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ABSTRACT
The emergence of database languages with side effects, no-
tably for XML, raises significant challenges for database
compilers and optimizers. In this paper, we extend an al-
gebra for the W3C XML query language with operations
that allow data to be immediately updated. We study the
impact of that extension on logical optimization, join detec-
tion, and pipelining. The main result of this work is to show
that, with proper care, a number of important optimizations
based on nested relational algebras remain applicable in the
presence of side effects. Our approach relies on an analysis
of the conditions that must be checked in order for algebraic
rewritings to hold. An implementation and experimental
results demonstrate the effectiveness of the approach.

Categories and Subject Descriptors
H.2 [Database Management]: Languages; I.1.3 [SYMBOLIC
AND ALGEBRAIC MANIPULATION]: Languages
and Systems—Evaluation strategies

General Terms
Languages, Performances

1. INTRODUCTION
In order to facilitate Web development, a number of lan-

guages blending database and programming language capa-
bilities have recently been proposed [5, 12, 15, 19, 25]. Two
well-known examples are LINQ [19], which extends .NET
languages such as C# or Visual Basic with querying primi-
tives, and XQueryP [5], which extends the W3C XML Query
language [2] with imperative features. Such languages aim
at simplifying existing Web development practices, which
typically rely on several different languages used at different
tiers. The ability to blend data processing and program-
ming capabilities frees the developer from the need to rely
on low-level APIs for data access, but also raises significant
challenges for compilers. Many database compilers already
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support expressive languages such as object-oriented lan-
guages [8], PL/SQL [11], XSLT [7], or XQuery [2], however,
most of the work on query optimization has focused on lan-
guages without side effects. Side effects are essential in or-
der to support key programming extensions, such as updates
and variable assignment in XQueryP [5], or method calls in
object languages [8].

In this paper, we propose techniques to adapt existing
database compilers to support side effects in XQuery while
preserving essential optimizations based on algebraic rewrit-
ings. Surprisingly, there has been very little work in this area
in the past. One notable exception is [10] that uses a state
monad [22] to support side effects in a nested-relational cal-
culus. However, optimization at the algebraic, logical and
physical level is not addressed. To the best of our knowledge,
we provide the first treatment of side effects for a nested-
relational algebra. Due to space constraints, we limit our
scope to updates applied during query evaluation, and leave
procedural extensions (notably variable assignment) for fu-
ture work. We start with a motivating example.

Use case. Consider a simple scenario inspired by the sam-
ple retail application [1] provided with BEA’s AquaLogic
DSP [4]. This scenario assumes two XML data sources lo-
cated at an on-line retailer site, named ‘customers.xml’ and
‘orders.xml’, made accessible by two XQuery functions, get-

Customers and getUnconfirmedOrders. A customer can place
orders, which are put on hold until they are confirmed by
that customer. The application also maintains, through up-
dates, access timestamps for customers data:

1 declare updating function getCustomers() {
2 for $c1 in doc(’customers.xml’)//customer
3 return
4 ( do replace value of $c1/timestamp with gettime(),
5 $c1 )
6 };
7 declare function getUnconfirmedOrders($cid) {
8 for $po in doc(’orders.xml’)//purchase-order
9 where $po/cid = $cid and $po/status = ’unconfirmed’

10 return $po
11 };
12 for $c in getCustomers()
13 let $u := getUnconfirmedOrders($c/cid)
14 return
15 <new-orders customer=’{$c/cid}’
16 accesstime=’{$c/timestamp}’>
17 {$u}
18 </new-orders>

In the absence of the do replace update on line 4, stan-
dard query optimizers would identify the query as a typical
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Figure 1: Original plan.
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Figure 2: Optimized plan; hollow lines denote set arguments, a gray bar denotes materialization.

case of outer join between customers and orders (after func-
tion inlinining and using query unnesting techniques). In
Section 3, we will see how similar nested queries can be op-
timized. We now give an overview of our approach.

Queries with side effects. We consider an extension of
XQuery 1.0 [2] with simple update expressions. We adopt
a semantics that imposes a strict left-to-right evaluation or-
der and the immediate application of updates, in the style
of XQueryP [5].

We use a simple, artificial example to describe the tech-
nical challenges and illustrate our approach. The following
query returns the set of orders for customers with gold mem-
bership, and if non-empty, removes all membership level in-
formation.

1 for $c in $doc//customer[membership = ’gold’]
2 for $po in $doc//purchase-order
3 where $c/cid = $po/cid
4 return ((do delete $doc//membership), $c)

The language semantics specifies the following evaluation
order: (i) retrieve the list of customer elements; (ii) expand
the list of “gold” customers to a list of tuples with each
customer paired with all possible purchase-orders; (iii) filter
away the tuples that violate the predicate; (iv) for each tuple
first remove all membership element nodes in the document
and then return the customer element (the deletion has no
effect from the second tuple onward). In this query, the
optimizer should be able to use a join plan, since the updates
occur only after all previous clauses are evaluated.

Logical optimization. The query is first compiled into a
logical plan, shown in Figure 1, using a nested relational al-
gebra with extensions for XML processing [21,23], as well as
updates [14]. In addition to the standard nested-relational
Select and Map, which applies its second operand to all items
returned by its first operand, specific operators used in that

example include TreeJoin (denoted TJ on the figure) for path
navigation and Delete for node deletion. MapConcat corre-
sponds to the traditional dependent product, and we use an
arrow to indicate information flow from the first operand to
the second. [a:ID] builds a one-field tuple and #a selects the
a field from the input tuple. Again, the presence of updates
requires the semantics of the algebra to specify an explicit
evaluation order. We assume here an eager semantics in
which every operator completely evaluates its first operand
before starting the evaluation of the next operand.

In the absence of side effects, an optimizer would now
turn the nested loop (MapConcat) operator into a Cartesian
product, and would then combine it with the selection to get
a join. Unfortunately, such a rewriting may be unsound in
the presence of side effects. For instance, if the second Map
operand of the MapConcat performs some insert, there must
be as many inserts as there are items resulting from the first
Map operand. We say that the operand is not idempotent :
the store effects of repeated evaluations differ from those of
a single evaluation, and hence, in this case, the nested loop
must be retained. More generally, to be valid in presence of
side effects, most classical rewritings require that some con-
ditions are satisfied by the components of the rewritten plan.
We show that three side conditions are sufficient: commu-
tativity, meaning that the evaluation order of two subplans
can be exchanged, the aforementioned idempotency, and, in
some cases, purity, indicating the absence of side effects. We
also discuss how these conditions can be inferred statically
using existing algorithms based on path analysis [16]. Using
those techniques, our optimizer can rewrite the plan above
into the join-based plan shown in Figure 2.

Physical planning. At the physical level, one essential dif-
ference with a traditional compiler relates to pipelining. In a
pure expression, the execution of the different operators can
be freely interleaved (or pipelined), since their evaluation



order is irrelevant. However, pipelining in the presence of
updates requires additional care since the interleaved evalu-
ation of steps from different operators may result in a later
operator modifying data being accessed by an earlier oper-
ator. In the worst case, the semantics requires operators
to materialize their input, making them behave as blocking
operators. For example, a fully pipelined evaluation of the
plan of Figure 2 would not be correct, since application of
the Delete operator would interfere with the selection over
the input customers.

Clearly, such blocking operators should be avoided when
possible. We address this issue by controlling pipelining de-
cisions during physical planning: each operator has both
a version that materializes all its arguments (eager), and
possibly additional versions that pipeline some of their ar-
guments (lazy). The optimizer first produces a plan where
all operators are eager, then uses rewrite rules to replace
operators with lazy versions when it is safe to do so. In our
example, the result is the plan in Figure 2, which only ma-
terializes on the input of the last Map operator, besides the
materialization that is part of the hash-join algorithm.

We use three classes of side conditions for physical rewrite
rules: purity and commutativity, as before, as well as a no-
tion of interleavability of two plans, which means that the
effect of their interleaved evaluation is the same as that of
a sequential evaluation. We show how such conditions can
be inferred using a variant of the path analysis used at the
logical level for idempotency and commutativity inference.

Other approaches. Other semantics have been used for
updates, such as the so-called snapshot semantics in the
XQuery Update Facility [6], which delays update applica-
tion until the end of the query. As was observed in [5], this
approach is sufficient for typical database updates, but usu-
ally it is not expressive enough for programming purposes.
Limitations on the locations where updates may occur have
been suggested [5] to simplify compilation and optimization.
However, such restrictions do not fully address the problem
of optimization: as we will see at the end of Section 3, some
typical query unnesting optimizations require commutativ-
ity analysis even in the presence of some of those restrictions.

Contributions. The paper makes the following technical
contributions.

• We extend a previously proposed algebra for XQuery
plus side effects [14,23] by providing the corresponding
physical algebra.

• We study the side conditions needed to recover classi-
cal logical rewritings for join optimization and query
unnesting in presence of side effects.

• We study pipelining in the context of a physical algebra
with side effects, and provide similar side conditions
that enable pipelining in query plans.

• We report on our implementation of the proposed alge-
bra and side-effect analysis in an existing XQuery 1.0
compiler, and provide experimental results that vali-
date the approach.

Organization. In Section 2 we introduce the algebra with
side effects. In Section 3, we study logical rewritings in the

presence of side effects. Section 4 presents changes necessary
to the physical compiler. In Section 5, we present an exper-
imental evaluation of the proposed approach. In Section 6,
we review related work. We conclude in Section 7.

2. LANGUAGE AND ALGEBRA
In this section we introduce the language and algebra used

in the rest of the paper. We use XQuery extended with sim-
ple update primitives (delete, insert, replace), and the alge-
bra of [23], extended with similar update operators. Both
the semantics for the language and algebra follow a left-to-
right evaluation order with an eager evaluation of parame-
ters. Also, both are fully compositional, i.e., updates may
occur anywhere.

2.1 Definition (XQuery with updates). We use E for
expressions in the update language defined as follows:

1 E ::= . . . XQuery Expressions. . .
2 | do insert E1 (as last | as first)? into E2

3 | do replace E1 with E2

4 | do delete E

The three added update primitives respectively insert a new
node in the document at a given location, replace an existing
node by a new node, and delete a set of nodes.

The semantics of the language is the same as that of
XQueryP, i.e., expressions are evaluated in strict left-to-
right order, and updates are applied immediately. For in-
stance, the following query declares a global variable $log,
a function logIt which inserts its parameter into $log and
returns it, and a simple FLWOR expression calling logIt.

1 declare variable $log := <log/>
2 declare updating function logIt($x) {
3 do insert <a>{$x}</a> as last into $log,
4 $x
5 };
6 let $a1 := logIt(30) return (logit($log/a+$a1))

After evaluation, the $log variable contains the following
XML value, in which two new a elements have been inserted
in order: <log><a>30</a><a>60</a></log>.

The semantics for such a languages can be described in
terms of effects onto an XML store [14,15,17]. We use here
the semantics of [15, 17], except in the case of FLWOR ex-
pressions, for which we use a semantics based on the notion
of tuple stream: each clause produces a sequence of tuples
which is fully evaluated before the next clause. Consider
the following query over the $log variable resulting from the
previous example.

1 for $x in $log//a
2 for $y in $log//a
3 where $x = $y
4 return logIt($x∗2)

This query is an equi-join where the first two for clauses gen-
erate four [x;y] tuples, the where clause selects two of them,
and the return clause adds 60 and 120 to the log. In the
nested-for semantics of [15, 17], the evaluation of line 2 and
line 4 is interleaved, while in the tuple-stream semantics the
logIt function in line 4 is only evaluated after all the other
clauses. This is important as it ensures there is no interfer-
ence between the iterations of the first two for clauses. More
details about why that semantic distinction is important for
algebraic compilation can be found in [14].



We now define an algebra to compile our language. It
is based on the algebra of [23] extended with the operators
Insert, Replace, and Delete. The algebra is defined on a log-
ical data model whose values are either XML values, i.e.,
ordered sequences of items in the XQuery data model, or
“ordered tables”, i.e., ordered sequences of tuples. A tu-
ple is a record with fields containing XML values and writ-
ten [a1:v1;...;an:vn], where a1...an are field names and v1...vn

are the associated values. [ ] denotes the empty tuple. Se-
quences of tuples are used to compile the tuple stream of a
FLWOR.

2.2 Definition (XML algebra with updates). Alge-
braic plans p are terms constructed as follows:

p ::= ID | p1 ◦ p2 | Sequence(p1, p2) | Empty()
| Scalar[v]() | Element[q](p) | Text(p)
| TreeJoin[s](p) | Call[f ](p1, . . . , pn) | p1 and p2 | p1 or p2

| [a:p] | p1++ p2 | #a
| Select{p1}(p2) | Product(p1, p2)
| Join{p1}(p2, p3) | LOuterJoin[n]{p1}(p2, p3)
| Map{p1}(p2) | OMap[n](p1) | MapIndex[q](p1)
| MapConcat{p1}(p2) | OMapConcat[n]{p1}(p2)
| GroupBy[qa][qi][n]{p1}{p2}(p3)
| Insert(p1, p2) | Delete(p1) | Replace(p1, p2)

Each plan receives an input value, either an XML item or a
tuple, when executed. For the operator subplans we use {p}
to indicate a dependent subplan, that gets its input from
the subplans that follow in the parameter list (p1, . . . , pn)
of the independent subplans, that process the input of the
parent. [q] ([n]) is used for constant parameters (fields used
to encode null values, respectively).

ID returns the current input tuple, ◦ passes the result
of the right side plan as input to the left side (like func-
tion composition). Sequence, Empty, Scalar, Element, and
Text, construct the corresponding XML values, TreeJoin ex-
tracts a sequence of nodes corresponding to an XPath step,
Call invokes an XQuery function, and we have Boolean op-
erators. Next are operations to construct a singleton tu-
ple [a : p], tuple concatenation p1++ p2, and field access
(#a). Most of the other operators are ordered forms of a
standard nested-relational algebra [20,23] and should be fa-
miliar to the reader (Select, Product, Join, GroupBy, etc.).
Map is the general functional map on sequences of tuples.
MapConcat is a dependent product, equivalent to the D-Join
operator of [20]. The OMap, OMapConcat are outer-variants
for the Map and MapConcat operators. The MapIndex and
MapIndexStep operators introduce a new field containing an
index for each tuple. Finally, we include the update opera-
tors. We allow infix notation for binary operators (e.g., =).

The main difference with [23] is that operators are not
always pure, but can change the state of the XML store
being processed. This means that the algebra semantics
must specify an evaluation order.

2.3 Definition (evaluation order for XML algebra
with updates). The algebra operators have the seman-
tics of [23], with the following evaluation order for their
operands. Independent subplans are evaluated first, fully,
once, and in the order in which they appear in the parameter
list. The dependent parameter, if present, is evaluated next,
once for each item in the result of the independent parame-
ters, with the following exception: Composition p1◦ p2 eval-
uates the dependent parameter p1 just once, on the whole

result of p2. Finally, the evaluation order of the two depen-
dent parameters of GroupBy is specified in Section 3. For
instance, by this definition, Join{p1}(p2, p3) first evaluates
p2, then p3, takes their product, and finally it evaluates p1

once for each tuple in the product.

2.4 Example. Here is the query plan obtained by compiling
the query in the introduction.

1 Map
2 {Sequence(
3 Delete(TreeJoin[descendant::membership](#doc)),#c)}
4 (Select
5 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
6 (MapConcat
7 {Map{[po:ID]}(TreeJoin[descendant::purchase-order](#doc))}
8 (Select
9 {TreeJoin[child::membership](#po) = ’gold’}

10 (Map{[c:ID]}(TreeJoin[descendant::customer](#doc))))))

This plan corresponds to Figure 1, and uses tuples to encode
variable bindings (tuples with field c and po are constructed
through maps on lines 10 and 7), providing a direct repre-
sentation of the tuple stream semantics of the language. The
corresponding compilation rules are provided in [14]. This
representation into a NRA is suitable for join and query
unnesting optimization. In this example the plan after join
optimization, which corresponds to Figure 2, is as follows:

1 Map
2 {Sequence(
3 Delete(TreeJoin[descendant::membership](#doc)),#c)}
4 (Join
5 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
6 (Select
7 {TreeJoin[child::membership](#po) = ’gold’}
8 (Map{[c:ID]}(TreeJoin[descendant::customer](#doc))),
9 Map{[po:ID]}(TreeJoin[descendant::purchase-order](#doc))))

3. LOGICAL OPTIMIZATIONS
We present here our techniques to retain classical rela-

tional and nested-relational rewritings in the presence of side
effects. The side-effect aware version of those rewritings is
summarized in Figure 3. Unlike traditional relational equiv-
alences, our rewritings are guarded by side conditions that
depend on properties of the subplans related to the presence
of side effects. In the rest of the section, we discuss these
properties and how the applicability conditions can be iden-
tified for each classical rewrite rule. We discuss most of the
rules in the text and give a full discussion of correctness for
the (map through group-by) rule.

Commutativity. Many rewrite rules change the evaluation
order of some subplans. For example, the rules that push
one operator inside the other, such as (push select) and (push
product) in Figure 3, exchange the evaluation order of the
plan that is pushed and the one that is traversed. The same
happens with rule (merge select), for a subtler reason: as-
sume we have three tuples, and p2 is true for the first two;
then the left hand side evaluates the subplans in the order
p2(t1), p2(t2), p2(t3), p1(t1), p1(t2), while the right hand side
alternates the two subplans, evaluating p2(t1), p1(t1), p2(t2),
p1(t2), p2(t3). In both cases (push rules and merge select),
the rewriting is sound if we can exchange any evaluation of
p1(v) and p2(v′), as expressed by commutativity.

3.1 Definition (commutativity). p1 and p2 commute,
denoted comm(p1, p2), iff, for any input values v and v′, the



Nested-relational rewritings.

MapConcat{p1}(ID)→ p1 (remove map)

MapConcat{p1}(p2)→ Product(p2, p1) indep(p1, p2), idem(p1) (insert product i)

MapConcat{p1}(p2)→ Product(p2, p1) single(p2), indep(p1, p2) (insert product s)

Select{p1}(Product(p2, p3))→ Join{p1}(p2, p3) (insert join)

Select{p1}(MapConcat{p2}(p3))→ MapConcat{p2}(Select{p1}(p3)) idem(p1), pure(p2), comm(p1, p2), indep(p1, p2) (push select i)

Select{p1}(MapConcat{p2}(p3))→ MapConcat{p2}(Select{p1}(p3)) single(p2), pure(p2), comm(p1, p2) (push select s)

Select{p1}(Select{p2}(p3))→ Select{p2 and p1}(p3) comm(p1, p2) (merge select)

MapConcat{p1}(Product(p2, p3))→ Product(p2, MapConcat{p1}(p3)) indep(p1, p2), idem(p1), comm(p1, p2) (push product i)

MapConcat{p1}(Product(p2, p3))→ Product(p2, MapConcat{p1}(p3)) indep(p1, p2), single(p2), comm(p1, p2) (push product s)

Unnesting rewritings.

OMapConcat[n]{OMap[n1](p1)}(p2)→ OMapConcat[n1]{p1}(p2) (remove duplicate null)

[x : p1 ◦Map{p2}(p3)]→ GroupBy[x, [ ], [n]]{p1}{p2}(OMap[n](p3)) (insert group-by)

MapConcat{GroupBy[x, inds, ns]{p1}{p2}(p3)}(p4) comm(p1, p3), comm(p2, p3)

→ GroupBy[x, inds + ind1, ns + n1]{p1}{p2}(OMapConcat[n1]{p3}(MapIndex[ind1](p4)))
(map through group-by)

OMapConcat[n]{Join{p1}(ID, p2)}(p3)→ LOuterJoin[n]{p1}(p3, p2) idem(p2), comm(p1, p2) (insert outer-join)

Figure 3: Logical algebraic rewritings.

resulting values and the store effects of p1(v) and p2(v′) are
the same independently of their evaluation order.

Observe that the (merge select) rule is sound since our
and operator evaluates the parameters in order, and only
evaluates the second when the first is true. If we used a strict
and operator, which always evaluates both operands, the
right hand side would evaluate p1 on more tuples than the
left hand side, hence we would need a further side condition
requiring p1 to be pure, i.e., free of side effects.

As observed in [16], commutativity is undecidable in gen-
eral. To address that issue, we use the path analysis pro-
posed in [16]: for every subplan p we collect the set of ac-
cessed paths a(p) and the set of updated paths u(p), which
provide a static upper approximation of the nodes in the
store that the plan reads and modifies. Two plans p1 and
p2 commute if u(p1) is disjoint from a(p2) ∪ u(p2) and vice
versa. Of course, this condition is always satisfied when the
two plans are pure, since u(pi) is empty in that case. The
main technical difference with [16] is that we add tuples to
the path language. This extension is relatively straightfor-
ward but not included here for simplicity.

Idempotency and Purity. While the ability to modify eval-
uation order is important, the real efficiency boost comes
from the ability to evaluate one expression once rather than
many times, or to skip evaluation altogether. The simplest,
and arguably most important, example is the (insert prod-
uct i) rewriting in Figure 3. The rewritten version evaluates
p1 once, while the original version evaluates it as many times
as there are input tuples in p2. This is a key rewriting, as it
also clears the way for the introduction of joins in the plan.
As discussed in the introduction, this is safe only if p1 is
idempotent, according to the definition below.

Idempotency is also needed in the push. . . i rules, since
they also reduce the number of times p1 is evaluated, by a
factor that is equal to the size of p2. When p2 is a singleton,
however, there is no difference in the number of times p1 is
evaluated, hence there is no need to check idempotency in
the (push. . . s) and (insert product s) rules.

3.2 Definition (idempotency). p is said to be idempo-
tent, denoted idem(p), iff, for any input value v, two eval-
uations of p(v) result in the same effects and value as one
evaluation of p(v).

While idempotency is undecidable in general, we approx-
imate it using path analysis: a plan p is idempotent if a(p)
is disjoint from u(p), so that its second evaluation will pro-
duce the same results as the first, and p performs no insert
operation. Again, every pure plan satisfies this test.

It is important to note that checking for idempotency only
works if the cardinality of evaluation is reduced but the cor-
responding plan is evaluated at least once. Considering the
(push select) rules, we note that, on the right hand side, p2

is not applied on the tuples that do not satisfy p1, while it
is applied on every tuple on the left hand side. For that
reason, we need to check for purity of p2; purity inference is
trivial.

Standard properties. In addition to properties related to
side effects, we also use a couple of more standard proper-
ties, namely independence (whether a plan depends on the
tuple fields returned or added by a particular plan), and car-
dinality (notably whether a plan returns a singleton tuple).
They are defined as follows.

3.3 Definition (independence). p1 is independent of p2,
denoted indep(p1, p2), iff p1 does not access the fields created
by p2.

3.4 Definition (singleton). p is said to be a singleton
plan, denoted single(p), iff p always returns a single tuple.

Note that both independence and singleton properties can
be checked through static typing at the algebraic plan level.

Query unnesting.

3.5 Scenario (Implicit grouping). In the rest of the sec-
tion, we focus on how the above framework applies to a
typical query unnesting scenario, and we discuss the (map



through group-by) rule. Let us consider the following simple
class of nested queries.

1 for $x in E1

2 let $a :=
3 F2(for $y in E3

4 where E4

5 return E5)
6 return E6

where, E1, E3, E5, E6 are arbitrary XQuery with updates, F2

is an aggregate function, and E4 is a join predicate between
$x and $y. Specifically, this nesting form corresponds to the
implicit grouping pattern from [20].

After function inlining and some simple syntactic rewrites,
the first example in the introduction is an instance of this
nesting form. For exposition purposes, we use a version of
the query with additional side effects, in which the system
maintains logs containing the number of unconfirmed orders
per customer (using logcount) and a backup copy of those
individual orders (using logord):

1 for $c in getCustomers()
2 let $u := logcount(
3 for $po in $doc//purchase-order
4 where $po/cid = $c/cid and $po/status = ’unconfirmed’
5 return logord($po)
6 )
7 return <new-orders>{$u}</new-orders>

In this example, E1 and E3 correspond to accessing cus-
tomers and orders, respectively. F2 is the logcount func-
tion, E4 is the conjunctive join predicate, and E5, E6 are,
respectively, the inner and outer return clauses. Our goal
is to be able to unnest the query using traditional rewrit-
ings [9, 20, 21, 23]. Indeed, for this query, we can reuse the
same sequence of rewriting rules as used in [23]. The query
is first compiled into the following plan.

1 Map{Element[new-orders](#u)}
2 (MapConcat
3 {[u:Call[logcount](
4 Map{Call[logord](#po)}
5 (Select{TreeJoin[ch.::cid](#c)=TreeJoin[ch.::cid](#po)
6 and TreeJoin[ch.::status](#po) = ’unconfirmed’}
7 (MapConcat
8 {Map{[po:ID]}
9 (TreeJoin[desc.::purchase-order](#doc))}

10 (ID))))
11 ]}
12 (Map{[c:ID]}(Call[getCustomers]())))

The [u:Call[logcount](..)] subplan (lines 4–10) corresponds
to the let $u clause and nested FLWOR in the query, and
the MapConcat operator evaluates it once for each customer.
The plan is unnested into the plan below. The unnested
plan, instead of using a nested loop, performs an outer join
followed by a single GroupBy that evaluates logord for each
unconfirmed order, and logcount for each group of uncon-
firmed orders (details of the semantics of GroupBy are given
below).

1 Map{Element[new-orders](#u)}
2 (GroupBy[u][i][n]
3 {Call[logcount](ID)}
4 {Call[logord](#po)}
5 (LOuterJoin[n]
6 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)
7 and TreeJoin[child::status](#po) = ’unconfirmed’}
8 (MapIndex[i](Map{[c:ID]}(Call[getCustomers]())),
9 Map{[po:ID]}(TreeJoin[desc.::purchase-order](#doc)))))

The main sequence of rewritings is: (insert group-by) in-
troduces an empty GroupBy instead of tuple construction
on line 3; (map through group-by) pushes the MapConcat
through the GroupBy resulting in the proper grouping over
i, which is an index used to keep track of sequence order;
the inner MapConcat operator on line 7 is turned into a
trivial Cartesian product, which combined with the Select
yields a Join; finally, after simplifying the combination of
OMapConcat and OMap into an OMapConcat, (insert outer-
join) is used to introduce the final LOuterJoin.

Most of the side conditions for those rewritings are based
on the same principles that we explained earlier in the sec-
tion. The (map through group-by) rewrite, though, is more
complex, and worth explaining (we discuss here the side
conditions only, since the rule is not new [23]). We first
define the semantics of GroupBy[a][k1...km][n]{p1}{p2}(p3),
and, specifically, the order in which the dependent subplans
p2 and p1 are evaluated. The parameter k1...km is the set of
grouping fields, a is the field name for the new result of the
aggregation function, and n is the null field, that we ignore
here, since it adds nothing to the discussion of side effects
and conditions. The semantics is specified as follows.

1. First p3 is evaluated, resulting in a table T , and the
sequence of grouping keys is computed; this set is the
projection of T on k1...km.

2. Then for each key tuple kt: (a) p2 is computed for
each tuple tkt

1 . . . tkt
n of T that coincides with kt over

k1...km, (b) the aggregate value av is computed by
applying p1 to the set {p2(tkt

1 ), . . . , p2(tkt
n )}, and the

tuple [a : av]++ kt is emitted; hence, the evaluations
of p2 and p1 are alternated.

The right side of the (map through group-by) rule enriches
each tuple of p4 with an index field ind1, computes the
(outer) dependent product of p3 and p4 + ind1, and then
applies a GroupBy; the difference between OMapConcat and
MapConcat is not relevant to our discussion here.

We first observe that on both sides of the rewriting rule,
p4 is evaluated before any other plan so we don’t need any
condition involving p4.

A second simple observation is that after rewriting, all
evaluations of p3 occur before those of p1 and p2, while its
evaluations were originally alternating with those of p1 and
p2. Hence p3 must commute with both p1 and p2.

The remaining question is whether p1 and p2 need to com-
mute or be idempotent. The answer follows from the specific
semantic details of GroupBy: the sequence of p1 and p2 eval-
uations is exactly the same in the two cases. Let us illustrate
this point on our example. The following shows the plan just
before the (map through group-by) rewrite is applied.

1 Map{Element[new-orders](#u)}
2 (MapConcat
3 {GroupBy[u][][n]
4 {Call[logcount](ID)}
5 {Call[logord](#po)}
6 (OMap[n]
7 (Select{TreeJoin[child::cid](#c)=TreeJoin[child::cid](#po)
8 and TreeJoin[child::status](#po) = ’unconfirmed’}
9 (MapConcat

10 {Map{[po:ID]}
11 (TreeJoin[descendant::purchase-order](#doc))}
12 (ID))))}
13 (Map{[c:ID]}(Call[getCustomers]())))



Both p1 (logcount) and p2 (logord) have side effects. We
use a1, ..., an to denote updates performed by the logcount
function, and b1, ..., bn to denote updates performed by the
logord function.

When this plan is processed, first p4 is fully evaluated, and
then, for each of the bindings of c, the GroupBy is evaluated
and the updates applied. Let’s assume the group-by results
in three groups, the first and last with two matching tuples,
and the second one with one matching tuple. The following
table contains one subtable for each tuple generated by p4.
Each subtable contains: (i) the table (with fields c, po, and
n) produced by p3, (ii) The side effects produced by p2 ap-
plied to each element in the output of p3 (indicated as bi),
and then by p1 applied to the whole output of p2 (indicated
as ai), (iii) the final value produced by p1.

c po n effects u
c1 po1 f

b1, b2, a1 2
c1 po2 f
c2 po3 f b3, a2 1
c3 po4 f

b4, b5, a3 2
c3 po5 f

Thus the final sequence of effects is (b1, b2, a1, b3, a2, b4, b5,
a3). Applying the rewriting, which pushes the MapConcat
through the GroupBy, leads to the following plan:

1 Map{Element[new-orders](#u)}
2 (GroupBy[u][i][n+n1]
3 {Call[logcount](ID)}
4 {Call[logord](#po)}
5 (OMapConcat[n1]
6 {OMap[n]
7 (Select{TreeJoin[child::cid](#c)= TreeJoin[child::cid](#po)
8 and TreeJoin[child::status](#po) = ’unconfirmed’}
9 (MapConcat

10 {Map{[po:ID]}
11 (TreeJoin[descendant::purchase-order](#doc))}
12 (ID)))}
13 (MapIndex[i](Map{[c:ID]}(Call[getCustomers]())))))

inside which the OMapConcat will be merged with the OMap
and then rewritten into a LOuterJoin. Note that the effects
for p3 are all applied before the GroupBy is evaluated. (The
GroupBy operator groups on the i field, and, for each group,
applies p2, followed by p3.) This results in the following
table and effects.

c i u effects
c1 1 2 b1, b2, a1

c2 2 1 b3, a2

c3 3 2 b4, b5, a3

The final sequence of effects is (b1, b2, a1, b3, a2, b4, b5, a3).
The relative order of effects between p1 and p2 is unchanged.

Hence, in order to apply (map through group-by) to our
query, we have only to verify that p1 and p2 commute with
p3. With reference to the general query, we can easily verify
that p1 corresponds to F2, p2 to E5, and p3 to E3 restricted
by E4, hence this rewrite rule is applied when F2 and E5

do not interfere with E3 and E4. No other rule applied dur-
ing the unnesting process has side effect related conditions,
apart from the crucial one, (insert outer-join). Through a
similar analysis, we can verify that it requires idempotency
of E3 and commutativity of E3 and E4.

Discussion. Applying the same sequence of rewritings to
the nested form in Scenario 3.5, we can see that the complete

set of conditions which must be checked is as follows.

• idempotency: idem(E3)

• commutativity: comm(F2, E4), comm(F2, E3),
comm(E5, E4), comm(E5, E3), comm(E3, E4).

Based on those conditions, we can make the following gen-
eral remarks.

• If commutativity-based side conditions were substi-
tuted with purity requests, the presence of a side ef-
fect in any position apart from E1 and E6 would pre-
vent unnesting; on the other side, if one is ready to do
commutativity (and idempotency) analysis, then op-
timization would be compatible with the presence of
side effects in any position, provided that they do not
interfere with the rest of the query; hence, commuta-
tivity is buying us a lot.

• We expect that updating and accessing the same data
in the internal parts of a query will be quite rare in
practice, so that the commutativity side conditions
should be satisfied in the vast majority of situations.

• Our rules only impose idempotency for E3, and this
seems minimal, because some of the essence of join
optimization is to evaluate E3 only once.

Finally, we come back to the issue of language restrictions.
Remember that the XQueryP [5] proposal only allows up-
dates in the return clause of FLWOR expressions. The typ-
ical nesting pattern we studied in this section can be written
solely with side effects in return clauses. Here is the example
we used, written in that form.

1 for $c in getCustomers()
2 return
3 <new-orders>{
4 logcount(
5 for $po in //purchase-order
6 where $po/cid = $c/cid
7 return logord($po)
8 )
9 }</new-orders>

As before, producing the proper unnested plan in this exam-
ple requires checking commutativity between the log func-
tions and the subquery that accesses the purchase order.
Hence, the XQueryP restrictions, although quite strong, are
not sufficient to avoid the need for techniques such as com-
mutativity or idempotency analysis.

4. PHYSICAL PLANNING
In this section, we look at the impact of the presence

of side effects on code selection (picking up physical algo-
rithms), and on pipelining. As we have seen in the introduc-
tion, pipelining can interact heavily with side effects. Other
aspects related to cost-based optimization are beyond the
scope of our work at this point. We first give an overview of
the proposed approach.

Overview. We represent physical operators as logical op-
erators annotated with two additional parameters, as in
JoinNL

SEE (NL means nested loop) or JoinHash
SLE ; the superscript

indicates the algorithm being used, while the subscript in-
dicates positionally which arguments are evaluated eagerly



(E), which are evaluated lazily (L), and which return a sin-
gleton (S), like in the case of the Join predicate. The algo-
rithm parameter is omitted when we only have one imple-
mentation, as in SelectSE.

To produce a physical plan, our compiler first generates a
plan that only uses default algorithms and eager operators,
such as JoinNL

SEE, since this combination is guaranteed to re-
spect the semantics in the presence of side effects. Then, a
set of rewrite rules is applied which allows better algorithms
to be selected. Finally, another set of rewrite rules is ap-
plied which allows eager arguments to be substituted with
lazy arguments, hence reducing the amount of data to be
materialized. As for logical rewritings, rules in both sets are
based on side conditions that are related to the presence of
side effects. Note that these rules only change aspects of the
evaluation for each operator and never modify the shape of
the query plan, The full set of rewritings is given in Figure 4.
Before we explain the side conditions in details, let us first
illustrate how they are used.

Consider the optimized plan in Example 2.4 (Figure 2).
The compiler first produces the following plan. In that plan,
every operator has a default implementation and every input
is eagerly evaluated (i.e., materialized), as indicated by the
corresponding annotations.

1 MapEE

2 {SequenceEE(Delete(TreeJoin[desc.::membership](#doc)),#c)}
3 (JoinNL

SEE
4 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
5 (SelectSE

6 {TreeJoin[child::membership](#po) = ’gold’}
7 (MapEE{[c:ID]}(TreeJoin[desc.::customer](#doc))),
8 MapEE{[po:ID]}(TreeJoin[desc.::purchase-order](#doc))))

JoinNL
SEE can be rewritten as a hash join, since its first argu-

ment is pure and contains an equality, as follows.

1 MapEE

2 {SequenceEE(Delete(TreeJoin[desc.::membership](#doc)),#c)}
3 (JoinHash

SEE
4 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
5 (SelectSE

6 {TreeJoin[child::membership](#po) = ’gold’}
7 (MapEE{[c:ID]}(TreeJoin[desc.::customer](#doc))),
8 MapEE{[po:ID]}(TreeJoin[desc.::purchase-order](#doc))))

Now, one specific challenge in the context of such physical
plans is that rewritings in various parts of the plan may not
be independent. For instance, let us assume we first apply a
rewrite rule that introduces laziness on the final Map. This
rewriting is sound since the branch of the join that accesses
customers’ membership status is evaluated eagerly, and the
final delete operator does not modify any of the data used
by the join predicate. This results in the following optimized
plan.

1 MapLL

2 {SequenceEE(Delete(TreeJoin[desc.::membership](#doc)),#c)}
3 (JoinHash

SEE
4 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
5 (SelectSE

6 {TreeJoin[child::membership](#po) = ’gold’}
7 (MapEE{[c:ID]}(TreeJoin[desc.::customer](#doc))),
8 MapEE{[po:ID]}(TreeJoin[desc.::purchase-order](#doc))))

After this rewrite, however, we can no longer pipeline the left
branch of the join that accesses customers, since the evalu-
ation of the Join input and the outer Map would be inter-
leaved, resulting in membership information being deleted

while still processing customer information. In the absence
of a cost model, we solve this problem by applying the rules
for pipelining introduction in a bottom-up fashion, i.e., rules
are always applied in the context of an eager argument or
at the root of the tree. This strategy is simple and seems
to be a reasonable starting point. With this bottom-up ap-
plication approach, the two inner Map operators and Select
operators are rewritten as lazy since their input plans are
pure. The JoinHash

SEE is rewritten to pipeline its left branch.
The rule to turn SequenceEE into its lazy form has no side
conditions, hence it is applied. Moving to the root, the outer
MapEE to MapLE comes for free, and we get the following re-
sult where only the right branch of the join, and the input
of the outermost map are materialized as in Figure 2.

1 MapLE

2 {SequenceLL(Delete(TreeJoin[desc.::membership](#doc)),#c)}
3 (JoinHash

SLE
4 {TreeJoin[child::cid](#c) = TreeJoin[child::cid](#po)}
5 (SelectSL

6 {TreeJoin[child::membership](#po) = ’gold’}
7 (MapLL{[c:ID]}(TreeJoin[desc.::customer](#doc))),
8 MapLL{[po:ID]}(TreeJoin[desc.::purchase-order](#doc))))

Rewrite rules. Not all the operators are subject to ea-
ger/lazy optimization. Specifically, we do not need to con-
sider the operators whose output is a singleton, (e.g., Empty,
Scalar, Element, TreeJoin). Figure 4 shows the necessary
rules for the remaining operators.

To discuss those rules, we need a notation to define the se-
mantics of physical operators. To this aim, we use the yield
syntax made popular by C# 2.0. In our notation, P x1. . . xn

:= new iterator{block} builds an object P with two methods,
MoveNext and Current. P.Current returns the value of an
object field named Current, which is initially null, and which
is updated by P.MoveNext. P.MoveNext evaluates block un-
til it finds a “yield value” statement, then stores value into
P.Current, saves the execution state of the block, and returns
true. The next time P.MoveNext is called, it starts from the
execution state where it stopped the previous time; when
it finds no more yield value to execute, it returns false, and
sets P.Current to null. For example, consider the following
iterator:

1 PList := new iterator { foreach (x in (1,2)) {yield x}; yield 3 }

PList.MoveNext returns true three times, setting Current to
1, 2, and 3, and returns false when called for the fourth time
onwards. PList.Current evaluates to 1, 2 and 3 after the first
three calls to PList.MoveNext, and returns null before the
first call and after the fourth. Using such syntax, we can
easily write the semantics for the eager and lazy versions of
our operators.

We start with the Cartesian product ProductXX operators.
The foreach (t in Expr){block} statement builds a new iter-
ator I = Expr, and evaluates block once for each successful
invocation of I.MoveNext, binding t to I.Current. Every plan
has a parameter x, used to transmit context information,
for example to a subplan p1 that depends on the output of
another subplan p2, as in Join{XXX}{p1}(p2,p3). Most op-
erators just pass x to their subplans, while the field lookup
(#a) and navigation (TreeJoin[path]) operators actually use
it. (In a typical implementation, the parameter is passed to
a plan P using a P.Open(x) operation, but this is irrelevant
here.)



General applicability condition: the lhs must be an eager argument of its parent, or must be the root of the tree

JoinNL
SEE{s1}(p2,p3) → JoinHash

SEE {s1}(p2,p3) IsEquiJoin(s1), and pure(s1)

JoinNL
SEE{s1}(p2,p3) → JoinSort

SEE{s1}(p2,p3) s1 order relation, and pure(s1)

LOuterJoinX
SEE[q]{s1}(p2,p3) → Same rules as JoinX

SEE

SequenceEE(p1,p2) → SequenceLL(p1,p2)
SelectSE{s1}(p2) → SelectSL{s1}(p2) intrlv(p2, s1)
ProductEE(p1,p2) → ProductLE(p1,p2) comm(p1, p2)

JoinNL
SEE{s1}(p2,p3) → JoinNL

SLE{s1}(p2,p3) comm(p3, p2), and intrlv(p2, s1)

JoinHash
SEE {s1}(p2,p3) → JoinHash

SLE {s1}(p2,p3) comm((p3, s1), p2), and intrlv(p3, s1)

JoinSort
SEE{s1}(p2,p3) → JoinSort

SLE{s1}(p2,p3) comm((p3, s1), p2)

LOuterJoinX
Y[q]{s1}(p2,p3) → Same rules as JoinX

Y
MapEE{p1}(p2) → MapLE{p1}(p2)
MapLE{p1}(p2) → MapLL{p1}(p2) intrlv(p2, p1)

MapConcatEE{p1}(p2) → MapConcatLE{p1}(p2)
MapConcatLE{p1}(p2) → MapCOncatLL{p1}(p2) intrlv(p2, p1)

OMapConcatEE[q]{p1}(p2) → OMapConcatLE[q]{p1}(p2)
OMapConcatLE[q]{p1}(p2) → OMapCOncatLL[q]{p1}(p2) intrlv(p2, p1)

OMapE[q](p1) → OMapL[q](p1)
MapIndexE[q](p1) → MapIndexL[q](p1)

GroupBySEE[qa][qi][qn]{p1}{p2}(p3) → GroupBySLE[qa][qi][qn]{p1}{p2}(p3) intrlv(p2, p1)

Figure 4: Physical algebraic rewritings.

1 ProductEE(p1,p2) x :=
2 new iterator
3 {Mat1 := foreach (t1 in p1(x)) { t1 };
4 Mat2 := foreach (t2 in p2(x)) { t2 };
5 foreach (t1 in Mat1) {
6 foreach (t2 in Mat2) {
7 yield (t1++ t2) }}}

1 ProductLE(p1,p2) x :=
2 new iterator
3 {Mat2 := foreach (t2 in p2(x)) { t2 };
4 foreach (t1 in p1(x)) {
5 foreach (t2 in Mat2) {
6 yield (t1++ t2) }}}

Both operators support the MoveNext-Current interface, but
ProductEE implements the eager semantics by materializing
its input. In ProductEE, the first application of MoveNext
(hereafter, MN) builds both Mat1 and Mat2, and returns
the control to the caller when the first output tuple is built
(using tuple concatenation t1++ t2); the next call will start
from that point. In ProductLE, the first application of MN
builds Mat2 and calls p1(x).MN just once; the next call to
p1(x).MN, implicit in the foreach (t1 in p1(x)) notation, will
be caused by the next call to (ProductEE(p1,p2) x).MN. In
other words, ProductLE pipelines on its left input, as in a
traditional side effect free relational implementation.

We need to define one more notion before talking about
correctness of the rewritings. We define a consecutive eval-
uation of a plan P to be a sequence of calls to P.MoveNext,
where the last call returns false and no other store action is
interleaved between two calls (consecutive). We define the
total result of such an evaluation of a plan P as the pair of
the ordered sequence of all the values (the value result) and
the store effect (the store result) that it produces.

Looking at the rule for product on Figure 4, the total
result of ProductEE(p1,p2) x is obtained through a sequence
of calls p1(x).MN,. . . , p1(x).MN, followed by p2(x).MN,. . . ,
p2(x).MN, while the ProductLE version uses the inverse se-
quence p2(x).MN,. . . , p2(x).MN, p1(x).MN,. . . , p1(x).MN.

From this observation we deduce the soundness of our first
rewrite rule, where commutativity comm(p1, p2) is formally
defined below.

If (a) ProductEE(p1, p2) is an eagerly evaluated

subplan in the context P [ ] and (b) comm(p1, p2),
then P [ProductEE(p1, p2)]→ P [ProductLE(p1, p2)]

To understand (a), consider that commutativity of p1 and
p2 ensures that the total results of ProductEE(p1, p2) and
ProductLE(p1, p2) coincide, but still the partial effects of in-
voking, for example, the first MoveNext is quite different in
the two cases: the EE operator will fully evaluate its sub-
plans, while the LE operator will just invoke the second one.
When ProductEE(p1, p2) is an E operand for its parent, we
only care about the total result, hence the rewriting is sound.

Let us now look at the join operator. Here is a typical
description of the nested-loop join using our iterator syntax.

1 JoinNL
SEE{s1}(p2,p3) x :=

2 new iterator
3 {Mat2 := foreach (t2 in p2(x)) { t2 };
4 Mat3 := foreach (t3 in p3(x)) { t3 };
5 foreach (t2 in Mat2) {
6 foreach (t3 in Mat3) {
7 if (s1(t2++ t3)) yield (t2++ t3) }}}

As usual, hash join requires s1 to contain an equality condi-
tion. As was observed in [23], the situation is slightly more
complex with XQuery because of the existential semantics
of equality and because equality depends on types. This has
little to do with side effects, hence we adopt here a basic
approach: our hash join algorithm assumes that s1 has the
“equijoin shape” s11∧(s12 = s13), where s12 and s13 only de-
pend on tuple fields produced, respectively, by p2 and p3 (as
in the plan in Figure 2). We use a predicate IsEquiJoin(s1) to
check this condition and a function DecomposeEquiJoin(s1)
to decompose s1 (in Figure 4). Here is the corresponding
implementation. Note that the creation of the hashtable
(lines 5 to 6) amounts to materialization.

1 JoinHash
SEE {s1}(p2,p3) x :=

2 new iterator
3 {Mat2 := foreach (t2 in p2(x)) return t2;
4 HashTab := new HashTable {};
5 (s11,s12,s13) = DecomposeEquiJoin(s1);
6 foreach (t3 in p3(x)) { HashTab.insert(s13(t3),t3) };
7 foreach t2 in Mat2 {
8 foreach h3 in HashTab.lookup(s12(t2))
9 if (s11(t2++ t3)) yield (t2++ t3) }}

10 }



The evaluation of JoinNL
SEE results in the following sequence of

MoveNext calls: p2, . . . , p2, p3, . . . , p3, s1, . . . , s1. The call
sequence for JoinHash

SEE may be represented as follows: p2, . . . ,
p2, p3, . . . , p3, s13, . . . , s13, s12, s11, . . . , s11, s12, s11, . . . ,
s11. The only difference is that s1 evaluation is decomposed,
and s1 is not applied to every tuple pair. We hence require
s1 to be pure, and have the first rule in Figure 4.

Finally, the lazy version of the hash join (JoinHash
SLE ) only

differs in that it omits the materialization of the left branch
(line 3). In this case, the call sequence is p3, s13, . . . , p3,
s13, (p2, s12, s11, . . . , s11, . . . , p2, s12, s11, . . . , s11). To
rewrite JoinHash

SEE into JoinHash
SLE we first assume that p2 and p3

commute, hence the trace of the first is equivalent to p3, . . . ,
p3, p2, . . . , p2, s13, . . . , s13, s12, s11, . . . , s11, s12, s11, . . . ,
s11. Equivalence follows if we further assume that s12 and
s11 calls can be commuted with p2, and that s13 calls can be
commuted with both p3 and p2. This sounds complex, but
amounts to inferring that all of p2, p3 and s1 are mutually
read-write disjoint.

Interleavability. Before presenting the interleavability side
condition, it is better to introduce a couple of definitions
that will allow us to be more precise about commutativity
as well. We first define an interleaved evaluation of p1 and
p2 as a sequence of calls to p1.MN interleaved with calls to
p2.MN (and nothing else), where the last calls p1.MN and
p2.MN both return false. The consecutive evaluation of one
plan followed by the consecutive evaluation of the other is
hence a special case of interleaved evaluation.

4.1 Definition (Commutativity). comm(p1, p2) iff, for
any interleaved evaluation of p1 and p2 that start from a
given store: (a) the store result is the same; (b) the value
result of p1 is the same; (c) the value result of p2 is the same.

This notion of commutativity is quite stronger than the
logical one, since we may actually interleave steps of one
operator with steps of the other. Most of our rewrite rules
would be consistent if we adopted a weaker notion of com-
mutativity, where we only require that the consecutive eval-
uation of p2 after p1 has the same result as the consecu-
tive evaluation of p1 after p2. However, we statically infer
comm(p1, p2) from read-write disjointness of p1 and p2, and
both versions of commutativity follow from such disjoint-
ness, hence we just consider the strong definition above.
Besides purity and commutativity, we adopt a third inter-
leavability side condition, which is a weaker, ordered, form
of commutativity, defined as follows.

4.2 Definition (Interleavability). p2 is interleavable af-
ter p1, written intrlv(p1, p2) iff, for any interleaved evalua-
tion of p1 and p2, that start from a given store, where the
first call is to p1.MoveNext: (a) the store result is the same;
(b) the value result of p1 is the same; (c) the value result of
p2 is the same.

While this sounds esoteric, intrlv(p1, p2) is a common con-
dition, and is significantly weaker than comm(p1, p2). For
example, it holds whenever p1 is an eager plan, i.e., if it
only accesses the shared store during its first step. Static ap-
proximation of intrlv(p1, p2) is performed by extending path
analysis so that it analyzes, for each physical path, what is
accessed and updated by the whole plan, a(p) and u(p), and
what is accessed an updated from the second step onwards
a2(p) and u2(p). intrlv(p1, p2) is deduced when a(p1) and

u(p1) do not interfere with a2(p2) and u2(p2). Both a2 and
u2 are empty for eager plans, even if they are impure, which
makes this condition widely applicable.

We now observe that to rewrite JoinHash
SEE into JoinHash

SLE , we
do not need comm(p3, s1), but intrlv(p3, s1) is enough, since
both plans start executing p3 before s1. However, since the
first steps of p2 and s1 are exchanged, comm(p2, s1) cannot
be relaxed to intrlv(p2, s1).

We have proceeded in this way to specify the semantics
of all our operators, and deduced the side conditions for the
rewrite rules that we exploit to do code selection and to in-
troduce pipelining; these are the rules in Figure 4. (Remark:
JoinSort

SEE is a join implementation that can be used when p1 is
an order relation. It materializes p3 and sorts it, and then
iterates over p2 and joins its result with the tuples from p3

which are now in a convenient order.)

P1 P2 P3 P4 P5 P6 conds.

u
u u
u u u comm(P4, P5)
u u u u comm(P4, P5)
u u u
u u
u u u
u u

u
u u comm(P4, P5)
u u u comm(P4, P5)
u u

u
u u

u

Table 1: Unnesting Study.

5. EXPERIMENTS
We implemented our approach in the Galax XQuery pro-

cessor [13], which we extended to support the core of the
XQueryP language (without limitations on where side effects
may occur). We also implemented side-effect analysis and
modified the rewriting rules in the optimizer as described
in this paper. We report on two classes of experiments, the
first of which verifies the completeness and correctness of
the compiler, while the second one looks at its performance.

5.1 Completeness and Correctness
We designed queries on the XMark [24] schema following

the generic pattern of Scenario 3.5, and inserted updates into
expressions E1, E4, E5, E6, such that the unnesting condi-
tions are satisfied. The tests cover all possibilities of using
updates in one, two, three or four of the expressions men-
tioned above. E3 and F2 did not contain update statements
because E3 always needs to be pure,1 and into F2 we could
not insert updates because of limitations of the GroupBy im-
plementation in the original compiler. Table 1 summarizes
all cases in which unnesting can be performed, depending on
conditions satisfied by plans Pi of each Ei. Each row char-
acterizes one class of queries: the u annotation in column Pi

indicates that Pi contains update statements and the conds
column describes additional conditions to be checked. We

1The current implementation checks purity instead of the
more general idempotency.
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Figure 5: Running times for query q08.

mention that all these queries could be pipelined, i.e., the
output of the Map operators could be streamed and the left
branch of the joins was evaluated lazily.

We ran the queries over a sample 1MB XMark document,
checking that: (i) the optimized query plan is an instanti-
ation of the generic optimized plan and (ii) the results ob-
tained with and without optimizations are identical. We also
tested queries covering all possibilities of adding updates in-
side the Ei expressions such that the unnesting conditions
were not satisfied. These are representatives of the classes
of queries from Table 1 for which the additional conditions
are violated, together with all other combinations of u an-
notations not appearing in Table 1 (the cases in which E3

contains updates). For them, we first checked that the op-
timizer does not push the MapConcat through GroupBy or
that it does not introduce an outer join, depending on the
condition that was violated. We verified that the evaluation
of the partially optimized plans obtained for these queries
produces the same results as in the case when optimizations
are switched off (i.e., plans using maps and nested loops eval-
uation, resulting from naive compilation into the algebra).
It is worth pointing out that both these tests were instru-
mental in finding several bugs in the implementation of the
physical join operators and of the pipelining optimizations.

5.2 Performances
In order to validate the performance gains made possible

by our optimizations, we tested XMark queries 8 through
12, which perform various types of joins and grouping. We
modified these queries by adding updates in the inner re-
turn clauses, corresponding to E5 from our general unnest-
ing form. The updates consist in modifying the statistics of
the number of transactions, considering each inner for-loop
to correspond to a transaction. The experiments were run
on a machine with a Pentium 4 CPU, 3.2 GHz, 1 GB of
RAM, running the etch distribution of Debian GNU/Linux.

We ran these queries on documents up to 11MB in three
different scenarios: with all optimizations turned off, with
optimizations on, but joins executed as nested loops, and fi-
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Figure 6: Running times for query q09.

nally with joins executed efficiently using hash or sort-merge
join algorithms. Since we rely on an existing compiler, our
goal is essentially to demonstrate that we could recover the
proper behavior when side effects are present. As a point
of reference, we also provide the running times obtained
with the same queries after removing all update statements
(which we call pure queries) and enabling all optimizations.

Figure 5 shows the running times (on a log-log scale) for
query q08, which is an instance of the generic Scenario 3.5
performing an equi-(outer)join. As one can see, with opti-
mizations on, the pure and the impure version behave almost
the same. Also, as expected, executing joins as nested loops
reduces the running time, but does not change the asymp-
totic behavior. Similar results were obtained for query q10
(See Figure 7).

The results for query q09 are shown on Figure 6. This
query is a nested 3-way join and even though optimization
leads to a substantial improvement in running time, it does
not change the asymptotic behavior very significantly. Still,
we can see that the optimized query with updates does be-
have similarly to the one without updates, which seems to
point to a limitation in the original compiler.

Queries q11 and q12 are very similar, which is why we
only show the graph for q11, in Figure 8. These are queries
that touch a larger set of data, using a greater-than predicate
in the join condition. Turning all optimizations on, which
includes selecting a sort-merge physical join operator, leads
to substantial gains: for instance, for the 11MB document,
running query q11 takes 21s, compared to 998s with the
naive plan and q12 takes 22s, compared to 1,000s. Part of
this gain is due to pipelining: if all intermediate results are
materialized, evaluation of the optimized logical plans each
take 44s. There is however a more noticeable increase in
evaluation time than in q08–q10, explainable by the much
larger number of updates that are performed (up to 118,271
updates compared to at most 3742 updates for q08–q10).

To provide a better image of how pipelining contributes
to the overall optimization process, we display in Table 2
the evaluation times for q12 on a subset of the documents
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Figure 7: Running times for query q10.
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Figure 8: Running times for query q11.

doc.size no optim. joins, but no pipelining all optim.

34 KB 0.13 s 0.23 s 0.22 s
114 KB 0.28 s 0.27 s 0.25 s

1135 KB 11.05 s 1.25 s 0.79 s
3425 KB 90.85 s 5.27 s 2.82 s
5616 KB 255.12 s 13.01 s 6.42 s
8003 KB 495.03 s 24.56 s 11.84 s

11397 KB 1000.36 s 44.90 s 21.52 s

Table 2: Comparative running times for q12.

we used. As we can see, join optimizations alone (third
column in Table 2), including use of the proper join al-
gorithm, reduces running time by one order of magnitude
and adding pipelining (fourth column) provides an addi-
tional improvement with a factor between 1.5 and 2.1. Sim-
ilar results were obtained for the other queries, namely a
speedup factor between 1.32 and 3.43 (except for the 34KB
and 114KB documents). The effect of pipelining is even
more important—between 2.54 and 4.81 speedup for the
non-optimized case—if we run these queries with pipelining
turned on, but logical optimizations turned off. The expla-
nation is that MapConcat and Select operators are used in-
stead of Join and GroupBy, and require a significant amount
of materialization. This seems to indicate that pipelining
could be very important for fragment of the plans that can-
not be optimized (e.g., when some side conditions do not
hold).

6. RELATED WORK
There has been almost no work on optimization for query

languages in the presence of side effects. The closest related
work to ours is [15], considering join optimization for the
XQuery! language. However, it does not provide a detailed
analysis of the side conditions needed during rewriting. In
the functional programming community, state monads are
commonly used to support imperative features in pure lan-
guages [22]. A generally accepted opinion is that lazy eval-
uation and side effects are, from a practical point of view,
incompatible [18]. This is consistent with our approach in
which we use an eager semantics, and only introduce lim-
ited lazyness for the purpose of pipelining. Monads have
been also been used to support query languages semantics
and implementation [3, 9, 26]. However, this work does not
consider side effects. The only exception seems to be Fe-
garas [10], who studies optimization for an object-oriented
query languages with updates, by using a state monad but
without addressing algebraic optimization.

7. CONCLUSION
In this paper, we have presented a study of the impact of

adding side-effects into an algebraic XML query compiler.
We have shown that with the proper care and sufficient static
analysis, one can safely extend a traditional database com-
piler with side-effecting operations. We believe this is an
important step toward supporting a new generation of lan-
guages which blend database querying and imperative pro-
gramming, such as XQuery scripting extensions. There is
still much to do as future work, most notably in broadening
the scope of rewritings being considered, and in the area of
cost-based optimization.

Repeatability Assessment Result. All the results in this
paper were verified by the SIGMOD repeatability commit-
tee. Code and/or data used in the paper are available at:
http://www.sigmod.org/codearchive/sigmod2008/

Acknowledgements. We would like to thank Christopher
Ré who worked on a preliminary study of the impact of side
effects on XQuery optimization, and an early implementa-
tion, on which this paper is based.
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Fernández. A Complete and Efficient Algebraic
Compiler for XQuery. In ICDE, page 14, 2006.

[24] Albrecht Schmidt, Florian Waas, Martin L. Kersten,
Michael J. Carey, Ioana Manolescu, and Ralph Busse.
XMark: A Benchmark for XML Data Management. In
VLDB, pages 974–985, 2002.

[25] Philip Wadler. Web Development without Tiers. In
5th International Symposium on Formal Methods for
Components and Objects, 2006.

[26] Limsoon Wong. Kleisli, a functional query system.
Journal of Functional Programming, 10(1):19–56,
2000.


