oin paths are
or each join
base iterator,
on adds only

and can be
on the base

wing: A join
here there is
se instances
e tx=(v1, …,
at has v1, …,
l definitions

ns or, more
ple times as

ancy test is
traints into

embedded dependencies, asserting the existence of tx in FC(x) and
running a chase procedure (similar to [15]) that deduces tuples
that must exist in the flat contexts of other iterators on the page.

3.4.3 Optimizing Join Placement
Given two generated join paths where the extension iterators are
the same, one join path may be strictly better than the other. For
example, contrast Join path 2 with 3. Extending Evaluate
Startups with 2 will place advisor comments on each startup,
whereas 3 will place advisor comments on each solicitation.
Intuitively, 3 is preferable to 2, as only the former visualizes the
existing association between a solicitation to a specific advisor,
and the corresponding comment.
This intuition can be expressed as functional dependencies
between records. A startup can be routed at most once to each
advisor, and an advisor can comment at most once on each
startup. Therefore, a comment functionally determines a
solicitation, which in turn functionally determines a startup. Since
app2you relies heavily on WYSIWYG visualization to assist the
owner in making design choices, it is important that wherever
possible, functional dependencies and other constraints in the
schema be visualized with the appropriate placement and nesting
of iterators. Extending with 3 will produce a more accurate
visualization of the functional dependencies.
Implementation-wise, running the chase procedure in Section
3.4.2 has the side benefit of also producing the necessary
functional dependencies.

3.4.4 Bundling Additional Joins
After discarding pruned join paths, the surviving ones are
aggregated by the pages of the extension iterators, and presented
as a list of options as in Figure 8a. This achieves the minimal
interface with a corresponding high-level of specification, as the
owner only needs to comprehend pages (and not join paths) to
start creating complex reports.
Note that the system uses the page rather than the iterator as the
level of summarization. This comes from the observation that due
to the parameterization between nested iterators, the standalone
functionality of an iterator is harder to perceive than that of a
page. Moreover, the existence of a report page is a strong hint that
its structural organization is useful. Therefore, bringing in the
entirety of the page en masse as part of the extension and allowing
the owner to later hide extraneous fields and iterators provides
better visual cues, than allowing the owner to extend one iterator
at a time.
For an example, consider an alternate scenario where startups can
provide rebuttals to advisor comments. There will be a page
Rebut Advisor Comments, that reports comments and annotates
them with a Rebuttal iterator. If Evaluate Startups were not
extended with Advisor Comments, but were instead extended
with Rebut Advisor Comments, the bundling of additional joins
will introduce both comments and rebuttals with a single round of
extension.

3.4.5 Visualizing Projections
Iterators and fields can be easily shown and hidden with
checkboxes (Figure 8b). For example, each iterator has a few
hidden-by-default system fields, such as Submit Timestamp. The
owner can easily customize the new Advisor Comments iterator
to display when each advisor submitted her comment. From the
DIY perspective, it is far preferable for the owner to toggle
visibility of iterators and fields through an enumerated list, than to
manually specify a projection list of attributes (a la query
languages such as SQL).

4. RELATED WORK
The time is opportune for Do-It-Yourself database-driven
applications for two reasons. First, they leverage the emergence of
hosted applications (software as a service) and Web 2.0 Ajax-
based interfaces that allow application page design from the
comfort of one’s browser, while providing the richness of desktop
interfaces. The two aspects combine to remove the hassles of (i)
downloading/installing software in order to create an application
and (ii) deploying/exporting an application on the web. But the
Do-It-Yourself ability presents a larger, qualitatively-different
challenge: How to disrupt conventional database-driven web
application programming by providing brand new models of
specifying database-driven web applications so that non-
programmer business owners can build their own applications.
Multiple systems support the fast creation of custom web
applications by removing the need to program in a complex
Turing-complete programming language, such as Java. WebML
[3] is a prime example of schema-driven application creation
(also see DeClarit [6], Oracle Express [14]). The creator starts by
designing the Entity-Relationship data model for her application.
Then it is easy to specify pages by putting together units that
accomplish typical functionalities of Web applications. For
example, a unit may report the data of an entity and utilize the
relationships of the data model to navigate to related entities. It is
reported [22] that the development and maintenance of WebML
applications led to 30% increased productivity with 46 distinct
applications maintained by 5 part-time, junior developers.
The emerging Do-It-Yourself custom application platforms
primarily target non-programmer process owners. A common
theme is that the owner does not need to create a database schema
in the abstract. Rather she builds forms, which automatically lead
to corresponding tables that are typically reported on the same
page. Such systems tend to be online databases [4][5][7][9] for
easy information sharing and collaboration, often delivering great
advantages over online spreadsheets, which are their main
competitor for structured information sharing 9 . However, the
resulting applications have a very limited scope (and business
logic): Users simply post and read structured data in the shared
space.
A next generation of Do-It-Yourself systems promises to go
beyond information sharing and to enable users to capture their
business processes by web applications. At a high level, these
enablers are either “MS Access online” [4][2] or customizable
vertical templates [18].
The “MS Access online” enablers allow users to create multiple
Do-It-Yourself online tables (having forms and reports to give
access to them). In the same spirit with MS Access, the reports
have to be fueled by queries where the user has explicitly
specified joins and selections. Finally, business logic and flow of
data from table to table is offered in the form of scripting
programming languages [12] or graphical languages [4] that allow
the user to describe series of insertions, deletions and updates and
the conditions under which they should happen. The adherence to
tables with separate forms and reports creates problems at both the
scope axis and the easy specification: The web applications we are
dealing with day-to-day are not mere collections of tables with a
report and a form for each table. A typical case is that the input
forms of a page typically operate within the context of reported
dynamic data and even within the context that prior pages create,

9 Yahoo Pipes [21] and IBM’s QEDWiki [8] represent high end versions

of the information sharing space, where data from multiple sources and
RSS feeds can be automatically integrated and presented online.

i.e., there is no artificial divide of “input only” and “report only”,
as is clearly evidenced by pages such as Evaluate Startups
and Advisor Comments. In addition to app2you, AppForge [2]
also solves this problem by allowing input forms in the context of
reports.
Another scope problem of “MS Access Online” is the inability to
capture that access rights to a page may depend on the business
logic itself. For example, in the TC50 application the group
“Invited Applicants” is derived automatically and controls access
to “Schedule an Appointment”.
The “MS Access online” class is problematic in creating
workflow application since the business process owner needs to
reduce the collaborative process she has in her mind into
normalized tables and into sophisticated queries and updates. For
example, we showed in Section 3.3 how hard it is to explain using
a query that the Advisor Comments should only show startup
submissions that have been passed to the currently logged-in user.
This raises the bar of sophistication needed by the builders
towards the level of sophistication that programmers have,
therefore seriously limiting who can create and evolve
applications. The anecdotal evidence behind this thesis is plenty:
Instructors of undergraduate database classes know the difficulty
that, even computer science students, have in designing
appropriate schemas and writing non-trivial queries. Furthermore,
despite the best efforts of tools, such as the tools of the Microsoft
Office Access and Microsoft InfoPath, to make database schema
design and query writing approachable by the masses, the general
public has found it hard to engage in those activities. The above
evidence is not surprising since database schemas and queries are
abstract structures that have no immediately visible connection to
the web application and workflow aspects that the non-
sophisticated designer can immediately associate with, which are
the Web pages with which the users of the application will be
interacting.
Applications with fixed workflow and database table structure and
customizable input form structure (i.e., one can change the
attributes of tables as long as the tables and their interactions
remain fixed) have been a great success [18]. We believe that
customization does not need to stop at that point since, by doing
so, the scope of available applications is limited by the available
initial templates.

5. REFERENCES
[1] Jeanette Borzo: Do-It-Yourself Software, Wall Street

Journal, 9/24/2007.
http://online.wsj.com/article/SB119023041951932741.html#
articleTabs%3Darticle.

[2] Chavdar Botev, Nitin Gupta, Jayavel Shanmugasundaram,
Fan Yang: A WYSIWYG Development Platform for Data
Driven Web Applications. VLDB 2008.

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling
Language (WebML): a modeling language for designing
Web sites. Computer Networks 33(1-6): 137-157 (2000).

[4] Coghead. http://www.coghead.com
[5] DabbleDB. http://www.dabbledb.com
[6] DeKlarit. http://www.deklarit.com
[7] eUnifyDB. http://www.eunifydb.net

[8] IBM QEDWiki.
http://services.alphaworks.ibm.com/qedwiki/

[9] Intuit Quickbase. http://www.quickbase.com
[10] JavaServer Pages Technology

http://java.sun.com/products/jsp/index.jsp
[11] K.W. Ong, Y. Papakonstantinou, K.K Zhao: Do-It-Yourself

Forms-Driven & Workflow Database-Driven Applications.
Provisional patent submitted by University of California at
San Diego, December 2008.

[12] LongJump. http://longjump.com
[13] Ning. http://www.ning.com
[14] Oracle Application Express.

http://www.oracle.com/technology/products/database/applica
tion_express/index.html

[15] Y. Papakonstantinou, I. Katsis, K. Ong: Creating Hosted
Web Application and database. Utility patent submitted by
University of California at San Diego, April 2007

[16] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, Val Tannen:
A Chase Too Far? SIGMOD Conference 2000: 273-284.

[17] Ruby on Rails. http://www.rubyonrails.org/
[18] Salesforce.com. http://www.salesforce.com
[19] TechCrunch50 (TC50). http://techcrunch50.com
[20] Colin Teubner and Ken Vollmer: BPMS Revenue To Reach

$6.3 Billion By 2011. Forrester Research, 2007.
http://db.ucsd.edu/app2you/2009-www/2007-forrester-
bpms.pdf

[21] Yahoo! Pipes. http://pipes.yahoo.com/pipes/
[22] Piero Fraternali, Stefano Ceri, Massimo Tisi: Developing

eBusiness solutions with a Model Driven Approach. IMP
2006.

Appendix
More than twenty forms-driven applications have been built and
used in 2008 on app2you.com. For example, a recruiter has
collected job openings from its customers. A wide group of users,
defined and controlled by the recruiter, sees selected fields of the
job openings’ records and is invited to recommend individuals,
who are notified about the positions, provide their level of interest
and proceed to exchange information with the customer and the
recruiter if interested.
In another example, the United Cerebral Palsy non-profit
organization maintains an online loan library of toys, keeping
track of who currently holds a toy and who has requested it.
In multiple variations of classroom management applications
students submit their projects, often after a phase where they have
teamed up in project teams. The TAs and instructor provide
feedback and grade. Variations include setting up appointments
for project presentations and rehearsals, voting for the best project
etc.
In multiple variations of reviewing applications, candidates submit
material that is pushed thru a review process with various rules
and steps.

