
RIDE: A Tool for Interactive Source Registration in
Community-oriented Information Integration

Yannis Katsis Alin Deutsch Yannis Papakonstantinou Keliang Zhao
CSE Department

UC San Diego

{ikatsis, deutsch, yannis, kezhao}@cs.ucsd.edu

1. INTRODUCTION
Modern Internet communities need to integrate and query struc-

tured information. Employing current information integration in-
frastructure, data integration is still a very costly effort, since source
registration is performed by a central authority which becomes a
bottleneck. We propose the community-based integration paradigm
which pushes the source registration task to the independent com-
munity members. This creates new challenges caused by each
member’s lack of a global overview on how her data interacts with
the application queries of the community and the data from other
sources. How can the source owner maximize the visibility of her
data to existing applications, while minimizing the clean-up and re-
formatting cost associated with publishing? Does her data contra-
dict (or could it contradict in the future) the data of other sources?

To facilitate autonomous source registration, we introduce Reg-
istration guIDE (RIDE), a visual registration tool that guides the
source owner in the autonomous registration, assisting her in an-
swering these questions. We start by first presenting the goals of
the community members when registering their sources and then
describing how RIDE helps the members achieve them.

1.1 Source Owner’s Goals
When a source owner registers her source in an integration sys-

tem, she wants to achieve the following:
Contribute to application query results. The ultimate motive

of an owner registering her source is to make her data visible to
relevant client applications that issue queries against the commu-
nity’s global schema (which we will calltarget schema, in keeping
with the terminology of IBM’s Clio [6, 4]). For example, a book
retailer joining a community of bibliophiles wants her book ads to
be visible to queries issued by a popular brokerage application.

Trade off self-reliance for cleaning cost savings.However
while willing to contribute to the application queries the owner has
two subgoals that conflict with each other:

On one hand, she wants topublish everything asked by the query
so that her data is visible to the query, regardless of which other
sources are present in the system (we call such a registration“self-
sufficient”). For instance, if the query asks for ads of books with
great reviews, the retailer may want to providebothbook ads and

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permissionof the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/orspecial permission
from the publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Barnes & Noble�

Source

Registrations
RIDE

Prentice Hall�

RIDE

Book Portal’s
Community Schema

Source Databases

& Source Owners

Target Schema &

Community Initiator�

Application

Queries

 Figure 1: Community-Based Integration Architecture

their reviews so that her data arealwaysvisible to the query.
On the other hand, shewants to restrict the amount of published

informationin order to minimize the cleaning effort associated with
publishing. In that case she may willingly give up self-sufficiency,
settling for a“complementary” registration that relies on other,
trusted sources. For instance assume that the retailer collects third-
party reviews in the form of text blurbs. Cleaning them up for pub-
lication (spell-checking, language censorship, etc.) is an expensive
process requiring human involvement. Therefore the retailer needs
to know whether another trusted source (e.g. a book publisher)
provides reviews, so that she relies on this source for reviews and
provides herself only book ads, thus saving the cleaning effort.

Avoid inconsistency. Since every owner registers her sources
independently, she may easily register data that contradict those
from other registered sources. For instance, a publisher and a re-
tailer may list different authors for the same book (identified by
its ISBN). Inconsistencies correspond to wrong data and should be
avoided. It is therefore important for an owner to know when her
registration may create inconsistencies in the integration system.

1.2 Our Solution: Registration guIDE
It is easy to see that achieving these goals requires an overview

of the system, which a source owner does not have. For exam-
ple, deciding which attributes can be borrowed from other sources
to create a complementary registration requires understanding the
registrations of all other sources currently registered in the system.

The tool. To overcome this lack of global overview and facilitate
autonomous source registration, we propose Registration guIDE
(RIDE), a visual tool that extends the classic schema mapping in-
terface (as encountered in IBM Clio [6, 4], MS BizTalk Server [1]
and Stylus Studio [3]) with a suggestion component that guides the
source owner in the registration of her source. The suggestions
assist the owner in achieving her goals detailed above. They allow
her to negotiate the trade-off between two competing requirements:
maximizing self-reliance for making her data visible to existing ap-
plication queries, versus minimizing the data cleaning cost. In ad-
dition, RIDE helps the owner avoid inconsistency of her data with
respect to data in other sources by issuing appropriate warnings.

The resulting architecture of a community-based integration sys-
tem enabled by RIDE is shown in Figure 1. In such systems the

G: Book PortalS
2
: Prentice HallS

1
: Barnes & Noble

(a) Source Schemas (b) Target Schema

Book

ISBN

title
format

Book_Price

ISBN
seller

reg_price

author
sug_retail

dis_price

Hardcovers

ISBN

title
author

Price

ISBN
class

price

Book_Info

ISBN

title
type
price

 Figure 2: Source schemas and Target schema

SELECT title, format, seller, reg_Price, dis_Price
FROM Book, Book_Price

WHERE Book.ISBN = Book_Price.ISBN AND Book.author = “Ullman”

 Figure 3: Application query

community initiator starts by designing the target schema. After
the initiation of the community, application developers register the
queries (over the target schema) that their applications will issue
during operation. When a community member wants to register
her source into the community she only has to choose the applica-
tion query to which she wants her source to contribute, as well as
the desired self-reliance level and initiate RIDE.

To allow the owner to specify whether she prefers more self-
reliance or less cleaning effort, self-reliance levels model coarse-
grained trade-offs between these two conflicting goals. Higher lev-
els require publishing more data fields, which yields less reliance
on what other sources provide, but in exchange may involve more
cleaning effort. With respect to a queryQ over the target schema,
a registrationR can be (in decreasing order of self-reliance):

• self sufficientif it contributes answers toQ even if all other
sources leave the community or

• complementaryif it contributes toQ, but only in cooperation
with registrations of other sources in the community.

Once the owner picks the desired self-reliance level, RIDE ex-
plains her the different ways in which she can provide the target
attributes required by the query in order to achieve the selected
level. As we will explain later, RIDE’s suggestions correspond to
even finer-grained trade-offs between self-reliance and cleaning ef-
fort. To make it easy to register a source, RIDE’s interface allows a
user to create a registration solely through visual actions (i.e. lines,
constants). Its suggestions are also expressed visually by appro-
priately shading the corresponding visual components. The list of
suggestions adapts to the owner’s action at each interaction step,
to include only attributes that are essential and that the owner is
willing to provide.

In addition to making suggestions on how to provide a target
attribute, RIDE also helps the owner avoid inconsistencies. To this
end it issues warnings for two types of inconsistencies:

• potential inconsistency, which may occur forsomecontents
of the source databases, and

• definiteinconsistency, which will occur forall source databases.

Potential inconsistency is more of a conservative property checked
at registration time, since whether it will actually occur at run-time
will depend on the data in the source databases. Definite inconsis-
tency on the other hand is a serious problem, since it will always
appear at run-time regardless of the source data.

Examples of suggestions and inconsistency warnings are pre-
sented in Section 4. For formal definitions of the concepts used
in the paper (including the self-reliance levels and the types of in-
consistencies) as well as a detailed description of the algorithms
powering the system the reader is referred to [5]. A demo of RIDE
is available athttp://db.ucsd.edu/ride.

G: Book PortalS1: Barnes & Noble

Hardcovers

ISBN
title
author

Book

ISBN
title
format

Book_Price

ISBN

seller
reg_price

author
sug_retail

dis_price

hardcover=

Price

ISBN
class

� �

�

�

M
a
p
p
in
g
 1

gold mem=

B&N=

Source
join

line

Target
join

line
Source
selection

condition Projection
arrow

Target
selection
condition

price

Figure 4: Barnes & Noble Registration

2. DEMONSTRATED SCENARIO
For our demonstration we will use “Bibliophilia”; an applica-

tion for the bibliophiles’ community that integrates book infor-
mation from several sources. The community’s target schemaG,
shown in Figure 2b, consists of relationsBook andBook Price.
RelationBook contains general information about a book, while
Book Price stores the regular and the discounted price (i.e., price
for “Bibliophilia” members) at which sellers provide the book. Un-
derlined attributes correspond to (composite) primary keys.

“Bibliophilia” contains an application queryQ retrieving the ti-
tle and format of books by Ullman together with their regular and
discounted price as shown in Figure 3. In our demonstration we
will show how two source owners can use RIDE to register their
sources into the system so that they contribute toQ. Our sources
are the bookstoreBarnes & Noble (B&N)and the publisherPren-
tice Hall (PH), with the schemas shown in Figure 2a.

3. RIDE FRONTEND
Mapping Specification. RIDE’s front end resembles graphical

interfaces of schema mapping tools, such as IBM Clio [6, 4], MS
BizTalk Server [1] and Stylus Studio [3]. Similarly to them, RIDE
enables source owners to register their sources by creating map-
pings between their source schema and the target schema solely
through a set of visual actions listed below (Figure 4 depicts such a
mapping of the B&N source created through RIDE):

Drawingprojection arrowsfrom a source attribute to a target at-
tribute, to specify where the latter gets its value from. For example,
in Figure 4, the price in the B&N database is exported as the dis-
counted price in Bibliophilia’s database.

Entering(source / target) selectionsnext to attributes. A source
selection restricts the exported source data. For example, the selec-
tion “class = gold members” in Figure 4 limits the exported prices
to only those for gold members. A target selection on the other hand
allows the source owner to enter information in the target database
that is not stored explicitly in the source database. For instance,
B&N’s owner specifies in Figure 4 through target selections that
her books are hardcovers and that her bookstore’s name is “B&N”.

Drawing (source / target) join linesbetween pairs of source /
target attributes. Join lines have similar semantics to selection con-
ditions with the only difference that they represent equalities be-
tween two attributes instead of equalities between an attribute and
a constant. For instance, B&N’s source owner in Figure 4 employs
a source join line between the ISBNs to export only pairs of book
and price tuples that join on the ISBN. Additionally, she uses a tar-
get join line to declare that B&N sells books to non-members at the
suggested retail price, regardless of what this price may be.

Note that this visual representation has a solid underpinning:
As explained in [5] each visual mapping corresponds to a Global-
Local-As-View (GLAV) constraint. Moreover, as is customary in
GLAV, queries are interpreted under certain answer semantics.

Suggestions.However in contrast to other mapping tools, RIDE
also contains a suggestion component explaining to the owner how
she can reach the desired self-reliance level. The interaction pro-
ceeds as follows: RIDE shows in bold all target attributes of inter-
est to the query (i.e. selected, projected or joined) together with all
different subsets of them that can be provided to reach the desired
self-reliance. For instance, in Snapshot 1.1 of Figure 5 the source
can become Self Sufficient only by providingall required attributes
(shown as a single set on the right pane). The user chooses the set of
missing attributes that she wants to provide and then selects each of
them to see RIDE’s suggestions on how to provide them. The sug-
gestions are shown by shading the corresponding components on
the interface and the attribute for which the suggestions are shown
is marked with a flag. For instance, in Snapshot 1.1 the shaded
projection arrow box and selection box next toBook.ISBN mean
that to reach Self Sufficiency this attribute can be provided either
through a projection arrow or a target selection. We describe the
suggestions generated by the tool in detail in the following section.

4. DEMONSTRATED INTERACTION
The goal of our demonstration is to showcase how RIDE assists

a source owner in the registration of her source. To this end, we
will start with a member-less integration system and allow people
from the audience to pose as source owners who add their sources
into the system one by one. Since RIDE’s suggestions for a source
depend on the registrations of the already registered sources (which
will have been added by other audience members), in each such
interaction with the audience RIDE will give different suggestions.

In the following we describe a sample demonstration session,
which also illustrates the type of suggestions that RIDE can gen-
erate. For our sample interaction we will employ the help of two
audience members. The first, acting as B&N’s source owner, will
be asked to use RIDE to register her source in such a way that it is
Self-Sufficient w.r.t. the query of Figure 3. The second will imper-
sonate the owner of PH; her goal will be to create a Complementary
registration w.r.t. the same query and the B&N registration created
by the first member. Figures 5 and 6 depict the snapshots from the
respective sample interaction sessions with RIDE.

4.1 B&N Registration for Self-Sufficiency
Using RIDE B&N’s owner will explore the following sugges-

tions, corresponding to different ways of contributing to the query:
Directly providing attributes. B&N’s owner starts by trying to

provide target attributeBook.ISBN. RIDE explains to her in Snap-
shot 1.1 that she can provide it in 2 ways; either by mapping to it
values from a source attribute (through a projection arrow) or by
assigning to it some constant value (i.e. entering a target selection).

Trading off cleaning cost savings vs generality.Directly pro-
viding an attribute through an arrow does however not always suf-
fice to acquire the desired degree of self-reliance to a queryQ: the
source may only contribute toQ if it contains tuples with specific
values asked by the query (e.g. books by Ullman in our example).
B&N’s owner will come across such a case, when among other ac-
tions she draws a projection arrow intoBook.author. As shown in
Snapshot 1.2, RIDE explains to her the two available options:

Source selection.If the owner wishes to minimize the cleanup
cost, she can restrict the exported tuples to only those with the par-
ticular value asked byQ. RIDE suggests the corresponding source
selection option (in our caseHardcovers.author = ‘Ullman’).

Intra-source assertion.However, if for the sake of contribut-
ing to several queries the owner prefers to export more tuples than
those relevant toQ, she can choose to not include the selection in
her mapping. In this case RIDE asks her if she believes that the

Snapshot 1.2:

Snapshot 1.1:

G: Book PortalS1: Barnes & Noble

Hardcovers
ISBN

title
author

Book
ISBN

title
format

Book_Price
ISBN

seller
reg_price

author
sug_retail

dis_price

M
a
p
p
in

g
 1

Price

ISBN
class

price

Suggestions for Book.ISBN: Map from source Enter constant

Desired Level: Self Sufficient Current Level: Unusable

RIDE

Query: Q

� �or

G: Book PortalS1: Barnes & Noble

Hardcovers

ISBN
title

author

Book

ISBN
title

format
author

hardcover=

assert…

� �

M
a
p
p
in

g
 1

…

…

S1: Barnes & Noble
Do you expect this query to
have a non-empty answer?

YesYes NoNo

Hardcovers
ISBN

title
author Ullman=

Assertion 1

Suggestions for Book.author: Enter constant in source Accept assertion� �or

sug_retail

Book
ISBN

title
format

Book_Price
ISBN

seller
reg_price

author
sug_retail

dis_price

Choose set of

attribs to provide

Book
ISBN

title
format

Book_Price

ISBN

seller
reg_price

author
sug_retail

dis_price

Choose set of
attribs to provide

Ullman

Figure 5: Sample interaction for the B & N registration

exported tuples will always include at least one tuple relevant to
Q. If she answers positively, RIDE takes this answer into account
when generating subsequent suggestions. These questions, called
assertions, are boolean queries and are drawn using the classical
visual paradigm designed for Query-By-Example interfaces such
as the query builders of MS Access and MS SQL Server [2]. In our
case the gray box in Snapshot 1.2 contains an assertion asking the
owner whether her source contains at least one Ullman hardcover.

Assume that B&N’s owner accepts the assertion and through
more actions ends up in the registration of Figure 4. Since her
source does not contain the regular price asked by the query, she de-
cides to stop there even though her registration is not Self-Sufficient.

4.2 PH Registration for Complementarity
Given B&N’s registration from Figure 4 we will subsequently

ask another audience member to register PH using RIDE. Her goal
is to create a complementary registration w.r.t. the same query and
B&N’s registration. Figure 6 shows snapshots of this interaction
session. Through the interaction the source owner will understand
the following ways of contributing to a query:

Indirectly providing attributes. So far we have seen cases
where the source directly provides a required target attribute through
a projection arrow or target selection. However, a source owner
may be able to provide an attribute valueindirectly by operating
on adifferenttarget attribute. One such case is shown in Snapshot
2.1. Assume that PH’s owner chooses to become complementary
by providing Book Price.reg price (since her entire interaction
with RIDE is done under this assumption we omit the right pane in
Figure 6). RIDE explains in Snapshot 2.1 that she can provide this
attribute either directly (through a projection arrow or target selec-
tion) or by instead providing attributeBook.sug retail. The reason
is simple: B&N’s registration in Figure 4 specifies that its regular
price equals the suggested retail price (without providing its exact
value). In that case PH should also map the corresponding primary
key (i.e. Book.ISBN) so that if PH and B&N provide a common
book their book info is merged into a singleBook tuple.

Inter-source assertions: supporting data merging. Assume
that PH’s owner followed the tool’s suggestions and providedBook.
sug retail and the primary key. This is not yet sufficient for PH to
become complementary w.r.t. the query. For this to happen, PH
must provide at least one Bookin commonwith B&N.

To guarantee that, RIDE asks the source owner an assertion in-
volving both her own source and the other sources in the system
with which she has to merge to achieve complementarity. For in-
stance, the dialog box in Snapshot 2.2 shows an assertion, asking
whether PH has at least one book also sold by B&N. Note that the
assertion does not talk in terms of B&N’s schema but in terms of
its contribution to the target database. This was deliberately done
to have assertions that refer only to concepts that the source owner
knows (i.e. her own source’s schema and the target schema). Upon
accepting the assertion PH’s registration will turn complementary
since together with B&N it will contributereg price to the query.

During the interaction the user will also see warnings about in-
consistencies that might arise. Recall that these fall in 2 categories:

Potential Inconsistency. If PH’s owner subsequently extends
the mapping to also export book titles, she creates a potential in-
consistency, since B&N and PH could providedifferent titles for
the same book. The box in Snapshot 2.3 explains this conflict.

Definite Inconsistency. While potential inconsistency is quite
common, definite inconsistency usually results from human error
and should be corrected. For instance, assume that in the future
PH decides to store only paperbacks in its relationBook Info. She
informs the system about her decision through a target selection on
format, resulting in the registration of Snapshot 2.4. This leads to
a definite inconsistency, since PHalwaysprovides a book in com-
mon with B&N (due to the accepted assertion of Snapshot 2.2) and
therefore this book has to be both paperback (since PH sells only
paperbacks) and hardcover (since B&N through its registration in
Figure 4 provides only hardcovers). RIDE notifies the user and
explains the inconsistency as shown at the bottom of Snapshot 2.4.

5. RIDE PROPERTIES
By providing an interaction with RIDE our demonstration will

corroborate the following properties of RIDE also explained in [5]:
Soundness of suggestions:RIDE only makes suggestions that

areguaranteedto lead to registrations of the desired self-reliance.
Suggestions relevant to owner’s focus:RIDE only makes sug-

gestions relevant to the owner by allowing her to guide the search
in several ways: First, she chooses a subset of attributes to provide
and thus avoids seeing suggestions on attributes that she cannot or
is unwilling to provide. Second, she accepts assertions (proposed
pro-actively by RIDE) about her data. These restrict the structure of
the source database and are exploited by RIDE to skip suggestions
and warnings if they do not apply to data satisfying the restrictions.

Adaptive response to user’s actions:RIDE does not pre-compute
all suggestions beforehand but instead recomputes them adaptively
after each user action. It does so even when the user ignores its
suggestions and carries out a non-suggested action instead.

6. REFERENCES
[1] Microsoft Biztalk Server. http://www.biztalk.org/.
[2] Microsoft SQL Server. http://www.microsoft.com/sql/.
[3] Stylus Studio. http://www.stylusstudio.com/.
[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and

Query Answering.TCS, 336(1):89–124, 2005.
[5] Y. Katsis, A. Deutsch, and Y. Papakonstantinou. Interactive Source Registration

in Community-oriented Information Integration. InVLDB, 2008.
[6] C. Yu and L. Popa. Constraint-based XML query rewriting for data integration.

In SIGMOD, 2004.

G: Book Portal

Book

ISBN
title

format

Book_Price

ISBN
seller

reg_price

author
sug_retail

dis_price

�

�

M
a
p
p
in
g
 1

Desired Level: Complementary Current Level: Unusable

RIDE

Query: Q

Suggestions for Book_Price.reg_price: Map from source Enter constant� �or

B&N

Book_Info
ISBN
title

type

S2: Prentice Hall

price

�

G: Book Portal

Book
ISBN

title
format

Book_Price

ISBN
seller

reg_price

author
sug_retail

dis_price

�

�

M
a
p
p
in
g
 1 S2: Prentice Hall

Suggestions for Book_Price.reg_price: Map from source Enter constant� �or

S2: Prent. Hall

Do you expect this query to
have a non-empty answer?

YesYes NoNo

Assertion 1

G: Book Portal (by Barnes & Noble)

Book

ISBN
title

format

Book_Price

ISBN
seller

reg_price

author
sug_retail

dis_price

�

�

hardcover=

B&N=

Ullman=

assert…

Book_Info
ISBN

title
type
price

�

Book_Info
ISBN

title
type

price

�

Snapshot 2.2:

Snapshot 2.1:

Accept assertion�or

G: Book Portal

Book
ISBN

title
format
author
sug_retail

�

M
a
p
p
in
g
 1 S2: Prentice Hall

Book_Info
ISBN

title
type
price

�

Snapshot 2.3:

!

S2: Prent. Hall

There will be an
inconsistency if the
shaded attributes
have different values

Potential Inconsistency

G: Book Portal (by Barnes & Noble)

Book
ISBN

title
format
author
sug_retail

�

hardcover=

Ullman=

Book_Info

ISBN
title

type
price

�

…

G: Book Portal

Book

ISBN
title

format
author
sug_retail

�

M
a
p
p
in
g
 1 S2: Prentice Hall

Book_Info

ISBN
title

type
price

�

Snapshot 2.4:

There is an
inconsistency
because the
shaded attribute
has the two
different values
shown

Definite Inconsistency

G: Book Portal

Book

ISBN
title

format
author
sug_retail

�

hardcover

…

XXXXpaperback=

Provide Book.ISBN and Book.sug_retail�or

Desired Level: Complementary Current Level: ComplementaryQuery: Q

paperback

(by B&N)

(by PH)

Figure 6: Sample interaction for the Prentice Hall registration

