
Chase

Alin Deutsch Alan Nash

University of California San Diego Tradeworx

SYNONYMS

none

DEFINITION

The chase is a procedure that takes as input a set Σ of constraints and an instance I . The chase does
not always terminate, but if it does it produces as output an instance U with the following properties:

1. U |= Σ; that is, U satisfies Σ.

2. I → U ; that is, there is a homomorphism from I to U .

3. For every instance J (finite or infinite), if J |= Σ and I → J , then U → J .

In [7], an instance that satisfies (1) and (2) above is called a model of Σ and I and an instance that
satisfies (3) above is called strongly universal.
In summary, the chase is a procedure which—whenever it terminates—yields a strongly-universal model

Comments.

1. The set Σ of constraints is usually a set of tuple-generating dependencies (tgds) and equality-
generating dependencies (egds) [5], or, equivalently, embedded dependencies [5, 10]. However, the
chase has been extended to wider classes of constraints and to universality under functions other
than homomorphisms [6, 7, 9]. In this case, the chase often produces a strongly-universal model
set (see below), instead of a single model.

2. It was noted in [7] that in database applications, weak universality (condition 3 above restricted
to finite instances) would suffice. Nevertheless, the chase gives strong universality.

HISTORICAL BACKGROUND

The term “chase” was coined in [15], where it was used to test the logical implication of dependencies (i.e.
whether all databases satisfying a set Σ of dependencies must also satisfy a given dependency σ). The implication
problem was one of the key concerns of dependency theory, with applications to automatic schema design. [15]
defined the chase for the classes of functional, join and multivalued dependencies. Related chase formulations for
various kinds of dependencies were introduced in [14, 17]. [5] unified the treatment of the implication problem
for various dependency classes by introducing and defining the chase for tuple-generating and equality-generating
dependencies (sufficiently expressive to capture all prior dependencies).

Ancestors of the chase (introduced as unnamed algorithms) appear in [4, 3, 2]. [4] introduces tableaux, a
pattern-based representation for relational queries, and shows how to check the equivalence of tableau queries
in the presence of functional dependencies, with applications to query optimization. To this end, the tableaux
are modified using an algorithm that coincides with the chase with functional dependencies. [3] uses the same
algorithm for minimization of tableaux under functional dependencies. This algorithm is extended in [2] to
include also multivalued dependencies, for the purpose of checking whether the join of several relations is lossless



(i.e. the original relations can be retrieved as projections of the join result).

The chase was extended to include disjunction and inequality in [9], and to arbitrary ∀∃-sentences in [6].
Independently, [13] extended the chase to a particular case of disjunctive dependencies incorporating disjunctions
of equalities between variables and constants (see also [12]). There are also extensions of the chase to deal with
more complex data models beyond relational. [16] extends the chase (and the language of embedded dependencies)
to work over complex values and dictionaries. For an excellent survey of the history of the chase prior to 1995,
consult [1].

SCIENTIFIC FUNDAMENTALS

A tuple-generating dependency (tgd) is a constraint σ of the form

∀x̄, ȳ (α(x̄, ȳ) → ∃z̄β(x̄, z̄))

where α and β are conjunctions of relational atoms. Furthermore, every variable in x̄ appears in both α and β.
The ∀x̄, ȳ prefix of universal quantifiers is usually omitted. If z̄ is empty, then σ is full.

An equality-generating dependency (egd) is a constraint φ of the form

∀x1, x2, ȳ (α(x1, x2, ȳ) → x1 = x2)

where α is a conjunction of relational atoms.

The chase is used on instances whose active domain consists of constants and labeled nulls. A homomorphism
from A to B is denoted A → B. It is a mapping h on the constants and nulls in A that (i) preserves
constants (i.e. h(c) = c for every constant c) and preserves relationships (i.e. for every tuple R(x1, . . . , xn) ∈ A,
we have R(h(x1), . . . , h(xn)) ∈ B). Two instances A and B are homomorphically equivalent if A → B and B → A.

The chase is a natural procedure for building strong universal models. Indeed, it turns out that checking for
strong universality is undecidable as shown in [7]). In contrast, checking whether an instance is a model can
be done efficiently. Therefore, it is natural to define any procedure for constructing strong universal models by
steps which always preserve strong universality while attempting to obtain a model and then to check whether a
model was indeed obtained. This is precisely what the chase does.

A tgd σ ∈ Σ fails or applies on A, ā if there is b̄ in A such that the premise α of σ satisfies A |= α(ā, b̄),
yet there is no c̄ in A such that the conclusion β of σ satisfies A |= β(ā, c̄). Assume that the instance A′

is obtained by adding to A the tuples in β(ā, n̄) where n̄ is a tuple of new nulls. Then A′ is the result
of firing σ on A, ā. Notice that A ⊆ A′ and that σ does not fail on A′, ā. It is easy to verify that if A is
strongly universal for Σ and I , then so is A′ (towards this, it is essential that all the nulls in n̄ be new and distinct).

An egd σ ∈ Σ fails or applies on A, a1, a2 if there is b̄ in A such that the premise α of σ satisfies A |= α(a1, a2, b̄),
yet a1 6= a2. If a2 is a null and we replace a2 everywhere in A with a1 to obtain A′, then we say that A′ is the
result of firing σ on A, a1, a2. Notice that A → A′ and that σ does not fail on A′, a1, a1. It is easy to verify that
if A is strongly universal for Σ and I , then so is A′. If a2 is a constant, but a1 is null, then we can replace a1

everywhere in A with a2 instead. However, if both a1 and a2 are constants, then it is not possible to satisfy σ

and preserve strong universality and the chase fails.

The standard chase procedure proceeds as follows.

1. Set A0 := I .

2. Repeat the following:

2a. If An is a model of Σ and I , stop and return An.

2b. Otherwise, there must be either

2



(i) a tgd σ and ā such that σ fails on A, ā, or

(ii) an egd σ′ and a1, a2 such that σ′ fails on A, a1, a2.

Obtain An+1 by picking one such σ and ā and firing σ on An, ā, or by picking one such σ′ and a1, a2 and
firing σ′ on A, a1, a2. (This is one chase step of the standard chase.)

Notice that, at every chase step, there may be a choice of σ and ā, respectively σ ′ and a1, a2. How these choices
are picked is often left unspecified and in that case the standard chase is non-deterministic. The chase terminates
if An is a model of Σ and I for some n.

The chase of instance I with tgds Σ produces a sequence of instances I = A0 ⊆ A1 ⊆ A2 ⊆ . . . such that every Ai

is strongly universal for Σ and I . The chase with tgds and egds produces a sequence I = A0 → A1 → A2 → . . .

such that every Ai is strongly universal for Σ and I . In the presence of egds, it is no longer the case that Ai ⊆ Aj

for i ≤ j and there is the additional complication that a chase step may fail. The chase for tgds and egds is
described in more detail in [1].

Example 1 Consider the schema consisting of two relations:

1. employee Emp(ss#, name, dept#), with social security, name, and dept. number, and

2. department Dept(dept#, name, location, mgr#), with dept. number, name, location, and its manager’s
social security number.

Assume that Σ consists of the constraints

σ1: dept# is a foreign key in Emp,

σ2: mgr# is a foreign key in Dept, and

σ3: every manager manages his own department.

(We omit the constraints that say that ss# is a key for Emp and that dept# is a key for Dept to keep the example
simple.) These constraints can be written as follows (where σ1 and σ2 are tgds and σ3 is an egd):

σ1: Dept(d, e, `, m) → ∃n, d′ Emp(m, n, d′),

σ2: Emp(s, n, d) → ∃e, `, m Dept(d, e, `, m), and

σ3: Dept(d, e, `, m), Emp(m, n, d′) → d = d′.

Consider the initial instance

I0 = Dept(1, “HR”, “somewhere”, 333− 33− 3333)

containing a single tuple. Then in the first step of the chase, σ1 fires, giving

I1 = {Dept(1, “HR”, “somewhere”, 33), Emp(33, α, β)}

where α and β are labeled nulls. In the second step, both σ2 and σ3 apply. If σ3 fires, then β is set to 1 and yields

I2 = {Dept(1, “HR”, “somewhere”, 33), Emp(33, α, 1)}.

Since I2 satisfies Σ, the chase terminates. However, if instead at the second step σ2 fires, then it gives

I ′2 = {Dept(1, “HR”, “somewhere”, 33), Emp(33, α, β), Dept(β, γ, δ, ε}

where γ, δ, and ε are new nulls. In this case, it is possible to continue firing σ1, σ2, and σ3 in such a way as to
obtain a chase that does not terminate, perpetually introducing new nulls.

If the standard chase (or any other chase listed below) terminates, it yields a strongly-universal model of Σ and
I and it is straightforward to verify that all such models are homomorphically equivalent. Therefore the result
of the standard chase is unique up to homomorphic equivalence. However, the choice of what constraint to fire
and on what tuple may affect whether the chase terminates or not.

3



There are several variations of the chase, which we shall call here the standard chase, the parallel chase, and the
core chase. The standard chase was described above. In the parallel chase, at every chase step σ is fired on An, ā

for all pairs (σ, ā) such that σ fails on A, ā.

We write IΣ for the result of the chase on Σ and I , if the chase terminates. In that case, we say that IΣ is
defined. In general, it holds that if A → B, then AΣ → BΣ, whenever the latter are defined.

It was shown in [7] that the standard chase is incomplete, in the following sense: it may be that Σ and I have
a strongly-universal model, yet the standard chase does not terminate. The parallel chase is also incomplete in
this sense. In contrast, the core chase introduced in [7] is complete: if a strongly universal-model exists, the core
chase terminates and yields such a model. A chase step of the core chase consists of one chase step of the parallel
chase, followed by computing the core of the resulting instance.

Any of the above mentioned variations of the chase can be applied to sets of constraints which consist of

1. tgds only,

2. tgds and egds,

3. tgds and egds with disjunctions

4. tgds and egds with disjunctions and negation, which are equivalent to general ∀∃ sentences.

The chase with tgds and egds has been described above. The chase has been extended to handle disjunction
and negation. In this case, it gives not a single model, but a set S of models which is strongly universal, in the
sense that for any model J (finite or infinite) of Σ and I , there is a model A ∈ S such that A → J . Such a set
arises from a single initial model by branching due to disjunction. For example, consider the set Σ with the single
disjunctive tgd

σ : R(x) → S(x) ∨ T (x)

and the instance I containing the single fact R(1). Clearly every model of Σ and I , must contain either S(1) or
T (1). It is easy to verify that the set S = {I1, I2} where I1 = {R(1), S(1)} and I2 = {R(1), T (1)} is strongly
universal for I and Σ, but no proper subset of S is. The disjunctive chase with Σ on I consists of a single step,
which produces not a single model, but the set S of models. Intuitively, whenever a disjunctive tgd fires on a
set W of models, it produces, for every instance A ∈ W , one instance for every disjunct in its conclusion. For
details, to see how negation is handled, and to see how universality for functions other than homomorphisms is
achieved, see [7, 6].

It was shown in [7] that it is undecidable whether the standard, parallel, or core chase with a set of tgds terminates.
A widely-applicable, efficiently-checkable condition on a set Σ of tgds, which is sufficient to guarantee that the
chase with Σ on any instance I terminates, was introduced in [9, 11]. A set of tgds satisfying this condition is
called weakly acyclic in [11] and is said to have stratified witnesses in [9]. A more widely-applicable condition,
also sufficient for chase termination, was introduced in [7], where a set of tgds satisfying this condition is called
stratified.

KEY APPLICATIONS*

The chase has been used in many applications, including

•checking containment of queries under constraints (which in turn is used in such query rewriting tasks as
minimization, rewriting using views, and semantic optimization),
•rewriting queries using views,
•checking implication of constraints,
•computing solutions to data exchange problems, and
•computing certain answers in data integration settings.

To check whether a query P is contained in a query Q under constraints Σ, written P vΣ Q, it is sufficient to (1)
treat P as if it was an instance in which the free variables are constants and the bound variables are nulls (this is
known as the “frozen instance” or “canonical database” [1] corresponding to P ) (2) chase it with Σ, and if this

4



chase terminates to yield P Σ (3) check whether the result of this chase is contained in Q, written P Σ v Q. In
symbols, if the chase described above terminates, then

P vΣ Q iff PΣ v Q.

That is, the chase reduces the problem of query containment under constraints to one of query containment
without constraints.

To check whether a set Σ of tgds implies a tgd σ of the form

∀x̄, ȳ(α(x̄, ȳ) → ∃z̄β(x̄, z̄))

which is logically equivalent to
∀x̄(∃ȳα(x̄, ȳ)

︸ ︷︷ ︸

Qα(x̄)

→ ∃z̄β(x̄, z̄)
︸ ︷︷ ︸

Qβ(x̄)

),

it suffices to check whether the query Qα in the premise of σ is contained under the constraints Σ in the query
Qβ in the conclusion of σ. That is, if QΣ

α is defined, then

Σ |= σ iff Qα vΣ Qβ iff QΣ
α v Qβ .

The chase was also employed to find equivalent rewritings of conjunctive queries using conjunctive query views,
in the presence of constraints. Given a set V of conjunctive query views and a conjunctive query Q, one can
construct, using the chase, a query R expressed in terms of V , such that Q has some equivalent rewriting using V
if and only if R is itself such a rewriting. Moreover, every minimal rewriting of Q is guaranteed to be a sub-query
of R. The algorithm for constructing R and exploring all its sub-queries is called the Chase&Backchase (CB) [8],
and it is sound and complete for finding all minimal rewritings under a set Σ of embedded dependencies, provided
the chase with Σ terminates [9]. The CB algorithm constructs R by simply (i) constructing a set ΣV of tgds
extracted from the view definitions, and (ii) chasing Q with Σ ∪ ΣV and restricting the resulting query to only
the atoms using views in V .

In [11] is was shown that the certain answers to a union Q of conjunctive queries on a ground instance I under
a set Σ of source-to-target tgds and target tgds and egds can be obtained by computing Q(U)—where U is
a universal solution for I under Σ—then discarding any tuples with nulls. Universal solutions, which are the
preferred solutions to materialize in data exchange, are closely related to strongly-universal models [7] and it was
shown in [11] that they can be obtained using the chase.

CROSS REFERENCE*

Data exchange – Data integration – Database dependencies – Equality-generating dependencies – Query
containment – Query optimization – Query rewriting – Query rewriting using views – Tuple-generating
dependencies

RECOMMENDED READING

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. ACM Trans. Database Syst.,

4(3):297–314, 1979.
[3] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class of relational expressions. ACM Trans. on

Database Systems (TODS), 4(4):435–454, 1979.
[4] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. SIAM J. on Computing, 8(2):218–246,

1979.
[5] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. J. ACM, 31(4):718–741, 1984.

5



[6] A. Deutsch, B. Ludaescher, and A. Nash. Rewriting queries using views with access patterns under integrity
constraints. In ICDT, 2005.

[7] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In PODS, 2008.
[8] A. Deutsch, L. Popa, and V. Tannen. Physical data independence, constraints, and optimization with universal plans.

In VLDB, pages 459–470, 1999.
[9] A. Deutsch and V. Tannen. XML queries and constraints, containment and reformulation. Theor. Comput. Sci.

(TCS), 336(1):57–87, 2005. Preliminary version in ICDT 2003.
[10] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985, 1982.
[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and Query Answering. Theor. Comput.

Sci. (TCS), 336(1):89–124, 2005. Preliminary version in ICDT 2003.
[12] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data exchange. ACM Trans. Database Syst. (TODS),

31(4):1454–1498, 2006. Preliminary version in PODS 2005.
[13] G. Grahne and A. O. Mendelzon. Tableau techniques for querying information sources through global schemas. In

ICDT, pages 332–347, 1999.
[14] Maier, Sagiv, and Yannakakis. On the complexity of testing implication of functional and join dependencies. J. ACM,

1981.
[15] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM Trans. Database Syst.,

4(4):455–469, 1979.
[16] L. Popa and V. Tannen. An equational chase for path-conjunctive queries, constraints, and views. In ICDT, pages

39–57, 1999.
[17] M. Vardi. Inferring multivalued dependencies from functional and join dependencies. Acta Informatica, 1983.

6


