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1. INTRODUCTION 
UCSD’s app2you project [15] (commercialized as app2you.com) 
and its successor FORWARD project [11]1 belong to the emerging 
space of Do-It-Yourself (DIY), custom, hosted, database-driven 
web application platforms that empower non-programmer 
business process owners to rapidly and cheaply create and evolve 
applications customized to their organizations’ data and process 
needs. The hoped-for outcome of DIY platforms is paralleled to 
the emergence of spreadsheets in the 80s and of graphical 
presentation tools in the 90s [1]. Before the arrival of tools such as 
powerpoint, polished presentations had to be prepared by graphics 
professionals. PowerPoint enabled us to do them ourselves.  
Generally DIY application platforms provide an application 
design facility (also called application specification mechanism) 
where the application owner (also called process owner and 
business architect [20] specifies the application by manipulating 
visible aspects of it or by setting configuration options. A simple 
early example of DIY creation was form builders, where the 
owner introduces form elements in a form page and the platform, 
in response, creates a corresponding database schema. 
A DIY platform must maximize the following two metrics: First, 
how wide is its application scope, that is, what computation, 
collaboration on a process, and pages (presentation) can be 
achieved by applications specified using the platform’s design 
facility? Second, how easy is the specification of an application 
using the platform’s design facilities? When the ease increases the 
technical sophistication required by the owner decreases, and non-
programmer process owners are increasingly enabled. The two 
metrics present an inherent tradeoff. At the one extreme, building 
applications using Java, Ajax and SQL provides unlimited scope, 
but does not provide ease of specification. Platforms such as Ruby 
on Rails [17] and WebML [3] make specification easier and 
faster, but still not easy enough to enable non-programmer 
owners. At the other extreme, creating an application by copying 
an application template, as done for example in Ning [13], is very 
easy but the scope of the platform is limited to Ning’s finite 
number of templates. DIY platforms are between these two 
extremes of the scope/ease trade-off (see Section 4 for a 
discussion of particular platforms).  
This1paper focuses on human-centric [20] database-driven web 
applications, i.e., applications whose 

                                                                 
1 Supported by UCSD’s von Liebig Center for the commercialization of 
technology and NSF OCI 0721400 is collaboration with SDSC. 

• entire state is captured by the application’s database as 
opposed to also having out-of-database state that is 
accessed by the application by interfacing to 
corresponding external systems. 

• the state changes (and correspondingly the business 
process progresses) in response to user actions on the 
web pages. We do not consider the possibility that, say, 
an automated data feed produces data asynchronously 
and without user request.  

Furthermore the paper makes only brief mention of the 
customization of the front-end’s visual and interface aspects.2 

In an app2you/FORWARD application users with potentially 
different roles and rights interact on a web-based process. 
Depending on the state of the process/application, each user has 
rights to access certain pages, read certain records in them and 
execute requests, which often pertain to reported records. 

The presented general framework captures a broad scope of 
workflows and applications but achieving its full scope requires 
knowledge of SQL. The limited framework is the subset that can 
be generated by the DIY design facility and is the focus of the 
paper. Its essential limitation is that the core queries are SPJ 
queries, including the possibility of EXISTS conditions in the 
WHERE clause. An overlay of aggregation and calculation, which 
captures Excel functionality, can also be added on the core limited 
framework, without disrupting the design facility.  

The limited framework presents an excellent scope/ease-of-
specification tradeoff point: The DIY design facility, which is 
tuned to the limited framework, enables the easy specification of 
applications by “business architects” [20], that is, application 
owners that are not programmers but have the sophistication to 
reduce their business process into web pages by specifying, in a 
WYSIWYG fashion and in response to easy-to-understand 
prompts, properties of the pages such as who can access each 
page, what is the page’s main function, what happens in response 
to an action.3 

                                                                 
 
3 An advantage of supporting both a general and a limited framework is 

that even when the non-programmer business process owner cannot 
create or fully customize the entire web application (typically because 
parts of the application require the functionality of the general 
framework) app2you still enables a much more efficient collaboration 
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The first technique, already used extensively by app2you users, is 
page-driven design (Section 3.2), which provides to the owner a 
WYSIWYG model of the pages. The owner specifies properties of 
the pages that have immediately visible effects on the page. For 
this contribution we borrowed techniques from the 
WYSIWYG/automatic design of database schemas by the creation 
of respective input forms as done in form-builders even before the 
web. We expanded with the WYSIWYG specification of forms 
and requests that operate within the context of reported records 
(for example, every input form, such as solicit action and 
invite action on Evaluate  Startups, operates within the 
context of a submitted startup). We also launched wizards for 
specifying properties by answering questions, expressed in easy-
to-understand language referring to the pages and the requests that 
happen on them. app2you in response creates automatically the 
pages’ structure (called page sketches, Section 2) and the 
underlying schemas and queries, therefore relieving the business 
process owner from designing the database layer, which is one 
level away from the layers that she understands, namely, the 
application page layer and the overall workflow. Hiding database 
schemas, queries, constraints and other low-level details is 
facilitated by an architecture where high level, easy-to-explain 
derived properties of the page sketch hide hard-to-understand 
complex primitive properties (Section 3.1). 

By observing the users’ design efforts we found out that the 
inherent difficulty (in comparison to, say, a spreadsheet) in 
producing a WYSIWYG model for a collaborative application is 
that the pages typically behave differently depending on which 
user accesses them and the application state. The resulting 
enhancement to page-driven design (Section 3.2) allows the owner 
to experience the page’s function as if she were a suggested 
sample user of it. The FORWARD project pushes this concept 
further by prompting the user to assume the role of such sample 
user and to perform particular suggested actions that reveal 
properties of the pages’ operation that would otherwise not exhibit 
themselves. Forcing the use of the application also leads to 
collecting sample data, which become useful in exhibiting the 
operation of other pages also. 

 
Figure 4 TechCrunch50 Workflow Visualization 

(in ppt; see video demo for the actual one) 
Page-driven design by itself still turns out to be insufficient for 
allowing the owner to reduce a non-trivial multistep process she 
has in mind into a working application. In order to appreciate the 
difficulty that non-programmer owners face, visualize a database-
driven application as a workflow. Figure 4 shows the workflow 
visualization of the functionality of the TC50 application. User 
groups are on the left. The rows in Figure 4 visualize access 
rights, that is, which pages are accessible by which user group. 
Intuitively, it is easy for the owner to specify in a single 
specification action what appears as a single transition in the 

workflow graph, such as the solicit edge. Unfortunately, a 
major shortcoming of DIY online databases, which is not resolved 
by page-driven design alone, is that they require the owner to 
decompose a single user action in the process into coordinated 
activity in two pages. For example, in page Evaluate Startups 
the user submits the solicited advisor’s name. Page Advisor 
Comments has a too-complex-for-non-programmers query that 
filters startup submissions according to whether the currently 
logged-in user appears in a solicitation related to this startup. The 
FORWARD technique that will resolve this problem is the 
workflow-driven design extension (Section 3.3) to the page-driven 
paradigm. 
Finally, in Section 3.4, we discuss work-in-progress on a 
semiautomatic creation of reports. The goal is a report building 
interface that  

• suggests semantically meaningful joins of various data sets; 
or joins of the currently reported data with other collected 
data sets of the application 

• does not suggest joins that would lead to provably redundant 
information on the report 

• explains to the owner the (potentially nested) involved data 
sets and joins by referring to names that appear in the 
application; avoids causing confusion with details of how the 
pages are normalized in tables  

• requests minimal information in the form of plain multiple 
choice menus 

• discovers the best placement of information on the report in 
order to illustrate associations and constraints between the 
reported data sets. 

In effect the interface must compensate for the minimality of the 
owner-provided information with algorithms that detect and 
perform complex nested report creation operations.  
Section 2 presents the part of the general framework that pertains 
to database-driven applications and the limitations of the limited 
framework. It argues why both the general and the limited scopes 
can capture many practical applications. Section 3 briefly 
describes an array of design techniques. Section 4 discusses 
related work. 

2. FRAMEWORK AND SCOPE 
An app2you application is described by its application sketch, 
which is defined by the general app2you framework. The general 
app2you framework, which is used in the rest of the paper, 
captures purely database-driven applications, i.e., it ignores 
interfacing with external services and systems, which is 
functionality captured by the under development general 
framework in the FORWARD project. 
The sketch is modified by the owner when the application is in 
design mode. The sketch consists of primitive properties 
(collectively called primitive sketch) and derived properties, 
where the former are more low level (e.g., queries, constraints) 
and their settings cannot be derived by the settings of other 
properties. For ease of specification the non-programmer owner 
typically does not access the primitive sketch aspects directly, 
since deconstructing a process into primitive aspects tends to 
require CS sophistication. Rather the non-programmer owner 
indirectly accesses them via the derived properties, which explain 
at a high level common questions and options, using wizards and 
other components of the DIY design facility (Section 3). 
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The primitive sketch consists of page sketches, user group 
definitions, a database schema and general properties, such as the 
application name and path.  
Each page sketch has a URL, a page context, which captures the 
request parameters (and the types of their values) that are expected 
upon requesting this page, and a top-level unit. 
A unit generally has fields, a mode, requests and one visual 
template for each mode. Atomic fields generally display data of 
corresponding parameters of the context.  

1.1 Reports 
Iterator fields are important for the generation of reports. They 
have a query, which is typically parameterized by the context c 
and retrieves from the database tuples t1,..., tn that have schema t 
and correspond to the records displayed by the iterator. The 
iterator has its own unit, which contains the displayed fields of the 
retrieved tuples. Such unit operates within context c+t, which is 
the concatenation of c (i.e., the context within which the iterator 
operates) and t (i.e., the context that the iterator generates). The 
unit of an iterator field may recursively contain its own nested 
iterators. 
For example, the top-level unit of the Evaluate Startups page 
(Figure 2) has an iterator field, whose unit contains the atomic 
fields Startup Name, Logo, and Business Plan. This iterator 
runs a query SELECT  *  FROM  Submit_Startup, where 
Submit_Startup is the automatically inferred table that collects 
the non-nested fields of the startup submission form (see Figure 
1). It also contains the (nested) iterator field Founders, whose 
unit, in turn, contains the atomic fields Name and Title. The 
query of the iterator Founders is SELECT * FROM Founders 
WHERE Founders.Parent=? and the parameter (?) is instantiated 
by the Submit_Startup.ID of the query result of the containing 
iterator. 
The general framework allows iterator queries to be arbitrary SQL 
queries over the schema, typically parameterized by values of the 
context. In this way SQL experts can utilize SQL’s full power. 
The limited framework queries (lqueries) are SPJ queries with 
EXISTS predicates), that is, queries of the form SELECT * FROM 
OuterJoinExpression WHERE BooleanCondition, where the 
condition may be parameterized with values from the context and 
may also involve EXISTS(SubQuery) predicates where the 
parameterized SubQuery is recursively an lquery. Applications of 
the limited framework use only lqueries and corresponding 
constraints, which are generated by the DIY facility. A DIY-built 
application however may go outside the limited framework and 
into the general framework by selectively utilizing “manually” 
written queries and constraints for a few complex functionalities. 
App2you will soon also allow calculated fields to be associated 
with queries. In the limited framework such queries will capture 
the typical functionality of Excel spreadsheets. In particular, a 
calculated field may:  
1. Compute a new “scalar” value from values of the context. 

For example, if the context has attributes First Name and 
Last Name then the calculated field Name may be calculated 
as concat(Last Name, “,”, First Name).    

2. Compute an aggregate value by applying an aggregate 
function over a (potentially hidden) nested iterator of the 
page. For example, the non-programmer owner may include 
in Evaluate  Startups a calculated field Number  of 
Founders that performs the count function over the 
Founders iterator fields. 

3. Combinations of the two above. 

Lqueries, scalar calculations and aggregates capture the needs of 
most typical reporting applications and even the needs of 
relatively unusual request-controlling constraints, such as “each 
startup may receive at most 5 advisor reviews”. Therefore the 
limitation leads to small scope loss. At the same time, this 
limitation enables ease of specification benefits: First, the design 
facility automates the creation of reports (see Section 3.4) for  
lqueries. Second, filtering and aggregation uses DIY interfaces 
that have proven themselves in other settings (e.g, spreadsheets). 
Third and most important, lqueries enable the easy and efficient 
computation of the context created by each report tuple, therefore 
enabling the automatic inference of the database commands 
associated with contextual requests, such as the submit, invite 
and solicit, i.e., requests that appear in the context of reported 
data, as explained in Section 1.2. 
Note that for DIY simplicity the design facility focuses on pages 
with a single iterator at the top level unit of the page. Such pages 
are called report pages. 

1.2 Contextual requests 
A unit may also contain zero or more requests. Intuitively, a 
request combines an HTML input form with information on the 
effects of submitting the form. In particular, a request contains (i) 
zero or more input fields (ii) a mechanism of submitting the form 
(e.g. a button) (iii) a constraint, represented by a yes/no query (see 
discussion below on representation of queries), whose semantics 
is that the request is applicable only when the constraint is 
satisfied, and (iv) a list of effects.  
The most common effect of executing a request is an update on 
the database; this will be the only effect discussed in detail next. 
In the general framework such effect is captured by an SQL 
statement, which is possibly parameterized by the context. In the 
limited framework the database effect is automatically inferred by 
the DIY design facility: It is an insertion in the database of the 
values collected by the input fields. It is described in the sketch by 
(i) naming the database table that takes the insertion and (ii) 
mapping the input fields to type-compatible attributes of the table. 
If the form contains repeated nested forms, such as the Founders 
in the Submit Startup form that contains Name and Title pairs, 
then each nested form is mapped to a corresponding database 
table. Note that the inserted record also includes system attributes 
such as the auto-generated ID, the submitter and creation 
timestamp of the record.  
Other effects of a request may be (i) sending an email, described 
by a template (in the style of MS Word mail merge) whose 
placeholders can refer to both the input fields of the form and the 
system attributes and (ii) causing a navigation to another page, 
which can be used to produce confirmation pages and forms 
submission processes that span multiple pages. 
For example, the data submission form of Figure 1 is a request. Its 
effect is inserting the collected data in tables Submit_Startup 
and Founders and sending a confirmation email. It has the 
constraint that the currently logged-in user has not submitted a 
startup already. The solicit and invite of Figure 2 are the 
buttons of respective requests. 
A feature that sets the scope of app2you applications apart from 
the scope of online databases (see Section 4) is the ability of 
reports to have nested requests, which operate in the context of the 
reports. For example, the solicit request in Figure 2 operates 
within the context created by the containing report iterator. Such a 
nested request is said to be an annotation of its report iterator. A 
nested request differs from a top level request as follows: First, 
when it inserts in the database it may map values from its context 
into attributes of the insertion table. For example, when the 



solicit request is executed it stores a tuple in a table 
Solicitation and this tuple has a foreign key attribute that 
stores the ID of the startup submission within whose context the 
particular nested request operates. Second, its constraint and its 
side effects may also utilize the context. For example, the invite 
action is associated with a constraint that there may be at most one 
invitation for each startup. 
Note the following important interplay between lqueries and the 
automatic inference of the insertions happening when a request is 
issued: lqueries enable automatic inference of a compact context 
for the nested requests that appear within reports fueled by such 
lqueries. In particular, each record produced by a lquery creates a 
context consisting of the IDs of the few database tuples that joined 
together to result in it. This, in turn, enables fully automatic 
inference of an efficient database insertion performed when the 
nested request is activated. In particular, the insertion stores the 
IDs of the compact context along with the input fields of the 
request and the system attributes. This, in turn, leads to ease of 
specification since the non-programmer owner does not have to 
specify what part of the context of a nested request will be stored 
with the insertion.  
Note that the DIY design facility is facilitated by  
iterator+request field combos where the iterator part of the combo 
ranges over requests created in response to the request part of the 
combo. For example, the iterator+request field Advisor 
Comments in Figure 3 combines the submit request with an 
iterator showing the comments collected by the submit request. 

1.3 User group definitions 
In the limited framework user groups (such as Invited 
Applicants, Advisors and Reviewers) are identified as a pair 
consisting of a report page and a field (of such report) whose 
values are user identities. The submitter is typically such a field. 

1.4 Visual Templates 
The visual template of a unit uses placeholders [10] that refer to 
its fields. During runtime, such placeholders are replaced by 
actual values. App2you provides a list of built-in visual templates 
that are automatically revised during design time to capture 
changes on the structure of the page, the forms and the reports. 
For example, when a new field is added on the report, the visual 
template of the report is automatically revised to display the new 
field. Due to space limitations we will not discuss visual templates 
in further detail. 

3. DO-IT-YOURSELF DESIGN FACILITY 
We focus on three key DIY-enabling techniques of the design 
facility and the architecture that enables them: page-driven design 
(Section 3.2), workflow-driven design (in progress, Section 3.3) 
and automatic creation of complex reports (in progress, Section 
3.4). We use the following principles as a scorecard for the DIY 
design facility. 

• Prefer to provide concrete explanations of sketch properties 
using WYSIWYG feedback and verbalization of prompts and 
options that refers to pages, requests and other highly visible 
properties of the page; rather than being abstract and making 
references to database terms. 

• Prefer to provide a high-level specification from which 
primitive properties can be generated, rather than a low-level 
specification of primitive properties that requires the owner 
to deconstruct high level concepts into low level concepts. 

• Prefer to summarize and enumerate design options to focus 
on common cases, rather than provide an unstructured, high 

degree of freedom. “Advanced user”, less prominent 
interfaces should cater to the less common cases. 

3.1 Derived Properties 
Often an important combination of primitive properties must be 
explained to a non-programmer owner at a high level, which is 
close to the non-programmer’s understanding of the workflow and 
the function of the pages. Therefore the derived properties 
interface reads the primitive sketch and exports derived properties 
and corresponding common options (called derived options) for 
their settings. When the owner chooses an option the derived 
properties interface translates it back to the primitive sketch. We 
describe next a simple example of a derived property, 
exemplifying the concept. Derived properties become paramount 
in the following sections. 
For example, recall that a user of the Submit Startup page may 
submit only one startup. Once she makes her submission, the form 
of Figure 1 disappears. At the primitive sketch level, this behavior 
is achieved by a non-obvious primitive property: The constraint 
associated with the form checks that the set of startup submissions 
of the currently logged-in user is empty. Understanding the 
behavior of the Submit form at this level is fairly complex. 
Therefore the page wizard offers a derived property asking the 
much more obvious question of Figure 5. 
The combination of a primitive sketch with a derived properties 
interface produces many benefits on scope and ease of 
specification: 

• It enables the incremental addition of derived properties in 
the platform, as common cases that lend themselves to higher 
level explanations emerge, without disrupting existing 
applications. Indeed, applications created before the 
introduction of a new derived aspect in the platform can 
benefit from its introduction: The derived properties interface 
reads their primitive sketch and exposes a high level derived 
property. 

• It enables a 90/10 rule where the design facility first poses 
common questions, often relying on derived properties and 
derived options in order to express them. At the same time, 
the wide scope enabled by the primitive sketch is available. 

3.2 Page-Driven Design 
The first step towards providing a high-level specification is to 
allow the process owner to design her application through the 
WYSIWYG model of pages, as opposed to engaging in low-level 
web and database programming. Various properties of pages are 
either specified by direct visualization on the pages, or via 
answering simple questions about the page. The design facility in 
response automatically creates the page's form/request and iterator 
structure, underlying schemas and queries.  
Through the high-level specification, page-driven design relieves 
the owner from specifying data structures in the abstract while en 
route to construct pages. Moreover, explaining the design options 
available at the page level promotes easy comprehension, 
especially if they are explained directly in terms of the application 
layer that are easily perceived by the owner such as what is the 
report/form structure of the pages. Lastly, page-driven design 
facilitates immediate feedback on whether a design satisfies the 
owner's requirements, since the owner can both inspect and 
experience the page directly. 
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dropped it into the area for Founders, she would have seen a 
multi-line text box for each founder, which creates an immediate 
visual indication of the mistake. Recall that the design facility 
automatically infers the database insertions that will be issued 
when a review is submitted. For example, the insertion of a review 
will lead to inserting in the underlying table Reviews a record that 
contains the values collected by the input fields, system attributes 
and a foreign key that refers to the startup that provides the 
context for the particular review. The updates issued when a 
review is edited are computed similarly.  

3.2.4 Experiencing the page 
WYSIWYG design is not sufficient since there are properties that 
are not immediately evident from the page’s visual appearance. 
For example, how many submissions can a user make? Can a user 
see which other users have submitted? 
The inherent difficulty faced by an owner of a collaborative 
application (as compared to an owner of a spreadsheet) in 
comprehending the behavior of an application and verifying it 
against her requirements, is that pages typically behave differently 
depending on what data has been submitted and who accesses the 
data. The design facility takes a number of steps towards resolving 
this problem. First, it makes every feature that is available in use 
mode also available during design mode. The fact that the page 
sketches are interpreted, instead of requiring a design-compile 
cycle, facilitates this. Second, it always prompts the owner to 
submit sample data and make requests so that corresponding 
records can be shown on report pages. The third step is to prompt 
and help the owner assume the role of particular sample users in 
order to visualize the behavior of properties that would otherwise 
be hidden. 
The system suggests to the owner to experience a page as a 
sample user if it recognizes that certain properties of the page 
cannot be explained by the owner’s current WYSIWYG 
experience. For example in Submit  Startup, the system 
suggests the experience submit as a sample user in order to 
explain to the owner the following properties: 

• The display property of the page is set to on.7 The owner 
understands this when she sees that the startup info record 
submitted by the sample user is displayed on the page. 

• The submit property of the page’s request form is set on, 
but max one per user. The owner understands this when 
she sees that the request form and button disappears once she 
submits a startup info record. 

• The edit and remove properties of the page’s iterator are set 
to on.8  

Note however, that the experience of the first sample user does not 
fully explain whether the display, edit and remove properties 
are unconditionally or conditionally on. For example, does the 
iterator display all records submitted, or only records submitted by 
the current user? Therefore, the design facility subsequently 
engages the owner to experience as a second sample user. The 
experience shows that in this the page, each user can only see, edit 
and remove records she has submitted. If this is contrary to 

                                                                 
7 The display aspect of a page is a derived aspect that asks whether a page 

that has a form also has a report iterators that displays the data submitted 
at the form. 

8 The edit and remove aspects of a page are derived aspects that ask 
whether the report iterator of the page provides the built-in actions edit 
and remove. 

requirements, the owner can then either select another template, or 
customize the individual properties defaulted by the template. 
When the records displayed by iterators and the requests that are 
available are controlled by complex conditions, it is harder to 
reason about what sample data and sample users are needed in 
order to experience a page. For example, obtaining the experience 
of a solicited advisor at the Advisor Comments page requires 
that (i) at least one (sample) solicitation has been made and (ii) the 
owner uses the Advisor Comments page as if she were the 
solicited advisor. When the conditions have been introduced in 
response to workflow-driven design, as described next, it is easier 
to reason about such sample users and data. 
Note that in practice sample data are not needed when the first 
pages of the application have actually gone in use and have 
already obtained actual data.  

3.3 Workflow-Driven Design 
In the workflow visualization of an application (see Figure 4), 
which is under design and development in the FORWARD 
project, edges (also called transitions) capture requests that 
happen on the page at the source of the edge and affect the 
experience and rights of a user on the page at the target of the 
edge. The starting points of a workflow are data collection pages, 
such as Submit Startup and Post Appointment Slots that 
provide requests collecting new records without implicit or 
explicit references to other records. The records may be reported 
on the data collection page itself, or appear on reports that 
combine data collected from one or more pages. Reports, such as 
Evaluate Startups, may allow their user to act on individual 
reported records (review, solicit or invite). Formally, there 
is an edge from page P1 to page P2 labeled with request a1 if 
executing a1 on P1 may change 
1. the read rights of a user u on P2, that is, u can read on P2 a 

record r as a result of a1. For example, the submit edge from 
page Submit  Startup, accessible to Everyone (login 
required), to page Evaluate  Startups, accessible to 
reviewers, denotes that reviewers gain read rights to a startup 
once the request is submitted. 

2. the action rights of a user u on P2, that is, u can perform a 
request a2 on P2 as a result of a1. For example, the solicit 
edge indicates that upon executing the solicit on 
Evaluate  Startups a user (in this case the solicited 
advisor) can read and comment on a startup submission at the 
Advisor Comments page. 

3. the access rights of a user u on P2, that is, u gains access on 
page P2. For example, the invite edge of Figure 4 indicates 
that upon executing the invite request on Evaluate 
Startups a user (in this case the startup submitter) gains 
access to the Schedule Appointment page. 

An implementation that visualizes the workflow also allows 
drilling down into the nature of the edges so that the owner can 
tell which type of right is affected by the edge, why it is affected, 
etc. 
Some workflow transitions correspond to application functionality 
that is easily built using page-driven design. For example, the 
submit edge from Submit Startup happens because the owner 
ordered at the page wizard that the Evaluate Startups reports 
the data collected on Submit Startup. 
However, process owners often want to capture more elaborate 
workflow logic, which leads to application functionality that 
cannot be easily-built in page-driven design. Consider in Figure 4 
the solicit edge from page Evaluate  Startups to page 
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embedded dependencies, asserting the existence of tx in FC(x) and 
running a chase procedure (similar to [15]) that deduces tuples 
that must exist in the flat contexts of other iterators on the page.  

3.4.3 Optimizing Join Placement 
Given two generated join paths where the extension iterators are 
the same, one join path may be strictly better than the other. For 
example, contrast Join path 2 with 3. Extending Evaluate 
Startups with 2 will place advisor comments on each startup, 
whereas 3 will place advisor comments on each solicitation. 
Intuitively, 3 is preferable to 2, as only the former visualizes the 
existing association between a solicitation to a specific advisor, 
and the corresponding comment. 
This intuition can be expressed as functional dependencies 
between records. A startup can be routed at most once to each 
advisor, and an advisor can comment at most once on each 
startup. Therefore, a comment functionally determines a 
solicitation, which in turn functionally determines a startup. Since 
app2you relies heavily on WYSIWYG visualization to assist the 
owner in making design choices, it is important that wherever 
possible, functional dependencies and other constraints in the 
schema be visualized with the appropriate placement and nesting 
of iterators. Extending with 3 will produce a more accurate 
visualization of the functional dependencies. 
Implementation-wise, running the chase procedure in Section 
3.4.2 has the side benefit of also producing the necessary 
functional dependencies. 

3.4.4 Bundling Additional Joins 
After discarding pruned join paths, the surviving ones are 
aggregated by the pages of the extension iterators, and presented 
as a list of options as in Figure 8a. This achieves the minimal 
interface with a corresponding high-level of specification, as the 
owner only needs to comprehend pages (and not join paths) to 
start creating complex reports. 
Note that the system uses the page rather than the iterator as the 
level of summarization. This comes from the observation that due 
to the parameterization between nested iterators, the standalone 
functionality of an iterator is harder to perceive than that of a 
page. Moreover, the existence of a report page is a strong hint that 
its structural organization is useful. Therefore, bringing in the 
entirety of the page en masse as part of the extension and allowing 
the owner to later hide extraneous fields and iterators provides 
better visual cues, than allowing the owner to extend one iterator 
at a time. 
For an example, consider an alternate scenario where startups can 
provide rebuttals to advisor comments. There will be a page 
Rebut Advisor Comments, that reports comments and annotates 
them with a Rebuttal iterator. If Evaluate Startups were not 
extended with Advisor Comments, but were instead extended 
with Rebut Advisor Comments, the bundling of additional joins 
will introduce both comments and rebuttals with a single round of 
extension. 

3.4.5 Visualizing Projections 
Iterators and fields can be easily shown and hidden with 
checkboxes (Figure 8b). For example, each iterator has a few 
hidden-by-default system fields, such as Submit Timestamp. The 
owner can easily customize the new Advisor Comments iterator 
to display when each advisor submitted her comment. From the 
DIY perspective, it is far preferable for the owner to toggle 
visibility of iterators and fields through an enumerated list, than to 
manually specify a projection list of attributes (a la query 
languages such as SQL). 

4. RELATED WORK 
The time is opportune for Do-It-Yourself database-driven 
applications for two reasons. First, they leverage the emergence of 
hosted applications (software as a service) and Web 2.0 Ajax-
based interfaces that allow application page design from the 
comfort of one’s browser, while providing the richness of desktop 
interfaces. The two aspects combine to remove the hassles of (i) 
downloading/installing software in order to create an application 
and (ii) deploying/exporting an application on the web. But the 
Do-It-Yourself ability presents a larger, qualitatively-different 
challenge: How to disrupt conventional database-driven web 
application programming by providing brand new models of 
specifying database-driven web applications so that non-
programmer business owners can build their own applications.  
Multiple systems support the fast creation of custom web 
applications by removing the need to program in a complex 
Turing-complete programming language, such as Java. WebML 
[3] is a prime example of schema-driven application creation 
(also see DeClarit [6], Oracle Express [14]). The creator starts by 
designing the Entity-Relationship data model for her application. 
Then it is easy to specify pages by putting together units that 
accomplish typical functionalities of Web applications. For 
example, a unit may report the data of an entity and utilize the 
relationships of the data model to navigate to related entities. It is 
reported [22] that the development and maintenance of WebML 
applications led to 30% increased productivity with 46 distinct 
applications maintained by 5 part-time, junior developers. 
The emerging Do-It-Yourself custom application platforms 
primarily target non-programmer process owners. A common 
theme is that the owner does not need to create a database schema 
in the abstract. Rather she builds forms, which automatically lead 
to corresponding tables that are typically reported on the same 
page. Such systems tend to be online databases [4][5][7][9] for 
easy information sharing and collaboration, often delivering great 
advantages over online spreadsheets, which are their main 
competitor for structured information sharing 9 . However, the 
resulting applications have a very limited scope (and business 
logic): Users simply post and read structured data in the shared 
space.  
A next generation of Do-It-Yourself systems promises to go 
beyond information sharing and to enable users to capture their 
business processes by web applications. At a high level, these 
enablers are either “MS Access online” [4][2] or customizable 
vertical templates [18].   
The “MS Access online” enablers allow users to create multiple 
Do-It-Yourself online tables (having forms and reports to give 
access to them). In the same spirit with MS Access, the reports 
have to be fueled by queries where the user has explicitly 
specified joins and selections. Finally, business logic and flow of 
data from table to table is offered in the form of scripting 
programming languages [12] or graphical languages [4] that allow 
the user to describe series of insertions, deletions and updates and 
the conditions under which they should happen. The adherence to 
tables with separate forms and reports creates problems at both the 
scope axis and the easy specification: The web applications we are 
dealing with day-to-day are not mere collections of tables with a 
report and a form for each table. A typical case is that the input 
forms of a page typically operate within the context of reported 
dynamic data and even within the context that prior pages create, 

                                                                 
9 Yahoo Pipes [21] and IBM’s QEDWiki [8] represent high end versions 

of the information sharing space, where data from multiple sources and 
RSS feeds can be automatically integrated and presented online. 



i.e., there is no artificial divide of “input only” and “report only”, 
as is clearly evidenced by pages such as Evaluate Startups 
and Advisor Comments. In addition to app2you, AppForge [2] 
also solves this problem by allowing input forms in the context of 
reports. 
Another scope problem of “MS Access Online” is the inability to 
capture that access rights to a page may depend on the business 
logic itself. For example, in the TC50 application the group 
“Invited Applicants” is derived automatically and controls access 
to “Schedule an Appointment”. 
The “MS Access online” class is problematic in creating 
workflow application since the business process owner needs to 
reduce the collaborative process she has in her mind into 
normalized tables and into sophisticated queries and updates. For 
example, we showed in Section 3.3 how hard it is to explain using 
a query that the Advisor Comments should only show startup 
submissions that have been passed to the currently logged-in user. 
This raises the bar of sophistication needed by the builders 
towards the level of sophistication that programmers have, 
therefore seriously limiting who can create and evolve 
applications. The anecdotal evidence behind this thesis is plenty: 
Instructors of undergraduate database classes know the difficulty 
that, even computer science students, have in designing 
appropriate schemas and writing non-trivial queries. Furthermore, 
despite the best efforts of tools, such as the tools of the Microsoft 
Office Access and Microsoft InfoPath, to make database schema 
design and query writing approachable by the masses, the general 
public has found it hard to engage in those activities. The above 
evidence is not surprising since database schemas and queries are 
abstract structures that have no immediately visible connection to 
the web application and workflow aspects that the non-
sophisticated designer can immediately associate with, which are 
the Web pages with which the users of the application will be 
interacting.  
Applications with fixed workflow and database table structure and 
customizable input form structure (i.e., one can change the 
attributes of tables as long as the tables and their interactions 
remain fixed) have been a great success [18]. We believe that 
customization does not need to stop at that point since, by doing 
so, the scope of available applications is limited by the available 
initial templates. 
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Appendix 
More than twenty forms-driven applications have been built and 
used in 2008 on app2you.com. For example, a recruiter has 
collected job openings from its customers. A wide group of users, 
defined and controlled by the recruiter, sees selected fields of the 
job openings’ records and is invited to recommend individuals, 
who are notified about the positions, provide their level of interest 
and proceed to exchange information with the customer and the 
recruiter if interested. 
In another example, the United Cerebral Palsy non-profit 
organization maintains an online loan library of toys, keeping 
track of who currently holds a toy and who has requested it. 
In multiple variations of classroom management applications 
students submit their projects, often after a phase where they have 
teamed up in project teams. The TAs and instructor provide 
feedback and grade. Variations include setting up appointments 
for project presentations and rehearsals, voting for the best project 
etc. 
In multiple variations of reviewing applications, candidates submit 
material that is pushed thru a review process with various rules 
and steps. 

 


