
SEDA: A System for Search, Exploration, Discovery, and
Analysis of XML Data

Andrey Balmin
IBM Almaden Research

Center

Latha Colby
IBM Almaden Research

Center

Emiran Curtmola†

UC San Diego

Quanzhong Li
IBM Almaden Research

Center

Fatma Özcan
IBM Almaden Research

Center

Sharath Srinivas†

University of Maryland,
College Park

Zografoula Vagena†

Micorsoft Research

ABSTRACT
Keyword search in XML repositories is a powerful tool for interac-
tive data exploration. Much work has recently been done on mak-
ing XML search aware of relationship information embedded in
XML document structure, but without a clear winner in all data and
query scenarios. Furthermore, due to its imprecise nature, search
results cannot easily be analyzed and summarized to gain more in-
sights into the data. We address these shortcomings withSEDA: a
system for Search, Exploration, Discovery, and Analysis of XML
Data.SEDA is based on a paradigm of search and user interaction
to help users start with simple keyword-style querying and perform
rich analysis of XML data by leveraging both the content and struc-
ture of the data.SEDA is an interactive system that allows the user
to refine her query iteratively to explore the XML data and discover
interesting relationships.

SEDA first employs a top-k algorithm to compute the most rele-
vant top-k answers fast, and returns tuples of nodes ranked by rele-
vance.SEDA provides several novel data structures and techniques
for efficient top-k computation over graph-structured XML data.
SEDA also computes all the contexts in which the query terms are
found and all the connection paths that connect the query terms in
the XML data. These two summaries enable the user to refine her
query by disambiguating the contexts and connections relevant to
her query. With the user feedback, the system has enough informa-
tion to computeall query results, not just the top-k. From the com-
plete results,SEDA automatically deduces a star schema, which
is then instantiated with the query results and augmented with ad-
ditional values required for a well-defined data cube. The tables
computed at this step are input into an OLAP engine for further
analysis.

†This work was done while the author was at IBM Almaden Re-
search Center

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

1. INTRODUCTION
Querying highly heterogeneous XML collections is very chal-

lenging. The heterogeneity in the structure of the XML instances
in such data repositories is often the result of data integration and
schema evolution. There are also scenarios, where there exist
schemas, but they are highly generic, producing structurally dif-
ferent XML documents. For example, in the healthcare scenario,
HL7 provides XML schemas for the Clinical Document Architec-
ture (CDA)1 documents, but they have highly varying structure.
Querying such collections using schema-dependent languages like
XQuery[5] and XPath is cumbersome and not always viable be-
cause XPath expressions are designed to allow structural navigation
of XML data and hence require a high-degree of schema knowl-
edge. Searches based on keyword matches alone provide a simple
way of retrieving information from such repositories but are insuf-
ficient for generating meaningful query results that also capture the
connections between data elements and for generating summariza-
tions necessary for gaining more insights into the data.

In recent years, the problem of deriving meaningful results from
“underspecified” queries on XML data, i.e., queries expressed with
little or no knowledge of the underlying schema of the data, has re-
ceived a lot of attention. There have been several proposals that use
various heuristics to automatically determine the objects and con-
nections that are most meaningful given a set of XML fragments
which have been identified (typically by applying keyword search
or value-based selections in a user’s query). However, as shown in
[4], each of these techniques is well-suited for certain types of data
scenarios, and hence work in some scenarios but fail in others. In
order to reliably determine the set of relationships that are of inter-
est to the user, the system would have to somehow infer the true
user intent behind the keyword query, which is an “AI complete”
problem.

In this paper, we presentSEDA2 a system based on a paradigm
of search and user interaction to help users start with simple key-
word style querying and perform rich analysis of XML data. Our
approach also starts with a “connectedness” heuristic, but augments
it with user feedback, thus giving the user full control over the qual-
ity of the query results. We facilitate the feedback process by pre-
senting summaries of the intermediate results in a form that enables
the user to make good choices. In theSEDA system, we chose a

1http://www.hl7.org/Special/committees/xml/drafts/drafts.htm
2SEDA stands for Search, Explore, Discover and Analyze



ranking heuristic based on the content of nodes satisfying each of
the query terms and the compactness of the graph connecting those
nodes. We augment the results with a system of user disambigua-
tion of context and connection information. The system employs a
top-k processing algorithm that uses several novel data structures
and techniques for efficient processing. Unlike traditional rela-
tional and XQuery joins where join conditions are specified in the
query, the computation of these ranked tuples involves determining
if the set of nodes in a result tuple are connected in the data graph,
and ranking them based on their content and the compactness of
the computed subgraph.

We provide tools that allow the user to explore a given XML col-
lection and discover relevant objects and relationships in the data.
After this exploration step, the user is also provided with the option
of using the results of her query to compute a data-cube. Next, we
provide an overview of the system and illustrate how it operates
through an example.

2. SYSTEM OVERVIEW

Full-text Index 
w/ Keyword-path

support

Data Guide
Index

Edge Table
Reachability 
Bloom Filter

Index

XML Data
Storage

Query 
Panel

Context 
Summary Panel

Connection
Summary Panel

Result 
Panel

Data Cube
Analysis Panel

Top-k Join
Processor

Index Builder

Context
Summary
Generator

Connection
Summary
Generator

Complete 
Result Set
Generator

Data Cube
Processor &

Analyzer

User Interface

Execution Engine

Storage and Indexing

Figure 1: Architecture of SEDA

The architecture ofSEDA is provided in Figure 1. It contains
three major components: a user interface, an execution engine, and
a storage and indexing component.

The user interacts with the system through various panels in a
GUI. The goal ofSEDA is to help users in the formulation of com-
plex queries through search and discovery. For this purpose,SEDA
provides context and connection summary panels, as well as an
OLAP panel, in addition to the query and result panels. The exe-
cution engine contains several units for processing a user’s query,
guiding her to refine her search for increasing precision and finally
for computing an OLAP-style data cube. XML data is stored in

DB2 R© pureXML
TM

3. In addition, the storage component contains
several indexes to efficiently support these operations, including a
Lucene full-text index.

SEDA operates on collections of XML documents and models
XML data as a graph in which nodes represent element or attribute
nodes and edges represent various relationships between nodes.
Each data node has context and content. Thecontextof a node
is its root-to-leaf path, starting from a root node and following only
parent/child edges. Thecontentof a node is its textual content. A
query inSEDA consists of a set ofquery terms. A query term is
a pair of the form(context, search query), where the context is
3DB2 pureXML is a trademark of the IBM Corporation

either a root-to-leaf path or just a node name (including wilcards),
and searchquery is any full-text search expression comprising a
simple bag of keywords, a phrase query or a boolean combination
of those. InSEDA thesearch query is evaluated over the content
of an individual node, as opposed to an entire XML document.

The result of aSEDA query is a set of tuples, where each tu-
ple represents a connected sub-graph withm nodes, one for each
query term. Query results inSEDA are ranked by both theircon-
tent score, as well as theirstructural score. The content score is ob-
tained by combining the TF/IDF-based content scores of the match-
ing nodes. For structural score,SEDA employs a common and
practical approximation, namely the Euclidean Minimum Spanning
Trees (EMST) [1] of the nodes in result tuples. For aSEDA query
result tuple,t =< n1, n2, ..., nm > and its connected data graph
g(V ′, E′), we define the scoreS(t) as:

S(t) =

m∑

i=1

Sc(ni) +

m−1∑

i=1

1

di

(1)

whereSc(ni) is the content score of nodeni, andd1, ..., dm−1

arem − 1 edge weights in the MST ofg(V ′, E′).
When a user submits a query toSEDA, it first employs the top-k

join processor to compute the most relevant top-k answers fast. The
SEDA top-k algorithm retrieves the results from full-text searches
and calculates top answers according to its ranking function. The
algorithm is based on the family of threshold algorithms (TA)[2]. It
employs the multi-way symmetric join, the Bloom filter index, and
dynamic join reordering for efficient query processing.

The query processing inSEDA requires finding how two nodes
are connected. Computing this efficiently is challenging. In order
to calculate the score of a query result tuple using EMST, we need
to find the shortest distance between every pair of nodes. However,
storing the complete transitive reachability table, which contains
the shortest paths between every pair of nodes in the data graph, is
very costly. Also, searching the shortest path at runtime can be very
expensive. To handle these challenges,SEDA utilizes a Bloom
filter indexto support efficient connectivity tests during top-k pro-
cessing over graph data. The bloom filter index encodes the shortest
paths between node pairs, excluding paths that traverse only par-
ent/child edges, as these paths can be computed using their Dewey
ids[3]. In our actual implementation, we store the Bloom filters in
a B+-tree index, such that we can locate each filter efficiently. Note
that Bloom filters may generate false positives and this will boost
the structure score of some answers, but will not affect the correct-
ness of the returned answers. Because we test connectivity based
on component ids as the first step.

In addition to the set of results,SEDA also computes all the
contexts in which the query terms are found, and all the paths that
connect the nodes that satisfy the query terms in the XML data.
If the top-k answers contain what the user is looking for, the user
may stop her exploration at this point. Otherwise, she may refine
her query and resubmit, or use the context and connection sum-
maries to further refine her search. To efficiently find all distinct
paths (corresponding to all distinct contexts) in which the query
terms appear within the entire collection, we maintain a full-text
index which maps individual keywords to the set of distinct paths
in which they appear. If the user refines her query by choosing a
subset of contexts,SEDA employs the top-k algorithm again, but
restricts the results to the subset the user is interested in.

There are various heuristics proposed in the literature to decide
which connections are more meaningful. But as shown in [4], these
heuristics work in some scenarios but fail in others. It is very hard
to find an approach that will work in all possible data and query



scenarios, because each different connection represents a different
semantic relationship and it is impossible to know what the user
intention really is. Furthermore, it is very expensive or even infea-
sible to show all possible connections between matching nodes of
a query to the user. Based on these observations, the solution em-
ployed bySEDA is to choose a subset of “meaningful” connections
to present to the user, and let her specify the ones that are relevant
for her query.SEDA computes a set of connections from the top-k
results by using dataguide summaries of the data graph. The user
has an option of increasing “k” if an interesting connection is miss-
ing. Furthermore, we expect the user to restrict the contexts first so
that the number of possible connections is reduced. When the user
selects a subset of connections she is interested in,SEDA has suffi-
cient information about the users’ intentions to compute theentire
result set, not just the top-k.

At this point, the user has the option of using the results of this
exploration to specify an OLAP-style aggregation query. InSEDA
a dimension (or a measure) is defined in terms of a set of root-to-
leaf paths that contain the values of the dimension (or the measure).
SEDA matches these paths to the contexts of a query term to de-
cide whether the query term corresponds to a known dimension
(or measure).SEDA also augments the results with extra values,
such as keys, that is required to create well-defined fact and dimen-
sion tables, and computes an instantiation of the corresponding star
schema. To populate the fact and dimension tables,SEDA gen-
erates and runs several SQL/XML queries. These tables are then

input into an OLAP engine, DB2 AlphaBlox
TM

4 to compute data
cubes, as well as the desired aggregation functions. It is important
to note that each user query may identify different sets of facts and
dimensions, resulting in a different star schema. This is in con-
trast with traditional data warehouses, where there is one fixed star
schema. This dynamic behavior of the system allows the users to
draw useful insights from aggregation of the data that matches their
initial set of query terms.

3. DEMO SCENARIO
We will demonstrateSEDA on a dataset constructed by com-

bining the World Factbook 20075 and the Mondial XML6 data.
An example fragment from this data set is shown in Figure 3. The
World Factbook is a publicly available database created and main-
tained by the Central Intelligence Agency (CIA)7. It contains com-
prehensive statistics for every country and territory in the world for
each year. The “schema” of this data evolves from year to year. Our
dataset contains the six most recent versions of the dataset from
2002 to 2007. The Mondial dataset is a rich compilation of geo-
graphical Web data sources on global statistics of world countries,
cities, provinces, seas, and international organizations.

In addition to the “containment” relationships represented by the
tree-based parent/child connections between nodes, the instances
also contain non-tree relationships depicting (1) geographical ob-
jects (e.g., countries and oceans) bordering other geographical ob-
jects and (2) participation of countries in economic trade relation-
ships.

Consider a scenario where the user is interested in finding facts
about various countries and continents using this data set. In this
section, we will illustrate howSEDA enables a simple search driven
exploration of the data by using the following example query.

4DB2 AlphaBlox is a trademark of the IBM Corporation
5https://www.cia.gov/library/publications/the-world-factbook/
6http://www.dbis.informatik.uni-goettingen.de/Mondial/
7https://www.cia.gov/

EXAMPLE 1. Query Q1: Find information about the trade part-
ners of “United States”.

In SEDA, a user might approach the initial formulation of this
query by specifying two query terms(∗, “United States”), and
(trade∗, ∗), with the intention of exploring the dataset to see what
information about “United States” and “trade” is available.

The context summary of the system interface (see Figure 2) shows
that keyword “United States” occurs in 69 distinct paths in the data.
The user will browse this list of paths and quickly discover that
only the first one is needed to focus the search on the United States
articles.

The context summary for the second term contains only two
paths:“/factbook/economy/imports partners/item/trade percent” ,
and“/factbook/economy/exports partners/item/trade percent” .
At this point the user may decide to focus the search only on the
United States imports by un-selecting the second path.

While exploring the XML results, the user may notice that the
trade percent nodes are always associated withpartner country,
and decide to include these nodes in the result tuples. One way to
do this is to add a third term to the query that reads:(partner∗, ∗).
Once again, this term will have two paths in its context summary -
one for import partners and one for export partners. Let’s assume
that the user selects only the import one.

sea
“Pacific Ocean”

country
“Philippines”

sea
“China sea”

country
“China”

country
“united 
states”

geography
“America”

economy

GDP_ppp
“12.31T”

import 
partners

item item

trade 
country
“China”

percentage
“15%”

trade 
country
“Canada”

percentage
“16.9%”

year
“2006”

export 
partners

item

trade 
country
“Canada”

percentage
“23.4%”

bordering

bordering

bordering

bordering

trade 
partner

Figure 3: Example data graph from World Factbook and Mon-
dial datasets

After this round of context disambiguation, the user is left with
two different ways to connectpartner countryand trade percent
data nodes, shown as dotted lines in Figure 3. The shorter connec-
tion is intuitively much more likely to be meaningful to the user,
and its results are going to be ranked first. However, we still give
the user a choice to include the results of the second one.

At every stage of the search and disambiguation, the current re-
sulting tuples of nodes are shown to the user on the right side of the
screen. Every node is shown with its document title, unique Dewey
ID, relevance score, and a snippet of text. In our example, this text
is sufficient to show that Germany provided 5.2% of US imports in
2002 and provided 5.3% of US imports in 2004. (first and second
result tuples of Figure 2, respectively).

Usually, search systems stop at this point mandating the user to
browse the result documents of interest and manually collecting all
the data they need for analysis.SEDA goes one step further by al-
lowing users to build data cubes out of search results. In this exam-
ple, the system will identify that the three terms of the query corre-



Figure 2: Example screen shot ofSEDA, depicting the results for the example query

Figure 4: Data Cube specification user interface.

spond to two dimensions “Country” and “ImportPartners” and one
fact “Import PartnersTradePercent”. Figure 4 shows the user in-
terface to define a data cube. The system allows the user to choose
a subset of these identified facts and dimensions as well as add new
ones. Furthermore, the system will determine that one more dimen-
sion, namely “Year”, is needed to form a unique key for this query
result. OLAP engines require that fact and dimension tables have
unique keys in order to construct data cubes.

Once the facts and dimensions have been identified,SEDA au-
tomatically populates the corresponding tables from the results of
the query and the database. These tables are then input into the
DB2 AlphaBlox OLAP engine to compute the data cube and the
desired aggregations of the data. The data cube generated in DB2
AlphaBlox from our running example is shown in Figure 5.

We will demonstrate this query and other similar queries on the
World Factbook dataset.

Figure 5: Resulting data cube in DB2 AlphaBlox.

4. REFERENCES
[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and

E. Welzl. Euclidean minimum spanning trees and bichromatic
closest pairs.Discrete Comput. Geom., 6(5):407–422, 1991.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. InProc. of PODS, 2001.

[3] I. Tatarinov et al. Storing and Querying Ordered XML Using a
Relational Database System. InProc. of SIGMOD, 2002.

[4] Z. Vagena, L. Colby, F.̈Ozcan, A. Balmin, and Q. Li. On the
Effectiveness of Flexible Querying Heuristics for XML Data.
In XSym, pages 77–91, 2007.

[5] XQuery 1.0: An XML Query Language, January 2007. W3C
Recommendation, See
http://www.w3.org/TR/xquery.


