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ABSTRACT
Modern Internet communities need to integrate and query struc-
tured information. Employing current information integration in-
frastructure, data integration is still a very costly effort, since source
registration is performed by a central authority which becomes a
bottleneck. We propose the community-based integration paradigm
which pushes the source registration task to the independent com-
munity members. This creates new challenges caused by each com-
munity member’s lack of a global overview on how her data inter-
acts with the application queries of the community and the data
from other sources. How can the source owner maximize the vis-
ibility of her data to existing applications, while minimizing the
clean-up and reformatting cost associated with publishing? Does
her data contradict (or could it contradict in the future) the data of
other sources? We introduce RIDE, a visual registration tool that
extends schema mapping interfaces like that of MS BizTalk Server
and IBM’s Clio with a suggestion component that guides the source
owner in the autonomous registration, assisting her in answering
these questions. RIDE’s implementation features efficient proce-
dures for deciding various levels of self-reliance of a GLAV-style
source registration for contributing answers to an application query
and checking potential and definite inconsistency across sources.

1. INTRODUCTION
Current technology for data publishing on the Web addresses the

needs of only the extremes in the spectrum of online communities.
One extreme comprises communities that publish highly struc-

tured data into a global database maintained by a central integration
authority. For instance, data-driven scientific inquiry needs data
generated by multiple scientists and laboratories, which may even
cross multiple disciplines. A number of emerging portals, such as
GEON [3] and BIRN [1], aim to provide integrated access to the
data of multiple laboratories and scientific communities. Such por-
tals typically rely on traditional integration technology, and come
at an often prohibitive setup and maintenance cost to the central in-
tegration authority. Indeed, the construction of portals like BIRN
and GEON is still a very large-scale effort, which has a consider-
able financial cost and takes many years to initiate and accomplish.
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The other extreme consists of communities that publish unstruc-
tured data (text or multimedia files tagged with attribute-value pairs)
with no integration functionality: published items are not com-
bined, being simply added into the collection. We have recently
witnessed the proliferation of such communities with the advent of
forums, web blogs, wikis and social networking applications such
as flickr (http://www.flickr.com/), del.icio.us (http://del.icio.us/) and
YouTube (http://www.youtube.com/). A salient feature contribut-
ing to their massive success is the low setup and maintenance cost
due to the decentralized nature that allows new members to join
autonomously without assistance from a central authority.

The above publishing paradigms leave out the numerous com-
munities whose structured information integration and querying
needs preclude the unstructured wiki-style approach and whose
limited time or financial budget rules out the costly traditional inte-
gration solution. For instance, typical specialized scientific com-
munities lack the resources of GEON- and BIRN-class projects
and cannot afford to build infrastructure for the collection, inte-
gration and cleanup of pertinent data. Graduate students and other
researchers end up manually performing these tasks at a great pro-
ductivity cost. This cost barrier is generally faced by many private,
commercial, academic and even governmental communities.

We address this need by introducing thecommunity-based inte-
gration paradigm which enables systems that integrate and query
structured data into a virtual global database, at no cost to any
central authority. This is achieved by decentralizing the setup and
maintenance tasks, pushing them to the independent community
members. In particular, in this paper we focus on assisting individ-
ual members to autonomously join the community by registering
their data into the integration system.

Autonomous source registration creates new challenges caused
by each community member’s lack of a global overview on how her
data interacts with the application queries of the community and the
data from other sources. How can the source owner maximize the
visibility of her data to existing applications, while minimizing the
clean-up and reformatting cost associated with publishing? Does
the source owner’s data contradict (or could it contradict in the fu-
ture) the data of other sources? Previous work on data integration
did not consider these questions, since the central authority’s global
overview made them non-issues. Autonomous registration on the
other hand is impossible if we do not answer them. We detail next
the issues community members need assistance with.

Contribution to application query results. A source owner
registering a new source desires her data to be visible to relevant
client applications that issue queries against the community’s global
schema, which we will calltarget schema, in keeping with the ter-
minology of IBM’s Clio system [28, 18]. For example, a book
retailer joining a community of bibliophiles wants her book ads to



be visible to queries issued by a popular brokerage application.
An overkill (if at all possible) way to ensure visibility is to force

the source owner to map some data into every attribute of the com-
munity’s target schema relevant to the application query. For in-
stance, the application query may retrieve only books with high
ratings in their reviews. If the retailer can publish reviews along
with its ads, her registration will be “self-sufficient”, in the sense
that her books will be visible to the application query regardless of
the contents of other sources registered in the community.

This solution may be simply impossible because a source owner
may not possess data for some parts of the community schema. Our
retailer may have no reviews to offer, in which case the visibility of
her books depends on the existence of some other source providing
pertinent reviews that “join” with her ads. In this case, the retailer
would like to know that her registration is no longer self-sufficient,
being instead complementary to that of the review source.

Trading off self-reliance for cleaning cost savings.Even when
a source owner is in a position to map data into all parts of the com-
munity schema that are relevant to the application query, it may be
economically unwise to do so, due to the prohibitive clean-up and
reformatting cost. In such cases, the source owner may willingly
give up self-sufficiency, settling for a “complementary” registra-
tion that relies on other, trusted sources. In this case, the registra-
tion tool would best serve the owner by labeling the publishing of
appropriate data attributes as optional and identifying the partner
source(s) that could provide them instead. Looking at the options,
the owner can then decide herself which trade-off between self-
reliance and cleaning cost savings she wants to take.

In the running example, assume that the retailer collects third-
party reviews in the form of text blurbs. Cleaning them up for pub-
lication (spell-checking, language censorship, etc.) and formatting
them to extract certain measures required by the community’s tar-
get schema (such as star ratings and a representative quote) is an
expensive process requiring human involvement. If the registra-
tion tool notifies the retailer of another trusted source that provides
reviews, she may choose to rely on this source and save the effort.

Inconsistency avoidance.To reach their full potential, communi-
ty-based integration systems should enable the combination of data
provided by distinct sources into a single target tuple, using stan-
dard integrity constraints. For instance, the book dimensions (pro-
vided by the publisher’s source) are associated with the book’s
price (given by the retailer) by virtue of both data items referring
to the same ISBN declared as a key on the target schema. Target
constraints may however lead to inconsistency, for instance if pub-
lisher and retailer list different authors for the same ISBN. Since
the publisher and retailer do not know each other’s registrations,
inconsistencies are even more likely than in centralized integration
scenarios. It is therefore imperative for a registration tool to iden-
tify registrations leading to inconsistency and issue warnings.

The RIDE tool. To facilitate autonomous source registration, we
propose Registration guIDE (RIDE), a visual tool that extends the
classic schema mapping interface (as encountered in IBM Clio [28,
18], MS BizTalk Server [5] and Stylus Studio [7]) with a suggestion
component that guides the source owner in the registration of her
source. The suggestions assist the source owner to negotiate the
trade-off between two competing requirements: maximizing self-
reliance for making her data visible to existing application queries,
versus minimizing the data cleaning and reformatting cost. In ad-
dition, RIDE helps the owner avoid inconsistency of her data with
respect to data in other sources.

The resulting architecture of a community-based integration sys-
tem enabled by RIDE is shown in Figure 1. In such systems the
community initiator starts by designing the target schema. Note

Barnes & Noble�

Source 

Registrations
RIDE

Prentice Hall�

RIDE

Book Portal’s
Community Schema

Source Databases 

& Source Owners

Target Schema & 

Community Initiator�

Application

Queries

 Figure 1: Community-Based Integration Architecture

that although the initiator might be a consortium agreeing on a
common schema this is not necessary for starting a community.
Most commonly we envision the emergence of ad hoc communities
whose initiator (possibly an individual) decides the schema without
seeking source owner approval. The community will attract more
and more members as it gains in popularity in the same way that
online communities like blogs grow.1 After the initiation of the
community, application developers register within the system the
queries (over the target schema) that their applications will issue
during operation. To register a new source into the community, its
owner chooses an application query to which she wants the source
to contribute, as well as the desired self-reliance level (from a pre-
defined list of options detailed below). She then initiates a registra-
tion process with RIDE.2

RIDE’s visual interface allows owners to perform such actions
as drawing arrows between their source schema attributes and the
target schema attributes they want to provide, and also depicting
selection and join conditions to restrict the publishing. RIDE in-
teractively suggests what target schema attributes to provide and
which selection conditions or join conditions to employ in order to
reach the desired self-reliance level. The list of suggestions adapts
to the owner’s action at each interaction step, to include only at-
tributes that are essential and that the owner is willing to provide.

There are many consistent registrations that feature the same
self-reliance level. The source owner may prefer some of them
over others, as she trades off cleaning cost savings (by restricting
the published data to only the minimum relevant to a query) for
generality of the registration (by publishing more than needed to
contribute to a query, in order to contribute to others as well). RIDE
assists the source owner by laying out the available options.

1.1 Contributions
Inconsistency and self-reliance levels.To formalize the pro-

vided functionality, we characterize theself-reliance levelsof a
given source registration to a given query, as detailed in Section 5.3.
Higher levels require publishing more data fields, which yields less
reliance on what other sources provide, but in exchange may in-
volve more cleaning effort. With respect to an application query
Q formulated against the target schema, a registrationR can be (in
decreasing order of self-reliance):

• self sufficientif it contributes answers toQ even if all other
sources leave the community;

• complementaryif it contributes answers toQ, but only in
cooperation with the registrations of some other sources from
the community;

• unusableif it is none of the above.

1Ad hoc communities may also evolve. For instance, a community
may have its target schema changed or it might be coalesced with
another ad hoc community on the same topic. For a discussion
on how a community-based integration system can support such
evolution aspects the reader is referred to Appendix D.1.
2In this paper, we do not address the run-time aspects of the inte-
gration system, such as the problem of answering queries over the
target schema once the registrations are given.
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SELECT title, format, seller, reg_Price, dis_Price
FROM Book, Book_Price

WHERE Book.ISBN = Book_Price.ISBN AND Book.author = “Ullman”

 Figure 3: Application query

We also formalize two notions of inconsistency, namely

• potential inconsistency, which may occur forsomecontents
of the source databases, and

• definiteinconsistency, which will occur forall source databases.

Potential inconsistency is more of a conservative property checked
at registration time, since whether it will actually occur at run-time
will depend on the data in the source databases. Definite inconsis-
tency on the other hand is a serious problem, since it will always
appear at run-time regardless of the source data. Although definite
inconsistencies would not exist in an ideal world, human errors in
the registration process may introduce them. RIDE detects them
and can either reject the registration or simply issue a warning.

Guidance algorithms. We implement algorithms that at each
interaction step, (a) check inconsistency, (b) find the current self-
reliance level and (c) compute suggestions on how to extend the
registration to one with the desired self-reliance. We report on our
experimental evaluation which shows the response times of these
algorithms to be well within the needs of an interactive visual tool.

Guaranteed inconsistency avoidance.The tool guarantees that,
by following its suggestions, the desired self-reliance level can be
reached without inconsistency. If the owner chooses not to follow
the tool’s suggestions and creates an inconsistency, RIDE explains
how this inconsistency can come about.

Data-independent guarantees.The self-reliance level of a reg-
istration can hold with respect to all possible instantiations of the
source databases, or only to the current instance of the sources. We
call these the data-independent, respectively data-dependent fla-
vors of self-reliance guarantees. Both flavors come with their own
benefits and drawbacks: Data-dependent guarantees need to be re-
evaluated upon updates of the underlying data sources and hence
the source owner will be continuously and annoyingly alerted for
changes of the guarantees pertaining to her registration. Data-indep-
endent guarantees may be too strong, in the sense that they may
alert for potential violations that are due to source instances where
common sense about the domain may indicate that these instances
are impossible or improbable to happen.

In this work, we aim for a balance between data dependence and
independence. To this end, we consider guarantees that hold over a
restricted class of source databases. As long as source updates leave
the sources within the same class, consistency and self-reliance
levels are preserved and need not be re-checked. The classes are
specified to consist of those databases that satisfy integrity con-
straints and assertions. Integrity constraints are declared by the
source owner, while assertions are constraints generated by RIDE
and presented as questions to the owner, who may confirm or refute
them. The self-reliance level and consistency of a registration are
thus guaranteed as long as the integrity constraints and assertions
hold. Efficient checking that an update violates integrity constraints
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Figure 4: Barnes & Noble Registration

and assertions has been addressed extensively in related work and
is beyond the scope of our paper (see related work in Section 7).

Paper outline. We first present RIDE informally, describing our
running example in Section 2, traditional schema mapping GUIs
in Section 3, and a sample interaction highlighting RIDE’s func-
tionality in Section 4. Section 5 formally defines the levels of self-
reliance and inconsistency. The algorithms underlying RIDE and
their experimental evaluation are described in Section 6. We dis-
cuss related work in Section 7 and conclude in Section 8.

2. RUNNING EXAMPLE
We demonstrate RIDE using as our running example the creation

of “Bibliophilia”; an application for the bibliophiles’ community
that integrates book information from several sources. The com-
munity’s target schemaG, shown in Figure 2b consists of two rela-
tionsBook andBook Price, shown in italics. RelationBook con-
tains general information about a book, whileBook Price stores
the regular and the discounted price (i.e., price for “Bibliophilia”
members) at which sellers provide the book. Underlined attributes
correspond to (composite) primary keys.

Owners of sources with book data that want to make these data
available to Bibliophilia’s client applications can use RIDE to reg-
ister their sources within the system. In the following we use two
sources; the bookstoreBarnes & Noble (B&N)and the publisher
Prentice Hall (PH), with schemas shown in Figure 2a. The Barnes
& Noble database stores ISBN, title and author of hardcover books
in theHardcovers relation and prices of books for different classes
of customers (i.e. non-members, gold members etc.) in thePrice
relation. Similarly, relationBook Info of Prentice Hall contains the
ISBN, title, binding and suggested retail price of books.

Each source owner initiates the interaction with RIDE by select-
ing an application query to which she wants to contribute. In our
example this is the query retrieving title and format of books by Ull-
man together with the regular and discounted price at which they
are sold. This query is shown in Figure 3. Note that in general ap-
plication queries can be parameterized (e.g. the author name could
be a parameter). However a non-parameterized query allows us to
showcase all features of RIDE. For a discussion on RIDE’s sugges-
tions for parameterized queries, please refer to Appendix A.

3. MAPPING INTERFACES
RIDE’s front end resembles graphical interfaces of schema map-

ping tools, such as IBM Clio [28, 18], MS BizTalk Server [5] and
Stylus Studio [7]. These allow users to create mappings between
two schemas by drawing lines between their respective attributes.
Similarly, RIDE enables source owners to register their sources by
creating one or more mappings between their source schema and
the target schema solely through visual actions. Figure 4 depicts a
mapping of the B&N source created through RIDE.

Owners specify mappings via the following actions:



Drawingprojection arrowsfrom a source attribute to a target at-
tribute, to specify where the latter gets its value from. For example,
in Figure 4, the price for gold members in the B&N database is
exported as the discounted price in Bibliophilia’s database.

Entering(source / target) selection conditionsnext to attributes.
A source selection condition restricts the exported source data to
those satisfying the condition. For example, the condition “class =
gold members” in Figure 4 limits the exported prices to only those
for gold members. A target selection condition allows the source
owner to enter information in the target database that is not stored
explicitly in the source database. For instance, B&N’s owner in
Figure 4 specified through target selection conditions that her books
are hardcovers and that her bookstore’s name is “B&N”.

Drawing (source / target) join linesbetween pairs of source /
target attributes. Join lines have similar semantics to selection con-
ditions with the only difference that they represent equalities be-
tween two attributes instead of equalities between an attribute and
a constant. For instance, B&N’s source owner in Figure 4 employs
a source join line between the ISBNs to export only pairs of book
and price tuples that join on the ISBN. Additionally, she uses a tar-
get join line to declare that B&N sells books to non-members at the
suggested retail price, regardless of what this price may be.

The owner can always extend her registration with additional
mappings. Each mapping appears as a vertical tab on the interface.

We formalize the semantics of mappings in Section 5.1.

4. RIDE INTERACTION
In this section we informally present both the suggestion and

the inconsistency component of RIDE via sample interaction ses-
sions. The formal definition of the involved concepts (such as self-
reliance levels and inconsistency) can be found in Section 5.

We first provide key principles and characteristics of the RIDE
interface and then describe the suggestions it provides, escalating
to suggestions that are hard to discover without RIDE’s assistance.

Starting from an initially member-less community, we first show
how the B&N source’s owner interacts with the system to obtain a
self-sufficient registration w.r.t. the query of Figure 3. Then, as-
suming B&N joined the system, we present an interaction session
led by the owner of Prentice Hall, who wants to create a comple-
mentary registration w.r.t. the application query and B&N’s regis-
tration. Figures 5 and 6 depict the respective screenshots.

4.1 Suggestion Component
Using RIDE the source owner can achieve the following:
Focusing on attribute subsets.To contribute to a queryQ the

source has to provide asubsetof the target attributes that arere-
quired by Q; i.e. attributes that are selected, projected or joined
by Q. In general, the source owner has several options between
different subsets of required attributes that she can provide to gain
the desired self-reliance level; she could provide all attributes for
a self-sufficient registration, or various attribute subsets to achieve
complementarity with various sources.

For example, if the integration system already contained two
sources, one providing Ullman book information and the other Ull-
man book prices, then the new source could become complemen-
tary w.r.t. the query of Figure 3 by either providing book prices
exported by the first source or book information sold by the second.

Without assistance the task of finding all subsets of required at-
tributes that lead to the desired self-reliance level is infeasible. It
requires understanding the registrations of all sources and figuring
out how data from existing sources can be merged with each other
and complemented with data from the current source to form an

answer to the query. To assist the owner, RIDE computes all such
subsets and displays them in the gray pane to the right. Each sub-
set is depicted as a vertical line pointing to the attributes in the set.
Required attributes are marked in bold face. However the owner
can do more than simply see all available options. By clicking on
the subset of attributes she is willing to provide, she can instruct
RIDE to generate only suggestions pertaining to this set, avoiding
thus suggestions of no interest to her. Finally, apart from guiding
the search, she can also use the right pane to get a quick overview
of which required attributes have yet to be provided.

In the running example, due to the small number of sources, there
is only one such subset. The right panel shows which required at-
tributes have to be provided, as seen in all snapshots of Figure 5.

Once the owner selects a subset of required attributes, she can
see the different possible ways to provide a particular attribute by
clicking on it. RIDE marks the selected attribute with a green flag
to its left and shows the suggestions by shading interface compo-
nents. Suggestions are replicated in text on the bottom status bar.

Directly providing attributes. The easiest way to provide a
required attribute is by directly mapping to it values from some
source attribute (through a projection arrow) or assigning to it some
constant value (i.e. entering a target selection condition). RIDE
shows these suggestions by shading the projection arrow box and
selection condition box next to the attribute, respectively.3

For example, Snapshot 1.1 shows that to create a self-sufficient
registration w.r.t. the query of Figure 3, B&N has to provideBook.
ISBN either through a projection arrow or a selection condition.

Trading off cleaning cost savings versus generality.Directly
providing an attribute through a projection arrow does not always
suffice to acquire the desired degree of self-reliance to a queryQ:
the source may only contribute toQ if it contains tuples with spe-
cific values asked by the query (books by Ullman in our running
example). In this case, RIDE offers the source owner two options,
each achieving a different trade-off between cleaning cost and gen-
erality of the registration mapping.

Source selections.If the owner wishes to minimize cleanup cost,
she can restrict the exported tuples to only those with the particular
value asked byQ. RIDE will suggest the corresponding source
selection option.

Intra-source assertions.However, if for the sake of contribut-
ing to several queries the owner prefers to export more tuples than
those relevant toQ, she may choose to not include the selection
condition in her mapping. In that case, RIDE will ask her if she be-
lieves that the exported tuples will always include at least one tuple
relevant toQ. If she answers positively, RIDE records the answer
and takes it into account when generating subsequent suggestions.

In designing this dialog, we chose a solution according to which
RIDE’s questions are expressed in terms of the source schema (which
the owner understands best) and have a standard graphical rep-
resentation: RIDE presents the owner with boolean queries over
her own source schema. Such queries are calledassertions, and
are displayed by RIDE in dialog boxes using the classical visual
paradigm developed for Query-By-Example interfaces such as the
query builders of MS Access and MS SQL Server [6].

For example, consider Snapshot 1.2 showing the suggestions for

3Please note that currently RIDE only suggests the target of arrows
(i.e. which target attribute to provide through an arrow) but not
their origin (i.e. where to map it from) as it is not aware of the
semantics of the source and target schemas. However it could be
coupled with a matching tool to also suggest arrow sources.
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Figure 5: Sample interaction for the B & N registration

Book.author after the source ownermanuallymapped source at-
tributes into ISBN, title and author and entered a constant into
format. RIDE uses the information that the query is asking for
books by Ullman and notifies the user thatauthor is not yet pro-
vided. She can provide it either by limiting the exported hardcovers
only to those by Ullman (through a source selection condition) or
by accepting the assertion (generated by RIDE) that her source
contains at least one Ullman hardcover.

The source owner faces a similar trade-off when the query filters
its input tuples using joins instead of selections. Again, RIDE gen-
erates two kinds of suggestions: including the join for aggressive
minimization of cleanup cost, versus dropping it but asserting the
existence of tuples that satisfy the join condition.

For example, assume that B&N’s owner accepts the assertion of
Snapshot 1.2 and continues by entering selection conditions and
projection arrows. When she draws a projection arrow into
Book Price.ISBN, RIDE knowing that the query asks for books
andcorrespondingprices (a) suggests a source join and (b) shows
via an assertion (in Snapshot 1.3) that, in order for thePrice tuples
to contribute to the query, the source database needs to contain an
Ullman book in tableHardcovers that joins onISBN with aPrice
tuple. Notice how the assertion from Snapshot 1.2 is used in gener-
ating the assertion of Snapshot 1.3 to indicate that, to contribute to
the query, the join must involveUllman books.

The expressiveness of the registration mappings and the intri-
cate ways in which data across sources can interact with each other
via the target constraints give rise to subtle ways of contributing to
the application query, which are hard to discover by an unassisted
owner lacking an overview over the other registrations.

Data merging. Data merging allows the source owner to mini-
mize the cleanup cost (at the expense of self-reliance) by providing
only part of the required attributes and “borrowing” the remain-
ing part from other sources. This becomes possible whenever both
the owner’s source and the complementary source export partially
specified tuples into the same target table, sharing the key value.

For example, recalling that the PH source schema does not carry
author information, no registration of the PH source can become
self-sufficient for the query in our running example. However, the
author value will be automatically “borrowed” from B&N for all
PH and B&N books sharing the sameISBN value. RIDE will in
this case suggest to the PH owner to provide theBook.ISBN at-
tribute on the way to a registration complementary to B&N.

Indirectly providing attributes. So far we have seen cases
where the source directly provides a required target attribute through
a projection arrow or selection condition. However, a source owner
may be able to provide an attribute valueindirectlyby operating on
a different target attribute. RIDE identifies such non-obvious op-
portunities and makes the appropriate suggestions. The following
example illustrates a case in which an attribute can be provided in-
directly by the PH source, while the others are borrowed from B&N
to achieve complementarity.

Assume that B&N’s owner accepted the assertion of Snapshot
1.3 and subsequently extended her registration to the one shown in
Snapshot 1.4. Recall that this is the registration we saw in Figure 4,
which does not provide B&N’s regular price for books, stating in-
stead that it equals the suggested retail price. Consider now the
interaction step in the registration of PH, shown in Snapshot 2.1
of Figure 6. Based on the equality of prices expressed by B&N’s
mapping, RIDE shows that PH can become complementary w.r.t.
the query of Figure 3 if it merges its data with the B&N data by
providing the regular price either directly or indirectly by instead
providing attributeBook.sug retail, as well as the keyBook.ISBN
(needed for merging). The label “B&N” next tosug retail shows
that the indirect provision is facilitated through B&N’s mapping.

Inter-source assertions: supporting data merging.While data
merging requires that both sources provide values for the key at-
tributes, this is not sufficient. The sources must also provide tu-



ples sharing the key value. Upon identifying data merging oppor-
tunities, RIDE therefore asks the owner (via an assertion dialog
box), whether her source has tuples that join with those of the other
source. When designing inter-source assertions, the challenge was
to pose such questions in terms of the only schemas a source owner
may be expected to be familiar with: her own source schema and
the target schema. As a result, the part of the assertion referring
to the other source schema is shown in terms of the other source’s
contribution to the target schema.

Example: Assume that the PH’s owner follows RIDE’s sugges-
tions in Snapshot 2.1 and provides the ISBN and suggested retail
prices of books. In order to provide the regular price of some book
to the query, she has to make sure that she exports at least one of
Ullman’s hardcover books sold by B&N. Therefore RIDE asks her
if she wants to make the assertion shown in Snapshot 2.2.

4.2 Inconsistency Component
After each user action, RIDE checks the registration for incon-

sistency. If a potential (respectively, definite) inconsistency is de-
tected, it marks with a “!” (resp. “X”) the attribute for which two
conflicting values may be provided (respectively in the case of def-
inite inconsistency, are provided) and explains graphically the root
of the inconsistency in a gray box at the bottom of the screen. The
following two examples illustrate cases of potential and definite in-
consistency, respectively, and RIDE’s reaction.

Continuing our running example, assume that PH’s owner ac-
cepts the assertion on Snapshot 2.2 and thus creates a complemen-
tary registration. If subsequently she extends the mapping to also
export book titles, this creates a potential inconsistency, since B&N
and Prentice Hall could provide different titles for the same book.
The gray box in Snapshot 2.3 visually depicts this conflict.

While potential inconsistency is quite common, definite inconsis-
tency usually results from human error as the next example shows.

Example: Assume that at some point in the future PH decides to
store only paperbacks in its relationBook Info and provides this
information to the integration system through a target selection
condition onformat, resulting in the registration shown in Snap-
shot 2.4. In this case the system becomes definitely inconsistent,
since PH provides a book in common with B&N (due to the ac-
cepted assertion of Snapshot 2.2) and therefore this book has to be
both paperback and hardcover. RIDE notifies the user by explain-
ing the inconsistency as shown at the bottom of the Snapshot.

4.3 RIDE’s Properties
Our design of RIDE was guided by the following desiderata:
Soundness of suggestions:RIDE only makes suggestions that

areguaranteedto lead to registrations of the desired self-reliance.
Suggestions relevant to owner’s focus:RIDE only makes sug-

gestions that are relevant to the owner by allowing her to guide the
search in several ways: First, she chooses a subset of attributes to
provide and thus avoids seeing suggestions on attributes that she
cannot or is unwilling to provide. Second, she specifies source
constraints or accepts assertions (proposed pro-actively by RIDE)
about her data. Both of these restrict the structure of the source
database and are exploited by RIDE to skip suggestions and warn-
ings if they do not apply to data satisfying the restrictions.

Adaptive response to user’s actions:RIDE does not pre-compute
all suggestions beforehand but instead recomputes them adaptively
after each user action. It does so even when the user ignores its
suggestions and carries out a non-suggested action instead.

5. FORMAL SPECIFICATIONS
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In this section we describe the framework of community-based
integration and provide formal definitions for the RIDE concepts
described in Section 4. These definitions will be utilized in the
description of the algorithms in Section 6.

5.1 Community-based Integration
Community-based integration systems should allow a new source

to register without having to modify the registrations of other sources.
This requirement affects our choice of registration formalism. In
particular, it precludes the use of the Global As View (GAV) ap-
proach to data integration, employed by commercial technology,
because in GAV each target relation is described as a view overall
sources, which has to be revised whenever a new source joins. In-
stead we have to choose between the other two main integration ap-
proaches, namely Local As View (LAV) or Global-Local-As-View
(GLAV). We use GLAV [19, 23, 26, 28] for its expressiveness.
GLAV, which generalizes both GAV and LAV, allows registrations
that gather data from multiple source relations into a single target
tuple; a feature not supported by LAV. For a thorough discussion
on the different approaches in data integration, see [23, 25].

Source and Target Schemas and corresponding Constraints.
A community-based integration system integrates a set of source
(local) databases with source schemasS1,S2, ...,Sn through a vir-
tual target (global) database over target schemaG. Both the source
and target schemas are relational and may include integrity con-
straints, called source and target constraints, respectively.

Owners formulate constraints from the class of embedded de-
pendencies, which are expressive enough to capture many common
integrity constraints, such as primary keys (PKs) and foreign keys
(FKs), inclusion, multi-valued, join dependencies and beyond [9].
In the following,∆Si

denotes the set of all source constraints over
source schemaSi. Similarly ∆G represents the set of target con-
straints. A database instanceDBi over schemaSi satisfies the set
of constraints∆Si

, denoted asDBi |= ∆Si
if it satisfies all con-

straints in the set.
Registrations and Mapping Constraints.The correspondence

between a source schemaSi and the schemaG is defined through
the source registrationRi. According to GLAV, a source regis-
tration Ri is a set of mapping constraints (also called mappings).
Each mapping constraint is of the formU ⊆ V , whereU, V are
conjunctive queries with equalities (CQ=). These capture Select
Project Join SQL queries augmented by a WHERE clause consist-
ing of equality conditions between attributes and constants.U, V

are formulated against the source schemaSi and the target schema
G, respectively. Intuitively, these constraints specify that, given
a source databaseDBi and a target databaseG, the source data
identified by runningU overDBi, is visible among the target data
identified by runningV overG: U(DBi) ⊆ V (G). We say then
that the pair(DBi, G) satisfies the mapping constraint, denoted as
(DBi, G) |= (U ⊆ V ). Note that there are no containment state-
ments in the opposite direction, because a local source owner can-
not know what information the other sources contribute and there-
fore cannot presume to contribute all target data. This is consistent
with the widely acceptedopen world assumption[23, 25].

Every mapping visually specified in RIDE is interpreted as a
mapping constraint of the above form. For each projection arrow
between source attributea and target attributeb, attributesa andb
appear in the projection lists ofU andV , respectively and in the
same position. Moreover each source (target) join corresponds to a
join in U (respectivelyV ) and each source (target) selection con-
dition corresponds to a equality condition with that constant inU

(V ). For instance, B&N ’s mapping shown in Figure 4 corresponds
to the mapping constraintU ⊆ V with U, V given below:

U(I1, T, A, I2, P ) : −Hardcovers(I1, T, A), Price(I2, C, P ),
I1 = I2, C = ‘gold member′

V (I1, T, A, I2, DP ) : −Book(I1, T, F, A, SR), Book Price(I2, S, RP, DP ),

F = ‘hardcover′, SR = RP, S = ‘B&N ′

Assertions.Since assertions are boolean queries, the satisfaction
of an intra-source assertionA by a source databaseDB (denoted
DB |= A) means thatA evaluates to true overDB. Satisfaction
of an inter-source assertionA by source databasesDB1, DB2 (de-
notedDB1, DB2 |= A) is defined in the expected way.

Queries and their Certain Answers. Applications retrieve in-
tegrated data by issuing queries against the target schema. In this
paper, we restrict attention to queries expressed as unions of con-
junctive queries with equalities and parameters. A parameterized
queryQ models the set of all non-parameterized queries in which
Q’s parameters are replaced by arbitrary constants. As is typical in
GLAV-based integration systems, we adopt as our query answering
semantics the definition of certain answers to a query following the
numerous works surveyed in [25, 23].

Starting from a set of source instancesDB = DB1, ..., DBn

satisfying the source constraints, the set of corresponding GLAV
registrations̄R = R1, ...,Rn does not define asingletarget instance.
Instead there is in general a setTargetsR̄(DB) of possible target
instances that satisfy the registrations and the target constraints∆G :

TargetsR̄(DB) = {G|
Vn

i=1(DBi, G) |= Ri ∧ G |= ∆G}.
The certain answers to a queryQ (from now on referred to as

simply “answers” toQ) are the common answers that we would
get if we executedQ against each possible target:

CertQR̄(DB) =
\

G∈Targets
R̄

(DB)

Q(G).

When there are no possible targets, we consider the set of certain
answers as being empty.

Assume that B&N is the only source registered in the system as
shown in Figure 4 and its databaseDB1 has general and mem-
ber price information for an Ullman book stored in the follow-
ing two tuples:Hardcovers(“5”, “DB Systems”, “Ullman”) and
Price(“5”, “gold members”, “ $80”). Any target instance that sat-
isfies the source’s registration will contain at least two tuples of
the form: Book(“5”, “DB Systems”, “hardcover”, “Ullman”,
X) Book Price(“5”, “B&N”, X, “ $80”). Since the registra-
tion only specifies that the regular price of the book equals its sug-
gested retail price without providing the price, the value ofX will
differ among the possible targets but within any single target it will
have the same value in both tuples. ThereforeX does not behave
simply as a null. For instance, a query retrieving all books sold by
B&N at the suggested retail price returns Ullman’s book regardless
of the target instance (i.e. regardless of the specific value forX).
Ullman’s book is therefore among the certain answers.

5.2 Inconsistency
Since sources register independently, their combined data could

violate the target constraints. To help source owners avoid such
cases, RIDE issues warnings on two levels of inconsistency, de-
pending on whether it will always occur regardless of the data in
the source database (definite inconsistency) or it will only appear if
suitable data are present in the sources (potential inconsistency).

Potential Inconsistency. The integration system is in a poten-
tially inconsistent state iffor at least one instanceof the source
databases that satisfy the source integrity constraints and owner-
accepted assertions, no instance over the target schema satisfies



both the mapping and target constraints.
Consider the integration system consisting ofn sources with

schemasS1, ...,Sn, databasesDB1, . . . , DBn and corresponding
registrationsR1, ..., Rn. Let the set of all accepted intra- and inter-
source assertions beA and denote withDB |= A the fact that they
are satisfied by the collection of source databases.

Formally, the integration system is potentially inconsistent iff
∃DB1, ..., DBn overS1, ...,Sn s.t.

DBi |= ∆Si
for all 1 ≤ i ≤ n, DB |= A, and

TargetsR1,...,Rn
(DB1, ..., DBn) = ∅

Definite Inconsistency.The integration system is in a definitely
inconsistent state iffor any datain the registered sources satisfy-
ing the integrity constraints and assertions, there does not exist an
instance over the target schema that satisfies both the mapping and
target constraints.

Formally, the integration system is definitely inconsistent iff
∀DB1, ..., DBn overS1, ...,Sn

if DBi |= ∆Si
for all 1 ≤ i ≤ n andDB |= A, then

TargetsR1,...,Rn
(DB1, ..., DBn) = ∅

Examples of both inconsistency kinds were given in Section 4.2.

5.3 Levels of Self-Reliance
We formally define the levels of self-reliance of a registration

w.r.t. an application query.
Assume thatR̄ = R1, . . . , Rn is the set of registrations of the

existing sources in the system andRn+1 is a registration of a new
n + 1-st source. Let the intra-source assertions of sourcen + 1 be
denoted byAintra

n+1 and the inter-source assertions involving source
n + 1 beAinter

n+1 . As above, the collection of all assertions pertain-
ing to sources1 throughn is denotedA.

Self Sufficient. The source registrationRn+1 is Self Sufficient
w.r.t. an application queryQ if the n + 1-st source provides an-
swers toQ even if the other registered sources leave the system.

For instance, if B&N’s owner extended the registration in Snap-
shot 1.4 of Figure 5 by providing an actual value for the regular
price through a projection arrow fromPrice.price, then B&N’s
registration would be self-sufficient w.r.t. the query of Figure 3,
since it would provide all attributes required by the query, thus
contributing on its own at least one tuple to the query’s certain
answer.

Formally,Rn+1 is Self Sufficientw.r.t. Q iff
∀DBn+1 overSn+1 s.t.DBn+1 |= ∆Sn+1

and
DBn+1 |= Aintra

n+1 : CertQRn+1
(DBn+1) 6= ∅.

Complementary. Consider now a registration that is not Self
Sufficient because the query answer will be empty if the other sources
leave the system. If however data from the corresponding source
n+1 can be combined with data from other sources in the system to
create new answers to the query (which are not already contributed
by the other sources withoutn + 1’s help), we refer to this regis-
tration asComplementary. Complementarity is usually enabled by
primary key constraints on the target schema.

For example, PH’s registration in Snapshot 2.3 of Figure 6 is
Complementary w.r.t. the query of our running example and B&N’s
registration of Snapshot 1.4 in Figure 5. Indeed PH’s registration
contributes to the answer of the query only in the presence of the
B&N registration. Note how partial book information provided by

both sources is combined to provide a query result. Since both
sources provide information about the same book andBook.ISBN
is a primary key (PK), the author provided by B&N is merged with
the suggested retail price exported by PH to give a singleBook
tuple. Furthermore, since B&N sells the book normally at the sug-
gested retail price, this merging also defines a value for the regular
price at which B&N sells the book. In this way PH’s registration
creates a query answer that would not be there in its absence (i.e.
it contributes to the answer of the query) but it relies on the pres-
ence of B&N to do so (i.e. it is not Self Sufficient). Hence it is
Complementary w.r.t. the query and B&N’s registration.

Formally,Rn+1 is Complementaryw.r.t. Q andR̄ iff
it is not Self Sufficient w.r.t.R̄ and

∀DB1, ..., DBn+1 overS1, ...,Sn+1

s.t.DBi |= ∆Si
andDB |= A ∪Ainter

n+1 ∪ Aintra
n+1 :

CertQR1,...,Rn,Rn+1
(DB1, ..., DBn, DBn+1) )

CertQR1,...,Rn
(DB1, ..., DBn).

Unusable.Finally, a source registration that is neither self-suffi-
cient nor complementary is calledUnusable.

6. ALGORITHMS
RIDE’s backend is invoked after each user action. It takes as in-

put the integration system’s parameters (registrations, source/target
constraints and assertions) and the application query and carries
out the following tasks: a) it checks for definite and potentialin-
consistency, b) it computes thecurrent self-reliancelevel of the
source registration and c) it makessuggestionson how to achieve
the desired degree of self-reliance. In this section we describe the
algorithms used to solve each of these problems.

The challenge lies in the data-independent nature of the checked
properties, which calls for a way to reason about the properties
of all instances that satisfy a set of constraints and assertions. It
is of course infeasible to check Self Sufficiency by enumerating
the infinitely many source databases and the infinitely many pos-
sible target databases. RIDE addresses this issue by building a
single, canonically constructed source instanceCanSource and a
corresponding possible target instanceCanTarget . The instance
CanSource is over schema

S

i Si, and consists of the disjoint union
of the canonical instances for each source. As proven by the the-
orems below, it suffices to check the consistency and self-reliance
status on the canonical instances to ensure that they hold in general.

We start by presenting the construction of the canonical source
and target instances, showing the decision procedures for inconsis-
tency and self-reliance level next. We emphasize that all of these
procedures are heavily based on evaluating queries on small (toy-
sized) databases computed from the available constraints and asser-
tions, which is what ensures their good response times in practice.

Canonical source and target instances.RIDE builds the canon-
ical instances using the classicalChaseprocedure [9]. While we
do not describe the well-known chase in detail here, we show a
lesser known algorithm for its implementation [18, 15]: it is based
entirely on evaluating queries and therefore optimizable using the
classical techniques employed in relational query optimizers, such
as pushing selections into joins, join reordering, etc. [15].

algorithm Chase(by query evaluation)
input: instanceI, set of constraints∆
output: instanceJ obtained by modifyingI to satisfy∆
begin
1. J := I
2. repeat
3. for each constraint(U ⊆ V ) ∈ ∆ and each tuplet ∈ U(J) − V (J)
4. modify J (by adding the atoms inV ’s body) to ensuret ∈ V (J)
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Figure 7: Canonical Source and Target Instance

5. until no new facts are added toJ
6. return J
end

We show next how the canonical instances are computed using
the chase. Notice that the chase is defined to work exclusively with
constraints of the formU ⊆ V . While registration mappings ex-
hibit this general form, the key reason enabling the applicability
of the chase to our setting, which contains integrity constraints is
the well-known fact that embedded dependencies (and therefore all
common integrity constraints they express) can be expressed in the
same way [18, 15].

In our running exampleBook.ISBN, shown underlined, is the
primary key (PK) of target relationBook. This target PK con-
straint can be expressed as(UPK ⊆ VPK), where:

UP K(I, T1, F1, A1, SR1, T2, F2, A2, SR2) : −
Book(I, T1, F1, A1, SR1), Book(I, T2, F2, A2, SR2)

VP K(I, T, F, A, SR, T, F, A, SR) : −Book(I, T, F, A, SR)

It is easy to see that a target database instanceG satisfies this
constraint iff each pair ofBook tuples that agree on theISBN are
identical (which is the usual definition ofISBN being the PK).

algorithm mkCanInst
Input: Set of source namesN
Output: A pair of canonical source and target instances
begin
1. I := the empty instance over combined source and target schemas

S

i∈N Si ∪ G
2. for each source queryQ appearing in

a mapping constraint or assertion for some sourcei ∈ N
3. add a fresh copy ofQ’s body (one tuple per query atom) toI
4. J := Chase(I,

S

i∈N ∆Si
∪

S

i∈N Ri ∪ ∆G )
5. CanSource := restriction ofJ to source relations

CanTarget := restriction ofJ to target relations
6. return (CanSource,CanTarget)
end

Notice that in algorithmmkCanInst, I is an instance consisting
of a source and a target database pair. Line2 adds to the source
component ofI data reflecting the non-emptiness of source queries
in mapping constraints and assertions, since we restrict our atten-
tion to source instances satisfying such non-emptiness constraints.
In Line 4, the chase with all available constraints has the follow-
ing effect. The chase steps with the source integrity constraints
S

i∈N ∆Si
infer all additional facts needed to make the source

component ofI satisfy the constraints. Chase steps with the map-
ping constraints

S

i∈N Ri compute from the source part ofI all
tuples that must be exported into the target part ofI in order to
satisfy the registration mapping constraints. These tuples are then

further chased with the target constraints∆G , to obtain a compliant
target instance. The source and target parts of the final chase result
are returned asCanSource, respectivelyCanTarget .

Example: Consider an integration system consisting of the regis-
trations of B&N and Prentice Hall shown in Snapshots 1.4 and 2.4
of Figure 5 and 6 respectively, together with the accepted assertions
shown in the corresponding previous Snapshots (for the B&N reg-
istration RIDE uses only the assertion of Snapshot 1.3 and not the
one of Snapshot 1.2, since the first extends the latter). In this case
we get the canonical source instance depicted in Figure 7. The de-
scription next to each tuple indicates how the tuple was generated.
For example the first tuple in tableHardcovers was introduced due
to the non-emptiness of the left hand side of B&N’s mapping. If we
assume for now that we have no constraints on the target schema,
the corresponding canonical target instance is shown at the bottom
of the same figure. Color-coding and text explain how each tuple
was created. For example the first tuple inBook (colored white)
was created from the identically colored first tuples ofHardcovers
and Price through the B&N mapping. Values ending with a “*”
are new values created in the target, because they were provided
neither through a projection arrow nor a target selection condition
in the corresponding mapping.

6.1 Deciding Inconsistency
At each interaction step, RIDE’s backend checks for both flavors

of inconsistency. Definite inconsistency is the more vital one to
be detected since it will unavoidably lead to inconsistency regard-
less of the contents of the databases. AlgorithmisDefInconsistent
presented below is guaranteed to detect this inconsistency. Inter-
estingly, potential inconsistency turns out to be undecidable (The-
orem 2 below), so RIDE uses a heuristic test, emitting a warning
upon detection, and possibly failing to detect it. Fortunately, po-
tential inconsistency is the more benign flavor, in the sense that it
is more likely to be a conservative theoretical problem which does
not necessarily have to occur in practice. Indeed, it arises whenever
two owners provide entities into the same table that has a primary
key: one can always populate the source databases to obtain agree-
ment on the PK attributes and disagreement on the others, but this
is not unavoidable. This observation is precisely what RIDE uses
to warn source owners of potential inconsistency.

Definite Inconsistency. An integration system is definitely in-
consistent if for all source instances that satisfy the source con-
straints and assertions the set of possible targets is empty. This
means that for any source instance, the target instance cannot be
created. Looking back at the chase, this can only happen when
the creation ofCanTarget causes conflicts. One such conflict can
appear because of target constraints (e.g. PKs) that cause an equal-
ity between two different constants. Interestingly, we can formally
prove (see Theorem 1 below) that this is the only case that can pre-
vent the existence of a target instance, and therefore RIDE detects
Definite Inconsistency by employing the following procedure:

algorithm IsDefInconsistent
Input: Sources1, ..., n
Output: true iff there is definite inconsistency
begin

(CanSource,CanTarget) := mkCanInst({1, ..., n})
if CanTarget contains an equality between distinct constants

then return true,else return false
end

Example: IfBook.ISBN is a PK, then, since the third and fourth
Book tuples in Figure 7 have the same ISBN, the chase will in-
troduce an equality between ‘hardcover’ and ‘paperback’. This
indicates a definite inconsistency, since a book has to be both pa-
perback and hardcover. Recall that this is the inconsistency that



RIDE explained to the user in Snapshot 2.4 of Figure 6.

The fact that algorithmIsDefInconsistent is a sound and com-
plete decision procedure for definite inconsistency follows from:

THEOREM 1. The registrationsR1, ..., Rn lead to definite in-
consistency if and only ifmkCanInst({1, 2, ..., n}) creates an
equality between distinct constants.

Potential Inconsistency. It turns out that there is no algorithm
for deciding potential inconsistency:

THEOREM 2. Potential Inconsistency is undecidable.

The proof (contained in Appendix C) is by reduction from the Post
Correspondence Problem.

Therefore RIDE employs the following best-effort procedure to
zoom in on the most obvious inconsistency causes: whenever two
mappings provide tuples into the same target tableR, both provid-
ing all attributes of the primary key ofR, a potential inconsistency
is signaled to the user, who can decide whether she expects her
source to export data with the same key as the partner source, but
with disagreement on the non-key attributes.

6.2 Deciding Self-Reliance Levels
Self Sufficient. We decide Self Sufficiency using the following

procedure:

algorithm IsSelfSufficient
Input: registrationRn+1; application queryQ
Output: true iff Rn+1 is Self Sufficient w.r.t.Q
begin

(CanSource,CanTarget) := mkCanInst({n+1})
if Q(CanTarget) 6= ∅ then return true,else return false

end

The correctness of this algorithm is given by Theorem 3 below,
which follows from the definition of Self Sufficiency and from a
classical result which states that the certain answers toQ can be
computed by runningQ overCanTarget [8, 25, 18].

THEOREM 3. A registrationRn+1 is Self Sufficient w.r.t. a query
Q iff Q(CanTarget) 6= ∅.

Complementary. Recall that a registrationRn+1 is Comple-
mentary w.r.t. a queryQ and existing source registrations̄R iff
there is a certain answer tuple in the presence of bothRn+1 and
R̄ that would be missed in the absence ofRn+1. Since the cer-
tain answers of a query can be computed by running it over the
corresponding canonical instance, it suffices to check whetherQ’s
answer on theCanTarget constructed through all registrations (in-
cludingRn+1) strictly includesQ’s answer on theCanTarget built
from the existing source registrations only. The resulting algorithm
and the theorem that guarantees its correctness are shown below:

algorithm IsComplementary
Input: existing registrationsR1, . . . , Rn; new registrationRn+1; queryQ
Output: true iff Rn+1 is Complementary w.r.t.R1, ..., Rn andQ
begin

(CanSource,CanTarget) := mkCanInst({1, . . . , n})
(CanSource′,CanTarget ′) := mkCanInst({1, . . . , n, n + 1})
if Q(CanTarget ′) ) Q(CanTarget) then return true,else return false

end

The correctness of algorithmIsComplementary follows from:

THEOREM 4. A registrationRn+1 is Complementary w.r.t. a
queryQ and existing registrationsR1, ..., Rn iff the result ofQ
on the canonical target instance corresponding toR1, . . . , Rn is
strictly contained in the result ofQ on the canonical target instance
for R1, . . . , Rn+1.

6.3 Computing Suggestions
As described in Section 4, RIDE’s suggestion component oper-

ates in two steps. First, it computes the different sets of attributes
that the current mapping can provide to reach the desired self-
reliance level and shows them on the right pane of the interface.
Then, after the user selects a set and clicks on one of its attributes,
RIDE computes and displays actions that can lead to its provision.

Computing sets of missing attributes.A source can contribute
to an application query in many different ways (which involve pro-
viding different sets of attributes), depending on which data already
in the system it decides to complement (see first example in Sec-
tion 4.1). To compute the different sets of attributes that can be
provided, RIDE starts from the observation that each certain an-
swer tuple corresponds to a match ofQ’s body against the canoni-
cal target instance. Therefore, in order for the currently constructed
mapping to contribute at least one tuple toQ’s certain answer, it
must generate newCanTarget tuples that, together with the tuples
in CanTarget from the other mappings, serve asQ’s match. If
such is the case, no new suggestions are needed. Otherwise, RIDE
looks for partial matches ofQ’s body againstCanTarget , with the
intention that for each partial match, the matched attributes of the
query are contributed by the registrations so far, and the unmatched
ones will be provided by the mapping under construction.

Computing suggestions for a single attribute.When the owner
clicks on a missing (i.e. unmatched) attribute, RIDE generates sug-
gestions for it, searching through a list ofpotential actionsshown
below. An action is only suggested if it can be followed up with
some sequence of actions that extend the registration to a consistent
one, with the intended self-reliance. To find such a sequence, RIDE
carries out the candidate action tentatively (extending the mapping
accordingly) and then tries recursively to perform further poten-
tial actions to provide the remaining attributes. If the desired self-
reliance is reached without encountering an inconsistency, then the
candidate action is suggested, otherwise the search backtracks.

Essentially, during this search RIDE starts from the partial match
of the query intoCanTarget that generated the attribute set picked
by the owner, and attempts to extend it to a total match. RIDE
considers the following potential actions to this end:

1. Projection arrows and target conditions:RIDE checks if the
selected attribute can be provided directly through a projection ar-
row from some source attribute or through a target condition.

2. Source conditions and joins:Since source conditions (resp.
joins) limit the amount of information exported and hence do not
usually lead to increase of self-reliance, they are only considered
if the query contains them (as illustrated in Snapshot 1.2 and 1.3
respectively) and they do not map into the canonical target instance.

3a. Intra-source assertions due to query selections:If the query
contains a constant in the clicked target attribute and this attribute is
already mapped into from a source attribute, RIDE generates an as-
sertion that for some source tuple the corresponding attribute value
equals the query constant. This led to the assertion in Snapshot 1.2.

3b. Intra-source assertions due to query joins:Similarly to
query selections, if the query involves a join between two target
attributes provided by two source attributes, RIDE generates an as-
sertion that the source contains tuples in which the source attributes
have the same value. We saw such an assertion in Snapshot 1.3.

4. Indirect provision using data merging and inter-source as-
sertions. RIDE also makes suggestions for providing an attribute
indirectly through another attribute. Such indirect attributes are de-
tected when the partial query match againstCanTarget matches
the intended attribute into a value that does not appear in any reg-
istration or assertion, being instead freshly created during the con-
struction of the canonical target instance (see Retail2* in Figure 7).
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 Figure 8: Experimental Setting

These values are known aslabeled nulls[18]. All occurrences of
the same labeled null mark attribute occurrences sharing the same
(unspecified) value. RIDE attempts to provide concrete values for
a labeled null by suggesting the provision of data that merge with
any of its occurrences. To achieve this merging, RIDE also suggests
actions to provide values into the keys determining these attributes.
In our example, the two occurrences of labeled null Retail2* led
to the suggestions (in Snapshot 2.1) to indirectly provide attribute
Book.sug retail instead ofBook price.reg price, together with
the keyBook.ISBN and to accept the assertion in Snapshot 2.2.

6.4 Complexity
Termination of the Chase. The property ofweak acyclicity

of a set of constraints is sufficient to guarantee that any chase se-
quence terminates [18, 16]. Very roughly, the restriction requires
the FK constraints to not create cyclic “refers-to” relationships be-
tween the attributes in the schema. In our GLAV scenarios, weak
acyclicity holds trivially in the cases (among many others) where
(i) the source and target schemas contain only PKs, or (ii) they
contain both PKs and FKs, but have a star, chain, or chain-of-
stars (snowflake) shape [15]. Of course, for arbitrary constraints
the chase may not terminate, as termination is undecidable [9].

Complexity of creating the target instance. Since all algo-
rithms involve creating the canonical target instance, they are af-
fected by the complexity ofmkCanInst. We consider the typical
case in which the integrity constraints are (weakly acyclic) sets of
primary and foreign keys, the target schema (and constraints) are
fixed and only the source schemas and their registrations vary.

Let e be the maximum length (in number of relational atoms) of
a source query appearing in any mapping constraint. An analysis of
the chase behavior yields thatmkCanInst runs in worst-case time
exponential toe (see Appendix B). Howevere is independent of the
number of sources. It pertains to the largest number of source ta-
bles involved in a single mapping, a typically small value bounded
by the size of each source schema, and more effectively, by the
owner’s limited capacity of comprehending complex mappings. In-
deed, whenever possible, owners prefer to split the registration into
many small mappings rather than wielding a single large one.

6.5 Experimental Evaluation
What we measured. To measure RIDE’s response time and

see how it scales for large number of sources, we created a syn-
thetic, yet typical integration scenario, consisting of several exist-
ing source registrations and a representative application query over
the target schema. In this setting we ran a script simulating all pos-
sible interactions with RIDE by systematically following the tool’s
suggestions until complementarity is reached. During this process,
we measured the average and maximum time to generate the new
suggestions for the subsequent interaction step.

The target schema.To create a realistic integration scenario, we
used a target schema arranged as asnowflake(i.e. stars of stars).
A star consists of acentertable (with a PK) and a number ofray
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 Figure 9: RIDE’s response times w.r.t. # of registered sources

tables, pointing to the center via FKs. The snowflake is created by
each ray being in turn the center of another star and so on. This de-
sign emerges naturally when normalizing wide universal relations
as used in sciences and is also prevalent in data warehousing. It is
also a more realistic setting obtained by mixing the two extremes
of synthetic schema shapes used in typical benchmarks: chain- and
star- shaped schemas. In the snowflake schema, the central table
usually holds the required attributes of a concept (e.g. organism in
sciences or business concept in data warehouses) and the rays hold
optional sets of data characterizing this concept (e.g. sets of exper-
iments to measure a given property of the organism). Recall that,
although for simplicity we used only PK constraints in our running
example, RIDE supports both PKs and FKs and more expressive
constraints out of the class of embedded dependencies. The inclu-
sion of FKs in our target schema stresses the tool by increasing the
size of the canonical target instance generated by the chase. Indeed,
a single tuplet1 created in the target through a mapping constraint
leads to the creation of a new tuplet2 referenced byt1 via the FK,
which in turn yields a new tuple (if any) referenced byt2, etc.

The source schemas.As source schemas we used single tables
For every star’s ray in the target schema we created a new source
that maps into both the ray and the center of the star.

A family of configurations. Our setting is scaled by two param-
etersr andd. If we represent the target schema as a directed graph
where each node corresponds to a table and each edge from tableA

to tableB corresponds to a FK in A referencing B, then we define
as the diameterd of the snowflake the length of the longestdi-
rectedpath in the graph. Additionallyr denotes the number of rays
of each star. A snowflake of diameterd in which each star hasr
rays containsr

d+1−1
r−1

tables. The number of sources isrd+1−1
r−1

−1
and both their number as well as their overlap increases withd and
r. Figure 8 depicts the schema ford = 2 andr = 3 and a source
registration providing the two shaded target relations.

The platform. The measurements were conducted on a PC with
a Pentium 4 3.2 GHz, MS Windows XP Pro and 1GB RAM.

The results. For increasing values of the parameters, we ex-
plored the tree of all possible interaction runs to contribute to a
query performing a 3-way join over the snowflake. Although the
query had 12 attributes, RIDE correctly asked only for the required
attributes (which for our query were 5). In some cases this number
was even smaller as the tool exploited merging and borrowed values
from other sources. The number of required attributes also defines
an upper bound on the number of interaction steps until comple-
mentarity is reached. Since any required attribute can be provided
through two actions (adding an arrow or selection and potentially
accepting an assertion), the depth of the interaction is at most twice
the number of required attributes (10 in our setting).

Figure 9 shows RIDE’s average and maximum response time
w.r.t. the number of sources in the system (generated by usingd

= 2 andr ranging from 1 to 15). The highest values in the graph
are for 240 sources (d = 2, r = 15) with RIDE taking in the worst
interaction sequence a maximum of 1.223 sec to respond. Its av-



erage response time was even better: 0.615 sec. Out of this time
the generation of candidate suggestions was negligible, with most
of the time spent in checking whether such a suggestion leads to
the desired self-reliance. These results show that RIDE’s response
time meets the needs of interactive tools even for complex target
schemas and sufficiently many sources to preclude global overview.

7. RELATED WORK
RIDE adopts the GLAV formalism introduced in the context of
open-world integration systems [19, 23, 25], later used in data ex-
change [18] and peer-to-peer integration systems [24, 20]. How-
ever, none of these lines of work addresses autonomous source reg-
istration, levels of self-reliance, or visual guidance towards them.

The idea of self-reliance was first introduced in [13], but the no-
tions presented here are appropriately adapted to RIDE’s needs.
In [13], the definitions usedexistentialquantification over the source
databases, thus checking whether there existsomesource databases
with a desired self-reliance level. This corresponds topotentialself
sufficiency and complementarity, as opposed to thedefiniteflavor
checked by RIDE. Besides calling for a completely new set of al-
gorithms, the design decision we take here ensures that the self-
reliance level holds for the current source databases as well as all
their updates compatible with the integrity constraints and asser-
tions. This departure from [13] is crucial to avoid re-checking con-
sistency and self-reliance levels upon every update to source tables,
as well as the annoying notifications to source owners. Instead, all
there is to check is the preservation of the integrity constraints and
assertions, which can be done through classical solutions [22].

Efficient Implementations of the chase algorithm based on query
evaluation are reported and evaluated in [15, 18, 12].

Recently, in Cimple/DBLife [17] it was suggested that a central
authority integrates community data from the web through tools
that semi-automatically retrieve and integrateunstructureddata in a
best-effortway (which may lead to inconsistencies or wrong data).
Our approach is orthogonal, being suitable for communities will-
ing to integratestructureddata in apreciseway. Since the source
registration has to be done manually, we help the central authority
by delegating this job to the individual community members.

Commercial data integration tools such asIBM WebSphere Qual-
ityStage[4] andFirstLogic Information Quality[2] detect primary
key violations (so-called duplicate tuples) by inspecting the un-
derlying data instances. Other projects allow inconsistencies but
rewrite application queries to take into account only the consistent
part of the database [21, 11], or to compute probabilities for each
of the inconsistent duplicate tuples [10]. Our focus on inconsis-
tency is complementary, emphasizing prevention and explanation
at registration time rather than detection and resolution at run time.

8. CONCLUSIONS
We target communities of data owners motivated to publish their

data autonomously into the community schema. Our aim is to en-
able owners to autonomously negotiate the trade-off of self-reliance
in making their data visible to applications, versus minimization of
the publishing cost. To this end we define 3 degrees of self-reliance
for contribution, and introduce RIDE, a visual tool that guides the
owner by suggesting which attributes to provide. RIDE guarantees
that, by following its suggestions, the user will arrive at a registra-
tion of the desired self-reliance level, incurring the cost for provid-
ing only essential attributes, and avoiding inconsistency. Our eval-
uation shows that the algorithms for checking consistency and self-
reliance and for generating suggestions, scale well with the num-
bers of sources. A demo is available athttp://db.ucsd.edu/ride.
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APPENDIX
This appendix contains various discussions omitted from the main
body of the paper due to lack of space. Section A discusses RIDE’s
suggestions in the presence of parameterized queries. Section B
extends Section 6.4 by providing a more detailed complexity anal-
ysis of the algorithmmkCanInst for the generation of the canon-
ical source and target instances. Section C contains the proof of
Theorem 2 (i.e. of the undecidability of potential inconsistency).
Finally Section D discusses two possible extensions of RIDE and
the community-based framework: First, an extension allowing the
community-based integration framework to support evolution of
the target schema within a single community or coalescing of mul-
tiple communities that have emerged on the same topic into a larger
community. Second, an extension of RIDE to allow contribution to
a list of queries.

A. RIDE’S SUGGESTIONS FOR PARAME-
TERIZED QUERIES

Throughout the paper we employed a single non-parameterized
query to showcase the entire set of suggestions that RIDE can gen-
erate. However RIDE continues to make non-trivial suggestions
even for parameterized queries, which are commonly used by ap-
plications running on top of databases.

In particular, if we replace a selection with a constant in a query
with a parameter, RIDE’s suggestions for the non-parameterized
attributes stay the same. The only suggestions that cease to exist
are selection suggestions for the parameterized attributes as those
would defeat the generic purpose of the parameter. For instance if
in our running example in Section 4 author was a parameter, RIDE
would make the same suggestions apart from the ones shown in
Snapshot 1.2 of Figure 5 (while removing ‘Ullman’ from all oth-
ers).

All definitions and algorithms can be straightforwardly extended
to parameterized queries.

B. EXTENDED COMPLEXITY ANALYSIS
In this section we show the exact complexity of the algorithm

mkCanInst, which we omitted from Section 6.4 due to lack of
space.

As in the aforementioned Section we refer to the typical case in
which the integrity constraints are (weakly acyclic) sets of primary
keys, the target schema (and constraints) are fixed and only the
source schemas and their registrations vary.

We introduce the following notation:NS is the number of re-
lations in the combined source schemas;e is the maximum length
(in number of relational atoms) of a source query appearing in any
registration mapping constraint;bR is the number of mapping con-
straints in which source relationR is mentioned;b is the maximum
bR over all source relation namesR; t is the maximum number of
relational atoms per target query in a mapping constraint.

Finally, given a primary key PK on target relationR, let kPK

be the maximum number of distinct tuples, all agreeing on some
valuev for the PK attribute, which could be chased intoR during
the canonical instance construction. Then we denote withk the
maximumkPK over all target primary keys. LetNv denote the
number of distinct key valuesv as above.

An analysis of the chase run-time behavior yields thatmkCanInst
runs in worst-case timeO(NSbet+Nvk2). Note that the exponent
e is independent of the number of sources. It pertains to the largest
number of source tables involved in a single mapping, a typically
small value bounded by the size of each individual source schema,

and more effectively, by the owner’s limited capacity of compre-
hending complex mapping constraints. Indeed, whenever possible,
owners prefer to split the registration into several small mappings
rather than wielding a single large one.

Thek2 term is due to chasing with the key constraint for PK on
R, which requires self-joiningR on the PK [9]. WhileNv × k is
worst-case bounded by a polynomial in the combined size (number
of variables) of all source queries appearing in registration map-
pings, in practice this is a small entity, as it really reflects the cases
in which users put the same constant selections on key attributes
or (via source selections) on attributes which finally end up provid-
ing values of key attributes. These registrations are unlikely: they
would correspond for instance to the user restricting her registra-
tion to provide only data about the book of ISBN ’123’. The only
other factor contributing to the size ofk andNv are assertions, of
which we expect the user to accept only a small number.

C. PROOF OF UNDECIDABILITY FOR PO-
TENTIAL INCONSISTENCY

• Source schemaS = {ES : 3-ary}

• Target schemaG = {C: 5-ary,R: 2-ary}

• Set of assertionsA = ∅

• Set of source constraints∆S = {(U i
δ ⊆ V i

δ )|1 ≤ i ≤ 2}

U1
δ (s, l1, t1, l2, t2) :- ES(s, l1, t1), ES(s, l2, t2)

V 1
δ (s, l, t, l, t) :- ES(s, l, t)

U2
δ (t, s1, l1, s2, l2) :- ES(s1, l1, t), ES(s2, l2, t)

V 2
δ (t, s, l, s, l) :- ES(s, l, t)

• Set of target constraints∆G = {(U3
δ ⊆ V 3

δ )}

U3
δ (x′, y′) :- R(x, y), C(x, y, i, x′, y′)

V 3
δ (x′, y′) :- R(x′, y′)

• Set of mappingsM = {(U i
G ⊆ V i

G)|1 ≤ i ≤ 2n}

foreach1 ≤ i ≤ n, let ui = a1...ak andvi = b1...bl

U i
G(x1, y1, i, xk+1, yl+1) :-
ES(x1, a1, x2), ES(x2, a2, x3), ..., ES(xk, ak, xk+1),
ES(y1, b1, y2), ES(y2, b2, y3), ..., ES(yl, bl, yl+1)

V i
G(x1, y1, i, x2, y2) :- C(x1, y1, i, x2, y2)

let l0 be a letter not inΣ
foreach1 ≤ i ≤ n, let ui = a1...ak andvi = b1...bl

if one ofui, vi is a prefix of the other, then
U i+n

G (xk, yl) :-
ES(s0, l0, s),
ES(s, a1, x1), ES(x1, a2, x2), ..., ES(xk−1, ak, xk),
ES(s, b1, y1), ES(y1, b2, y2), ..., ES(yl−1, bl, yl)

V i+n
G (x1, y1) :- R(x1, y1)

else remove the constraint(U i+n
G ⊆ V i+n

G )

Figure 10: Auxiliary Integration System ISaux

The proof is a reduction from the Post Correspondence Problem
(PCP). LetL1 = {ui}1≤i≤n, L2 = {vi}1≤i≤n be lists of words
over an alphabetΣ (i.e. ui ∈ Σ∗, vi ∈ Σ∗, 1 ≤ i ≤ n). A solution
to PCP is a sequence of indexesi1, ..., im s.t. ui1ui2 ...uim

=
vi1vi2 ...vim

. The stringui1ui2 ...uim
is called theexpansion of

this solution. In order to prove the theorem, for any PCP instance
we create an integration system (i.e. a source schemaS, a target
schemaG, a set of assertionsA, a set of source constraints∆S , a
set of target constraints∆G and a set of mapping constraintsM )
s.t. a PCP instance has a solution iff the corresponding integration
system is potentially inconsistent.



Same asISaux shown in Figure 10 with an additional target rela-
tion I and two additional target constraints involvingI:

• Source schemaS = {ES : 3-ary}

• Target schemaG = {C: 5-ary,R: 2-ary,I: 2-ary}

• Set of assertionsA = ∅

• Set of source constraints∆S = {(U i
δ ⊆ V i

δ )|1 ≤ i ≤ 2}

• Set of target constraints∆G = {(U i
δ ⊆ V i

δ )|3 ≤ i ≤ 5}

U4
δ (x) :- R(x, x)

V 4
δ (x) :- I(x, 1), I(x, 2)

U5
δ (x, y1, y2) :- I(x, y1), I(x, y2)

V 5
δ (x, y, y) :- I(x, y)

• Set of mappingsM = {(U i
G ⊆ V i

G)|1 ≤ i ≤ 2n}

Figure 11: Integration SystemIS used in the Reduction

For ease of exposition we first create an auxiliary integration sys-
tem ISaux shown in Figure 10. Then we extend it to the actual
integration systemIS used in the reduction as shown in Figure 11.
Note that the constructed integration systems (bothIS andISaux)
contain just a single registered source and therefore they contain a
single source schemaS and a single registrationM .

Let us first presentISaux. Source relationES is the edge re-
lation of a labeled directed graph withES(s, l, t) describing the
edge from nodes to t with label l. The intention is to represent
a wordw = a1...ap (whereai are letters) by a chain of the form
ES(x1, a1, x2), ..., ES(xp, ap, xp+1). On the target schema, tar-
get relationC is intended to contain tuplesC(su, sv, i, tu, tv) if
from pair of nodessu, sv we can reach nodestu, tv following paths
representingui, vi, respectively. Additionally, target relationR
should contain a tupleR(tu, tv) if nodestu, tv are reachable from
thesamenodes by paths representingui1 ...uik

andvi1 ...vik
, re-

spectively for some indexesi1, ..., ik. Therefore a tuple of the form
R(x, x) means that nodex is reachable by some nodes both by a
path representingui1 ...uik

and one representingvi1 ...vik
. Since

however the graph contains only chains, these paths will coincide
and represent the expansion of a solution to the PCP. Thus there
exists a tuple of the formR(x, x) iff PCP has a solution.

Let us now move to the integration systemIS. It is an extension
of ISaux such that there exists a target instance inIS that satisfies
all mapping and target constraints iffISaux does not contain a tuple
of the formR(x, x). ThereforeIS is potentially inconsistent iff
ISaux contains a tuple of the formR(x, x). However, since the
latter happens exactly when PCP has a solution,IS is potentially
inconsistent iff PCP has a solution.

The above semantics are specified as follows: The source con-
straints(U i

δ ⊆ V i
δ ), 1 ≤ i ≤ 2 restrict the source instances to

graphs consisting of a set of disjoint chains and cycles. Note that
the source instances cannot be restricted to graphs containing only
chains, since chains and cycles are indistinguishable by first-order
formulas. Furthermore, the mapping constraints(U i

G ⊆ V i
G), 1 ≤

i ≤ n are used to capture the intended meaning for relationC.
Target constraint(U3

δ ⊆ V 3
δ ) and mapping constraints(U i

G ⊆
V i
G), n+1 ≤ i ≤ 2n implement the semantics of relationR, which,

according to its definition, should contain the transitive closure of
C. The recursive step to obtain the transitive closure is described
by (U3

δ ⊆ V 3
δ ) and the base case of the recursion is captured by

constraints(U i
G ⊆ V i

G), n+1 ≤ i ≤ 2n. The base case consists of
pairs of nodestu, tv s.t. they are reachable from a nodes (with an
incoming edge labell0 6∈ Σ) both through a path representingui

and through one representingvi, whereui is a prefix ofvi or vice

versa. The prefix requirement is due to the fact that ifi1, ..., im
is a solution to the PCP, then one ofui1 , vi1 will be a prefix of
the other. Moreover the requirement that the start nodes has an
incoming edge labeledl0 6∈ Σ avoids considering a path froms
to t as the expansion of a solution to the PCP when there is a path
from s to t throughui1 ...uim

and one throughvi1 ...vim
but one

of these paths goes around a cycle on whichs, t are located more
times than the other.

Finally, target constraints(U i
δ ⊆ V i

δ ), 4 ≤ i ≤ 5 establish the
connection betweenIS andISaux by specifying that target rela-
tion I contains a key constraint which is violated whenever there
exists a tuple of the formR(x, x).

D. EXTENSIONS/FUTURE WORK

D.1 Supporting Evolution of Communities
In our framework a community is started by an initiator who de-

signs its target schema. Sometimes the initiator is a consortium
agreeing on a common schema. More commonly we envision the
emergence of ad hoc communities whose initiator (possibly an indi-
vidual) decides the schema without seeking source owner approval.
Source owners join the community as it gains popularity (just as on-
line communities like blogs grow). Such communities may evolve.
Evolution may include both changing the target schema of a single
community (to make it adapt to new needs) and coalescing of sev-
eral ad hoc communities that have emerged on the same topic into
a larger community.

The community-based integration architecture can support both
types of evolution through techniques studied extensively in [27,
29, 14] as explained next. We will start by presenting the case of
schema evolution within a single community and then we will show
that coalescing of communities can be reduced to the former.

When the initiator evolves a community’s target schema, this af-
fects both the legacy source registrations and application queries.
RIDE can help keep the maintenance task lightweight by reliev-
ing the initiator from the need to know anything about sources and
their mappings. To this end we propose existing techniques to au-
tomate the translation of mappings and queries to the new schema.
In particular, mappings are adapted to the new target schema using
techniques presented in [27, 29]. Similarly, the queries are rewrit-
ten against the new target schema by modeling the schema evolu-
tion as a mapping between the old and the new target schema and
using solutions on rewriting queries under constraints (see [14]).
A source owner can subsequently call RIDE as usual to adjust the
contribution of the new mappings to the new application queries.
RIDE thus assists in delegating the non-scalable part of schema
evolution to the individual source owners.

The coalescing is supported by the same techniques used for
schema evolution within a single community. When initiators merge
their communities into a larger one, they design the new commu-
nity’s target schema (which might be either a new schema or one of
the schemas of an existing community) and they map the individ-
ual community schemas to it. Subsequently the same techniques as
before can be used to adapt the mappings and queries to the new
target schema.

D.2 Contributing to a List of Queries
In this paper, we focused on guiding the registration to contribute

to a single query. However, our approach lends itself to generaliza-
tion to a list of queries: the owner visits each query in turn, adding
mappings until the desired level is reached for the current query.
It is easy to see that adding a mapping cannot lower (but could
increase) the already achieved self-reliance level of previously vis-



ited queries. RIDE is guaranteed to avoid generating suggestions
for providing attributes needed by a query if they have already been
provided for a previous query. This is a consequence of our solu-
tion being based on matching the query against the canonical tar-
get instance, which essentially grows with each added mapping,
thus increasing the matching opportunities for the new query. The
local minimization thus achieved for the publishing cost depends
however on the historic order in which queries were visited by the
owner. A global consideration of the entire query list could po-
tentially yield more minimization opportunities, and we intend to
address this question in future work.


