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ABSTRACT The other extreme consists of communities that publish unstruc-

tured data (text or multimedia files tagged with attribute-value pairs)
with no integration functionality: published items are not com-

frastructure, data integration is still a very costly effort, since source bl_ned, being S|mp_ly ad_ded into the collectlp_n. We have recently
witnessed the proliferation of such communities with the advent of

registration is performed by a central authority which becomes a o . - o
g P y Y forums, web blogs, wikis and social networking applications such

stration is A i 3 ) . :
bottleneck. We propose the community-based integration paradiam, e\ £ oo flickr com/). del.icio.us (http+//del.icio.us/) and

which pushes the source registration task to the independent com-

munity members. This creates new challenges caused by each Com'}(ouTube (http://Iwww.youtube.com/). A salient feature contribut-

munity member’s lack of a global overview on how her data inter- ™9 to their massive success is the low setup and maintenance_c_ost
acts with the application queries of the community and the data due to the decentrallzed r_lature that allows new mem_bers to join
from other sources. How can the source owner maximize the vis- 2utonomously without assistance from a central authority.

ibility of her data to existing applications, while minimizing the The above publishing paradigms leave out the numerous com-

clean-up and reformatting cost associated with publishing? DoesMunities whose structured information integration and querying
her data contradict (or could it contradict in the future) the data of r_1e¢_ads preclud(_a the _unstructured wiki-style approach _and yvhose
other sources? We introduce RIDE, a visual registration tool that IMitéd time or financial budget rules out the costly traditional inte-
extends schema mapping interfaces like that of MS BizTalk Server 9ration solution. For instance, typical specialized scientific com-
and IBM's Clio with a suggestion component that guides the source Munities lack the resources of GEON- and BIRN-class projects

owner in the autonomous registration, assisting her in answering and cannot afford to build infrastructure for the collection, inte-
these questions. RIDE's implementation features efficient proce- gration and cleanup of pertinent data. Graduate students and other

dures for deciding various levels of self-reliance of a GLAV-style resegrchers end up manually performing these tasks ai a grgat pro-
source registration for contributing answers to an application query ductivity cost. This cost barrier is generally faced by many private,

and checking potential and definite inconsistency across sources. commercial, acac_iemlc and even goyernmental CF’mm””'“e_S-
We address this need by introducing t@mmunity-based inte-

gration paradigm which enables systems that integrate and query
1. INTRODUCTION structured data into a virtual global database, at no cost to any
Current technology for data publishing on the Web addresses thecentral authority. This is achieved by decentralizing the setup and
needs of only the extremes in the spectrum of online communities. Maintenance tasks, pushing them to the independent community
One extreme comprises communities that publish highly struc- members. In particular, in this paper we focus on assisting individ-
tured data into a global database maintained by a central integrationual members to autonomously join the community by registering
authority. For instance, data-driven scientific inquiry needs data their data into the integration system.
generated by multiple scientists and laboratories, which may even Autonomous source registration creates new challenges caused
cross multiple disciplines. A number of emerging portals, such as by each community member’s lack of a global overview on how her
GEON [3] and BIRN [1], aim to provide integrated access to the data interacts with the application queries of the community and the
data of multiple laboratories and scientific communities. Such por- data from other sources. How can the source owner maximize the
tals typically rely on traditional integration technology, and come Visibility of her data to existing applications, while minimizing the
at an often prohibitive setup and maintenance cost to the central in-clean-up and reformatting cost associated with publishing? Does
tegration authority. Indeed, the construction of portals like BIRN the source owner’s data contradict (or could it contradict in the fu-
and GEON is still a very large-scale effort, which has a consider- ture) the data of other sources? Previous work on data integration
able financial cost and takes many years to initiate and accomplish.did not consider these questions, since the central authority’s global
overview made them non-issues. Autonomous registration on the
other hand is impossible if we do not answer them. We detail next

Modern Internet communities need to integrate and query struc-
tured information. Employing current information integration in-

Permission to copy without fee all or part of this material iarged pro- the issues community members need assistance with.

vided that the copies are not made or distributed for direstroercial ad- Contribution to application query results. A source owner
vantage, the VLDB copyright notice and the title of the poétion and its registering a new source desires her data to be visible to relevant
date appear, and notice is given that copying is by permigsiohe Very client applications that issue queries against the community’s global
Large Data Base Endowment. To copy otherwise, or to repyhitishost schema, which we will callarget schemgain keeping with the ter-

on servers or to redistribute to lists, requires a fee argplecial permission . ) :
from the publisher, ACM. minology of IBM’s Clio system [28, 18]. For example, a book
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be visible to queries issued by a popular brokerage application.

An overkill (if at all possible) way to ensure visibility is to force
the source owner to map some data into every attribute of the com-
munity’s target schema relevant to the application query. For in-
stance, the application query may retrieve only books with high . RIDE ; RIDE Reartrations
ratings in their reviews. If the retailer can publish reviews along
with its ads, her registration will be “self-sufficient”, in the sense
that her books will be visible to th_e appligation query regardless of Figure 1: Community-Based Integration Architecture
the contents of other sources registered in the community.

This solution may be simply impossible because a source owner that although the initiator might be a consortium agreeing on a
may not possess data for some parts of the community schema. OQueommon schema this is not necessary for starting a community.
retailer may have no reviews to offer, in which case the visibility of Most commonly we envision the emergence of ad hoc communities
her books depends on the existence of some other source providingvhose initiator (possibly an individual) decides the schema without
pertinent reviews that “join” with her ads. In this case, the retailer Seeking source owner approval. The community will attract more
would like to know that her registration is no longer self-sufficient, and more members as it gains in popularity in the same way that
being instead complementary to that of the review source. online communities like blogs grow. After the initiation of the

Trading off self-reliance for cleaning cost savingsEven when community, application developers register within the system the
a source owner is in a position to map data into all parts of the com- queries (over the target schema) that their applications will issue
munity schema that are relevant to the application query, it may be during operation. To register a new source into the community, its
economically unwise to do so, due to the prohibitive clean-up and owner chooses an application query to which she wants the source
reformatting cost. In such cases, the source owner may willingly to contribute, as well as the desired self-reliance level (from a pre-
give up self-sufficiency, settling for a “complementary” registra- defined list of options detailed below). She then initiates a registra-
tion that relies on other, trusted sources. In this case, the registra-tion process with RIDE?
tion tool would best serve the owner by labeling the publishing of ~ RIDE's visual interface allows owners to perform such actions
appropriate data attributes as optional and identifying the partner as drawing arrows between their source schema attributes and the
source(s) that could provide them instead. Looking at the options, target schema attributes they want to provide, and also depicting
the owner can then decide herself which trade-off between self- selection and join conditions to restrict the publishing. RIDE in-
reliance and cleaning cost savings she wants to take. teractively suggests what target schema attributes to provide and

In the running example, assume that the retailer collects third- Which selection conditions or join conditions to employ in order to
party reviews in the form of text blurbs. Cleaning them up for pub- reach the desired self-reliance level. The list of suggestions adapts
lication (spell-checking, language censorship, etc.) and formatting to the owner's action at each interaction step, to include only at-
them to extract certain measures required by the community’s tar- tributes that are essential and that the owner is willing to provide.
get schema (such as star ratings and a representative quote) is an There are many consistent registrations that feature the same
expensive process requiring human involvement. If the registra- self-reliance level. The source owner may prefer some of them
tion tool notifies the retailer of another trusted source that provides over others, as she trades off cleaning cost savings (by restricting
reviews, she may choose to rely on this source and save the effort. the published data to only the minimum relevant to a query) for

Inconsistency avoidanceTo reach their full potential, communi- ~ generality of the registration (by publishing more than needed to
ty-based integration systems should enable the combination of datacontribute to a query, in order to contribute to others as well). RIDE
provided by distinct sources into a single target tuple, using stan- assists the source owner by laying out the available options.
dard integrity constraints. For instance, the book dimensions (pro- . .
vided by the publisher’'s source) are associated with the book’s 1.1 Contributions
price (given by the retailer) by virtue of both data items referring  Inconsistency and self-reliance levelsTo formalize the pro-
to the same ISBN declared as a key on the target schema. Targevided functionality, we characterize ttself-reliance levelof a
constraints may however lead to inconsistency, for instance if pub- given source registration to a given query, as detailed in Section 5.3.
lisher and retailer list different authors for the same ISBN. Since Higher levels require publishing more data fields, which yields less
the publisher and retailer do not know each other’s registrations, reliance on what other sources provide, but in exchange may in-
inconsistencies are even more likely than in centralized integration volve more cleaning effort. With respect to an application query
scenarios. It is therefore imperative for a registration tool to iden- Q formulated against the target schema, a registrafi@an be (in
tify registrations leading to inconsistency and issue warnings. decreasing order of self-reliance):

The RIDE tool. To facilitate autonomous source registration, we . ) ) )
propose Registration gulDE (RIDE), a visual tool that extends the o self sufficienif it contnbutes_ answers t@ even if all other
classic schema mapping interface (as encountered in IBM Clio [28, sources leave the community; ,

18], MS BizTalk Server [5] and Stylus Studio [7]) with a suggestion e complementaryf it contributes answers t@, but only in
component that guides the source owner in the registration of her cooperation with the registrations of some other sources from
source. The suggestions assist the source owner to negotiate the the community;

trade-off between two competing requirements: maximizing self-  ® unusabléfitis none of the above.

reliance for making her data visible to existing application queries, 154 hoc communities may also evolve. For instance, a community
versus minimizing the data cleaning and reformatting cost. In ad- may have its target schema changed or it might be coalesced with
dition, RIDE helps the owner avoid inconsistency of her data with another ad hoc community on the same topic. For a discussion
respect to data in other sources. on how a community-based integration system can support such
The resulting architecture of a community-based integration sys- €volution aspects the reader is referred to Appendix D.1. _
tem enabled by RIDE is shown in Figure 1. In such systems the "IN this paper, we do not address the run-time aspects of the inte-

community initiator starts by designing the target schema. Note dration system, such as the problem of answering queries over the
target schema once the registrations are given.
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FROM ~ Book, Book_Price = Figure 4: Barnes & Noble Registration
WHERE Book.ISBN = Book_Price.ISBN AND Book.author = “Ullman”
Figure 3: Application query and assertions has been addressed extensively in related work and
is beyond the scope of our paper (see related work in Section 7).
Paper outline. We first present RIDE informally, describing our

e potentialinconsistency, which may occur fsomecontents running example in Section 2, traditional schema mapping GUIs
of the source databases, and in Section 3, and a sample interaction highlighting RIDE’s func-

« definiteinconsistency, which will occur faall source databases. tionality in Section 4. Section 5 formally defines the levels of self-
reliance and inconsistency. The algorithms underlying RIDE and
Potential inconsistency is more of a conservative property checkedheir experimental evaluation are described in Section 6. We dis-
at registration time, since whether it will actually occur at run-time  cuss related work in Section 7 and conclude in Section 8.
will depend on the data in the source databases. Definite inconsis-
tency on the other hand is a serious problem, since it will always 2. RUNNING EXAMPLE
appear at run-time regardless of the source data. Although definite
inconsistencies would not exist in an ideal world, human errors in
the registration process may introduce them. RIDE detects them
and can either reject the registration or simply issue a warning.
Guidance algorithms. We implement algorithms that at each
interaction step, (a) check inconsistency, (b) find the current self-
reliance level and (c) compute suggestions on how to extend the
registration to one with the desired self-reliance. We report on our
experimental evaluation which shows the response times of these . )
correspond to (composite) primary keys.

algorithms to be well within the needs of an interactive visual tool. .
. X . Owners of sources with book data that want to make these data
Guaranteed inconsistency avoidancerl he tool guarantees that, . L L
available to Bibliophilia’s client applications can use RIDE to reg-

by following its suggestions, the desired self-reliance level can be .

reached without inconsistency. If the owner chooses not to follow ister their sources within the system. In the following we use two
Y- sources; the bookstogarnes & Noble (B&N)and the publisher

thho(:i/vt(t)r?ilssirfggr?sigf:: acr;jnccrgr?]tgzng?consstency, RIDE explalnsPrentice Hall (PH) with schemas shown in Figure 2a. The Barnes
y ) & Noble database stores ISBN, title and author of hardcover books

Data-independent guaranteesThe self-reliance level of areg- . . - .
) ) ; S - in theHardcovers relation and prices of books for different classes
istration can hold with respect to all possible instantiations of the . .
of customers (i.e. non-members, gold members etc.) ifPtiee

source databases, or only to the current instance of the sources. We_, "~ S . . .
. - felation. Similarly, relatioBook_Info of Prentice Hall contains the
call these the data-independent, respectively data-dependent flas . o S
. . . ISBN, title, binding and suggested retail price of books.
vors of self-reliance guarantees. Both flavors come with their own - . ) .
. . Each source owner initiates the interaction with RIDE by select-
benefits and drawbacks: Data-dependent guarantees need to be re-

evaluated upon updates of the underlying data sources and hence'9 &N application query to which she wants to contribute. In our

the source owner will be continuously and annoyingly alerted for éxample this is the query retrieving title and format of books by Ull-

changes of the guarantees pertaining to her registration. Data—indep[nan together with the regular and discounted price at which they

endent quarantees mav be 0o strond. in the sense that they mag" € sold. This query is shown in Figure 3. Note that in general ap-
9 1ees may 9 : y )f)lication queries can be parameterized (e.g. the author name could
alert for potential violations that are due to source instances where

; L . be a parameter). However a non-parameterized query allows us to
common sense about the domain may indicate that these instances - . X
. ; - Showcase all features of RIDE. For a discussion on RIDE’s sugges-

are impossible or improbable to happen. tions for parameterized queries, please refer to Appendix A

In this work, we aim for a balance between data dependence and ’ '
independence. To this end, we consider guarantees that hold over
restr?cted class of source databases. As Igng as source updates leave- MAPPING INTERFACES
the sources within the same class, consistency and self-reliance RIDE'’s front end resembles graphical interfaces of schema map-
levels are preserved and need not be re-checked. The classes anging tools, such as IBM Clio [28, 18], MS BizTalk Server [5] and
specified to consist of those databases that satisfy integrity con-Stylus Studio [7]. These allow users to create mappings between
straints and assertions. Integrity constraints are declared by thetwo schemas by drawing lines between their respective attributes.
source owner, while assertions are constraints generated by RIDESimilarly, RIDE enables source owners to register their sources by
and presented as questions to the owner, who may confirm or refutecreating one or more mappings between their source schema and
them. The self-reliance level and consistency of a registration are the target schema solely through visual actions. Figure 4 depicts a
thus guaranteed as long as the integrity constraints and assertionsnapping of the B&N source created through RIDE.
hold. Efficient checking that an update violates integrity constraints ~ Owners specify mappings via the following actions:

We also formalize two notions of inconsistency, namely

We demonstrate RIDE using as our running example the creation
of “Bibliophilia”; an application for the bibliophiles’ community
that integrates book information from several sources. The com-
munity’s target schemd, shown in Figure 2b consists of two rela-
tionsBook andBook_Price, shown in italics. RelatioBook con-
tains general information about a book, whBeok_Price stores
the regular and the discounted price (i.e., price for “Bibliophilia”
members) at which sellers provide the book. Underlined attributes



Drawing projection arrowsfrom a source attribute to a target at- answer to the query. To assist the owner, RIDE computes all such
tribute, to specify where the latter gets its value from. For example, subsets and displays them in the gray pane to the right. Each sub-
in Figure 4, the price for gold members in the B&N database is set is depicted as a vertical line pointing to the attributes in the set.
exported as the discounted price in Bibliophilia’s database. Required attributes are marked in bold face. However the owner

Entering(source / target) selection conditiongxt to attributes. can do more than simply see all available options. By clicking on
A source selection condition restricts the exported source data tothe subset of attributes she is willing to provide, she can instruct
those satisfying the condition. For example, the condition “class = RIDE to generate only suggestions pertaining to this set, avoiding
gold members” in Figure 4 limits the exported prices to only those thus suggestions of no interest to her. Finally, apart from guiding
for gold members. A target selection condition allows the source the search, she can also use the right pane to get a quick overview
owner to enter information in the target database that is not stored of which required attributes have yet to be provided.
explicitly in the source database. For instance, B&N’'s owner in  Inthe running example, due to the small number of sources, there
Figure 4 specified through target selection conditions that her booksis only one such subset. The right panel shows which required at-
are hardcovers and that her bookstore’s name is “B&N”. tributes have to be provided, as seen in all snapshots of Figure 5.

Drawing (source / target) join linedbetween pairs of source /
target attributes. Join lines have similar semantics to selection con- Once the owner selects a subset of required attributes, she can
ditions with the only difference that they represent equalities be- see the different possible ways to provide a particular attribute by
tween two attributes instead of equalities between an attribute andclicking on it. RIDE marks the selected attribute with a green flag
a constant. For instance, B&N'’s source owner in Figure 4 employs to its left and shows the suggestions by shading interface compo-
a source join line between the ISBNs to export only pairs of book nents. Suggestions are replicated in text on the bottom status bar.
and price tuples that join on the ISBN. Additionally, she uses a tar-
getjoin line to declare that B&N sells books to non-members atthe  Directly providing attributes. The easiest way to provide a
suggested retail price, regardless of what this price may be. required attribute is by directly mapping to it values from some

The owner can always extend her registration with additional source attribute (through a projection arrow) or assigning to it some
mappings. Each mapping appears as a vertical tab on the interfaceconstant value (i.e. entering a target selection condition). RIDE

We formalize the semantics of mappings in Section 5.1. shows these suggestions by shading the projection arrow box and
selection condition box next to the attribute, respectively.
4. RIDE INTERACTION For example, Snapshot 1.1 shows that to create a self-sufficient

registration w.r.t. the query of Figure 3, B&N has to provi8eok.

In this section we informally present both the suggestion and ISBN either through a projection arrow or a selection condition.

the inconsistency component of RIDE via sample interaction ses-
sions. The formal definition of the involved concepts (such as self-

reliance levels and inconsistency) can be found in Section 5. Trading off cleaning cost savings versus generalityDirectly

We first provide key principles and characteristics of the RIDE providing an attribute through a projection arrow does not always
suffice to acquire the desired degree of self-reliance to a qery

interface and then describe the suggestions it provides, esc:alating[he source may only contribute & if it contains tuples with spe-
to suggestions that are hard to discover without RIDE’s assistance.ciﬁc values asked by the query (books by Ullman in our running

Starting from an initially member-less community, we first show example). In this case, RIDE offers the source owner two options,

how the B&N source’s owner interacts with the system to obtain a S . .
. ) . . each achieving a different trade-off between cleaning cost and gen-
self-sufficient registration w.r.t. the query of Figure 3. Then, as- . : : -
erality of the registration mapping.

suming B&N joined the system, we present an interaction session . ; -
Source selectionslf the owner wishes to minimize cleanup cost,

led by the owner of Prentice Hall, who wants to create a comple- ) . X
X . A , .~ she can restrict the exported tuples to only those with the particular
mentary registration w.r.t. the application query and B&N'’s regis- value asked by). RIDE will suggest the corresponding source
tration. Figures 5 and 6 depict the respective screenshots. : Al
selection option.

4.1 Suggestion Component Intra-source assertions. However, if for the sake of contribut-
ing to several queries the owner prefers to export more tuples than
those relevant t@), she may choose to not include the selection
condition in her mapping. In that case, RIDE will ask her if she be-
lieves that the exported tuples will always include at least one tuple
relevant toQ. If she answers positively, RIDE records the answer
and takes it into account when generating subsequent suggestions.

In designing this dialog, we chose a solution according to which
RIDE’s questions are expressed in terms of the source schema (which
the owner understands best) and have a standard graphical rep-

For example, if the integration system already contained two resentation: RIDE presents the owner with boolean_querles over
her own source schema. Such queries are cassertions and

sources, one providing Ullman book information and the other Ull- are displayed by RIDE in dialog boxes using the classical visual

man book prices, then the new source could become complemen- ; >
tary w.r.t. the query of Figure 3 by either providing book prices paradigm developed for Query-By-Example interfaces such as the

. . . query builders of MS Access and MS SQL Server [6].
exported by the first source or book information sold by the second. For example, consider Snapshot 1.2 showing the suggestions for

Using RIDE the source owner can achieve the following:

Focusing on attribute subsets.To contribute to a querg the
source has to provide subsetof the target attributes that are-
quired by @; i.e. attributes that are selected, projected or joined
by Q. In general, the source owner has several options between
different subsets of required attributes that she can provide to gain
the desired self-reliance level; she could provide all attributes for
a self-sufficient registration, or various attribute subsets to achieve
complementarity with various sources.

Without assistance the task of finding all subsets of required at- 3please note that currently RIDE only suggests the target of arrows

tributes that lead to the desired self-reliance level is infeasible. It (i.e. which target attribute to provide through an arrow) but not
requires understanding the registrations of all sources and figuringheir origin (i.e. where to map it from) as it is not aware of the

out how data from existing sources can be merged with each othersemantics of the source and target schemas. However it could be
and complemented with data from the current source to form an coupled with a matching tool to also suggest arrow sources.



Snapshot 1.1:

Query: Q ¥ \ Desired Level: Self Sufficient ¥

\ Current Level: Unusable

G: Book Portal

Choose set of

The source owner faces a similar trade-off when the query filters
its input tuples using joins instead of selections. Again, RIDE gen-

o SI:HBZr"es & Noble o attribs to provide|  €rates two kinds of suggestions: including the join for aggressive
Holsen [ o | »fisen o |7Eo%k minimization of cleanup cost, versus dropping it but asserting the
e o |Hitle o | > [title o :% existence of tuples that satisfy the join condition.
O ~author O g B o | format For example, assume that B&N’s owner accepts the assertion of
o e, o | > Lsug_retail o :::';h:’e'ta" Snapshot 1.2 and continues by entering selection conditions and
O fclass o Book_Price 0 Book Price projection arrows. When she draws a projection arrow into
O price O g ° [ 1sBN Book_Price.ISBN, RIDE knowing that the query asks for books
! > |-reg_price o —seller and correspondingrices (a) suggests a source join and (b) shows
i > -dis_price ° ::.eis_‘,frri':: via an assertion (in Snapshot 1.3) that, in order for Bréce tuples
°

Suggestions for Book.ISBN: @ Map from source or @ Enter constant to contribute to the query, the source database needs to contain an
Snapshot 1.2: Ullman book in tableHardcovers that joins onlISBN with aPrice
p{ Si: Barnes & Noble | G: Book Portal ;:thtr:%ssetge;rzfﬂde tuple. Notice hqw the assertion from S.napshot 1.2 isused ip gener-
H . 7ggcﬁove : E;«;%N o O Book ating the assertion of Sn_apshot 1.3 to indicate that, to contribute to
4 Ciite = ; 2 Ltitle o [ 1sBN the query, the join must involuéliman books.
o Lauthor [V i > [format =|hardcoveq O -title
D\\’g Sl oo [t The expressiveness of the registration mappings and the intri-
—sug_retail cate ways in which data across sources can interact with each other
sﬂ,.za,:,:j:eimble Do you expect this query to mBook Price || via the target constraints give rise to subtle ways of contributing to
IEISBN emply answer? o the application query, which are hard to discover by an unassisted
title Yes —reg_price 4 [ owner lacking an overview over the other registrations.
author={Uliman —dis_price

Suggestions for Book.author: @ Enter constant in source or @ Accept a:

ssertion

Data merging. Data merging allows the source owner to mini-
mize the cleanup cost (at the expense of self-reliance) by providing

snapshot 1.3: , only part of the required attributes and “borrowing” the remain-
b  S.: Barnes & Noble | G: Book Portal (a:tht:i(t))ssetcs)e;r‘t))t/i 4| ing part from other sources. This becomes possible whenever both
i o 'Fgg’,\f""e“ : “{i‘;‘;kN o — the owner’s source and the complementary source export partially
10 |title D——s> |title o -ISBN specified tuples into the same target table, sharing the key value.
|0 -author O~ 3 format  jrardcoet 0 e For example, recalling that the PH source schema does not carry
:O FI’fS'CBeN i > Lsug_retail o -author author information, no registration of the PH source can become
0 |class =[goid meg\ gsookjrfce —OHELfEE self-sufficient for the query in our running example. However, the
o Loprice DY FISBN - L] Qe Pooos. _| author value will be automatically “borrowed” from B&N for all
N> |reg_price o |seller ] PH and B&N books sharing the san®BN value. RIDE will in
: - dis_price o ::I?g—:r’if: this case suggest to the PH owner to provide Book.ISBN at-
S,: Barnes & Noble _ - tribute on the way to a registration complementary to B&N.
Hardcovers have & non-ampty anower?
% - Indirectly providi_ng attributt_as. So fa_r we have seen cases
author=[Uliman where the source directly provides a required target attribute through
Fl’rsig% a projection arrow or selection condition. However, a source owner
@Ess = may be able to provide an attribute valadirectly by operating on
price a differenttarget attribute. RIDE identifies such non-obvious op-

Suggestions for Book_Price.ISBN: @ Create join in the source or @ Accept assertion portunities and makes the appropriate suggestions. The following
Snapshot 1.4: example illustrates a case in which an attribute can be provided in-
®  s,:Barnes & Noble | G: Book Portal choose setof | directly by the PH source, while the others are borrowed from B&N
H ofHardcovers i # Book attribs to provide| 5 achieve complementarity.
o ISBN ——>> |-ISBN o [l Book , .
= | s Beee O 5 | title o [ ISBN Assume that B&N's owner accepted_ the assertion of Snapshc_Jt
o Lauthor D\\g | format  =[nardcove] O ~title 1.3 and subsequently extended her registration to the one shown in
Price = I ° [ format Snapshot 1.4. Recall that this is the registration we saw in Figure 4,
ISBN ; - L i i i , i g in-
0 Lonss -goimdo & Book._Price sug_retail which does_ not provide B&N'’s regular p_rlce_for books,_ stating in
o Loprice ! - ISBN o [l Book_Price stead that it equals the suggested retail price. Consider now the
D\g :%ric; BN {0 B interaction step in the registration of PH, shown in Snapshot 2.1
: L dis_price o Ireg_price - | Of Figure 6. Based on the equality of prices expressed by B&N'’s
! L dis_price

Figure 5: Sample interaction for the B & N registration

Book.author after the source ownemanuallymapped source at-
tributes intoISBN, title and author and entered a constant into

format. RIDE uses the information that the query is asking for

books by Ullman and notifies the user tlzatthor is not yet pro-

mapping, RIDE shows that PH can become complementary w.r.t.
the query of Figure 3 if it merges its data with the B&N data by
providing the regular price either directly or indirectly by instead
providing attributeBook.sug_retail, as well as the keBook.ISBN
(needed for merging). The label “B&N” next tug_retail shows
that the indirect provision is facilitated through B&N’s mapping.

vided. She can provide it either by limiting the exported hardcovers
only to those by Ullman (through a source selection condition) or
by accepting the assertion (generated by RIDE) that her source
contains at least one Ullman hardcover.

Inter-source assertions: supporting data mergingWhile data
merging requires that both sources provide values for the key at-
tributes, this is not sufficient. The sources must also provide tu-



ples sharing the key value. Upon identifying data merging oppor-
tunities, RIDE therefore asks the owner (via an assertion dialog
box), whether her source has tuples that join with those of the other
source. When designing inter-source assertions, the challenge was
to pose such questions in terms of the only schemas a source owner
may be expected to be familiar with: her own source schema and
the target schema. As a result, the part of the assertion referring
to the other source schema is shown in terms of the other source’s
contribution to the target schema.

Example: Assume that the PH’s owner follows RIDE’s sugges-
tions in Snapshot 2.1 and provides the ISBN and suggested retail
prices of books. In order to provide the regular price of some book
to the query, she has to make sure that she exports at least one of
Ullman’s hardcover books sold by B&N. Therefore RIDE asks her
if she wants to make the assertion shown in Snapshot 2.2.

4.2 Inconsistency Component

After each user action, RIDE checks the registration for incon-
sistency. If a potential (respectively, definite) inconsistency is de-
tected, it marks with a “!” (resp. “X") the attribute for which two
conflicting values may be provided (respectively in the case of def-
inite inconsistency, are provided) and explains graphically the root
of the inconsistency in a gray box at the bottom of the screen. The
following two examples illustrate cases of potential and definite in-
consistency, respectively, and RIDE's reaction.

Continuing our running example, assume that PH’s owner ac-
cepts the assertion on Snapshot 2.2 and thus creates a complemen-
tary registration. If subsequently she extends the mapping to also
export book titles, this creates a potential inconsistency, since B&N
and Prentice Hall could provide different titles for the same book.
The gray box in Snapshot 2.3 visually depicts this conflict.

While potential inconsistency is quite common, definite inconsis-
tency usually results from human error as the next example shows.

Example: Assume that at some point in the future PH decides to
store only paperbacks in its relatiodBook_Info and provides this
information to the integration system through a target selection
condition onformat, resulting in the registration shown in Snap-
shot 2.4. In this case the system becomes definitely inconsistent,
since PH provides a book in common with B&N (due to the ac-
cepted assertion of Snapshot 2.2) and therefore this book has to be
both paperback and hardcover. RIDE notifies the user by explain-
ing the inconsistency as shown at the bottom of the Snapshot.

4.3 RIDE’s Properties

Our design of RIDE was guided by the following desiderata:

Soundness of suggestionRIDE only makes suggestions that
areguaranteedo lead to registrations of the desired self-reliance.

Suggestions relevant to owner’s focusRIDE only makes sug-
gestions that are relevant to the owner by allowing her to guide the
search in several ways: First, she chooses a subset of attributes to
provide and thus avoids seeing suggestions on attributes that she
cannot or is unwilling to provide. Second, she specifies source
constraints or accepts assertions (proposed pro-actively by RIDE)
about her data. Both of these restrict the structure of the source
database and are exploited by RIDE to skip suggestions and warn-
ings if they do not apply to data satisfying the restrictions.

Adaptive response to user’s actionsRIDE does not pre-compute
all suggestions beforehand but instead recomputes them adaptively
after each user action. It does so even when the user ignores its
suggestions and carries out a non-suggested action instead.

5. FORMAL SPECIFICATIONS
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Figure 6: Sample interaction for the Prentice Hall registration



In this section we describe the framework of community-based
integration and provide formal definitions for the RIDE concepts U([1, T, A, Iz, P) : *IH‘T?CO?QS(LII ’157 A), 12”96(1% C. p),
described in Section 4. These definitions will be utilized in the 1= 2, &= gotd-member

description of the algorithms in Section 6. V(Ii,T, A, I, DP) : —Book(I1, T, F, A, SR), Book_Price(Is, S, RP, DP),

F = ‘hardcover’,SR = RP,S = ‘B&N’

5.1 Community-based Integration
Community-based integration systems should allow a new source  Assertions.Since assertions are boolean queries, the satisfaction

to register without having to modify the registrations of other sources0f an intra-source assertiof by a source databadeB (denoted
This requirement affects our choice of registration formalism. In DB [= A) means that evaluates to true oved B. Satisfaction
particular, it precludes the use of the Global As View (GAV) ap- ©f an inter-source assertiohby source databasésB,, DB (de-
proach to data integration, employed by commercial technology, notedDB1, DB: = A) is defined in the expected way.
because in GAV each target relation is described as a viewativer Queries and their Certain Answers. Applications retrieve in-
sources, which has to be revised whenever a new source joins. In-tegrated data by issuing queries against the target schema. In this
stead we have to choose between the other two main integration apPaper, we restrict attention to queries expressed as unions of con-

proaches, namely Local As View (LAV) or Global-Local-As-View junctive queries with equalities and parameters. A parameterized
query@ models the set of all non-parameterized queries in which

(GLAV). We use GLAV [19, 23, 26, 28] for its expressiveness. ; : viicT
Q's parameters are replaced by arbitrary constants. As is typical in

GLAV, which generalizes both GAV and LAV, allows registrations

that gather data from multiple source relations into a single target GLAV-based integration systems, we adopt as our query answering
tuple; a feature not supported by LAV. For a thorough discussion semantics the definition of certain answers to a query following the

on the different approaches in data integration, see [23, 25].
Source and Target Schemas and corresponding Constraints.

numerous works surveyed in [25, 23].

Starting from a set of source instancBs3 = DBy, ..., DB,

A community-based integration system integrates a set of sourcesatisfying the source constraints, the set of corresponding GLAV

(local) databases with source sche§asSs, ..., S, through a vir-
tual target (global) database over target schémBoth the source

registrations? = Ry, ..., R,, does not define singletarget instance.
Instead there is in general a $8irgets (D B) of possible target

and target schemas are relational and may include integrity con-instances that satisfy the registrations and the target consttaints

straints, called source and target constraints, respectively.

Owners formulate constraints from the class of embedded de-

Targetsp(DB) = {G| N, (DB;,G) E Ri AG | Ag}.
The certain answers to a quey (from now on referred to as

pendencies, which are expressive enough to capture many commor$imply “answers” to()) are the common answers that we would
integrity constraints, such as primary keys (PKs) and foreign keys g€t if we executed) against each possible target:

(FKs), inclusion, multi-valued, join dependencies and beyond [9].
In the following, As, denotes the set of all source constraints over
source schem&;. Similarly Ag represents the set of target con-
straints. A database instanf£eB; over schemas, satisfies the set

of constraintsAs,, denoted adD B; = Ag, if it satisfies all con-
straints in the set.

Registrations and Mapping Constraints. The correspondence
between a source scherfaand the schemg is defined through
the source registratio®®;. According to GLAV, a source regis-
tration R; is a set of mapping constraints (also called mappings).
Each mapping constraint is of the forth C V, whereU, V are
conjunctive queries with equalitie€’(2™). These capture Select

Project Join SQL queries augmented by a WHERE clause consist- X)

ing of equality conditions between attributes and constabitd/

are formulated against the source sche&nand the target schema
g, respectively. Intuitively, these constraints specify that, given
a source databasP B; and a target database, the source data
identified by runnind’ over D B;, is visible among the target data
identified by running/ overG: U(DB;) C V(G). We say then
that the pai D B;, G) satisfies the mapping constraint, denoted as
(DB;, @) = (U C V). Note that there are no containment state-

ments in the opposite direction, because a local source owner can
not know what information the other sources contribute and there-
fore cannot presume to contribute all target data. This is consistent

with the widely acceptedpen world assumptiof23, 25].
Every mapping visually specified in RIDE is interpreted as a

CertQr(DB) =

N

GeTargetsg(DB)

Q(G).

When there are no possible targets, we consider the set of certain
answers as being empty.

Assume that B&N is the only source registered in the system as
shown in Figure 4 and its databadeB; has general and mem-
ber price information for an Ullman book stored in the follow-
ing two tuples:Hardcovers(*5”, “DB Systems”, “Ulliman”) and
Price("5”, “gold members”, “ $80"). Any target instance that sat-
isfies the source’s registration will contain at least two tuples of
the form:  Book(“5”, “DB Systems”, “hardcover”, “Uliman”,
Book_Price("5”, “B&N", X, “$80"). Since the registra-
tion only specifies that the regular price of the book equals its sug-
gested retail price without providing the price, the valueXowill
differ among the possible targets but within any single target it will
have the same value in both tuples. TherefSireloes not behave
simply as a null. For instance, a query retrieving all books sold by
B&N at the suggested retail price returns Ullman’s book regardless
of the target instance (i.e. regardless of the specific valueXfipr
Ullman’s book is therefore among the certain answers.

5.2 Inconsistency

Since sources register independently, their combined data could
violate the target constraints. To help source owners avoid such
cases, RIDE issues warnings on two levels of inconsistency, de-

mapping constraint of the above form. For each projection arrow pending on whether it will always occur regardless of the data in

between source attribugeand target attributb, attributesa andb
appear in the projection lists @& andV, respectively and in the

the source database (definite inconsistency) or it will only appear if
suitable data are present in the sources (potential inconsistency).

same position. Moreover each source (target) join corresponds to a

join in U (respectivelyl”) and each source (target) selection con-
dition corresponds to a equality condition with that constarif’ in
(V). For instance, B&N ’s mapping shown in Figure 4 corresponds
to the mapping constraif C V' with U, V' given below:

Potential Inconsistency. The integration system is in a poten-
tially inconsistent state ifor at least one instancef the source
databases that satisfy the source integrity constraints and owner-
accepted assertions, no instance over the target schema satisfies



both the mapping and target constraints. both sources is combined to provide a query result. Since both
Consider the integration system consistingrofources with sources provide information about the same book Badk.ISBN
schemasSy, ..., Sn, database® B;, ..., DB, and corresponding is a primary key (PK), the author provided by B&N is merged with
registrationsRy, ..., R,,. Let the set of all accepted intra- and inter-  the suggested retail price exported by PH to give a sirgpek
source assertions b&and denote wittD B |= A the fact that they tuple. Furthermore, since B&N sells the book normally at the sug-
are satisfied by the collection of source databases. gested retail price, this merging also defines a value for the regular
price at which B&N sells the book. In this way PH’s registration
creates a query answer that would not be there in its absence (i.e.
it contributes to the answer of the query) but it relies on the pres-
ence of B&N to do so (i.e. it is not Self Sufficient). Hence it is
Complementary w.r.t. the query and B&N's registration.

Formally, the integration system is potentially inconsistent iff
iDBs,...,DB,, overSy, ..., Sy, S.t.
DB; = Ag, foralll <i<n,DB[E A, and
Targetsg,,...r,(DB1,....,DB,) =0

Definite Inconsistency.The integration system is in a definitely ) _
inconsistent state ffor any datain the registered sources satisfy- Formally, Ry, is Complementaryv.r.t. Q and R iff
ing the integrity constraints and assertions, there does not exist an itis not Self Sufficient w.r.t/z and

instance over the target schema that satisfies both the mapping and VDB, ..., DByi1 OVersy, 'Z:;;t‘EPH inira
target constraints. st.DB; = As; andDB = AU A" U A"
CertQRl:'-'aRnaRn+l (DBh ceey DB’M DB?H—l) ;2

Formally, the integration system is definitely inconsistent iff CertQr,,...r,(DB1, ..., DBy).
VDB, ..., DB, overSy, ...,Sn
if DB; = Ag, foralll <i<nandDB A, then Unusable.Finally, a source registration that is neither self-suffi-
Targetsr,,...r,(DB1,..., DB,) =0 cient nor complementary is calléthusable

Examples of both inconsistency kinds were given in Section 4.2. 6. ALGORITHMS

5.3 Levels of Self-Reliance RIDE’s backend is invoked after each user action. It takes as in-
put the integration system’s parameters (registrations, source/target
constraints and assertions) and the application query and carries
out the following tasks: a) it checks for definite and potential
consistencyb) it computes theurrent self-reliancedevel of the
source registration and c) it makesggestion®n how to achieve

the desired degree of self-reliance. In this section we describe the
algorithms used to solve each of these problems.

The challenge lies in the data-independent nature of the checked
properties, which calls for a way to reason about the properties
of all instances that satisfy a set of constraints and assertions. It
is of course infeasible to check Self Sufficiency by enumerating
the infinitely many source databases and the infinitely many pos-
sible target databases. RIDE addresses this issue by building a
single canonically constructed source instar€enSource and a
corresponding possible target instan€en Target. The instance
CanSource is over schemb), S;, and consists of the disjoint union
of the canonical instances for each source. As proven by the the-
orems below, it suffices to check the consistency and self-reliance
status on the canonical instances to ensure that they hold in general.

We start by presenting the construction of the canonical source

We formally define the levels of self-reliance of a registration
w.r.t. an application query.

Assume that? = Ri,..., R, is the set of registrations of the
existing sources in the system aRg ;1 is a registration of a new
n + 1-st source. Let the intra-source assertions of sourgel be
denoted byA‘"{7* and the inter-source assertions involving source
n+ 1 be At$". As above, the collection of all assertions pertain-
ing to sourced throughn is denotedA.

Self Sufficient. The source registratioR,, 1 is Self Sufficient
w.rt. an application querg) if the n + 1-st source provides an-
swers toQ) even if the other registered sources leave the system.

For instance, if B&N's owner extended the registration in Snap-
shot 1.4 of Figure 5 by providing an actual value for the regular
price through a projection arrow fronfPrice.price, then B&N's
registration would be self-sufficient w.r.t. the query of Figure 3,
since it would provide all attributes required by the query, thus
contributing on its own at least one tuple to the query’s certain

answet and target instances, showing the decision procedures for inconsis-
Formally, R, 1 is Self Sufficientv.r.t. Q iff tency and self-reliance level next. We emphasize that all of these

VDBpi1 0verS, 1 8.t. DBryy = As, ., and p_rocedures are heavily based on evalua_ting queries on small (toy-

DB, 11 = Aintre: CertQr,, ., (DBn+1) # 0. sized) databases computed from the available constraints and asser-

tions, which is what ensures their good response times in practice.

Complementary. Consider now a registration that is not Self Canonical source and target instancesRIDE builds the canon-
Sufficient because the query answer will be empty if the other sourceisal instances using the classic@haseprocedure [9]. While we
leave the system. If however data from the corresponding sourcedo not describe the well-known chase in detail here, we show a
n+1 can be combined with data from other sources in the system to lesser known algorithm for its implementation [18, 15]: it is based
create new answers to the query (which are not already contributedentirely on evaluating queries and therefore optimizable using the
by the other sources without+ 1's help), we refer to this regis-  classical techniques employed in relational query optimizers, such
tration asComplementaryComplementarity is usually enabled by  as pushing selections into joins, join reordering, etc. [15].

primary key constraints on the target schema.
algorithm Chase (by query evaluation)

, . . . . . input: instancel, set of constraints\
For example, PH's registration in Snapshot 2.3 of Figure 6 iS  oyput: instances obtained by modifying’ to satisfyA

Complementary w.r.t. the query of our running example and B&N'’s begin

registration of Snapshot 1.4 in Figure 5. Indeed PH’s registration ; r{a::at]

contributes to the answer of the query only in the presence of the 5 P for each constraint C V) € A and each tuple € U (.J) — V(.J)
B&N registration. Note how partial book information provided by 4. modify J (by adding the atoms ifr’s body) to ensur¢ € V' (J)
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/

5. until no new facts are added tb
6. return J
end

We show next how the canonical instances are computed using
the chase. Notice that the chase is defined to work exclusively with
constraints of the forn/ C V. While registration mappings ex-
hibit this general form, the key reason enabling the applicability
of the chase to our setting, which contains integrity constraints is
the well-known fact that embedded dependencies (and therefore al
common integrity constraints they express) can be expressed in th
same way [18, 15].

In our running exampldBook.ISBN, shown underlined, is the
primary key (PK) of target relatioBook. This target PK con-
straint can be expressed &rx C Vpr), where:

Upk(I,T1, F1, A1, SRy, T3, Fa, A2, SR2) : —
BOOk([,Tl,FhAl}SRl),BOOk(I,TQ,Fg,Az,SRz)
Ve (I,T,F, A, SR, T, F, A, SR) : —Book(I, T, F, A, SR)

It is easy to see that a target database instagteatisfies this
constraint iff each pair oBook tuples that agree on thkSBN are
identical (which is the usual definition €8BN being the PK).

algorithm mkCanlinst
Input: Set of source namey¥”
Output: A pair of canonical source and target instances
begin
1. I:=the empty instance over combined source and target scighnag S; U G
for each source quer§ appearing in

a mapping constraint or assertion for some sotree /N’

2.

3. add a fresh copy of)’s body (one tuple per query atom) fo

4. J:=Chas€l,U;cn As; UU;en Ri UAg)

5 CanSource = restriction of.J to source relations
CanTarget := restriction ofJ to target relations

6. return (CanSource,CanTarget)

end

Notice that in algorithmmkCanlnst, I is an instance consisting
of a source and a target database pair. drelds to the source
component of data reflecting the non-emptiness of source queries

in mapping constraints and assertions, since we restrict our atten-

tion to source instances satisfying such non-emptiness constraints
In Line 4, the chase with all available constraints has the follow-
ing effect. The chase steps with the source integrity constraints
Uien As; infer all additional facts needed to make the source
component of satisfy the constraints. Chase steps with the map-
ping constraintg J, - R; compute from the source part éfall
tuples that must be exported into the target parf @f order to

further chased with the target constraintg, to obtain a compliant
target instance. The source and target parts of the final chase result
are returned a€'anSource, respectivelyCan Target.

Example: Consider an integration system consisting of the regis-
trations of B&N and Prentice Hall shown in Snapshots 1.4 and 2.4
of Figure 5 and 6 respectively, together with the accepted assertions
shown in the corresponding previous Snapshots (for the B&N reg-
istration RIDE uses only the assertion of Snapshot 1.3 and not the
one of Snapshot 1.2, since the first extends the latter). In this case
we get the canonical source instance depicted in Figure 7. The de-
scription next to each tuple indicates how the tuple was generated.
For example the first tuple in tabléardcovers was introduced due
to the non-emptiness of the left hand side of B&N’'s mapping. If we
assume for now that we have no constraints on the target schema,
the corresponding canonical target instance is shown at the bottom
of the same figure. Color-coding and text explain how each tuple
was created. For example the first tupleBook (colored white)
was created from the identically colored first tuplesiafrdcovers
and Price through the B&N mapping. Values ending with a “*”
are new values created in the target, because they were provided
neither through a projection arrow nor a target selection condition
in the corresponding mapping.

6.1 Deciding Inconsistency

At each interaction step, RIDE’s backend checks for both flavors
of inconsistency. Definite inconsistency is the more vital one to

[pe detected since it will unavoidably lead to inconsistency regard-
dess of the contents of the databases. AlgoritsiDefinconsistent

presented below is guaranteed to detect this inconsistency. Inter-
estingly, potential inconsistency turns out to be undecidable (The-
orem 2 below), so RIDE uses a heuristic test, emitting a warning
upon detection, and possibly failing to detect it. Fortunately, po-
tential inconsistency is the more benign flavor, in the sense that it
is more likely to be a conservative theoretical problem which does
not necessarily have to occur in practice. Indeed, it arises whenever
two owners provide entities into the same table that has a primary
key: one can always populate the source databases to obtain agree-
ment on the PK attributes and disagreement on the others, but this
is not unavoidable. This observation is precisely what RIDE uses
to warn source owners of potential inconsistency.

Definite Inconsistency. An integration system is definitely in-
consistent if for all source instances that satisfy the source con-
straints and assertions the set of possible targets is empty. This
means that for any source instance, the target instance cannot be
created. Looking back at the chase, this can only happen when
the creation ofCan Target causes conflicts. One such conflict can
appear because of target constraints (e.g. PKs) that cause &n equa
ity between two different constants. Interestingly, we can formally
prove (see Theorem 1 below) that this is the only case that can pre-
vent the existence of a target instance, and therefore RIDE detects
Definite Inconsistency by employing the following procedure:

algorithm IsDeflnconsistent
Input: Sourcesl, ..., n
Output: true iff there is definite inconsistency
begin
(CanSource,CanTarget) := mkCanlnst({1, ..., n})
if CanTarget contains an equality between distinct constants
then return true,else returnfalse

end

Example: IfBook.ISBN is a PK, then, since the third and fourth
Book tuples in Figure 7 have the same ISBN, the chase will in-
troduce an equality between ‘hardcover’ and ‘paperback’. This
indicates a definite inconsistency, since a book has to be both pa-

satisfy the registration mapping constraints. These tuples are thenperback and hardcover. Recall that this is the inconsistency that



RIDE explained to the user in Snapshot 2.4 of Figure 6.

The fact that algorithnisDeflnconsistentis a sound and com-
plete decision procedure for definite inconsistency follows from:

THEOREM 1. The registrationsR;, ..., R, lead to definite in-
consistency if and only ifnkCanlinst({1, 2, ..., }) creates an
equality between distinct constants.

Potential Inconsistency. It turns out that there is no algorithm
for deciding potential inconsistency:

THEOREM 2. Potential Inconsistency is undecidable.

The proof (contained in Appendix C) is by reduction from the Post
Correspondence Problem.

Therefore RIDE employs the following best-effort procedure to
zoom in on the most obvious inconsistency causes: whenever tw
mappings provide tuples into the same target ta@hlboth provid-
ing all attributes of the primary key @k, a potential inconsistency

6.3 Computing Suggestions

As described in Section 4, RIDE’s suggestion component oper-
ates in two steps. First, it computes the different sets of attributes
that the current mapping can provide to reach the desired self-
reliance level and shows them on the right pane of the interface.
Then, after the user selects a set and clicks on one of its attributes,
RIDE computes and displays actions that can lead to its provision.

Computing sets of missing attributes.A source can contribute
to an application query in many different ways (which involve pro-
viding different sets of attributes), depending on which data already
in the system it decides to complement (see first example in Sec-
tion 4.1). To compute the different sets of attributes that can be
provided, RIDE starts from the observation that each certain an-
swer tuple corresponds to a match(@é body against the canoni-
cal target instance. Therefore, in order for the currently constlucte

omapping to contribute at least one tupled@s certain answer, it

must generate neWan Target tuples that, together with the tuples
in CanTarget from the other mappings, serve @s match. If

is signaled to the user, who can decide whether she expects heSUch is the case, no new suggestions are needed. Otherwise, RIDE

source to export data with the same key as the partner source, bui

with disagreement on the non-key attributes.

6.2 Deciding Self-Reliance Levels

Self Sufficient. We decide Self Sufficiency using the following
procedure:

algorithm IsSelfSufficient
Input: registrationR,, 11 ; application queryQ
Output: true iff R,, 11 is Self Sufficient w.r.tQ
begin
(CanSource,CanTarget) := mkCanlnst({n+1})
if Q(CanTarget) # 0 then return true,else returnfalse
end

The correctness of this algorithm is given by Theorem 3 below,
which follows from the definition of Self Sufficiency and from a
classical result which states that the certain answerg tan be
computed by running@) over CanTarget [8, 25, 18].

THEOREM 3. AregistrationR,,+ is Self Sufficient w.r.t. a query
Q iff Q(CanTarget) # 0.

Complementary. Recall that a registratio®,, 1 is Comple-
mentary w.rt. a query) and existing source registratiods iff
there is a certain answer tuple in the presence of Btth; and
R that would be missed in the absenceRf,;. Since the cer-
tain answers of a query can be computed by running it over the
corresponding canonical instance, it suffices to check whéjfer
answer on th&'an Target constructed through all registrations (in-
cluding R, +1) strictly includes)'s answer on th&'an Target built
from the existing source registrations only. The resulting algorithm
and the theorem that guarantees its correctness are shown below:

algorithm IsComplementary
Input: existing registrations?y, . . . , R,,; new registrationR,, 1 ; queryQ
Output: true iff R,, 11 is Complementary w.rtRq, ..., R,, and@
begin
(CanSource,CanTarget) .= mkCanlnst({1,...,n})
(CanSource’,CanTarget’) := mkCanlInst({1,...,n,n + 1})
if Q(CanTarget’) 2 Q(CanTarget) then return true,else returnfalse
end

The correctness of algorithtraComplementary follows from:

THEOREM 4. A registration R,,+1 is Complementary w.r.t. a
query @ and existing registrationsy, ..., R,, iff the result ofQ
on the canonical target instance correspondingRo, ..., R, is
strictly contained in the result @ on the canonical target instance

for Rl, .. .,Rn+1.

ooks for partial matches a@@’s body againsCan Target, with the
intention that for each partial match, the matched attributes of the
query are contributed by the registrations so far, and the unmatched
ones will be provided by the mapping under construction.

Computing suggestions for a single attribute When the owner
clicks on a missing (i.e. unmatched) attribute, RIDE generates sug-
gestions for it, searching through a listdtential actionsshown
below. An action is only suggested if it can be followed up with
some sequence of actions that extend the registration to a consistent
one, with the intended self-reliance. To find such a sequence, RIDE
carries out the candidate action tentatively (extending the mapping
accordingly) and then tries recursively to perform further poten-
tial actions to provide the remaining attributes. If the desired self-
reliance is reached without encountering an inconsistency, then the
candidate action is suggested, otherwise the search backtracks.

Essentially, during this search RIDE starts from the partial match
of the query intoCan Target that generated the attribute set picked
by the owner, and attempts to extend it to a total match. RIDE
considers the following potential actions to this end:

1. Projection arrows and target condition®IDE checks if the
selected attribute can be provided directly through a projection ar-
row from some source attribute or through a target condition.

2. Source conditions and joinsSSince source conditions (resp.
joins) limit the amount of information exported and hence do not
usually lead to increase of self-reliance, they are only considered
if the query contains them (as illustrated in Snapshot 1.2 and 1.3
respectively) and they do not map into the canonical target instance.

3a. Intra-source assertions due to query selectidhthe query
contains a constant in the clicked target attribute and this attribute is
already mapped into from a source attribute, RIDE generates an as-
sertion that for some source tuple the corresponding attribute value
equals the query constant. This led to the assertion in Snapshot 1.2.

3b. Intra-source assertions due to query joinSimilarly to
query selections, if the query involves a join between two target
attributes provided by two source attributes, RIDE generates an as-
sertion that the source contains tuples in which the source attributes
have the same value. We saw such an assertion in Snapshot 1.3.

4. Indirect provision using data merging and inter-source as-
sertions. RIDE also makes suggestions for providing an attribute
indirectly through another attribute. Such indirect attributes are de-
tected when the partial query match agait&in Target matches
the intended attribute into a value that does not appear in any reg-
istration or assertion, being instead freshly created during the con-
struction of the canonical target instance (see Retail2* in Figure 7).
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These values are known &beled nulls[18]. All occurrences of tables, pointing to the center via FKs. The snowflake is created by
the same labeled null mark attribute occurrences sharing the sameeach ray being in turn the center of another star and so on. This de-
(unspecified) value. RIDE attempts to provide concrete values for sign emerges naturally when normalizing wide universal relations
a labeled null by suggesting the provision of data that merge with as used in sciences and is also prevalent in data warehousing. It is
any of its occurrences. To achieve this merging, RIDE also suggestsalso a more realistic setting obtained by mixing the two extremes
actions to provide values into the keys determining these attributes. of synthetic schema shapes used in typical benchmarks: chain- and
In our example, the two occurrences of labeled null Retail2* led star- shaped schemas. In the snowflake schema, the central table
to the suggestions (in Snapshot 2.1) to indirectly provide attribute usually holds the required attributes of a concept (e.g. organism in
Book.sug_retail instead ofBook_price.reg_price, together with sciences or business concept in data warehouses) and the rays hold
the keyBook.ISBN and to accept the assertion in Snapshot 2.2.  optional sets of data characterizing this concept (e.g. sets of exper-
. iments to measure a given property of the organism). Recall that,
6.4 Complexity although for simplicity we used only PK constraints in our running

Termination of the Chase. The property ofweak acyclicity example, RIDE supports both PKs and FKs and more expressive
of a set of constraints is sufficient to guarantee that any chase se-constraints out of the class of embedded dependencies. The inclu-
guence terminates [18, 16]. Very roughly, the restriction requires sion of FKs in our target schema stresses the tool by increasing the
the FK constraints to not create cyclic “refers-to” relationships be- size of the canonical target instance generated by the chase. Indeed,
tween the attributes in the schema. In our GLAV scenarios, weak a single tuple; created in the target through a mapping constraint
acyclicity holds trivially in the cases (among many others) where leads to the creation of a new tuplereferenced by, via the FK,

(i) the source and target schemas contain only PKs, or (ii) they which in turn yields a new tuple (if any) referencedy etc.

contain both PKs and FKs, but have a star, chain, or chain-of- The source schemasAs source schemas we used single tables
stars (snowflake) shape [15]. Of course, for arbitrary constraints For every star’s ray in the target schema we created a new source
the chase may not terminate, as termination is undecidable [9]. that maps into both the ray and the center of the star.

Complexity of creating the target instance. Since all algo- A family of configurations. Our setting is scaled by two param-
rithms involve creating the canonical target instance, they are af- etersr andd. If we represent the target schema as a directed graph
fected by the complexity ofmnkCanlinst. We consider the typical where each node corresponds to a table and each edge fromtable
case in which the integrity constraints are (weakly acyclic) sets of to table B corresponds to a FK in A referencing B, then we define
primary and foreign keys, the target schema (and constraints) areas the diameted of the snowflake the length of the longetit
fixed and only the source schemas and their registrations vary. rectedpath in the graph. Additionally denotes the number of rays

Let e be the maximum length (in number of relational atoms) of of each star. A snowflake of diametéiin which each star has
a source query appearing in any mapping constraint. An analysis ofrays conta|n§7*1 tables. The number of sourcesidsL 1
the chase behavior yields thakCaninst runs in worst-case time  and both their number as well as their overlap mcreasesd/\mrhd
exponential t@ (see Appendix B). Howeveris independent of the r. Figure 8 depicts the schema fér= 2 andr = 3 and a source
number of sources. It pertains to the largest number of source ta-registration providing the two shaded target relations.
bles involved in a single mapping, a typically small value bounded  The platform. The measurements were conducted on a PC with
by the size of each source schema, and more effectively, by thea Pentium 4 3.2 GHz, MS Windows XP Pro and 1GB RAM.
owner’s limited capacity of comprehending complex mappings. In-  The results. For increasing values of the parameters, we ex-
deed, whenever possible, owners prefer to split the registration into plored the tree of all possible interaction runs to contribute to a
many small mappings rather than wielding a single large one. query performing a 3-way join over the snowflake. Although the

. . query had 12 attributes, RIDE correctly asked only for the required
6.5 Experlmental Evaluation attributes (which for our query were 5). In some cases this number

What we measured. To measure RIDE’s response time and was even smaller as the tool exploited merging and borrowed values
see how it scales for large number of sources, we created a syn{from other sources. The number of required attributes also defines
thetic, yet typical integration scenario, consisting of several exist- an upper bound on the number of interaction steps until comple-
ing source registrations and a representative application query overmentarity is reached. Since any required attribute can be provided
the target schema. In this setting we ran a script simulating all pos- through two actions (adding an arrow or selection and potentially
sible interactions with RIDE by systematically following the tool's accepting an assertion), the depth of the interaction is at most twice
suggestions until complementarity is reached. During this process,the number of required attributes (10 in our setting).
we measured the average and maximum time to generate the new Figure 9 shows RIDE'’s average and maximum response time
suggestions for the subsequent interaction step. w.r.t. the number of sources in the system (generated by using

The target schema.To create a realistic integration scenario, we = 2 andr ranging from 1 to 15). The highest values in the graph
used a target schema arranged anawflakgi.e. stars of stars). are for 240 sourcesi(= 2, r = 15) with RIDE taking in the worst
A star consists of @entertable (with a PK) and a number ody interaction sequence a maximum of 1.223 sec to respond. Its av-
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APPENDIX and more effectively, by the owner's limited capacity of compre-
hending complex mapping constraints. Indeed, whenever possible,
owners prefer to split the registration into several small mappings
ather than wielding a single large one.

This appendix contains various discussions omitted from the main
body of the paper due to lack of space. Section A discusses RIDE’s
suggestions in the presence of parameterized queries. Section B 5 . . . .
extends Section 6.4 by providing a more detailed complexity anal- The.k term IS due tq qhgsmg with the key cons}ramt for F.)K on
ysis of the algorithmmkCanlnst for the generation of the canon- R, which requires self-joining? on t_he_ PK [9]. Wh.'IeN” X ks

ical source and target instances. Section C contains the proof Ofworst-'case bounded by a polync_)mlal n the_ °°mb'”e‘?’ size (number
Theorem 2 (i.e. of the undecidability of potential inconsistency). OT vanz_ables) qf all source queries appearing In registration map-
Finally Section D discusses two possible extensions of RIDE and Pings: in practice this is a small entity, as it really reflects the cases

the community-based framework: First, an extension allowing the " which users put the same constant selections on key attributes
community-based integration framework to support evolution of or (via source selections) on attributes which finally end up provid-

the target schema within a single community or coalescing of mul- ing values of key attrib_utes. These registrations_ are unlikely: _they
tiple communities that have emerged on the same topic into a IargerWOUld correspond for instance to the user restricting her registra-

community. Second, an extension of RIDE to allow contribution to tion to provide on_ly d_ata about the book of ISBN "123" _The only
a list of queries. other factor contributing to the size éfand N, are assertions, of

which we expect the user to accept only a small number.

A. RIDE'S SUGGESTIONS FOR PARAME- C. PROOF OF UNDECIDABILITY FOR PO-
TERIZED QUERIES TENTIAL INCONSISTENCY

Throughout the paper we employed a single non-parameterized
query to showcase the entire set of suggestions that RIDE can gen- ® Source schemas = {Es: 3-ary }
erate. However RIDE continues to make non-trivial suggestions e Target schemag = {C: 5-ary,R: 2-ary}
even for parameterized queries, which are commonly used by ap-
plications running on top of databases. ) )
In particular, if we replace a selection with a constantin a query ~ ® Setof source constraintsAs = {(Us C Vy)[1 < i < 2}

e Set of assertions4d = 0

with a parameter, RIDE'’s suggestions for the non-parameterized Uj (s,l1,t1,12,t2) :- Es(s,l1,t1), Es(s, l2,t2)
attributes stay the same. The only suggestions that cease to exist Vi (s,1,t,1,t) - Es(s,1,t)
are selection suggestions for the parameterized attributes as those U3 (t,s1,01,582,12) - Es(s1,11,t), Es(s2,2,t)
would defeat the generic purpose of the parameter. For instance if VE2(t,s,1,s, 1):- Es(s,1,t)

in our running example in Section 4 author was a parameter, RIDE ‘ , PP 3
would make the same suggestions apart from the ones shown in  ® Set3° Earg/;et constraintsAg = {(Ulé ,g Vi)
Snapshot 1.2 of Figure 5 (while removing ‘Ullman’ from all oth- U%(ﬂc y') - R(z,y), C(,y,4,2", y')
ers). Vii(a',y') - R(a',y")

All definitions and algorithms can be straightforwardly extended o Set of mappingsM = {(U5 C V|1 < i < 2n}

to parameterized queries. .
P q foreachl < i < n,letu; = ai...ar andv; = by...b;

Ug(®1,y1,8, Tht1, Yi41) i~

B. EXTENDED COMPLEXITY ANALYSIS Es(z1,a1,22), Es (2, a2,23), ..., Es(Tk, ak, Tr41),

In this section we show the exact complexity of the algorithm Es(y1,b1,92), Es(y2,02,y3), -, Es (1, b, y1+1)
mkCanlnst, which we omitted from Section 6.4 due to lack of Vg (z1,91,4, 2, y2) - C(21, 41,8, T2, Y2)
space. letly be a letter not irk

As in the aforementioned Section we refer to the typical case in foreachl <i < n, letu; = ay...ar andv; = by...by
which the integrity constraints are (weakly acyclic) sets of primary if one ofu;, v; is a prefix of the other, then
keys, the target schema (and constraints) are fixed and only the UG (wr, 1) -
source schemas and their registrations vary. Es(so,lo, ),

We introduce the following notationNs is the number of re- Es(s,a1,z1), Es(x1,a2,x2), ..., Es(Tk—1, ar, Tk),
lations in the combined source schemass the maximum length Es(s,b1,91), Es(y1,b2,92), -, Es(yi-1, b1, 1)

(in number of relational atoms) of a source query appearing in any V§+"(w1,y1) = R(w,y1) )
registration mapping constrairiz is the number of mapping con- else remove the constraiffr;™™ C V™)
straints in which source relatiaR is mentionedp is the maximum

br over all source relation namég ¢ is the maximum number of Figure 10: Auxiliary Integration System 7S,
relational atoms per target query in a mapping constraint.

Finally, given a primary key PK on target relatid®) let kpx The proof is a reduction from the Post Correspondence Problem
be the maximum number of distinct tuples, all agreeing on some (PCP). LetL1 = {u;}i<i<n, L2 = {vi}1<i<n be lists of words
valuew for the PK attribute, which could be chased irRoduring over an alphabet (i.e. u; € ¥*,v; € £, 1 < i < n). A solution
the canonical instance construction. Then we denote iithe to PCP is a sequence of indexas..., im S.t. wi Uiy...Us,,, =
maximumkp g over all target primary keys. Lev, denote the Viy Vig ... Vi,, . The stringu,, u,,...u;,, is called theexpansion of
number of distinct key valuesas above. this solution In order to prove the theorem, for any PCP instance

An analysis of the chase run-time behavior yields th€anlinst we create an integration system (i.e. a source schg&natarget
runs in worst-case timé (Nsb°t + Nq,k:Q). Note that the exponent schemayd, a set of assertiond, a set of source constrainfss, a
e is independent of the number of sources. It pertains to the largestset of target constraintdg and a set of mapping constraints)
number of source tables involved in a single mapping, a typically s.t. a PCP instance has a solution iff the corresponding integration
small value bounded by the size of each individual source schema,system is potentially inconsistent.



Same ad S... shown in Figure 10 with an additional target rela-
tion I and two additional target constraints involvidg
e Source schemaS = {Es: 3-ary}
e Target schemagG = {C: 5-ary,R: 2-ary,I: 2-ary }
e Set of assertionsd = ()
e Set of source constraintsAs = {(UZ C Vi)[1 <i < 2}
e Set of target constraintsAg = {(U{ C V{)[3<i <5
Uj (@) - R(z, )
‘/64(3:) - I(Q)‘, 1)7 I(ﬂ,’, 2)
Ug:(x7y15y2) - [($,y1)71($,y2)
Vs (z,y,y) - 1(z,y)
e Set of mappingsM = {(U§ C Vi1 <i < 2n}

Figure 11: Integration SystemI.S used in the Reduction

For ease of exposition we first create an auxiliary integration sys-
tem IS,... shown in Figure 10. Then we extend it to the actual
integration systeni.S used in the reduction as shown in Figure 11.
Note that the constructed integration systems (Béttand/.Sq..)

versa. The prefix requirement is due to the fact that jt.., i,,

is a solution to the PCP, then one @f,, v;, will be a prefix of

the other. Moreover the requirement that the start notlas an
incoming edge labeleti, ¢ ¥ avoids considering a path from

to t as the expansion of a solution to the PCP when there is a path
from s to ¢ throughus, ...u;,, and one through;, ...v;,, but one

of these paths goes around a cycle on whichare located more
times than the other.

Finally, target constraint/ C Vy),4 < i < 5 establish the
connection betweehS andS,.. by specifying that target rela-
tion I contains a key constraint which is violated whenever there
exists a tuple of the fornk(z, x).

D. EXTENSIONS/FUTURE WORK

D.1 Supporting Evolution of Communities

In our framework a community is started by an initiator who de-
signs its target schema. Sometimes the initiator is a consortium
agreeing on a common schema. More commonly we envision the
emergence of ad hoc communities whose initiator (possibly an indi-
vidual) decides the schema without seeking source owner approval.
Source owners join the community as it gains popularity (just as on-

contain just a single registered source and therefore they contain dine communities like blogs grow). Such communities may evolve.

single source schen&and a single registratioi .

Let us first presenf S,.... Source relatiorEs is the edge re-
lation of a labeled directed graph witis(s,,¢) describing the
edge from nodes to ¢ with labell. The intention is to represent
awordw = ai...ap (Wherea, are letters) by a chain of the form
Es(z1,a1,22), ..., Es(zp, ap, zp+1). OnN the target schema, tar-
get relationC' is intended to contain tupleS(su, Sv, %, tu, tv) if
from pair of nodes,,, s, we can reach nodes, ¢, following paths
representingu;, v;, respectively. Additionally, target relatioR
should contain a tupl&(t., t,) if nodest,,, t,, are reachable from
the samenodes by paths representing;, ...u;, andv;,...v;,, re-
spectively for some indexes, ..., ix. Therefore a tuple of the form
R(z,z) means that node is reachable by some nodeoth by a
path representing,, ...u;, and one representing, ...v;, . Since
however the graph contains only chains, these paths will coincide

Evolution may include both changing the target schema of a single
community (to make it adapt to new needs) and coalescing of sev-
eral ad hoc communities that have emerged on the same topic into
a larger community.

The community-based integration architecture can support both
types of evolution through techniques studied extensively in [27,
29, 14] as explained next. We will start by presenting the case of
schema evolution within a single community and then we will show
that coalescing of communities can be reduced to the former.

When the initiator evolves a community’s target schema, this af-
fects both the legacy source registrations and application queries.
RIDE can help keep the maintenance task lightweight by reliev-
ing the initiator from the need to know anything about sources and
their mappings. To this end we propose existing techniques to au-
tomate the translation of mappings and queries to the new schema.

and represent the expansion of a solution to the PCP. Thus thereln particular, mappings are adapted to the new target schema using

exists a tuple of the forn®(x, x) iff PCP has a solution.

Let us now move to the integration systéisi. It is an extension
of I.S... such that there exists a target instancéshthat satisfies
all mapping and target constraintsiff, ..., does not contain a tuple
of the form R(x, z). ThereforelS is potentially inconsistent iff
1S, contains a tuple of the fornk(z, z). However, since the
latter happens exactly when PCP has a solutighjs potentially
inconsistent iff PCP has a solution.

The above semantics are specified as follows: The source con-
straints(UZ C V§),1 < i < 2 restrict the source instances to

techniques presented in [27, 29]. Similarly, the queries are rewrit-
ten against the new target schema by modeling the schema evolu-
tion as a mapping between the old and the new target schema and
using solutions on rewriting queries under constraints (see [14]).
A source owner can subsequently call RIDE as usual to adjust the
contribution of the new mappings to the new application queries.
RIDE thus assists in delegating the non-scalable part of schema
evolution to the individual source owners.

The coalescing is supported by the same techniques used for
schema evolution within a single community. When initiators merge

graphs consisting of a set of disjoint chains and cycles. Note that their communities into a larger one, they design the new commu-
the source instances cannot be restricted to graphs containing onlynity’s target schema (which might be either a new schema or one of
chains, since chains and cycles are indistinguishable by first-orderthe schemas of an existing community) and they map the individ-

formulas. Furthermore, the mapping constrafiif§ C V), 1 <

1 < n are used to capture the intended meaning for relation
Target constraintU; C V3*) and mapping constrain@@/ C

Vgi), n+1 < i < 2nimplement the semantics of relatié) which,

according to its definition, should contain the transitive closure of

C. The recursive step to obtain the transitive closure is described

by (U2 C V§) and the base case of the recursion is captured by

constraint{U}; C V&), n+1 < < 2n. The base case consists of

pairs of nodes,,, t, s.t. they are reachable from a nodéwith an

incoming edge labdl, ¢ X) both through a path representing

and through one representing whereu; is a prefix ofv; or vice

ual community schemas to it. Subsequently the same techniques as
before can be used to adapt the mappings and queries to the new
target schema.

D.2 Contributing to a List of Queries

In this paper, we focused on guiding the registration to contribute
to a single query. However, our approach lends itself to generaliza-
tion to a list of queries: the owner visits each query in turn, adding
mappings until the desired level is reached for the current query.
It is easy to see that adding a mapping cannot lower (but could
increase) the already achieved self-reliance level of previously vis-



ited queries. RIDE is guaranteed to avoid generating suggestions
for providing attributes needed by a query if they have already been
provided for a previous query. This is a consequence of our solu-
tion being based on matching the query against the canonical tar-
get instance, which essentially grows with each added mapping,
thus increasing the matching opportunities for the new query. The
local minimization thus achieved for the publishing cost depends
however on the historic order in which queries were visited by the
owner. A global consideration of the entire query list could po-
tentially yield more minimization opportunities, and we intend to
address this question in future work.



