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1. INTRODUCTION

PageRank [Brin and Page 1998] is an excellent tool to rank the global impor-
tance of the pages of the Web. However, PageRank measures the global im-
portance of the pages, independently of a keyword query. More recent works
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Fig. 1. A subset of the DBLP graph.

[Haveliwala 2002; Richardson and Domingos 2002] apply PageRank to esti-
mate the relevance of pages to a keyword query. We appropriately extend and
modify PageRank to perform keyword search in databases for which there is
a natural flow of authority between their objects (e.g., bibliographic, biological
[Raschid et al. 2006; Shafer et al. 2006], or complaints databases as we explain
further on).

Given a keyword query, we rank the results according to three factors: (a)
the relevance to the query, (b) the specificity, and (c) the global importance of
the result. All factors are handled using authority-flow techniques that exploit
the link-structure of the data graph, in contrast to traditional Information Re-
trieval. The relevance is computed using the ObjectRank metric [Balmin et al.
2004] which is a keyword-specific adaptation of PageRank to databases. The
specificity is computed using Inverse ObjectRank metric, which is, to the best of
our knowledge, the first link-based specificity metric. Finally, the global impor-
tance is computed using Global ObjectRank, which is the keyword-independent
version of ObjectRank. We show how these factors are combined to reach the
final results ranking.

ObjectRank. Consider the example of Figure 1, which illustrates a small
subset of the DBLP database in the form of a labeled graph (author, conference
and year nodes except for “R. Agrawal,” “ICDE,” and “ICDE 1997” respectively
are omitted to simplify the figure). Schema graphs, such as the one of Figure 4,
describe the structure of database graphs. Given a keyword query, e.g., the
single-keyword query OLAP, ObjectRank sorts the database objects by their
relevance with respect to the user-provided keywords. Figure 2 illustrates the
top-10 OLAP papers produced by our online demo available on the Web at
two mirror sites, http://www.db.ucsd.edu/ObjectRank and http://dbir.cis.fiu.

edu/BibObjectRank. Notice that many entries (the “Data Cube” and the “Model-
ing Multidimensional Databases” papers in Figure 1) of the top-10 list do not
contain the keyword “OLAP” (OLAP is not even contained in their abstracts)
but they clearly constitute important papers in the OLAP area, since they may
be referenced by other papers of the OLAP area or may have been written by
authors who have written other important OLAP papers.

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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Fig. 2. Top 10 papers on “OLAP” returned by ObjectRank.

Conceptually, the ranking is produced in the following way: Myriads of ran-
dom surfers are initially found at the objects containing the keyword OLAP,
which we call the base set, and then they traverse the database graph. In par-
ticular, at any time step a random surfer is found at a node and either (i) makes
a move to an adjacent node by traversing an edge, or (ii) jumps randomly to an
OLAP node without following any of the links. The probability that a particular
traversal happens depends on multiple factors, including the type of the edge (in
contrast to the Web link-based search systems [Brin and Page 1998; Haveliwala
2002; Richardson and Domingos 2002]). These factors are depicted in an author-
ity transfer schema graph. Figure 5 illustrates the authority transfer schema
graph that corresponds to the setting that produced the results of Figure 2.
Assuming that the probability that the surfer moves back to an OLAP node is
15% (damping factor—random jump probability—[Brin and Page 1998]), the
collective probability to move to a referenced paper is up to 85% × 70% (70% is
the authority transfer rate of the citation edge, as we explain further on), the
collective probability to move to an author of the paper is up to 85% × 20%, the
probability to move from the paper to the forum where the paper appeared is
up to 85%×10%, and so on. As is the case with the PageRank algorithm as well,
as time goes on, the expected percentage of surfers at each node v converges
(Section 2) to a limit r(v). Intuitively, this limit is the ObjectRank of the node.

An alternative way to conceive the intuition behind ObjectRank is to consider
that authority/importance flows in the database graph in the same fashion that
Kleinberg [1999] defined authority-based search in arbitrary graphs. Initially
the OLAP authority is found at the objects that contain the keyword OLAP.
Then authority/importance flows, following the rules in the authority transfer
schema graph, until an equilibrium is established that specifies that a paper
is authoritative if it is referenced by authoritative papers, is written by au-
thority authors and appears in authority conferences. Vice versa, authors and
conferences obtain their authority from their papers. Notice that the amount of
authority flow from, say, paper to cited paper or from paper to author or from
author to paper, is arbitrarily set by a domain expert and reflects the semantics
of the domain. For example, common sense says that in the bibliography domain
a paper obtains very little authority (or even none) by referring to authorita-
tive papers. On the contrary it obtains a lot of authority by being referred by
authoritative papers.

Global ObjectRank is query-independent and is obtained by placing all nodes
of the data graph in the base set.

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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Fig. 3. Instance of a publications database.

Inverse ObjectRank. Ranking solely by ObjectRank can be problematic, since
general-content nodes may be ranked higher than nodes with content specific to
the query. For example, consider the publications database of Figure 3, where
edges denote citations (edges start from citing and end at cited paper), and
the keyword query “Sorting”. Then, using ObjectRank the “Access Path Selec-
tion in a Relational Database Management System” paper would be ranked
highest, because it is cited by four papers containing “sorting” (or “sort”). The
“Fundamental Techniques for Order Optimization” paper would be ranked sec-
ond, since it is cited by only three “sorting” papers. This is unintuitive since
the “Access Path Selection” paper has general content while the “Fundamental
Techniques for Order Optimization” paper is more focused (specific). The latter
paper should be ranked higher because it is mostly cited by “sorting” papers,
whereas the former paper is also cited by many (the three papers on the top
right) papers irrelevant to “sorting”. This lack of specificity can also be viewed
as a topic-drift problem.

Google uses (to the best of our knowledge) IR techniques based on the con-
tent of the Web pages (e.g., document length), which ignore the link-structure
of the labeled graph (i.e., the Web). Clearly, IR specificity metrics (e.g., docu-
ment length) are not adequate since a longer document may be more specific
than a shorter one for a particular query. However, IR metrics can be used in
conjunction to Inverse ObjectRank to measure specificity.

Inverse ObjectRank is a keyword-specific metric of specificity, based on the
link-structure of the data graph. In particular, given a keyword w, the Inverse
ObjectRank score pw(v) of node v shows how specific v is with respect to w. In
terms of the random surfer model, pw(v) is the probability that starting from v
and following the edges on the opposite direction we are on a node containing
w at a specific point in time. As is the case for ObjectRank, the random surfer
at any time step may get bored and go back to v.

Keyword search in databases has some unique characteristics, which make
the straightforward application of the random walk model as described in pre-
vious work [Brin and Page 1998; Haveliwala 2002; Richardson and Domingos
2002] inadequate. First, every database has different semantics, which we can
use to improve the quality of the keyword search. In particular, unlike the

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.



P1: IAZ

ACMB012B-480 ACM-TRANSACTION February 23, 2008 22:25

Authority-Based Keyword Search in Databases • 1:5

Fig. 4. The DBLP schema graph.

Fig. 5. The DBLP authority transfer schema graph.

Web, where all edges are hyperlinks, the database schema exhibits the types of
edges, and the attributes of the nodes. Note that previous works [Richardson
and Domingos 2002; Chakrabarti et al. 1998] assign weights on the edges of
the data graph according to the relevance of the incident nodes’ text to the
keywords. In contrast, we assign authority transfer rates on the schema graph,
which captures the semantics of the database, since the relevance factor is
reflected in the selection of the base set. Using the schema we specify the ways
in which authority flows across the nodes of the database graph. For example,
the results of Figure 2 were obtained by annotating the schema graph of
Figure 4 with the authority flow information that appears in Figure 5.

Furthermore, previous work [Brin and Page 1998; Haveliwala 2002;
Richardson and Domingos 2002] assumes that, when calculating the global
importance (in our framework we make a clear distinction between the global
importance of a node and its relevance to a keyword query), the random surfer
has the same probability to start from any page p of the base set (we call this
probability base ObjectRank of p). However, this is not true for every database.
For example, consider a product complaints database (Figure 14). In this case,
we represent the business value of a customer by assigning to his/her node a
base ObjectRank proportional to his/her total sales amount.

Another novel property of ObjectRank is adjustability, which allows for the
tuning of the system according to the domain- and/or user-specific require-
ments. For example, for a bibliographic database, a new graduate student de-
sires a search system that returns the best reading list around the specified
keywords, whereas a senior researcher looks for papers closely related to the
keywords, even if they are not of a high quality. These preference scenarios
are made possible by adjusting the weight of the global importance versus
the relevance to the keyword query. Changing the damping factor d offers
another calibration opportunity. In particular, larger values of d favor nodes
pointed by high-authority nodes, while smaller values of d favor nodes contain-
ing the actual keywords (that is, nodes in the base set). The handling of queries
with multiple keywords offers more flexibility to the system as we describe in
Section 4. For example, we may want to assign a higher weight to the relevance
of a node to an infrequent keyword.

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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On the performance level, calculating the ObjectRank, Inverse ObjectRank,
and Global ObjectRank values in runtime is a computationally intensive op-
eration, especially given the fact that multiple users query the system. This is
resolved by precomputing inverted indexes where for each keyword we have a
sorted lists of the nodes with nontrivial scores for this keyword. During runtime
we employ the Threshold Algorithm [Fagin et al. 2001] to efficiently combine
the lists. However, our approach induces the cost of precomputing and storing
the inverted index. Regarding the space requirements, notice that the number
of keywords of a database is typically less than the number of users in a per-
sonalized search system [Jeh and Widom 2003]. Furthermore, we do not store
nodes with ObjectRank below a threshold value (chosen by the system admin-
istrator), which offers a space versus precision tradeoff. In Section 8 we show
that the index size is small relative to the database size for two bibliographic
databases.

Regarding the index computation, we present and experimentally evaluate
two classes of optimizations. First, we exploit the structural properties of the
database graph. For example, if we know that the objects of a subgraph of the
schema form a Directed Acyclic Graph (DAG), then given a topological sort of
the DAG, there is an efficient straightforward one-pass ObjectRank evaluation.
We extend the DAG case by providing an algorithm that exploits the efficient
evaluation for DAGs in the case where a graph is “almost” a DAG in the sense
that it contains a large DAG subgraph. In particular, given a graph G with n
nodes, which is reduced to a DAG by removing a small subset of m nodes, we
present an algorithm which reduces the authority calculation into a system of
m equations - as opposed to the usual system of n equations. Furthermore, we
present optimization techniques when the data graph has a small vertex cover,
or if it can be split into a set of subgraphs and the connections between these
subgraphs form a DAG.

Second, notice that the naive approach would be to calculate each keyword-
specific ObjectRank (the same applies for Inverse ObjectRank) separately. We
have found that it is substantially more efficient to first calculate the Global Ob-
jectRank, and use these scores as initial values for the keyword-specific compu-
tations. This accelerates convergence, since in general, objects with high Global
ObjectRank, also have high keyword-specific ObjectRanks. Furthermore, we
show how storing a prefix of the inverted lists allows the faster calculation of
the ObjectRanks of all nodes.

The semantic and performance contributions of this paper are evaluated
using two user surveys and a detailed experimental evaluation respectively. We
have implemented a web interface, available on the Web, to query the DBLP
database using the ObjectRank technique. A set of calibrating parameters are
provided to the user.

The essential formal background on PageRank and authority search is
presented in Section 2. Section 3 presents the problem and the framework.
Section 4 presents the semantics of ObjectRank and Inverse ObjectRank, as
well as ways to combine them. Section 5 describes the system’s architecture and
the online demo. The algorithms used to calculate ObjectRank are presented in
Section 6 and are experimentally evaluated in Section 8. We present the results

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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of two user surveys in Section 7. Related work is discussed in Section 9. Finally,
we conclude in Section 10.

2. BACKGROUND

We describe next the essentials of PageRank and authority-based search, and
the random surfer intuition. Let (V , E) be a graph, with a set of nodes V =
{v1, . . . , vn} and a set of edges E. A surfer starts from a random node (Web page)
vi of V and at each step, he/she follows a hyperlink with probability d or gets
bored and jumps to a random node with probability 1−d . The PageRank value
of vi is the probability r(vi) that at a given point in time, the surfer is at vi. If
we denote by r the vector [r(v1), . . . , r(vi), . . . , r(vn)]T , then we have

r = dAr + (1 − d )

|V | e, (1)

where A is a n × n matrix with Aij = 1
OutDeg(vj )

if there is an edge vj → vi in
E and 0 otherwise, where OutDeg(vj ) is the outgoing degree of node vj . Also,
e = [1, . . . , 1]T .

The above PageRank equation is typically precomputed before the queries
arrive and provides a global, keyword-independent ranking of the pages. In-
stead of using the whole set of nodes V as the base set, that is, the set of
nodes where the surfer jumps when bored, one can use an arbitrary subset S
of nodes, hence increasing the authority associated with the nodes of S and the
ones most closely associated with them. In particular, we define a base vector
s = [s0, . . . , si, . . . , sn]T where si is 1 if vi ∈ S and 0 otherwise. The PageRank
equation is then

r = dAr + (1 − d )

|S| s (2)

Regardless of whether one uses Equation (1) or Equation (2), the PageRank
algorithm solves this fixpoint using a simple iterative method, where the values
of the (k + 1)-th execution are calculated as follows:

r(k+1) = dAr(k) + (1 − d )

|S| s (3)

The algorithm terminates when r converges, which is guaranteed to happen
under very common conditions [Motwani and Raghavan 1995]. In particular, the
authority flow graph needs to be irreducible (i.e., (V , E) be strongly connected)
and aperiodic. The former is true due to the damping factor d , while the latter
happens in practice.

The notion of the base set S was suggested in Brin and Page [1998] as a way
to do personalized rankings, by setting S to be the set of bookmarks of a user. In
Haveliwala [2002] it was used to perform topic-specific PageRank on the Web.
We take it one step further and use the base set to estimate the relevance of a
node to a keyword query. In particular, the base set consists of the nodes that
contain the keyword as explained next.

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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3. FRAMEWORK AND PROBLEM DEFINITION

In this section we present the essential definitions, which are later used to define
our ranking metrics. We also formally define the keyword search problem and
outline the ranking factors.

3.1 Database Graph, Schema, and Authority Transfer Graph

We view a database as a labeled graph, which is a model that easily captures
both relational and XML databases. The data graph D(VD, ED) is a labeled di-
rected graph where every node v has a label λ(v) and a set of keywords. For ex-
ample, the node “ICDE 1997” of Figure 1 has label “Year” and the set of keywords
{‘‘ICDE’’, ‘‘1997’’, ‘‘Birmingham’’}. Each node represents an object of the
database and may have a sub-structure. Without loss of generality, ObjectRank
assumes that each node has a tuple of attribute name/attribute value pairs. For
example, the “Year” nodes of Figure 1 have name, year and location attributes.
Notice that the keywords appearing in the attribute values comprise the set
of keywords associated with the node. One may assume richer semantics by
including the metadata of a node in the set of keywords. For example, the
metadata “Forum,” “Year,” “Location” could be included in the keywords of a
node. The specifics of modeling the data of a node are orthogonal to ObjectRank
and will be neglected in the rest of the discussion.

Each edge e from u to v is labeled with its role λ(e) (we overload λ) and
represents a relationship between u and v. For example, every “paper” to “paper”
edge of Figure 1 has the label “cites.” When the role is evident and uniquely
defined from the labels of u and v, we omit the edge label. For simplicity we
will assume that there are no parallel edges and we will often denote an edge
e from u to v as “u → v.”

A critical issue in constructing the data graph for a database is to decide the
granularity of the information in the nodes. For example, if we are to return
a paper, should we also return the author names and the conference where
the paper was published? We adopt the idea of predefined “answer nodes” as
described in Bhalotia et al. [2002]; Dar et al. [1998]; Guo et al. [2003]; Hristidis
et al. [2003].1 Hence, in the above example, we choose to store the author and
conference information in every paper node. Keep in mind that the data graph
is a conceptual structure, so the actual physical storage may vary.

The data graph can represent relational [Agrawal et al. 2002; Hristidis
and Papakonstantinou 2002] and XML [Hristidis et al. 2003; Guo et al. 2003]
databases, as well as the Web [Brin and Page 1998]. The mappings of these
data models to nodes and edges of the data graph are shown in Table I.

The use of our ranking metrics does not require the existence of a schema.
However, if a schema is present then it can be used to easier define the author-
ity transfer rates (see below). Furthermore, the schema may offer optimization
opportunities as discussed in Section 6. The schema graph G(VG , EG) (Figure 4)
is a directed graph that describes the structure of D. Every node has an associ-
ated label. Each edge is labeled with a role, which may be omitted, as discussed

1In XKeyword [Hristidis et al. 2003], they are referred to as target objects.
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Table I. Mapping of Common Data Models to a Data Graph

Data Graph Nodes Edges
Relational Database Tuples (or attribute values) Primary-to-Foreign Key

Relationships

XML Database XML Elements (or XML

Nodes)

Containment or ID-IDREF Edges

Web Pages Hyperlinks

above for data graph edge labels. We say that a data graph D(VD, ED) conforms
to a schema graph G(VG , EG) if there is a unique assignment μ of data-graph
nodes to schema-graph nodes and a consistent assignment of edges such that:

(1) for every node v ∈ VD there is a node μ(v) ∈ VG such that λ(v) = λ(μ(v));

(2) for every edge e ∈ ED from node u to node v there is an edge μ(e) ∈ EG that
goes from μ(u) to μ(v) and λ(e) = λ(μ(e)).

Authority Transfer Schema Graph. From the schema graph G(VG , EG), we
create the authority transfer schema graph G A(VG , E A) to reflect the authority
flow through the edges of the graph. This may be either a trial and error process,
until we are satisfied with the quality of the results, or a domain expert’s task.
In particular, for each edge eG = (u → v) of EG , two authority transfer edges,
e f

G = (u → v) and eb
G = (v → u) are created. The two edges carry the label of the

schema graph edge and, in addition, each one is annotated with a (potentially
different) authority transfer rate—α(e f

G) and α(eb
G) correspondingly. We say that

a data graph conforms to an authority transfer schema graph if it conforms to
the corresponding schema graph. (Notice that the authority transfer schema
graph has all the information of the original schema graph.)

Figure 5 shows the authority transfer schema graph that corresponds to
the schema graph of Figure 4 (the edge labels are omitted). The motivation
for defining two edges for each edge of the schema graph is that authority
potentially flows in both directions and not only in the direction that appears
in the schema. For example, a paper passes its authority to its authors and vice
versa. Notice however, that the authority flow in each direction (defined by the
authority transfer rate) may not be the same. For example, a paper that is cited
by important papers is clearly important but citing important papers does not
make a paper important.

Notice that the sum of authority transfer rates of the outgoing edges of a
schema node u may be less than 12, if the administrator believes that the
edges starting from u do not transfer much authority. For example, in Figure 5,
conferences transfer only 30% of their authority.

Authority Transfer Data Graph. Given a data graph D(VD, ED) that conforms
to an authority transfer schema graph G A(VG , E A), ObjectRank derives an au-
thority transfer data graph DA(VD, E A

D) (Figure 6) as follows. For every edge
e = (u → v) ∈ ED the authority transfer data graph has two edges e f = (u → v)
and eb = (v → u). The edges e f and eb are annotated with authority transfer

2In terms of the random walk model, this would be equivalent to the disappearance of a surfer.
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Fig. 6. Authority transfer data graph.

rates α(e f ) and α(eb). Assuming that e f is of type e f
G , then

α(e f ) =

⎧⎪⎨
⎪⎩

α

(
e f

G

)
OutDeg

(
u,e f

G

) , if OutDeg
(
u, e f

G

)
> 0

0, if OutDeg
(
u, e f

G

) = 0,

(4)

where OutDeg(u, e f
G) is the number of outgoing edges from u, of type e f

G . The
authority transfer rate α(eb) is defined similarly. Figure 6 illustrates the author-
ity transfer data graph that corresponds to the data graph of Figure 1 and the
authority schema transfer graph of Figure 5. Notice that the sum of authority
transfer rates of the outgoing edges of a node u of type μ(u) may be less than the
sum of authority transfer rates of the outgoing edges of μ(u) in the authority
transfer schema graph, if u does not have all types of outgoing edges.

3.2 Keyword Search and Ranking Factors

A keyword query q is defined as a set of keywords. The result of a keyword
query is a list of objects of the database (i.e., nodes of the data graph), ranked
according to the query. The ranking is performed according to three desired
properties presented below. We explain how our system measures each of these
properties by exploiting the link-structure of the data graph. Notice that there
is other non-link-based factors (e.g., IR score of individual nodes [Hristidis et al.
2003]) that can be incorporated in the ranking as well, but they are beyond the
scope of this paper.

Relevance to Query: ObjectRank. We should rank higher results that either
contain the keywords of the query or are semantically associated to the key-
words of the query. The latter factor is equivalent to being connected through
paths on the data graph in our data model, where edges correspond to semantic
associations. In our system, the link-based relevance of a node v to a query w
(assume a single-keyword query for now) is the ObjectRank value rw(v) of v
discussed in Section 4.1.

Specificity: Inverse ObjectRank. Specific results (nodes) should be ranked
higher. That is, results with content particular to the query are preferred over

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.
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results with content that spans across many topics. Previous work has not
considered any link-based specificity metric. In Section 4.2 we present and
discuss in detail Inverse ObjectRank.

Global quality: Global ObjectRank. Results of high quality should be ranked
higher. The link-structure of the data graph is used to measure quality. In par-
ticular, nodes with high incoming authority flow are assumed to have higher
quality [Brin and Page 1998; Guo et al. 2003]. For example, a highly referenced
paper should be ranked higher than a nonreferenced paper if the other rank-
ing properties are equal. In our system, we use Global ObjectRank (defined in
Section 4.1), which is an effective link-based metric to measure the global au-
thority, that is, the quality of a node of the data graph. The Global ObjectRank
rG(u) of a node u is defined as the probability that a random surfer starting
from any node of the authority transfer graph will be at u at a specific time. For
the case of the Web, Global ObjectRank is equivalent to PageRank [Brin and
Page 1998], whose value has been proven by the success of Google.3

Notice that these three properties correspond to the specificity, keyword prox-
imity and hyperlink awareness properties respectively, defined in XRANK [Guo
et al. 2003]. The same three properties (although not explicitly enumerated)
have been used in other works as well [Bhalotia et al. 2002].

4. OBJECTRANK AND INVERSE OBJECTRANK

In this section we present the ranking metrics we use: ObjectRank, Global Ob-
jectRank, and Inverse ObjectRank. Furthermore, we explain the parallelisms
to Information Theory (Section 4.3) metrics. Finally, in Section 4.4 we present
and address the challenges in combining these metrics into a ranking function.

4.1 ObjectRank

We first define ObjectRank for a single keyword. In Section 4.4 we extend to mul-
tiple keywords. Given a single keyword query w, ObjectRank finds the keyword
base set S(w) (from now on referred to simply as base set when the keyword
is implied) of objects that contain the keyword w and assigns an ObjectRank
rw(vi) to every node vi ∈ VD by resolving the equation

rw = dArw + (1 − d )

|S(w)| s, (5)

where Aij = α(e) if there is an edge e = (vj → vi) in E A
D and 0 otherwise, d

controls the base set importance, and s = [s1, . . . , sn]T is the base set vector for
S(w), that is, si = 1 if vi ∈ S(w) and si = 0 otherwise.

The damping factor d determines the portion of ObjectRank that an object
transfers to its neighbors as opposed to making a random jump to one of the
base set pages. It was first introduced in the original PageRank paper [Brin and
Page 1998], where it was used to ensure convergence in the case of PageRank
sinks. However, in addition to that, in our work it is a calibrating factor, since
by decreasing d , we favor objects that actually contain the keywords (i.e., are in

3http://www.google.com
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base set) as opposed to objects that acquire ObjectRank through the incoming
edges. The value for d used by PageRank [Brin and Page 1998] is 0.85, which
we also adopt when we want to balance the importance of containing the actual
keywords as opposed to being pointed by nodes containing the keywords.

Global ObjectRank. The definition of global ObjectRank is different for dif-
ferent applications or even users of the same application. In this work, we focus
on cases where the global ObjectRank is calculated applying the random surfer
model, and including all nodes in the base set. The same calibrating parameters
are available, as in the keyword-specific ObjectRank. Notice that this way of
calculating the global ObjectRank, which is similar to the PageRank approach
[Brin and Page 1998], assumes that all nodes (pages in PageRank) initially
have the same value. However, there are many applications where this is not
true, as we discuss in Section 10.

4.2 Inverse ObjectRank

Before presenting the specifics of Inverse ObjectRank, we explain why the tra-
ditional IR specificity metrics are inadequate. In particular, IR metrics ignore
the link-structure which makes them incomplete. For example, the document
length (dl) metric cannot distinguish between objects (nodes) of approximately
the same length, as is the case in our bibliographic database of paper titles and
author names. Traditional IR specificity metrics are complementary to Inverse
ObjectRank since they focus on the nodes of the authority flow graph, whereas
Inverse ObjectRank exploits the edges. In this work we evaluate only Inverse
ObjectRank and other alternative link-structure based specificity metrics in
Section 7.2.

The intuition behind Inverse ObjectRank is the following. Given a keyword
w, the ObjectRank value of a node v is the probability that a random surfer
starting from a node containing w will be at v at a specific time. v is specific
with respect to w if there is only few such keywords for which a surfer will end
up on v starting from them. That is, if the random surfer will start at v and
follow the edges of the authority transfer graph on the reverse direction, he/she
should land back on w with high probability.

This intuition is formally defined as follows. We first need to define the inverse
authority transfer graph DI (VD, E I

D), given the authority transfer data graph
DA(VD, E A

D), as follows: For every edge e(u → v) ∈ E A
D, we create an opposite-

direction edge eI (v → u) ∈ E I
D with authority flow rate a(eI ) = a(e) OutDeg(u)

InDeg(v)
.

Notice that 1/OutDeg(u) is used in the calculation of a(e), so by multiplying by
OutDeg(u) this is evened out.

Given a single-keyword query q = {w}, the Inverse ObjectRank score pw(u)
of a node u is the probability that a random surfer of the inverse authority
transfer graph DI starting from u will be at a node containing w at a specific
time.

Inverse ObjectRank is calculated in two steps. First, for each node v ∈ DI we
compute its connectivity4 qu(v) to u, that is, how much authority starting from

4This could also be called Inverse ObjectRank with respect to u. However, we avoid using this name,
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u will reach v through DI .

qu = dAI qu + (1 − d )su (6)

where AI is the transition matrix of DI . That is, AI
ij = α(e) if there is an edge

e = (vj → vi) in DI and 0 otherwise. su = [su1, . . . , sun]T is the base set vector
containing just u, that is, sui = 1 if vi is u and sui = 0 otherwise. Note that the
connectivity qu(v) of a node v is equivalent to the inverse P-distance from u to
v as defined by Jeh and Widom [Jeh and Widom 2003].

Second, the Inverse ObjectRank pw(u) is computed by summing the connec-
tivities qu(v) of all nodes that contain w. That is,

pw(u) =
∑

v∈S(w)

qu(v), (7)

where S(w) is the base set of w as defined in Equation (5).
Global Inverse ObjectRank p, which we do not use in our ranking function

but has its own merit, is calculated by Equation (8). High Global Inverse Ob-
jectRank denotes high connectivity of a node in a way similar to hub nodes in
Kleinberg [1999].

p = dAI p + 1 − d
|V | e (8)

where e = [1, . . . , 1]T .
Notice that Inverse ObjectRank is a keyword-specific metric of specificity,

in the same sense that ObjectRank is a keyword-specific metric of relevance.
This is the key reason why it performs superior to keyword-independent speci-
ficity heuristic metrics (including Global Inverse ObjectRank) as we show in
Section 7. Also notice that Inverse ObjectRank has the same convergence prop-
erties as ObjectRank, which are described in Section 2.

4.3 Information Theory Perspective

In this section we discuss Inverse ObjectRank from an Information Theory
perspective. In particular, we show how the link-based factors described in
Section 3.2 appear in the context of Information Theory formulas. In general,
the ranking functions in Information Retrieval can be explained as the increase
of information when specifying a term wi [Aizawa 2000]. In particular, the
famous tf · idf ranking function can be explained using this approach [Aizawa
2000]. We apply the same Information Theory principle to create a ranking
formula for graph databases as follows.

Let V and W be the sets of nodes (documents in IR) and keywords in the
database. The information increase of V after the event of observing wi can be
expressed using the Kullback-Leibler information metric, which is a measure of
the difference between two probability distributions. Kullback-Leibler informa-
tion between P (V |wi) and P (V ), where P (.) denotes probability, is calculated

which we reserve for the product of the final (second) step of the computation.
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by

K (P (V |wi), P (V )) =
∑
vj ∈V

log
P (vj |wi)

P (vj )
. (9)

Using Bayes rule, this can also be written as

K (P (V |wi), P (V )) =
∑
vj ∈V

log
P (wi|vj )

P (wi)
. (10)

In Information Retrieval P (vj |wi) is the probability that document vj con-
tains keyword wi and P (vj ) is the probability of vj , which is the same for all
documents, that is, P (vj ) = 1/n, where n is the total number of documents. On
the other hand, the equivalent quantity in a graph database is the probability
that starting from a node containing wi, a random surfer will be at node vj at
a specific time, that is, P (vj |wi) = rwi (vj ). Similarly P (wi|vj ) = pwi (vj ). Also,
P (vj ) is the Global ObjectRank value of vj , that is, P (vj ) = rG(vj ). Finally
P (wi) is common for all nodes since it is only query dependent and can hence
be ignored.

Depending on whether we adopt Equations (9) and (10), or a combination
of the two, we generate ranking functions that use ObjectRank for relevance,
and Global ObjectRank or Inverse ObjectRank for specificity. In Section 7, we
qualitatively compare these combinations.

4.4 Combine Ranking Factors and Multiple Keywords

There are two levels of combining scores in our framework to reach a ranking
function for node v given a multiple-keyword query “q = {w1, . . . , wm}”. First,
we need to find the score f wi (v) ( f wi (v) is the score of node v given keyword wi)
of v for every single keyword wi, and then combine these scores (and possibly
Global ObjectRank rG(v)) to compute the final score f q(v).

First, we define two alternative ways to combine ObjectRank with Inverse
ObjectRank to compute f wi (v), shown in Equations (11) and (12). The two equa-
tions are used to boost or downplay the weight of Inverse ObjectRank, that is,
of the specificity factor in a keyword query respectively.

f wi (v) = rwi (v) · pwi (v) (11)

f wi (v) = rwi (v) ·
√

pwi (v). (12)

Alternatively, if we choose a different specificity metric (see Section 7) we
can replace pwi (v) in Equation (11) by that metric, where we also show that
Equation (12) typically produces superior results.

Second, we define the semantics of a multiple-keywords query “q =
{w1, . . . , wm}” by naturally extending the multiple-keywords random walk
model. In particular, for the case of ObjectRank we consider m independent ran-
dom surfers, where the ith surfer starts from the keyword base set S(wi). For
AND semantics, the ObjectRank of an object v with respect to the m-keywords
query is the probability that, at a given point in time, the m random surfers
are simultaneously at v. We extend this model by substituting rwi (v) by f wi (v).
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Fig. 7. Top 5 papers on “XML Index,” with and without emphasis on “XML.”

Hence the score f q(v) of node v with respect to the m keywords is

f w1,...,wm(v) =
∏

i=1,...,m

f wi (v). (13)

For OR semantics, the ObjectRank of v is the probability that, at a given
point in time, at least one of the m random surfers will reach v. Hence, for two
keywords w1 and w2 the model can be extended to

f w1,w2 (v) = f w1 (v) + f w2 (v) − f w1 (v) f w2 (v) (14)

and for more than two it is defined accordingly, as specified by the inclusion-
exclusion principle (also known as the sieve principle). Notice that Haveliwala
[2002] also takes the sum of the topic-sensitive PageRank values to calculate
the PageRank of a page.

If Global ObjectRank is included in the computation, it is treated as an ad-
ditional keyword wm+1 with f wm+1 (v) = rG(v).

Weigh Keywords by Frequency. A drawback of the combining function of
Equation (13) is that it favors the more popular keywords in the query. The
reason is that the distribution of ObjectRank values is more skewed when the
size |S(w)| of the base set S(w) increases, because the top objects tend to receive
more references. For example, consider two results for the query “XML AND
Index” shown in Figure 7. Result (b) corresponds to the model described above.
It noticeably favors the “Index” keyword over the “XML”. The first paper is the
only one in the database that contains both keywords in the title. However, the
next three results are all classic works on indexing and do not apply directly to
XML. Intuitively, “XML” as a more specific keyword is more important to the
user. Indeed, the result of Figure 7(a) was overwhelmingly preferred over the re-
sult of Figure 7(b) by participants of our relevance feedback survey (Section 7).
The latter result contains important works on indexing in semistructured, un-
structured, and object-oriented databases, which are more relevant to indexing
of XML data. This result is obtained by using the modified formula:

rw1,...,wm(v) =
∏

i=1,...,m

(rwi (v))g (wi ), (15)

where g (wi) is a normalizing exponent, set to g (wi) = 1/log(|S(wi)|).
This exponent plays a role similar to the inverse document frequency
(idf) in traditional Information Retrieval. Using the normalizing exponents
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Fig. 8. Example where “HITS” approach fails in AND semantics.

g (“XML”) and g (“Index”) in the above example is equivalent to running in
parallel g (“XML”) and g (“Index”) random walks for the “XML” and the “Index”
keywords respectively.

Compare to Single Base Set Approach. One can imagine alternative seman-
tics to calculate the ObjectRank for multiple keywords, other than combining
the single-keyword ObjectRanks. In particular, consider combining all objects
with at least one of the keywords into a single base set. Then a single execution
of the ObjectRank algorithm is used to determine the scores of the objects.
Incidentally, these semantics were used in the HITS system [Kleinberg 1999].
We show that such “single base set” semantics can be achieved by combining
single-keyword ObjectRank values applying appropriate exponents. Further-
more, we explain how our semantics avoid certain problems of “single base
set” semantics.

In order to compare to the “single base set” approach for AND semantics
(Equation (13)), we consider two scenarios and assume without loss of general-
ity that there are two keywords. First, assume that we only put in the base set
S objects that contain both keywords. These objects will be in both keyword-
specific base sets as well, so these objects and objects pointed by them will
receive a top rank in both approaches. Second, if S contains objects contain-
ing any of the two keywords, we may end up ranking highest an object that is
only pointed by objects containing one keyword. This cannot happen with the
keyword-specific base sets approach. For example, in Figure 8, the “single base
set” approach would rank the R∗ paper higher than the DataGuides paper for
the query “XML AND Index,” even though the R∗ paper is irrelevant to XML.

For OR semantics (Equation (14)), the base set S in the“single base set”
approach is the union of the keyword-specific base sets. We compare to an im-
proved version of the “single base set” approach, where objects in base set are
weighted according to the keywords they contain, such that infrequent key-
words are assigned higher weight. In particular, if an object contains both key-
words, for a two keyword query, it is assigned a base ObjectRank of (1 − d ) ·
( 1
|S(w1)| + 1

|S(w2)| ). Then, using the Linearity Theorem in Jeh and Widom [2003],

we can prove that the ObjectRanks calculated by both approaches are the same.
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Fig. 9. System architecture.

5. ARCHITECTURE

We have implemented a system to answer keyword queries on databases. The
user inputs (a) a set of keywords, (b) a choice for combining semantics (AND or
OR), (c) the importance of global quality of the results (i.e., Global ObjectRank),
(d) the importance of containing the actual query keywords (translated to a
damping factor value d ), and (e) a specificity metric (as we explain in Section 7).
The output of the system is a ranked list of nodes of the database (to be more
formal, of the authority transfer graph) according to the input parameters based
on the ranking function in Equation (13) or (14) (for AND and OR semantics
respectively). The authority transfer graph is stored in a relational database
using the schema shown in Figure 4.

The architecture of the system, which is shown in Figure 9, is divided into
two stages. The preprocessing stage consists of the Authority Flow Execution
module, which inputs the authority transfer graph G to be indexed, the set of
all keywords that will be indexed, and a set of parameters. In particular these
parameters are: (i) A set of damping factors d , that users are expected to choose
from. (ii) The convergence constant epsilon which determines when the Objec-
tRank and Inverse ObjectRank algorithms converge, and (iii) The threshold
value which determines the minimum score that an object must have to be
stored in the authority flow index. Note that other index pruning techniques
are possible [Carmel et al. 2001]; however, we found that this simple uniform
pruning technique performs well in our setting.

The Authority Flow Execution module creates the authority flow index, which
is an inverted index, indexed by the keywords. For each keyword w, it stores
a list of 〈id (u), f w(u)〉 pairs for each object u that has f w(u) ≥ threshold. The
pairs are sorted by descending f w(u) to facilitate an efficient querying method
as we describe below. The authority flow index has been implemented as an
index-based table, where the lists are stored in a CLOB attribute. A hash-
index is built on top of each list to allow random access, which is required by
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the Query module. Note that if we allow multiple combinations of calibration
parameters to be selected by the user, then we create multiple inverted indexes,
one for each such combination.

The Query module inputs a set of keywords w1, . . . , wm and a set of adjust-
ing parameters, and outputs the top-k objects according to the ranking func-
tion (Equation (13) or (14)). In particular, these parameters are: (a) a choice
for combining semantics (AND or OR), (b) the importance of global quality of
the results (i.e., Global ObjectRank), (c) the importance of containing the ac-
tual query keywords (translated to a damping factor value d ), and (d) a speci-
ficity metric (as we explain in Section 7). The keyword-specific lists read from
the authority flow index are merged using the Threshold Algorithm [Fagin
et al. 2001] which is guaranteed to read the minimum prefix of each list. No-
tice that the Threshold Algorithm is applicable since both combining functions
(Equations (13) and (14)) are monotone.

Finally, the Database Access module inputs the result ids and queries the
database to get the corresponding node of the authority transfer graph. This
information is stored into an id-indexed table, that contains a CLOB attribute
value for each object id. For example, a paper object CLOB would contain the
paper title, the authors’ names, and the conference name and year.

5.1 Demo

We have built a demo [Hwang et al. 2006] on bibliographic data, which is
available online at two mirror sites: http://www.db.ucsd.edu/ObjectRank and
http://dbir.cis.fiu.edu/BibObjectRank. The data was collected using the follow-
ing method. First, we downloaded all publications and citations from the DBLP
database.5 We noticed that this source is missing too many citations, which
greatly degrades the quality of link-based analysis. To overcome this shortcom-
ing, we used Citeseer6 as an additional citations’ source. We built a web crawler
to retrieve these citations since we found that the exported files of Citeseer are
in a large degree inaccurate. We matched papers from the two sources using
their titles, which of course can lead to few inaccurate matches.

Our demo offers to the user multiple authority flow settings, in order to ac-
commodate multiple user profiles/requirements. We believe the ability to cus-
tomize authority flow schemes is important, since we should not assume that
“one size fits all” when it comes to opinions about authority flow. For example,
there is one setting for users that primarily care for papers with high global im-
portance and another for users that primarily care for papers that are directly
or indirectly heavily referenced by papers that have the keywords. We expect
that multiple settings make sense in all nontrivial applications.

6. INDEX CREATION ALGORITHMS

This section presents algorithms to create the ObjectRank index, which can
be adjusted to compute Inverse ObjectRank as well. Section 6.1 presents

5http://www.informatik.uni-trier.de/ ley/db/
6http://citeseer.ist.psu.edu/
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Fig. 10. Algorithm to create ObjectRank Index for DAGs.

an algorithm for the case of arbitrary authority transfer data graphs DA.
Sections 6.2 and 6.3 show how we can do better when DA is a directed acyclic
graph (DAG) and “almost” a DAG respectively (the latter property is explained
in Section 6.3). Sections 6.4 and 6.5 present optimizations when the authority
transfer graph has a small vertex cover, or is a DAG of subgraphs respectively.
Finally, Section 6.6 presents optimization opportunities based on manipulating
the initial values of the iterative algorithm.

6.1 General Algorithm

Figure 10 shows the algorithm that creates the ObjectRank Index. The algo-
rithm accesses the authority transfer data graph DA many times, which may
lead to a too long execution time if DA is very large. Notice that this is usually
not a problem, since DA only stores object ids and a set of edges which is small
enough to fit into main memory for most databases. Notice that lines 2–4 cor-
respond to the original PageRank calculation [Brin and Page 1998] modulo the
authority transfer rates information.

6.2 DAG Algorithm

There are many applications where the authority transfer data graph is a DAG.
For example a database of papers and their citations (ignoring author and
conference objects), where each paper only cites previously published papers, is
a DAG. Figure 10 shows an improved algorithm, which makes a single pass of
the graph DA and computes the actual ObjectRank values. Notice that there is
no need for epsilon any more since we derive the precise solution of Equation (5),
in contrast to the algorithm of Figure 11, which calculates approximate values.
The intuition is that ObjectRank is only transferred in the direction of the
topological ordering, so a single pass suffices. Notice that topologically sorting
a graph G(V , E) takes time �(V + E) [Cormen et al. 1989] in the general case.
In many cases the semantics of the database can lead to a better algorithm.
For example, in the papers database, we can efficiently topologically sort the
papers by first sorting the conferences by date. This method is applicable for
databases where a temporal or other kind of ordering is implied by the link
structure.

In this example, the DAG property was implied by the semantics. However, in
some cases we can infer this property by the structure of the authority transfer
schema graph G A, as the following theorem shows.
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Fig. 11. Algorithm to create ObjectRank Index.

THEOREM 6.1. The authority transfer data graph DA is a DAG if and only if

—the authority transfer schema graph G A is a DAG, or
—for every cycle c in G A, the subgraph D′A of DA consisting of the nodes (and the

edges connecting them), whose type is one of the schema nodes of c, is a DAG.

6.3 Almost-DAG Algorithm

The most practically interesting case is when the authority transfer data graph
DA is almost a DAG, that is, there is a “small” set U of backedges, and if these
edges are removed, DA becomes a DAG. Notice that the set U is not unique,
that is, there can be many minimal (i.e., no edge can be removed from U ) sets
of backedges. Instead of working with the set of backedges U , we work with the
set L of backnodes, that is, nodes from which the backedges start. This reduces
the number of needed variables as we show below, since |L| ≤ |U |.

In the papers database example (when author and conference objects are
ignored), L is the set of papers citing a paper that was not published previ-
ously. Similarly, in the complaints database (Figure 14), most complaints ref-
erence previous complaints. Identifying the minimum set of backnodes is NP-
complete7 in the general case. However, the semantics of the database can lead
to efficient algorithms. For example, for the databases we discuss in this paper
(i.e, the papers and the complaints databases), a backnode is simply an object
referencing an object with a newer timestamp.

The intuition of the algorithm (Figure 12) is as follows: the ObjectRank of
each node can be split to the DAG-ObjectRank which is calculated ignoring the
backedges, and the backedges-ObjectRank which is due to the backedges.

To calculate backedges-ObjectRank we assign a variable ci to each backnode
ci (for brevity, we use the same symbol to denote a backnode and its ObjectRank),
denoting its ObjectRank. Before doing any keyword-specific calculation, we cal-
culate how ci ’s are propagated to the rest of the graph DA (line 5), and store this
information in C. Hence Cij is the coefficient with which to multiply c j when

7Proven by reducing Vertex Cover to it.
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Fig. 12. Algorithm to create ObjectRank Index for almost DAGs.

Fig. 13. Almost DAG.

calculating the ObjectRank of node vi. To calculate C (lines 13–15) we assume
that the backedges are the only source of ObjectRank, and make one pass of
the DAG in topological order.

Then, for each keyword-specific base set: (a) we calculate the DAG-
ObjectRanks r′ (line 7) ignoring the backedges (but taking them into account
when calculating the outgoing degrees), (b) calculate ci ’s solving a linear system
(line 8), and (c) calculate the total ObjectRanks (line 10) by adding the backedge-
ObjectRank (C · c) and the DAG-ObjectRank(r′). Each line of the system of line
8 corresponds to a backnode ci ≡ vj (i.e., the ith backnode is the j th node of the
topologically sorted authority transfer data graph D′A), whose ObjectRank ci

is the sum of the backedge-ObjectRank (C j · c) and the DAG-ObjectRank (r′
j ).

The overline notation on the matrices of this equation selects the L lines from
each table that correspond to the backnodes. We further explain the algorithm
using an example.

Example 1. The graph DA is shown in Figure 13(a). Assume d = 0.5 and
all edges are of the same type t with authority transfer rate α(t) = 1. First
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we identify the backnodes c1 ≡ P5, c2 ≡ P4 and then we topologically sort the
graph ignoring the backedges corresponding to the backnodes, depicted with
dotted arrows in Figure 13(a). Then we create the coefficients table C (line 5),
as follows:

r(P1) = 0

r(P2) = 0.5 · 0.5 · c2 = 0.25 · c2

r(P3) = 0.5 · c1

r(P4) = 0.5 · r(P2) + 0.5 · 0.5 · r(P3) = 0.125 · c1 + 0.125 · c2

r(P5) = 0.5 · 0.5 · r(P3) + 0.5 · 0.5 · r(P4) = 0.156 · c1 + 0.031 · c2

C =

⎡
⎢⎢⎢⎢⎣

0 0
0 0.25
0.5 0
0.125 0.125
0.156 0.031

⎤
⎥⎥⎥⎥⎦

Assume we build the index for one keyword w contained in nodes P1, P3.
We calculate (line 7) ObjectRanks for D′A (taken by removing the backedges
(dotted lines) from DA).

r(P1) = 0.5

r(P2) = 0.5 · 0.5 · r(P1) = 0.125

r(P3) = 0.5

r(P4) = 0.5 · 0.5 · r(P3) + 0.5 · r(P2) = 0.188

r(P5) = 0.5 · 0.5 · r(P4) + 0.5 · 0.5 · r(P3) + 0.5 · 0.5 · r(P1) = 0.297

r′ = [0.5 0.125 0.5 0.188 0.297]T

Solving the equation of line 8:[
c1

c2

]
=

[
0.156 0.031
0.125 0.125

][
c1

c2

]
+

[
0.297
0.188

]

we get: c = [0.361 0.263]T , where the overline-notation selects from
the matrices the 5-th and the 4-th lines, which correspond to the bac-
knodes c1 and c2 respectively. The final ObjectRanks are (line 10): r =
[0.5 0.190 0.680 0.266 0.361]T .

This algorithm can be viewed as a way to reduce the n × n ObjectRank cal-
culation system of Equation (5), where n is the size of the graph, to the much
smaller |L| × |L| equations system of line 8 of Figure 12. Interestingly, the two
equations systems have the same format r = Ar + b, only with different coeffi-
cient tables A, b. The degree of reduction achieved is inversely proportional to
the number of backnodes.

The linear, first-degree equations system of line 8 can be solved using any of
the well-studied arithmetic methods like Jacobi and Gauss-Seidel [Golub and
Loan 1996], or even using the PageRank iterative approach which is simpler
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Fig. 14. Authority transfer schema graph for Complaints database.

Fig. 15. Hierarchical-graph.

because we do not have to solve each equation with respect to a variable. The
latter is shown to perform better in Section 8.

6.4 Algorithm for Graphs with Small Vertex Cover

Similarly to the almost-DAG case, we can reduce the ObjectRank calculation to
a much smaller system (than the one of Equation (5)) if authority transfer data
graph DA contains a relatively small vertex cover H. For example, consider a
subset of the complaints database (Figure 14) consisting of the products and
the complaints (without the reference edge to other complaints). Then H is the
set of the products (Figure 15).8 We call the nodes of H hub-nodes.

The intuition of the algorithm is the following: Let hi be the ObjectRank
of hub-node hi. First, the ObjectRank of every non-hub-node i is expressed
as a function of the ObjectRanks of the hub-nodes pointing to i. Then the
ObjectRank of each hub-node hi is expressed as a function of the non-hub-nodes
pointing to hi. This expression is equal to hi, so we get |H| such equations for
the |H| hub-nodes. Hence we reduce the computation to a |H| × |H| linear,
first-degree system.

6.5 Serializing ObjectRank Calculation

This section shows when and how we can serialize the ObjectRank calcula-
tion of the whole graph DA(VD, E A

D) over ObjectRank calculations for disjoint,
nonempty subsets L1, . . . , Lr of VD, where L1 ∪ · · · ∪ Lr ≡ VD. The calcula-
tion is serializable if we first calculate the ObjectRanks for L1, then use these
ObjectRanks to calculate the ObjectRanks of L2 and so on.

For example, consider the subset of the papers database consisting of the
papers, their citations and the authors, where authority is transferred between
the papers and from a paper to its authors (and not vice versa). Figure 16 shows
how this authority transfer data graph can be serialized. In particular, we first

8A complaint can refer to more than one product.
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Fig. 16. Serializable Graph.

calculate the ObjectRanks for the nodes in L1 and then fo the nodes in L2, as
we elaborate below.

To define when the calculation is serializable, we first define the graph
D′A(V ′, E ′) with V ′ = {L1 ∪ . . . ∪ Lr} and E ′ = {(Li, L j )|∃(vi, vj ) ∈ E A

D ∧ vi ∈
Li ∧ vj ∈ L j }. That is, there is an edge (Li, L j ) in D′A if there is an edge be-
tween two nodes vi ∈ Li, vj ∈ L j of DA. The following theorem defines when
the ObjectRank calculation is serializable.

THEOREM 6.2. The ObjectRank calculation for DA is serializable iff D′A is a
DAG.

The algorithm works as follows: Let L1, . . . , Lr be topologically ordered. First,
the ObjectRanks of the nodes in L1 are computed ignoring the rest of DA. Then
we do the same for L2, including in the computation the set I of nodes (and
the corresponding connecting edges) of L1 connected to nodes in L2. Notice that
the ObjectRanks of the nodes in I are not changed since there is no incoming
edge from any node of L2 to any node in I . Notice that any of the ObjectRank
calculations methods described above can be used in each subset Li.

6.6 Manipulating Initial ObjectRank Values

All algorithms so far assume that we do a fresh execution of the algorithm for
every keyword. However, intuitively we expect nodes with high Global Objec-
tRank to also have high ObjectRank with respect to many keywords. We exploit
this observation by assigning the Global ObjectRanks as initial values for each
keyword specific calculation.

Furthermore, we investigate a space vs. time tradeoff. In particular, assume
we have limitations on the index size. Then we only store a prefix (the first p
nodes) of the nodes’ list (recall that the lists are ordered by ObjectRank) for
each keyword. During the query stage, we use these values as initial values
for the p nodes and a constant (we experimentally found 0.03 to be the most
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efficient for our datasets) for the rest.9 Both ideas are experimentally evaluated
in Section 8.1.

7. QUALITATIVE EVALUATION

To evaluate the quality of the results to keyword queries we conducted a set
of user surveys and we compared our results to a well-accepted ground truth
source. Section 7.1 presents the results for variations of ObjectRank. Section 7.2
compares ways to express the specificity in the ranking function.

7.1 ObjectRank Evaluation

To evaluate the quality of the results of ObjectRank, we conducted two surveys.
The first was performed on the DBLP database, with eight professors and
Ph.D. students, who were not involved with the project. The second survey used
the publications database of the IEEE Communications Society (COMSOC)10

and involved five senior Ph.D. students from the Electrical Engineering
Department.

Each participant was asked to compare and rank two to five lists of top-10
results for a set of keyword queries, assigning a score of 1 to 10, according to
the relevance of the results list to the query. Each result list was generated
by a different variation of the ObjectRank algorithm. One of the results lists
in each set was generated by the “default” ObjectRank configuration which
used the authority transfer schema graph of Figure 5 and d = 0.85. The users
knew nothing about the algorithms that produced each result list. The survey
was designed to investigate the quality of ObjectRank when compared to other
approaches or when changing the adjusting parameters.

Effect of Keyword-Specific Ranking. First, we assess the basic principle of
ObjectRank, which is the keyword-specific scores. In particular, we compared
the default (that is, with the parameters set to the values discussed in Section 1)
ObjectRank with the global ranking algorithm that sorts objects that contain
the keywords according to their global ObjectRank (where the base-set contains
all nodes). Notice that this is equivalent to what Google used to11 do for Web
pages, modulo some minor difference on the calculation of the relevance score by
Google. The DBLP survey included results for two keyword queries: “OLAP” and
“XML.” The score was 7:1 and 5:3 in favor of the keyword-specific ObjectRank
for the first and second keyword query respectively. The COMSOC survey used
the keywords “CDMA” and “UWB (ultra wideband)” and the scores were 4:1
and 5:0 in favor of the keyword-specific approach respectively.

Effect of Authority Transfer Rates. We compared results of the default
ObjectRank with a simpler version of the algorithm that did not use different
authority transfer rates for different edge types, that is, all edge types were

9Notice that, as we experimentally found, using the Global ObjectRanks instead of a constant for

the rest nodes is less efficient. The reason is that if a node u is not in the top-p nodes for keyword

k, u probably has a very small ObjectRank with respect to k. However u may have a great Global

ObjectRank.
10http://www.comsoc.org
11Google’s current ranking algorithm is not disclosed.
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treated equally. In the DBLP survey, for both keyword queries, “OLAP” and
“XML,” the default ObjectRank won with scores 5:3 and 6.5:1.5 (the half point
means that a user thought that both rankings were equally good) respectively.
In the COMSOC survey, the scores for “CDMA” and “UWB” were 3.5:1.5 and
5:0 respectively.

Effect of the Damping Factor d. We tested three different values of the damp-
ing factor d : 0.1, 0.85, and 0.99, for the keyword queries “XML” and “XML AND
Index” on the DBLP dataset. Two points were given to the first choice of a user
and one point to the second. The scores were 2.5 : 8 : 13.5 and 10.5 : 11.5 : 2 (the
sum is 24 since there are 8 users times 3 points per query) respectively for the
three d values. We see that higher d values are preferred for the “XML”, because
“XML” is a very large area. In contrast, small d are preferable for “XML AND In-
dex,” because few papers are closely related to both keywords, and these papers
typically contain both of them. The results were also mixed in the COMSOC
survey. In particular, the damping factors 0.1, 0.85, and 0.99 received scores of
5:6:4 and 4.5:3.5:7 for the queries “CDMA” and “UWB” respectively.

Note that setting d to a very small value (e.g., d = 0.1 or less) is very close to
using a traditional IR function like tf idf, because the majority of the authority
stays in the nodes that contain the keywords. Furthermore the exponent in
Equation (15) plays a role similar to idf. The tf metric also tends to be of minor
importance in DBLP since words are rarely repeated in a title and almost never
in an author name.

Effect of Changing the Weights of the Keywords. We compared the combining
functions for AND semantics of Equations (13) with the weighted combining
method described in Section 4.4 for the two-keyword queries “XML AND Index”
and “XML AND Query,” in the DBLP survey. The use of the normalizing expo-
nents proposed in Section 4.4 was preferred over the simple product function
with ratios of 6:2 and 6.5:1.5 respectively. In the COMSOC survey, the same
experiment was repeated for the keyword query “diversity combining.” The use
of normalizing exponents was preferred at a ratio of 3.5:1.5.

7.2 Inverse ObjectRank Evaluation

The user survey investigates and compares alternative ways to incorporate
link-based specificity to keyword queries. In particular, we propose alternative
specificity metrics and also experiment with various ways to incorporate Inverse
ObjectRank in the ranking. We performed three qualitative experiments to
compare these alternatives: a comparison to a textbook’s bibliography, a user
survey, and a quantitative measurement of the distances between the result
lists. The key conclusion from these studies is that combining ObjectRank with
the square root of Inverse ObjectRank produces the best results.

We consider the following ranking functions. For each case we specify the sin-
gle keyword score f wi (v) of node v as well as the multiple keywords combining
function f w1,...,wm(v). Notice that AND semantics is used.

(1) Obj ranks according to ObjectRank. f wi (v) = rwi (v) and f w1,...,wm(v) is de-
fined by Equation (13).
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(2) ObjInv ranks according to the product of ObjectRank and Inverse Objec-
tRank. f wi (v) is defined by Equation (11) and f w1,...,wm(v) by Equation (13).

(3) ObjOverGlobal uses the inverse of Global ObjectRank as the specificity
metric. The assumption is that if a node has high ObjectRank, it receives
it from a wide range of nodes, and hence this node is too general. It is
f wi (v) = rwi (v) and f w1,...,wm(v) = ∏

i=1,...,m f wi (v)/rG(v).

(4) Objd03 is the same as Obj but d = 0.3 (d = 0.85 when not specified). That
is, this ranking attempts to achieve specificity by limiting the authority flow
and emphasizing the nodes that contain the keywords.

(5) ObjSqrtInv ranks according to the product of ObjectRank and the square
root of Inverse ObjectRank. f wi (v) is defined by Equation (12) and
f w1,...,wm(v) by Equation (13).

(6) ObjOverInc uses the inverse of the number of incoming links
NumIncLinks(v) of node v as specificity metric. It is f wi (v) = rwi (v)
and f w1,...,wm(v) = ∏

i=1,...,m f wi (v)/NumIncLinks(v). NumIncLinks(v) can be

viewed as an approximation of rG(v), so this ranking can be viewed as an
approximation of ObjOverGlobal.

(7) ObjOverInvGlobal uses the inverse of Global Inverse ObjectRank rIG(v)
as the specificity metric. It is f wi (v) = rwi (v) and f w1,...,wm(v) =∏

i=1,...,m f wi (v)/rIG(v).

Note that we do not compare to the document length (dl), which is the
traditional IR specificity metric since all objects in DBLP have approximately
the same length. ObjOverInc and ObjOverInvGlobal were found to perform
much worse than the other ranking functions and their results are omitted for
simplicity.

Compare to Textbook’s Bibliography. We assume that the bibliography sec-
tion of each chapter in Ramakrishnan and Gehrke [2003] is a highly credible
source of references related to the chapter title. Based on this assumption, we
compare the recall (precision is the same as recall in this case) of the top-10
papers produced by the five above ranking functions with respect to the papers
in the bibliography section of the corresponding chapter, which is viewed as the
ground truth.

We evaluated 11 queries that correspond to chapter titles of the textbook
[Ramakrishnan and Gehrke 2003]. For each keyword query q, let B(q) denote
the set of papers in the bibliography of the corresponding chapter and U (q)
denote the set of papers that are in the bibliography of the book but not of that
chapter, that is, they are not in B(q). We assume that papers in B(q) satisfy
all properties of Section 3.2, that is, they are specific to q, relevant to q and
of high quality. We refer to such papers as authoritative-specific for q. On the
other hand, papers in U (q) have high quality but are not highly relevant or
specific to q, and are referred to as authoritative-nonspecific. Table II shows
the number of authoritative-specific and authoritative-nonspecific papers for
each query for the five ranking functions.

Obviously, ObjOverGlobal has the worst performance according to Table II.
In particular, it produces no authoritative-specific or authoritative-nonspecific
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Table II. Number of Authoritative-Specific and Authoritative-Nonspecific Papers According

to Textbook

Obj ObjInv ObjOverGlobal Objd03 ObjSqrtInv
A-S A-NS A-S A-NS A-S A-NS A-S A-NS A-S A-NS

tree index 7 1 6 1 0 0 6 1 7 1

hash index 3 3 1 0 0 0 0 0 2 1

concurrency control 4 2 7 0 0 0 7 1 7 1

object databases 1 4 3 0 0 0 4 2 4 1

deductive databases 4 2 4 0 0 0 4 0 5 0

spatial databases 3 2 1 0 0 0 2 0 2 0

distributed databases 1 3 5 0 0 0 5 1 6 1

relational model 3 5 3 2 0 0 3 2 3 4

query optimization 2 3 3 1 0 0 4 2 4 2

data mining 4 1 6 0 0 0 4 0 6 0

relational algebra 3 2 2 0 0 0 3 0 2 0

AVERAGE 3.18 2.55 3.73 0.36 0 0 3.82 0.82 4.36 1

papers in the top-10 results for any query. Hence, we do not consider this metric
in our discussion henceforth. Objd03, which promotes papers that contain the
actual keywords, performs well in terms of authoritative-specific results. The
reason is that because the queries in Table II refer to fundamental areas, it
happens that many important papers contain the actual keywords.

Now, let’s focus on the relationship between Obj, ObjInv, and ObjSqrtInv,
which have the common property that they only involve keyword-specific com-
putations. In terms of the number of authoritative-nonspecific papers, Obj and
ObjInv are located at the two extremes. We introduced ObjSqrtInv as a ranking
function to combine the desirable properties of both ends. As expected, ObjSqrt-
Inv has a number of authoritative-nonspecific papers that is between those of
Obj and ObjInv. However, ObjSqrtInv is superior to both Obj and ObjInv in
terms of average number of authoritative-specific papers, which is a highly
desirable property.

The intuition behind the selection of ObjSqrtInv is the following. Using Ob-
jInv, a too specific object may receive a high score even if it has relatively low
quality and relevance. For example, a very high quality object that happens to
be relevant to 10 keywords would be ranked equal to a 10 times lower-quality
document that is relevant to only one keyword. Hence, taking the square root of
Inverse ObjectRank serves a purpose similar to taking the logarithm of tf in IR
to avoid assigning top score to documents that repeat many times the keywords
in an adversary way. We chose square root instead of logarithm because loga-
rithm is sensitive to the breadth of the range of the Inverse ObjectRank values.
In particular, we observed that few nodes have very large Inverse ObjectRank
values which have orders of magnitude difference to the top ObjectRank values.
Square root is more appropriate since

√
a · c/

√
b · c does not depend on c (c > 0),

whereas log(a · c)/ log(b · c) depends on c.
On the other hand, taking the square root of ObjectRank is a bad idea, since

ObjectRank is the relevance (and quality) measure, which is the primary rank-
ing factor, and cannot be easily tricked (especially in controlled databases like
bibliographical). Other ways to decrease the weight of Inverse ObjectRank were

ACM Transactions on Database Systems, Vol. 33, No. 1, Article 1, Publication date: March 2008.



P1: IAZ

ACMB012B-480 ACM-TRANSACTION February 23, 2008 22:25

Authority-Based Keyword Search in Databases • 1:29

Table III. Average Ratings of the Five Specificity Metrics at

the User Survey

Obj ObjInv ObjOverGlobal Objd03 ObjSqrtInv
2.13 3.42 2.13 3.60 3.92

tested, like dividing (1–d) by a constant in Equation (6), but taking the square
root was found to perform better.

A surprising fact is that the average number of authoritative-specific papers
for Obj is high. The reason is that the textbook contains multiple general refer-
ences for each chapter, to introduce the topic to newcomers or carry very general
concepts, which would not be judged as specific by an experienced researcher.
This observation is also supported by the user survey presented below.

User Survey. We asked twelve users (not involved in the project), eight
database professors and four database Ph.D. students in eight different univer-
sities in the US and abroad, to rank the top-10 result lists for the five ranking
functions, for various queries. The survey consisted of 9 queries, 4 of which
were chapter titles of Ramakrishnan and Gehrke [2003]. Each user/subject as-
signed a score between 1 and 5 to each result list for the queries/topics he/she
feels comfortable with. Also, the user can specify his/her level of expertise for
each topic, which is then used to weight the rating when computing average
numbers. We explained to the users what is meant by authoritative-specific as
opposed to authoritative-nonspecific by providing the following scenario, and
we asked them to evaluate according to the former.

Survey Scenario. “Let us assume you are a professor and you need to give
a reading list to a first year graduate student who starts research on a topic,
say “XML database storage.” Being a first year student, he/she likely has no
background knowledge on database issues pertaining to XML and semistruc-
tured data in general. In this case, you may want to provide an authoritative
papers list where it is OK (indeed desirable) to include a few seminal papers
on XML and semistructured databases, even though they may not be related to
storage in particular. Such seminal papers are a good starting point for the stu-
dent. These papers are authoritative-nonspecific papers. Instead, our survey
asks for authoritative-specific papers. Now assume that you produce a read-
ing list for someone (perhaps yourself) who already knows the basics of XML
databases and of conventional (relational) storage systems. You now care about
the specific papers in XML storage, in particular.”

The average ratings are shown in Table III. We observe that ObjSqrtInv
has the highest average rating, which is consistent with our expectation that
ObjSqrtInv outperforms other metrics because of its balance between authority
and specificity. We also see that Obj, which lacks a specificity factor, received
low ratings in contrast to Table II, where it received a high score due to the
reasons mentioned above.

Surprisingly, Objd03 received a high average rating, although setting d = 0.3
greatly degrades the authority flow factor and promotes results that contain the
actual keywords. The reason of the high average rating is that some subjects
did not have knowledge of the best papers for a topic and instead they seem
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Fig. 17. Compare results’ distances.

to have judged by the titles of the papers and the presence of the keywords in
them.

Distance between Specificity Metrics. In this experiment, we perform a quan-
titative comparison between the above ranking functions using the Kendall Tau
distances between the generated result lists. Since the two top-k lists are not
permutations of each other, we use the extended Kendall Tau definition of Fagin
et al. [2003]. The average Kendall Tau distances between the most interesting
pairs of ranking functions over 100 queries are shown in Figure 17, as a function
of the lists length k. Notice that as expected, there is a large distance between
Obj and ObjInv but a smaller distance between Obj and ObjSqrtInv. We do not
include the distance between Obj and ObjOverGlobal since their results are
often disjoint hence resulting in very large distances.

8. PERFORMANCE EXPERIMENTS

In this section we experimentally evaluate the system and show that calculat-
ing the authority flows is feasible, both in the preprocessing and in the query
execution stage. We present the results for ObjectRank which can be extened
for Inverse ObjectRank as well. For the evaluation we use three real and a set
of synthetic datasets: COMSOC is the dataset of the publications of the IEEE
Communications Society,12 which consists of 55, 000 nodes and 165, 000 edges.
DBLPreal and DBLPreal2 are a subset and the complete DBLP dataset respec-
tively. DBLPreal consists of the publications in twelve database conferences.
DBLPreal contains 13, 700 nodes and 101, 500 edges, whereas DBLPreal2 has

12http://www.comsoc.org
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Table IV. Synthetic Datasets

name #nodes #edges
DBLP30 3,000 30,000

DBLP100 10,000 100,000

DBLP300 30,000 300,000

DBLP1000 100,000 1,000,000

DBLP3000 300,000 3,000,000

C(cid,name)

Y(yid,year,cid)

P(pid,title,yid)

A(aid,name)

PP(pid1,pid2)

PA(pid,aid)

Fig. 18. Relational schema.

859, 300 nodes and 2, 741, 000 edges. In addition, we also created a set of ar-
tificial datasets shown in Table IV, using the words of the DBLP dataset. The
outgoing edges are distributed uniformly among papers, that is, each paper
cites on average 10 other papers. The incoming edges are assigned by a nonuni-
form random function, similar to the one used in the TPC-C benchmark,13 such
that the top-10% of the most cited papers receive 70% of all the citations.

To store the databases in a RDBMS, we decomposed them into relations
according to the relational schema shown in Figure 18. Y is an instance of a
conference in a particular year. PP is a relation that describes each paper pid2
cited by a paper pid1, while P A lists the authors aid of each paper pid. Notice
that the two arrows from P to PP denote primary-to-foreign-key connections
from pid to pid1 and from pid to pid2. We ran our experiments using the Or-
acle 9i RDBMS on a Xeon 2.2-GHz PC with 1 GB of RAM. We implemented
the preprocessing and query-processing algorithms in Java, and connect to the
RDBMS through JDBC.

The experiments are divided into two classes. First, we measure how fast
the ObjectRank Execution module (Figure 9) calculates the ObjectRanks for all
keywords and stores them into the ObjectRank Index, using the CreateIndex
algorithm of Figure 11. The size of the ObjectRank Index is also measured.
This experiment is repeated for various values of epsilon and threshold, and
various dataset sizes. Furthermore, the General ObjectRank algorithm is com-
pared to the almost-DAG algorithm, and the effect of using various initial Objec-
tRank values is evaluated. Second, in Section 8.2 the Query module (Figure 9) is
evaluated.

8.1 Preprocessing Stage

General ObjectRank Algorithm. Tables V, VI, and VII show how the storage
space for the ObjectRank index decreases as the ObjectRank threshold of the

13http://www.tpc.org/tpcc/
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Table V. Index Creation for DBLPreal for epsilon = 0.1

threshold time (sec) nodes/keyword size (MB)
0.3 3702 84 2.20

0.5 3702 67 1.77

1.0 3702 46 1.26

Table VI. Index Creation for DBLPreal2 for

epsilon = 0.05

threshold time (sec) nodes/keyword size (MB)
0.01 20036 70831 1854

0.03 20036 45445 1189

0.1 20036 26968 706

Table VII. Index Creation for COMSOC for epsilon = 0.05

threshold time (sec) nodes/keyword size (MB)
0.05 80829 9.4 1.17

0.07 80829 8.3 1.08

0.1 80829 7.7 1.03

Table VIII. Index Creation for DBLPreal for

threshold = 0.5

epsilon time (sec) nodes/keyword size (MB)
0.05 3875 67 1.77

0.1 3702 67 1.77

0.3 3517 67 1.77

Table IX. Index Creation for DBLPreal2 for

threshold = 0.1

epsilon time (sec) nodes/keyword size (MB)
0.05 20036 26968 706

0.1 18878 26968 706

0.5 16773 26968 706

Table X. Index Creation for COMSOC for

threshold = 0.1

epsilon time (sec) nodes/keyword size (MB)
0.05 80829 7.7 1.03

0.07 77056 7.7 1.03

0.1 74337 7.7 1.03

stored objects increases, for the real datasets. Notice that DBLPreal and COM-
SOC have 12, 341 and 40, 577 keywords respectively. Also notice that much
fewer nodes per keyword have ObjectRank above the threshold in COMSOC,
since this dataset is more sparse and has more keywords. The time to create
the index does not change with threshold since threshold is not used during the
main execution loop of the CreateIndex algorithm. Tables VIII, IX, and X show
how the index build time decreases as epsilon increases. The reason is that
fewer iterations are needed for the algorithm to converge, on the cost of lower
accuracy of the calculated ObjectRanks. Notice that the storage space does not
change with epsilon, as long as epsilon < threshold.
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Table XI. Index Creation for Synthetic Datasets

dataset time (sec) nodes/keyword size (MB)
DBLP30 2933 6 0.3

DBLP100 11513 21 0.7

DBLP300 45764 65 1.7

DBLP1000 206034 316 7.9

DBLP3000 6398043 1763 43.6
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Fig. 19. Evaluate almost-DAG algorithm.

Table XI shows how the execution times and the storage requirements for the
ObjectRank index scale with the database size for the DBLP synthetic datasets
for epsilon = 0.05 and threshold = 0.1. Notice that the average number of nodes
having ObjectRank higher than the threshold increases considerably with the
dataset size, because the same keywords appear multiple times.

General ObjectRank vs. Almost-DAG Algorithm. Figure 19 compares the
index creation time of the General ObjectRank algorithm (Gen-OR) and two
versions of the almost-DAG algorithm, on the DBLP1000 dataset, for various
number of backnodes. The algebraic version (Alg-A-DAG) precisely solves the
c = C · c + r′ system using an off the self algebraic solver. The PageRank ver-
sion (PR-A-DAG) solves this system using the PageRank [Brin and Page 1998]
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Table XII. Number of Iterations for Various Lengths of

Precomputed Lists

List length p iterations
13700 1

13000 1.2

8000 1.8

2500 3

800 8.7

100 13.3

0 16.3

List length p iterations
55000 1

54000 2.9

30000 5.3

13000 6.5

1600 7.8

400 10.7

25 13

0 15.8

(a) DBLPreal (b) COMSOC

iterative method. The measured times are the average processing time for a
single keyword and do not include the time to retrieve the base-set from the in-
verted text index, which is common to all methods. Also, the time to calculate C
is omitted, since it C is calculated once for all keywords, and it requires a single
pass over the graph. The Iterative part of the execution times corresponds to
the one pass we perform on the DAG subgraph to calculate r′ for almost-DAG
algorithms, and to the multiple passes which consist the whole computation for
the General ObjectRank algorithm.

Also, notice that epsilon = 0.1 for this experiment (the threshold value is
irrelevant since it does not affect the processing time, but only the storage
space). The time to do the topological sorting is about 20 sec, which is negligible
compared to the time to calculate the ObjectRanks for all keywords.

Initial ObjectRanks. This experiment shows how the convergence of the Gen-
eral ObjectRank algorithm is accelerated when various values are set as initial
ObjectRanks. In particular, we compare the naive approach, where we assign an
equal initial ObjectRank to all nodes, to the global-as-initial approach, where
the global ObjectRanks are used as initial values for the keyword-specific Objec-
tRank calculations. We found that on DBLPreal (COMSOC), for epsilon = 0.1,
the naive and global-as-initial approaches take 16.3 (15.8) and 12.8 (13.7) iter-
ations respectively.

Furthermore, we evaluate the space vs. time tradeoff described in Section 6.6.
Table XII shows the average number of iterations for epsilon = 0.1 on DBLPreal
and COMSOC for various values of the precomputed list length p.

8.2 Query Stage

Figure 20 shows how the average execution time changes for varying number
of requested results k, for two-keyword queries on DBLPreal. The results for
DBLPreal2 and COMSOC are similar. We used the index table created with
epsilon = 0.1 (0.05) and threshold = 0.3. The times are averaged over 100 rep-
etitions of the experiment. Notice that the time does not increase considerably
with k, due to the fact that about the same number of random accesses are
needed for small k values, and the processing time using the Threshold Algo-
rithm is too small. Figure 21 shows that the execution time increases almost
linearly with the number of keywords, which again is due to the fact that the
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Fig. 20. Varying k in DBLPreal.

Fig. 21. Varying # keywords in DBLPreal.

disk access time to the ObjectRank lists is the dominant factor, since the pro-
cessing time is too small. Finally, notice that the execution times are shorter for
OR semantics, because there are more results, which leads to a smaller prefix
of the lists being read, in order to get the top-k results.

9. RELATED WORK

We first present how state-of-the-art works rank the results of a keyword query,
using traditional IR techniques and exploiting the link structure of the data
graph. Then we discuss about related work on the performance of link-based
algorithms.

Traditional IR Ranking. Currently, all major database vendors offer tools
[Ora 2007; DB2 2007; MSD 2007] for keyword search in single attributes of the
database. That is, they assign a score to an attribute value according to its rel-
evance to the keyword query. The score is calculated using well known ranking
functions from the IR community [Salton 1989], although their precise formula
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is not disclosed. Recent works [Bhalotia et al. 2002; Hristidis and Papakon-
stantinou 2002; Hristidis et al. 2003; Agrawal et al. 2002] on keyword search
on databases, where the result is a tree of objects, either use similar IR tech-
niques [Bhalotia et al. 2002], or use the simpler boolean semantics [Hristidis
and Papakonstantinou 2002; Hristidis et al. 2003; Agrawal et al. 2002], where
the score of an attribute is 1 (0) if it contains (does not contain) the keywords.

The first shortcoming of these semantics is that they miss objects that are
very related to the keywords, although they do not contain them (Section 1). The
second shortcoming is that the traditional IR semantics are unable to mean-
ingfully sort the resulting objects according to their relevance to the keywords.
For example, for the query “XML,” Gu et al. [2002] on Quality of Service that
uses an XML-based language, would be ranked as high as a classic book on
XML [Abiteboul et al. 2000]. Again, the relevance information is hidden in the
link structure of the data graph.

The most popular specificity metric in Information Retrieval is the document
length (dl). As an example, a state-of-the-art IR ranking function is [Singhal
2001]:

Score(ai, Q) =
∑

w∈Q∩ai

1 + ln(1 + ln(t f ))

(1 − s) + s dl
avdl

· ln
N + 1

df
, (16)

where, for a word w, tf is the frequency of w in the document D, df is the number
of documents in the database containing word w, dl is the size of D in characters,
avdl is the average document size, N is the total number of documents in the
database, and s is a constant (usually 0.2). Croft [2000] and Craswell et al.
[2005] present techniques on combining ranking factors.

Link-Based Semantics. Balmin et al. [2004] introduce the ObjectRank metric.
This work extends and completes Balmin et al. [2004] in the following ways. The
specificity factor is handled and evaluated, in contrast to Balmin et al. [2004],
where the specificity factor is ignored. Inverse ObjectRank is introduced and
qualitatively evaluated. Furthermore, in this work we clearly identify the rank-
ing factors (relevance, specificity and global importance) and map them to au-
thority flow metrics. Moreover, we explain these authority flow metrics from the
perspective of information theory. We also elaborate on the combining ranking
function and study techniques to weigh the query keywords. On the perfor-
mance level, we present algorithms for graphs with small vertex cover and “se-
rializable” graphs and conducted additional experiments. Finally, we have built
a more complete and powerful demo available on the Web by adding adjusting
parameters, and including the whole DBLP dataset and citations from Citeseer,
in contrast to Balmin et al. [2004] where a small subset of DBLP was used.

To the best of our knowledge, Savoy [1992] was the first to use the link-
structure of the Web to discover relevant pages. This idea became more popular
with PageRank [Brin and Page 1998], where a global score is assigned to each
Web page as we explain in Section 2. However, directly applying the PageR-
ank approach in our problem is not suitable, as we explain in Section 1. HITS
[Kleinberg 1999] employs mutually dependent computation of two values for
each web page: hub value and authority. In contrast to PageRank, it is able to
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find relevant pages that do not contain the keyword, if they are directly pointed
by pages that do. However, HITS does not consider domain-specific link seman-
tics and does not make use of schema information. The relevance between two
nodes in a data graph can also be viewed as the resistance between them in the
corresponding electrical network, where a resistor is added on each edge. This
approach is equivalent to the random walk model [Doyle and Snell 1984].

Richardson and Domingos [2002] propose an improvement to PageRank ex-
tending the work of Bharat and Henzinger [1998], where the random surfer
takes into account the relevance of each page to the query when navigating
from one page to the other. However, they require that every result contains the
keyword, and ignore the case of multiple keywords. Haveliwala [2002] proposes
a topic-sensitive PageRank, where the topic-specific PageRanks for each page
are precomputed and the PageRank value of the most relevant topic is used for
each query. Both works apply to the Web and do not address the unique charac-
teristics of structured databases, as we discuss in Section 1. Furthermore, they
offer no adjusting parameters to calibrate the system according to the specifics
of an application.

Recently, the idea of PageRank has been applied to structured databases
[Guo et al. 2003; Huang et al. 2003]. XRANK [Guo et al. 2003] proposes a way
to rank XML elements using the link structure of the database. Furthermore,
they introduce a notion similar to our ObjectRank transfer edge bounds, to dis-
tinguish between containment and IDREF edges. Huang et al. [2003] propose
a way to rank the tuples of a relational database using PageRank, where con-
nections are determined dynamically by the query workload and not statically
by the schema. However, none of these works exploits the link structure to pro-
vide keyword-specific ranking. Furthermore, they ignore the schema semantics
when computing the scores. Raschid et al. [2006] and Shafer et al. [2006] have
applied the PageRank ranking to rank objects of biological databases.

Geerts et al. [2004] use a set of queries to rank the values of a relational
database using authority flow semantics. TrustRank [Gyongyi et al. 2004] uses
the idea of Global Inverse PageRank as a heuristic for a completely different
purpose than specificity. In particular, they use it to find well connected pages
to use as seeds in their algorithms. Faloutsos et al. [2004] find the connection
subgraph between two graph nodes by maximizing the electric current between
the nodes, where each edge of the data graph is represented by an electric
resistor. This work is extended at Tong and Faloutsos [2006] for more than two
nodes and is referred to as the centerpiece subgraph problem.

Performance. A set of works [Haveliwala 1999; Chen et al. 2002; Jeh and
Widom 2003; Kamvar et al. 2003] have tackled the problem of improving the
performance of the original PageRank algorithm. Haveliwala [1999] and Chen
et al. [2002] present algorithms to improve the calculation of a global PageRank.
Jeh and Widom [2003] present a method to efficiently calculate the PageRank
values for multiple base sets, by precomputing a set of partial vectors which
are used in runtime to calculate the PageRanks. The key idea is to precompute
in a compact way the PageRank values for a set of hub pages, through which
most of the random walks pass. Then using these hub PageRanks, calculate
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in runtime the PageRanks for any base set consisting of nodes in the hub set.
However, in our case it is not possible to define a set of hub nodes, since any
node of the database can be part of a base set.

10. CONCLUSIONS

We presented an adjustable framework to answer keyword queries using the
authority transfer paradigm, which we believe is applicable to a significant
number of domains (though obviously not meaningful for every database). We
showed that our framework is efficient and semantically meaningful, with an
experimental evaluation and user surveys respectively.

Furthermore we presented Inverse ObjectRank, which is a link-based and
keyword-specific specificity metric. We showed how Inverse ObjectRank is com-
bined with other ranking functions to produce the results list for a keyword
query. Our methods have been qualitatively evaluated using a user survey and
the bibliography sections of a database textbook. We concluded that combin-
ing ObjectRank with the square root of Inverse ObjectRank produces results of
highest quality. Furthermore, we built a prototype of our methods on a biblio-
graphic database, which we made available on the Web.
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