FOL Modeling of Integrity Constraints (Dependencies)

Alin Deutsch
Computer Science and Engineering, University of California San Diego
deutsch@cs.ucsd.edu

SYNONYMS
relational integrity constraints; dependencies

DEFINITION

Integrity constraints (also known as dependencies in the relational model) are domain-specific decla-
rations which indicate the intended meaning of the data stored in a database. They complement the
description of the structure of the data (e.g. in the relational model the structure is given by listing the
names of tables and the names and types of their attributes). Integrity constraints express properties
that must be satisfied by all instances of a database schema that can arise in the intended application
domain (e.g. “no two distinct employees may have the same ssn value”, “departments have a single
manager”, etc.).

HISTORICAL BACKGROUND

The reference textbook [1] provides a comprehensive, unifying overview of the many special classes of relational
dependencies, their modeling in first-order logic (FOL), and the key problems in the study of dependencies. This
entry is a condensed form of Chapter 10 in [1] (excluding the material on reasoning about dependencies). For more
detail on the motivation and history of relational dependency theory, see the excellent survey papers [9, 14, 22].

Historically, functional dependencies were the first class to be introduced (by Codd [3]). Multi-valued dependencies
were discovered independently in [24, 10, 5]. These were followed by a proliferation of dependency classes,
typically expressed using ad-hoc syntax. These include join dependencies, and inclusion dependencies (a.k.a.
referential integrity constraints) [4]. Fagin [10] first introduced embedded multi-valued dependencies (MVDs that
hold in the projection of a relation), while [15] introduced the distinct class of projected JDs. Other classes
include subset dependencies [20], mutual dependencies [17], generalized mutual dependencies [16], transitive
dependencies [18], extended transitive dependencies [19], and implied dependencies [12].

The movement towards ever-refined classifications of dependencies was prompted mainly by research on automatic
reasoning about dependencies, in particular their axiomatization. This movement was soon countered by the
drive to unify the treatment of the various classes by finding a formalism that subsumes all of them. Nicolas [17]
is credited with first observing that FDs, MVDs and others have a natural representation in first-order logic.
In parallel, [2] introduced tuple-generating and equality-generating dependencies expressed in a tableaux-based
notation, shown to be equivalent in expressive power to Fagin’s typed embedded dependencies [8], which were
expressed in first-order logic. The class DED7 was introduced in [7] as an extension of embedded dependencies
with disjunction and non-equalities (see also [13] for a particular case of DED7s). [6] further extends the
DED7 class to allow negated relational atoms. Research on using arbitrary first-order logic sentences to specify
constraints includes [11, 17, 21].

In contrast, algebraic dependencies are an alternative unifying framework developed by Yannakakis and
Papadimitriou [23]. Algebraic dependencies are statements of containment between queries written in relational
algebra, and have the same expressive power as first-order logic.

SCIENTIFIC FUNDAMENTALS

This section lists a few fundamental classes of relational dependencies, subsequently showing how they can be
expressed in first-order logic. In the following, R(U) denotes the schema of a relation with name R and set of
attributes U.

Functional dependencies. A functional dependency (FD) on relations of schema R(U) is an expression of the
form

(1) R:X—-Y

where X C U and Y C U are subsets of R’s attributes. Instance r of schema R(U) is said to satisfy FD fd,
denoted r |= fd, if whenever tuples ¢; € r and to € r agree on all attributes in X, they also agree on all attributes
inY:

r = fd & for every t1,te € r if wx (t1) = wx (t2) then 7wy (t1) = 7y (t2).

Here, x (t) denotes the projection of tuple ¢ on the attributes in X.

For instance, consider a relation of schema
review(paper, reviewer, track)

listing a conference track a paper was submitted to, and a reviewer it was assigned to. The fact that every paper
can be submitted to a single track is stated by the functional dependency

review : paper — track.

Key dependencies. In the particular case when Y = U, a functional dependency of form (1) is called a key
dependency, and the set of attributes X is a called a key for R.

Join dependencies. A join dependency (JD) on relations of schema R(U) is an expression of the form
(2) R:N[X1;X27"'7Xn]

where for each 1 <7 < n, X; C U, and U1<i<n X; = U. Instance r of schema R(U) satisfies JD jd, denoted
r = jd, if the n-way natural join of the projections of r on each of the attribute sets X; yields r:

ri=jd < r=1x, (r) Iy, (r) ... x1IIx, (r).

Here, I1x (r) denotes the projection of relation r on the attributes in X.

In the example, assume that a paper may be submitted for consideration by various tracks (e.g. poster or full
paper), and that reviewers are not tied to the tracks. It makes sense to expect that for any given paper p, any
track information listed with a reviewer of p is also listed with all other reviewers of p, since track and reviewer
information are not correlated. This is expressed by requiring that the join of the projection of review on paper,
track and of the projection on paper, reviewer yields the review table:

review : > [{ paper, track}, { paper, reviewer}.

Multi-valued dependencies. In the particular case when n = 2, a join dependency of form (2) is called a
multi-valued dependency (MVD). Because MVDs were historically introduced and studied before JDs, they have
their own notation: an MVD R : < [X7, X3] is denoted

(3) R: X =Y,
2

where X = X1 N Xz and Y = X5 \ Xo.

In the running example, the join dependency turns out to be a multi-valued dependency, which can be expressed
using the following MVD-specific syntax:

review : paper —— track.

Inclusion dependencies. Functional and join dependencies and their special-case subclasses each pertain to
single relations. The following class of dependencies can express connections between relations. An inclusion
dependency (IND) on pairs of relations of schemas R(U) and S(V) (with R and S not necessarily distinct) is an
expression of the form

(4) RIX] C S[Y]

where X C U and Y C V. Inclusion dependencies are also known as referential constraints. Relations r and s of
schemas R(U), respectively S(V) satisfy inclusion dependency id, denoted r,s = id, if the projection of r on X
is included in the projection of s on Y:

r,s | id < Ix(r) CIy(s).
When R and S refer to the same relation name, then r = s in the above definition of satisfaction.
In the running example, assume that the database contains also a relation of schema
PC(member, affiliation)

listing the affiliation of every program committee member. Then one can require that papers be reviewed only
by PC members (no external reviews allowed) using the following IND:

review [reviewer] C PC[member].

Foreign key dependencies. In the particular case when Y is a key for relations of schema S (S : Y — V),
INDs of form (4) are called foreign key dependencies. Intuitively, in this case the projection on X of every tuple
t in r contains the key of a tuple from the “foreign” table s.

In the running example, assuming that every PC member is listed with only one primary affiliation, member is a
key for PC, so the IND above is really a foreign key dependency.

Expressing Dependencies in First-Order Logic

Embedded dependencies. Despite their independent introduction and widely different syntax, it turns out
that all classes of dependencies illustrated above (and many more, including the ones mentioned in the historical
background section) can be expressed using a fragment of the language of first-order logic. This fragment is known
as the class of embedded dependencies, which are formulas of the form

(5) Yoy .. Vo, o(1,. .. 2n) — 3210 326 (Y1, -, Ym),

where {z1,..., 2k} = {y1,-- -, ym} \ {21,..., 20}, and ¢ is a possibly empty and ¢ is a non-empty conjunction of
relational and equality atoms. A relational atom has form R(wq,...,w;), and an equality atom has form w = w’,
where each of w,w’, w1, ...,w; are variables or constants. The particular case when all atoms in 1) are equalities

yields the class known as equality-generating dependencies (EGD), while the case when only relational atoms
occur in ¢ defines the class of tuple-generating dependencies (TGD).

The power of embedded dependencies is illustrated next by expressing the classes of dependencies described above.

Functional dependencies. Assume without loss of generality that in (1), | X| =k, |Y| = [, and |U\(XUY)| = m,
and that the ordering of attributes in U is U = X, Y, Z. Then any functional dependency of form (1) is expressible
as the embedded dependency (actually an EGD):

Vai ... Vo, Yy .. Yy VYo . Yy Ver . Ve, V21 ... Vz)

Zm,

R(X1, eyl Y1y e s Yl P15y 2m) AN R(Z1, 0oy UL, oY 20, s 2) m 1 =YL A AU =Y
In the particular case when X is a key, m = 0 and there are no z;, z, variables in the above embedded dependency.

The functional dependency review : paper — track in the running example, can be expressed as the following
embedded dependency:
VpVrVevr'vt' review(p,r, t) A review(p,r’ ') — t =t

Join dependencies. Join dependencies of form (2), are expressed by observing that for every relation r of
schema R(U), the inclusion
r Clx, (r) < Iy, (r) ... 1x, (1)

holds trivially. Therefore only the opposite inclusion needs to be expressed,
Ix, (r) > x, (r) ... xx, (r) Cr.

This end requires the following notation. Recalling that the set of attributes U in the schema of R is ordered, let
pos(A) denote the position of an attribute A € X in the ordered set U. For a set of attributes X C U, pos(X)
denotes the set {pos(A) | A € X}. In the following, given a tuple of variables 4, u[k] denotes the k*" variable in
U.

elet {@;}i1<i<n be a family of tuples of |U| variables each, such that for every 1 < i < j < n and every
1 <k <|U|, wk] = u;[k] if and only if k € pos(X; N X).

eLet w be a tuple of |U] variables, such that for every 1 < k < |U| and every 1 < ¢ < n, if k € pos(X;) then
w[k] = @;[k]. It is easy to check that w is well-defined: indeed, since |J; X; = U, for each k there is at least
one i with k € pos(X;). Moreover, by definition of the family {@;};, @;[k] = @;[k] whenever k € pos(X;) and
k € pos(X;).

eFinally, let V = {v1,... v} = Ui, @ (with each tuple @; viewed as a set of variables). Notice that variables
occurring in several u; tuples appear just once among V.

Then the join dependency of form (2) is given by the embedded dependency (a TGD, really):

Yor ... Yo, R(@1) A ... A R(d,) — R().

Join dependency review : < [{paper, track}, { paper, reviewer}] is expressed as the following embedded dependency:
VpVr Vi1 VraWty review(p, r1,t1) A review(p, o, ta) — review(p, o, t1).

Inclusion dependencies. To express inclusion dependencies, assume without loss of generality that in (4)
R(U)=R(Z,X) and S(V) = S(Y,W). Then the inclusion dependency (4) is captured by the following embedded
dependency (TGD):

VZl...VZ‘Z| V$1...V,T|X‘ R(Zl,...,Z|Z‘,.’L'1,...,I|X‘) — le...ﬂwm/‘ S(xl,...,:E|X‘,w1,...,w|w‘).

In the running example, the inclusion dependency review|[reviewer] C PC[member] is expressible as the embedded
dependency
VpVryt review(p,r,t) — Ja PC(r,a).

Other classes of dependencies. Embedded dependencies turn out to be sufficiently expressive to capture
virtually all other classes of dependencies studied in the literature.

Other Constraints

By employing more expressive sub-languages of first-order logic, one can capture additional, naturally occurring
constraints. For instance, extending embedded dependencies with disjunction, one obtains the language of
disjunctive embedded dependencies (DED) of form

(6) VT o(Z) — \/2:1 3z i (i),

where Z is a tuple of variables, and so are Z;,g; for every 1 < ¢ <. Analogously to (5), Z; = 7; \ Z. ¢ and each
1; are conjunctions of relational and equality atoms as in (5). If in addition one allows non-equality atoms of the
form w # w’, one obtains the class of DEDs with non-equality, DED#, which is in turn a fragment of first-order
logic.

Cardinality constraints. The language DED# can express cardinality constraints. In the running example,
51 € DED7 states that every paper has at least two reviews:

(61) VpVriVt review(p,ri,t) — Ire review(p,ra,t) Ary # ro.
62 below states that every paper receives at most two reviews:
(02) VpVriVraVrsVt review(p,1,t) A review(p, ra,t) A review(p,rs3,t) Ary £ re — 13 =11 V13 = ra.
Note that the conjunction of §; and 2 requires each paper to receive precisely two reviews.

Domain constraints. The language DED# can be employed to restrict the domain of an attribute. Such
restrictions are commonly known as domain constraints. For instance, in the running example, this is how to
specify that the conference has only three kinds of tracks: “research”, “industrial” and “demo”:

(03) VpVr¥t review(p,r,t) — t = “research” V t = “industrial” Vt = “demo”.

Representational constraints. Many application are based on data models that are richer than the relational
model (e.g. object-oriented, object-relational, XML, RDF models). However, they often leverage the mature
relational technology by supporting the storage of their data in a relational database. The resulting relations
satisfy certain constraints that stem from the original data model. This entry refers to them as representational
constraints. In order to maintain the relational storage and to efficiently process queries over it, it is imperative
to exploit these representational constraints. An obstacle to doing so is the fact that, depending on the original
model they encode relationally, representational constraints tend to not fit neatly into any of the classes of
relational integrity constraints devised for native relational data. Again, first-order logic comes to the rescue.

Representational constraints for the relational representation of XML are illustrated next. While there are many
possible representations, they are all equivalent to the following simple one [7] which captures the fact that in the
XML data model, elements are the tagged nodes of a tree. The tree is represented using the following relations
(among others):

elem(node, tag) child(source,target) desc(source,target)

where the elem relation lists for every element e, the identifier of the tree node modeling e, and the tag of e;
the child table is the edge relation of the XML tree, according to which source is the identifier of the parent
node and target the identifier of the child node; desc is the descendant relation in the tree, whose target node is
a descendant of the source node. Any instance storing an actual XML tree in these tables must satisfy, among
others, the following constraints, all expressible in DED7: every element has at most one tag (expressed in (7)
below); every element has at most one parent (8); children of a node are also descendants of this node (9); the
descendant relation is transitive (10); if two elements have a common descendant, then they either coincide or
one is the descendant of the other (11).

(7) VnVt,Vio elem(n,t1) A elem(n,tz) — t1 = to

(8) VYnVp1Vpo child(p1,n) A child(p2,n) — p1 = po

9) Vst child(s,t) — desc(s,t)

(10) VsVuvt desc(s,u) A desc(u,t) — desc(s,t)

(11) VniVnaVd desc(ni,d) A desc(na,d) — ny = na V desc(ny, na) V desc(na, n)

KEY APPLICATIONS*

The role of integrity constraints is to incorporate more semantics into the data model. This in turn enables an
improved schema design, as well as the delegation to the database management system (DBMS) of the task of
enforcing and exploiting this semantics.

Schema design. Integrity constraints are useful for selecting the most appropriate schema for a particular
database application domain. It turns out that the same information can be stored in tables in many ways,
some more efficient than others with respect to avoiding redundant storage of data, improved update and query
performance, and better readability. While in the early days of database application development, appropriate
schema selection started out as an art, it quickly evolved into a science enabling automatic schema design tools
(also known as “wizards”). Such tools are based on database theory research that proposes schema design
methodology starting from a single, “universal relation”, which is then decomposed into new relations that satisfy
desirable normal forms that take advantage of the known integrity constraints [1]. For instance, in the running
example, both the FD review : paper — track and the MVD review : paper —— track suggest decomposing
relation review into two tables, one associating papers with their track, and one associating papers with their
reviewers, to avoid the redundant listing of track information with every reviewer.

Automatic integrity enforcement. For the purpose of integrity enforcement, the DBMS automatically
checks every update operation for compliance with the declared integrity constraints, automatically rejecting
non-compliant updates. The database administrator can therefore rest assured that the integrity of her data
will be preserved despite any bugs in the applications accessing the database. This guarantee is all the more
important when considering that several applications are usually running against the same database. These
applications are not always under the control of the database administrator, and are often developed by third
parties, which renders their code unavailable for verification. Even with full access to the application code,
verification (like all software verification) is technically challenging and does not scale well with increasing
number of applications or modifications to their code.

Query optimization. The query optimizer can exploit its constraint-derived understanding of the data to
automatically rewrite queries for more efficient execution. Delegating this task to the DBMS ensures that
queries are efficiently executed even when they are issued by applications whose developers write the queries
in sub-optimal forms due to insufficient insight into the integrity constraints. More importantly, automatic
optimization inside the DBMS handles the queries generated by tools rather than human developers. These
queries are usually quite far from optimal. This problem is especially prevalent when queries over a rich data
model M are translated to relational queries over the relational representation of M (e.g. XQuery queries over
relational storage of XML). The chase is a very powerful tool for reasoning about (and exploiting in optimization)
dependencies specified in first-order logic (see [1] for references to the papers that independently discovered the
chase, for various classes of dependencies).

A unified view of dependencies. Given the plethora of classes of dependencies formulated and studied
independently in the literature, the task of specifying the meaning of an application domain via integrity
constraints would be daunting if the developer had to fit them into these classes. In addition, tailoring the tasks
of schema design, optimization and integrity enforcement to every class of dependencies (and every combination
of such classes) is impractical. First-order logic provides a formalism for the simple specification of integrity

6

constraints, with well-understood semantics and sufficient expressive power to capture all common classes of
dependencies, and beyond. The insight that virtually all dependency classes are expressible in the same formalism
set the foundation for their uniform treatment in research and applications.

CROSS REFERENCE*
Equality-Generating Dependencies
Tuple-Generating Dependencies
Chase

RECOMMENDED READING

(1]
2]

B3]

20]
(21]
(22]
23]

(24]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.

C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In International Conference on Algorithms,
Languages and Programming, pages 73-85, 1981.

E. F. Codd. Relational completeness of database sublanguages. In R. Rustin, editor, Courant Computer Science
Symposium 6: Data Base Systems, pages 65—-98. Prentice-Hall, Englewood Cliffs, NJ, 1972.

C. J. Date. Referential integrity. In International Conference on Very Large Databases, pages 2-12, 1981.

Claude Delobel. Normalization and hierarchical dependencies in the relational data model. ACM Trans. on Database
Systems, 3(3):201-222, 1978.

Alin Deutsch, Bertram Lud&scher, and Alan Nash. Rewriting queries using views with access patterns under integrity
constraints. Theor. Comput. Sci, 371(3):200-226, 2007.

Alin Deutsch and Val Tannen. XML queries and constraints, containment and reformulation. Theor. Comput. Sci.,
336(1):57-87, 2005.

R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952-985, 1982.

R. Fagin and M. Y. Vardi. The theory of data dependencies: A survey. In M. Anshel and W. Gewirtz, editors,
Mathematics of Information Processing: Proceedings of Symposia in Applied Mathematics, volume 34, pages 19-27.
American Mathematical Society, Providence, RI, 1986.

Ronald Fagin. Multivalued dependencies and a new normal form for relational databases. ACM Transactions on
Database Systems, 2(3):262-278, 1977.

H. Gallaire and J. Minker. Logic and Databases. Plenum Press, New York, 1978.

S. Ginsburg and S.M. Zaiddan. Properties of functional dependency families. JACM, 29(4):678-698, 1982.

Gosta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information sources through global
schemas. In ICDT, pages 332-347, 1999.

Paris C. Kannellakis. Elements of relational database theory. In J. Van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 1074-1156. Elsevier, Amsterdam, 1991.

David Maier, Jeffrey D. Ullman, and Moshe Y. Vardi. On the foundations of the universal relation model. ACM
Transactions on Database Systems, 9(2):283-308, 1984.

A. O. Mendelzon and D. Maier. Generalized mutual dependencies and the decomposition of database relations. In
International Conference on Very Large Databases, pages 75-82, 1979.

J.-M. Nicolas. First order logic formalization for functional, multivalued, and mutual dependencies. Acta Informatica,
18(3):227-253, 1982.

J. Paredaens. Transitive dependencies in a database scheme. Technical Report R387, MBLE, Brussels, 1979.

D. S. Parker and K. Parsaye-Ghomi. Inference involving embedded multivalued dependencies and transitive
dependencies. In ACM SIGMOD Symposium on the Management of Data, pages 52-57, 1980.

Yehoshua Sagiv and Scott F. Walecka. Subset dependencies and a completeness result for a subclass of embedded
multivalued dependencies. J. ACM, 29(1):103-117, 1982.

M. Y. Vardi. On decomposition of relational databases. In IEFEE Conference on Foundations of Computer Science,
pages 176-185, 1982.

M. Y. Vardi. Trends in theoretical computer science. In E. Borger, editor, Fundamentals of dependency theory, pages
171-224. Computer Science Press, Rockville, MD, 1987.

M. Yannakakis and C. Papadimitriou. Algebraic dependencies. Journal of Computer and System Sciences, 25(2):3-41,
1982.

Carlo Zaniolo. Analysis and Design of Relational Schemata for Database Systems. PhD thesis, University of
California, Los Angeles, 1976. Technical Report UCLA-Eng-7669, Department of Computer Science.

7

