
XTreeNet: Democratic Community Search

Emiran Curtmola
UC San Diego

ecurtmola@cs.ucsd.edu

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Dionysios Logothetis
UC San Diego

dlogothetis@cs.ucsd.edu

K.K. Ramakrishnan
AT&T Labs Research

kkrama@research.att.com

Divesh Srivastava
AT&T Labs Research

divesh@research.att.com

Kenneth Yocum
UC San Diego

kyocum@cs.ucsd.edu

ABSTRACT
We describe XTreeNet, a distributed query dissemination
engine which facilitates democratization of publishing and
efficient data search among members of online communities
with powerful full-text queries. This demonstration shows
XTreeNet in full action. XTreeNet serves as a proof of
concept for democratic community search by proposing a
distributed novel infrastructure in which data resides only
with the publishers owning it. Expressive user queries are
disseminated to publishers. Given the virtual nature of the
global data collection (e.g., the union of all local data pub-
lished in the community) our infrastructure efficiently lo-
cates the publishers that contain matching documents with a
specified query, processes the complex full-text query at the
publisher and returns all relevant documents to querier.

1. INTRODUCTION
As the web evolves, we are witnessing a revolutionary pro-

cess of democratization of information creation in the sense
that it is easier to create and publish data on a wide vari-
ety of topics; this is evident from the proliferation of blogs,
Wikis (e.g., Wikipedia), user-generated content etc. More-
over, it is easier to have the publishers organize in ad-hoc
communities based on shared interests; this is true if we
consider the popularity of social networking sites like Face-
book and Myspace. With the confluence of these trends
comes the natural desire to freely exchange data within the
community - this includes making one’s own data accessible
to others within the community, and also be able to query,
tag, and comment on the rich global collection that is the
union of all local data collections of users in the community.
Therefore, a new requirement dimension is the desirability
for full-text search evaluation. For instance, a legitimate
query on Wikipedia might ask for

(‡) all documents that contain terms related to

Olympics and Peking within a window of 10 words,

with Olympics ordered before Peking [12, 14].

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

To fully deliver on the promise of freely exchanging data,
any community-supporting infrastructure needs to enforce
the key requirement of resistance to censorship by third
parties, be they of governmental, corporate or other na-
ture. That is, there should be no easy way for any cen-
soring authority to deny users access to certain publishers
and their content. This requirement precludes some pro-
posed approaches that reuse and build on existing central-
ized technologies (e.g., search engines, hosted online com-
munities, etc.) or decentralized based on pure distributed
hash table (DHT) overlays. In the first case, publishers are
disintermediated from consumers by the central site in the
sense that the central site has control over the visibility of
publishers to user queries, and the publishers lose control
over who accesses their content. The latter provides a dis-
tributed logical abstraction of object identifier lookups over
the physical underlay network consisting of simple DHTs
(e.g., filename lookups in Napster, Gnutella etc.), individual
keyword based lookups such as Minerva [3] or twig queries
as in KadoP [1]. While appropriate for P2P search, DHTs
provide neither strong censorship resistant systems, nor the
ability for complex query resolution for text or XML-based
search. For example, a DHT node has complete knowledge
of all the publishers that advertise the objects (e.g., key-
words) hashed into this node. If the DHT node is compro-
mised then it is possible that information on what each of
the managed publishers produced leaks out.

XTreeNet is an architecture based on a novel distributed
data index design organized as a union of overlay (i.e., logi-
cal) networks, called UQDT. In UQDT, the publishers main-
tain control over their own content, enabling strong cen-
sorship resistance (i.e., stronger than DHT-based systems)
among the community members and the published data.

While different queries might hit the same set of nodes,
our goal is to balance the community search generated load
(number of messages) at nodes during query dissemination
while preserving both low index space usage at a node and
censorship resistance. We show how to use the UQDT in-
frastructure to achieve overall load balance and maximize
the throughput given a workload of rich-expressive queries
(i.e., XQuery Full-Text queries) through efficient query rout-
ing algorithms and optimization strategies over UQDT.

Moreover, XTreeNet allows users to tune the system pa-
rameters (i.e., the number of overlays, the overlay topology,
the query routing strategy) to get insight into the existing
design tradeoffs and community search process. Although
one of the drivers for our architectural design concerns cen-
sorship resistance, this is not the main focus of the demo.



Because of the increasing number of online communities
and social network sites, the need for powerful search ex-
pressivity (beyond simple keyword search) and the need
for democratic information exchange by protecting the dis-
semination infrastructure against censorship, we believe a
demonstration of our UQDT infrastructure design and pro-
posed techniques will be of general interest. The demo is
available at the following location 1.

We recall next the UQDT index infrastructure and the
distributed query dissemination techniques from [7]. Then,
we describe our network system organization that supports
efficient multi-overlays (i.e., logical) construction and we de-
tail the XTreeNet demonstration scenarios.

2. DISTRIBUTED QUERY PROCESSING
Given a user query, XTreeNet identifies the relevant

data sources that contain matching documents and returns
them to the querier. In a first step, the system identifies
only the sources of interest and contacts them based on a
simplified form of the query (i.e., the set of keywords in the
query). Then, the sources decide based on their own access
policy (i.e., the querier’s identity or the history of who ac-
cessed what) whether to release the matching documents to
the queriers by running the full query on their corresponding
local document collection. We detail these features next.

2.1 Efficient Data Source Discovery
Our indexing solution targets a service-oriented logical

network infrastructure, in which we distinguish two types of
nodes. There are data publisher nodes (the community mem-
bers) that provide data services and connect to the network
via direct links to nodes at its edge. The data are indexed
inside the network, which consists of a set of inter-connected
and reconfigurable router nodes. These are responsible for
routing queries to the relevant publishers.

XTreeNet is based on on a novel distributed data index
design, called UQDT, that is organized as a union of query
dissemination trees (QDTs) realized as an overlay (i.e., logi-
cal) network. QDT’s purpose is to focus the query forward-
ing with high probability towards only a subset of all pub-
lisher nodes that contain matching documents. Regardless
of which querier initiates a query Q, Q is sent to the QDT’s
root, and it propagates down the tree to the publishers.

For the purpose of information discovery and flexible query-
ing, documents and queries are represented as collections of
content descriptors, called CDs. A CD is an abstraction of
a hierarchical data item. In our case, CDs are keywords in a
path context. When the context is empty this corresponds
to simple full-text keyword search. The CD collection that
describes the user query and the documents are automati-
cally extracted.

We adopt a data partitioning approach in which we parti-
tion the global CD collection into multiple partition blocks.
Each block is associated with a QDT which takes care of for-
warding the data that falls in this partition block. We build
smart hierarchical summaries at each node of a QDT to facil-
itate early pruning by disseminating Q only to the relevant
publishers. Each node summary consists of the union of all
advertised CDs by publishers in its subtrees for the corre-
sponding QDT. We implement node summaries as counting
bloom filters for their well known properties: compactness
and quick probabilistic set membership of CDs.

1http://db.ucsd.edu/xtreenet

We employ the following query routing algorithm. Note
that the data partitioning scheme determines also a parti-
tioning among the CDs of a query. Therefore the query can
be disseminated on all or either of the QDTs that map to
the query partitioning blocks. We show in [7] that it suf-
fices to send the query to the root of only one QDT while
still preserving the query semantics. When a router node
receives the query message, it forwards it in parallel to each
of its children in QDT if and only if the CD set of the query
is contained in the node summary. When a publisher node
is reached, the full query (not just the CDs extracted from
the query) is evaluated on the local database. Any match-
ing documents are sent back to the querier. The advan-
tage of this approach is that the query dissemination is very
selective since pruning decision at each node is done on a
conjunctive basis (conjunction of CDs).

The number of QDTs to setup in the network and the
QDT to send queries are optimization problems for through-
put maximization that we solved in [7]. The intuition be-
hind our decision for the number of QDTs is that since the
load in one QDT decreases from the root to leaves for any
query workload, we try to balance the load of each router
node by assigning them to different levels across the differ-
ent QDTs. One solution which behaves well in practice is to
cyclically permute the nodes on tree levels across all QDTs
such that all routers appear precisely once in the top levels
of any QDT. Picking the QDT to disseminate the query is
based on query selectivity estimation techniques. In partic-
ular, we avoid routing based on query blocks that contain
popular CDs. In [7] we show that keeping track of a very
small number of advertised popular CDs (2-3%), which we
call partially informed strategies, XTreeNet achieves al-
most as good performance as if we had the selectivity infor-
mation for all the data collection, called the fully informed
routing strategy. Note that the latter approach is infeasible
in a complete decentralized setting as ours.

2.2 Query Evaluation at Source
Without loss of generality, we employ XML data sources.

Users publish and query XML repositories. A CD is then
the abstraction of a keyword in an XPath context. To be
able to express powerful queries over such data we adopt the
XQuery Full-Text [14] (XQFT) standard specification which
permits composable full-text search primitives such as sim-
ple keyword search, Boolean queries, and keyword-distance
predicates over XML data. In order to process such expres-
sive class of queries we deploy an XQFT engine processor
at each source. In particular, we leverage the GalaTex [6]
platform processor together with the optimization frame-
work developed in [2].

The query semantics is to iterate through all the docu-
ments at all the identified sources and return to the querier
only those matching the full XQFT query. For efficiency, the
backend text engine is build on top of a local index store that
contains posting lists for documents at the publisher.

2.3 Example
We show in this section an example of distributed query

processing in the UQDT infrastructure. The same query (‡)
from Section 1 can be expressed in XQFT as follows:
doc/title[. ftcontains ‘‘Olympics’’ ftand

‘‘Peking’’ window 10 words ordered]

The corresponding CDs are cd1=doc/title/“Olympics” and
cd2=doc/title/“Peking”. Let us assume we use a data par-



titioning scheme that splits the two CDs into different query
blocks. Each query block is associated with a different logi-
cal QDT overlay. Our routing strategy chooses to route the
query based on the most selective of the CDs (consider cd1

is more selective than cd2) therefore, the query is sent to
the QDT corresponding to cd1. The dissemination on this
particular QDT as well as the QDT’s internal organization
is shown in Figure 1 given that cd1 appears in the node
summaries for nodes 4, 6, 10, 20, 23, 1 and 2 and being ac-
tually advertised only by publishers P2 and P3. Note that
P2 and P3 is a superset of the publishers that can actually
return matching documents. When reaching the candidate
publisher nodes (in this case the leaf nodes P2 and P3) the
full XQFT query is evaluated locally using GalaTex and
the matching documents are returned to the querier.

QDT

Figure 1: Routing cd1=doc/title/“Olympics” on the
corresponding QDT.

3. DEMONSTRATION SCENARIO
We propose to demonstrate interactively all the function-

ality of XTreeNet. The purpose of this demo is a proof-
of-concept to show the new architectural design in action as
well as the flexibility and efficiency of distributed query pro-
cessing; in particular, the efficiency in identifying relevant
sources and XQFT query processing at the source.

To obtain a true-to-life community, we consider a dis-
tributed community that shares a real data collection, namely
an XML dump of Wikipedia, comprising about 1.1 million
real Wikipedia documents which amount to 8.6 GB [8].

To facilitate the peers interconnectivity in the community
we use a 3rd party set of logical routers. We can imagine
the alternative solution as well, in which each peer publishes
data, queries and forwards queries.

We describe next the underlying network infrastructure
and the overlay network support. We then present the
demonstrated features.

3.1 Network Infrastructure
The XTreeNet distributed engine relies on an overlay

network to manage the distributed index across the XTreeNet

participants. The index consists of multiple, custom de-
signed QDTs, where each node contains a counting bloom
filter. Each filter continuously updates the index by pro-
cessing the stream of updates from its child nodes. Because
a bloom filter is an in-network aggregate, it may be com-
puted efficiently across these trees. However, XTreeNet’s
wide-area deployment requires the maintenance of the bloom
filters to be scalable, network-aware and failure resilient. To
achieve these operating criteria, XTreeNet uses the Mor-
tar [11] stream processing engine, a platform for instrument-
ing endhosts with stream operators.

Mortar provides a number of features that are important
for XTreeNet. First, it supports user-defined in-network
aggregates, allowing XTreeNet to create hierarchical in-
dex summaries by simply extending Mortar with custom
stream operators that implement the spectral bloom filter.
Each operator indexes local content and propagates index
changes to its parent. Mortar also arranges the nodes in the
tree in a network-aware fashion, ensuring that the major-
ity of participants are within a low-latency horizon of the
root. Further, unlike DHT-based in-network aggregation
systems, Mortar allows applications to control the design of
additional trees. This is critical, as XTreeNet balances the
query load by controlling the shape of the set of trees imple-
menting the index. Other features provide fast and reliable
operator management (installation/removal) and accurate
stream processing in the presence of node failures and un-
synchronized clocks.

We evaluate XTreeNet by deploying 1,000 to 10,000
XTreeNet peers over an emulated network using the Mod-
elNet [13] emulator. Modelnet is a large-scale evaluation en-
vironment that combines the realism of an Internet testbed
with the ability to execute experiments in a reproducible
fashion. In Modelnet, unmodified applications run over un-
modified operating systems and network stacks, while the
emulator subjects the application’s traffic to the bandwidth,
delay and loss constraints of the emulated network topology.
In our setting, 34 physical machines, running Linux 2.6.9
and connected on a Gigabit network, emulate an Internet-
like topology built with the Inet [10] topology generator.

3.2 Running Scenario
The XTreeNet query interface at a peer is very simple,

yet it hides a powerful and efficient architectural design. The
web browser interface accepts keyword search queries in the
XQuery Full-Text style allowing for a multitude range of
queries supporting from simple keyword queries, keywords
in a context (XPath) to complex queries with predicates on
the keyword positions (e.g., proximity distance predicates).

In addition to the query input, the interface allows a user
to tune the various system parameters: setting the number
of QDTs in the UQDT structure, the QDT to route a query
on, or the routing state amount maintained at each node to
guide the routing process.

The result of executing a query is a page containing links
to the matching documents together with a detailed sec-
tion containing statistical and routing information decisions.
Such information includes the suggested routing QDT, both
the processing and the forwarding loads generated in the
system as the number of total exchanged messages and a
break down on execution times for the various stages of
query processing. We enumerate in the following various
demo scenarios of interest.

Query Routing and Processing in XTreeNet. First,
we show the interactive functionality to search the global
community data collection by executing different ad-hoc XQFT
queries. We demonstrate the use of UQDT as a distributed
index infrastructure that provides support for complex query-
ing via multiple index lookups during query forwarding and
then running an XQFT processor at the publisher.

After a peer issues a query, we present a visualization of
the internal routing flow of the query into the network. First,
the system decomposes the query into query blocks based
on the UQDT partitioning scheme over the keywords. By



using these query blocks, we show how the system smartly
decides the corresponding QDT overlay where the query is
actually routed on. We show next the routing path of the
query on that QDT by specifying the nodes and the links
touched. At the end of routing, the reaching leaves are the
candidate publishers. Let us notice that this is a super set
of relevant publishers since they have been selected based
on the conjunctive part of the query.

Finally, the full query is tested at these publishers by run-
ning an XQFT processor to check and retrieve the actual
matching documents. The querier has the option of inter-
actively changing the set of matching documents, simply by
varying the keyword conditions in the query (e.g., adding or
removing keywords and keyword predicates).

Democratization of Publishing. The ability for an
individual publisher to dynamically control the access to the
content she owns, including the ability to make visible what
information she wants to, on a selective basis to different
users, is a highly desirable aspect in a democratic network.

A key aspect of such an information access infrastructure,
that is a key to the democratization of the Internet, is to
make all requests for information (queries) available to all
the publishers who may have relevant information and al-
lowing them to determine their response to the query.

We show how publishers can maintain control over their
own data. Depending on what they decide to advertise,
independent on the actual local published content, different
queries may reach them. In this demo we do not enforce a
particular publisher policy to access their data even though
one can think of sophisticated ways of doing it. We consider,
for now, that publishers answer all received queries correctly.

Moreover, we do not consider for the scope of this pa-
per the system’s robustness to failures, as the main focus
is to show how to leverage the new UQDT index structure
for efficient distributed query processing and privacy in P2P
publishing. We defer this as future work. However, prelimi-
nary analysis shows that this is feasible based on the Mortar
infrastructure (as described in Section 3.1).

Our censorship-resistant UQDT infrastructure prevents
leaking any information about which publishers are capa-
ble of answering a given query. In the case of compromised
nodes, we allow to zoom into individual routers and intro-
spect the actual information that is being kept as part of
the UQDT index. We show that getting hands on the local
bloom filter and the overlay connections at a router does not
reveal much information.

Interactive Tuning. As we mentioned previously, we let
the user interact with the main parameters of the system in
order to get a feeling of the various tradeoffs.

For instance, the querier can choose to disseminate queries
over specific QDT overlays. When a peer issues a query, the
system suggests what would be the best query routing strat-
egy based on techniques described in Section 2.1. However,
the querier can send the query to any of the existing QDT
overlays for the following reasons: she may have domain
or external knowledge on the selectivity of the overall pub-
lished data items, or may want to analyze generated traffic
on different QDT dissemination, or just has a preference for
a particular set of nodes.

In the case that the querier decides not to send the query
to the suggested QDT, we run the query on both variants (on
the suggested QDT as well as on the querier-chosen QDT)
and even though the number of answers is the same, we show

a comparison of the amount of generated traffic.
Similarly, the querier may change the amount of routing

state. This can lead to changes in the suggested QDT among
the available QDT overlays. Intuitively, the more state is
maintained at a node, the more precise the suggested QDT
is relative to the best routing (e.g., when all the selectivity
state of published data items is known).

Balancing the load. In this scenario, we show that
XTreeNet can be used to balance the overall traffic. The
load is near-optimum uniformly distributed among the peers.

We run a query workload based on a uniform distribution
of queries with the number of conjuncts varying from 1 to
10. We stress the load such that each conjunctive query
has a match in the global data collection. We let the user
dynamically setup the UQDT configuration by picking the
number of QDTs. For choosing the overlay topology we
employ off-the-shelf tools developed by network research for
multicasting (e.g., generated by SCRIBE [5]).

During the query workload execution, we collect statisti-
cal information. At the end, we report processing and for-
warding load histograms between different number of QDTs.
We show that for 15-QDTs the load is well balanced in the
system and therefore, the overall throughput is maximized.
We define the throughput as the number of queries answered
per unit of time. At the same time, in the 1-QDT case this
shows the high congestion in the system.

4. CONCLUSION
In this paper we presented XTreeNet, an efficient in-

frastructure that empowers information publishers to join
censorship-resistant communities and query their global data
collection in an ad-hoc fashion using expressive queries.

5. REFERENCES
[1] S. Abiteboul, I. Dar, R. Pop, G. Vasile, D. Vodislav, and

N. Preda. Large scale P2P distribution of open-source software.
In VLDB, 2007 Demo.

[2] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible and
Efficient XML Search with Complex Full-Text Predicates. In
SIGMOD, 2006.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Minerva: Collaborative P2P Search. In VLDB,
2005.

[4] B.H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, v.13 n.7, July 1970.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), 2002.

[6] E. Curtmola, S. Amer-Yahia, P. Brown, and M. Fernandez.
GalaTex: A Conformant Implementation of the XQuery
Full-Text Language. In XIME-P, 2005.

[7] E. Curtmola, A. Deutsch, K.K. Ramakrishnan, and
D. Srivastava. Censorship-resistant Publishing. In Technical
Report CS2008-0919, UC San Diego, March 2008.
http://db.ucsd.edu/xtreenet/xtreenetTR08.pdf.

[8] L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. In
SIGIR, 2006.

[9] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A
Scalable Wide-Area Web Cache sharing Protocol. In
IEEE/ACM Transactions on Networking, 8(3), 2000.

[10] Inet. http://topology.eecs.umich.edu/inet

[11] D. Logothetis and K. Yocum. Wide-Scale Data Stream
Management. In Usenix Annual Technical Conference, 2008.

[12] A. Trotman and B. Sigurbjrnsson. NEXI, Now and Next. In
INEX, 2004.

[13] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. In Proc. of OSDI, 2002.

[14] The World Wide Web Consortium. XQuery 1.0 and XPath 2.0
Full-Text 1.0. http://www.w3.org/TR/xquery-full-text/.


