
Efficient LCA based Keyword Search in XML Data

Yu Xu
Teradata

San Diego, CA
yu.xu@teradata.com

Yannis Papakonstantinou
University of California, San Diego

San Diego, CA
yannis@cs.ucsd.edu

ABSTRACT
Keyword search in XML documents based on the notion
of lowest common ancestors (LCAs) and modifications of it
has recently gained research interest [10, 14, 22]. In this pa-
per we propose an efficient algorithm called Indexed Stack
to find answers to keyword queries based on XRank’s se-
mantics to LCA [10]. The complexity of the Indexed Stack
algorithm is O(kd|S1| log |S|) where k is the number of key-
words in the query, d is the depth of the tree and |S1| (|S|)
is the occurrence of the least (most) frequent keyword in
the query. In comparison, the best worst case complexity
of the core algorithms in [10] is O(kd|S|). We analytically
and experimentally evaluate the Indexed Stack algorithm
and the two core algorithms in [10]. The results show that
the Indexed Stack algorithm outperforms in terms of both
CPU and I/O costs other algorithms by orders of magnitude
when the query contains at least one low frequency keyword
along with high frequency keywords. This is important in
practice since the frequencies of keywords typically vary sig-
nificantly.

1. INTRODUCTION
Keyword search in XML documents based on the notion of
lowest common ancestors in the labeled trees modeled after
the XML documents has recently gained research interest in
the database community [10, 14, 22, 15, 19]. One important
feature of keyword search is that it enables users to search in-
formation without having to know a complex query language
or prior knowledge about the structure of the underlying
data. Consider a keyword query Q consisting of k keywords
w1, . . . , wk. According to the LCA-based query semantics
proposed in [10], named Exclusive Lowest Common Ances-
tors (ELCA) in the sequel, the result of the keyword query Q

is the set of nodes that contain at least one occurrence of all
of the query keywords either in their labels or in the labels
of their descendant nodes, after excluding the occurrences of
the keywords in the subtrees that already contain at least
one occurrence of all the query keywords. For example, the
answers to the keyword query “XML David” on the data in

Figure 1 is the node list [0, 0.2, 0.2.2, 0.3, 0.3.2, 0.3.3, 0.3.4,
0.4.2]. The answers show that “David” is an author of five
papers that have “XML” in the titles (rooted at 0.2.2, 0.3.2,
0.3.3, 0.3.4 and 0.4.2); and that “David” is the chair of two
sessions that have “XML” in the titles (rooted at 0.2 and
0.3), and the chair of the conference (rooted at 0) whose
name contains “XML”. Notice that the node session with id
0.4 is not an ELCA answer since the only “XML” instance
(node 0.4.2.1.1) under 0.4 is under one of its children (0.4.2)
which already contains keyword instances of both “XML”
and “David”. Therefore under the exclusion requirement in
the ELCA definition, the session node 0.4 is not an ELCA

answer. The node Conference rooted at 0 is an ELCA an-
swer since it contains the node 0.1.1 and the node 0.5.1
which are not under any child of the node 0 that contains
instances of both keywords “XML” and “David”.

We propose an efficient algorithm called Indexed Stack to
answer keyword queries according to the ELCA query se-
mantics proposed in XRank [10] with complexity of
O(kd|S1| log |S|) where k is the number of keywords in the
query, d is the depth of the tree, |S1| (|S|) is the occur-
rence of the least (most) frequent keyword in the query. In
comparison, the complexity of the core algorithms in [10] is
O(kd|S|) and O(k2d|S|p log |S|+k2d|S|2) respectively where
p is the maximum number of children of any node in the tree.
The algorithm in [10] with complexity O(k2d|S|p log |S| +
k2d|S|2) is tuned to return only the top m answers for cer-
tain queries where it may terminate faster than other algo-
rithms. In particular, our contributions include:

• We propose an efficient algorithm, named Indexed Stack
(IS) for keyword search in XML documents according
to the ELCA semantics proposed in XRank [10]. Our
analysis of the algorithm shows that the complexity of
the proposed algorithm is O(kd|S1| log |S|).

• Our experiments evaluate the Indexed Stack algorithm,
and the algorithms in [10] and show that the Indexed
Stack algorithm outperforms in terms of both CPU
and I/O costs other algorithms by orders of magnitude
when the query contains at least one low frequency
keyword along with high frequency keywords.

In Section 2 we provide the ELCA query semantics and
definitions used in the paper. Section 3 describes related
work, with focus on LCA-based keyword search in XML
documents based on the notation of lowest common ances-

session
0.2

session
0.3

session
0.4

title
0.2.1

chair
0.2.3

XML
Talks

0.2.1.1

paper
0.2.2

author
0.2.2.2

David
0.2.2.2.1

title
0.2.2.1

XML Query
Rewriting
0.2.2.1.1

Conference
0

David
0.2.3.1

paper
0.3.2

author
0.3.2.2

David
0.3.2.2.1

title
0.3.2.1

XML
XQuery

0.3.2.1.1

title
0.3.5

chair
0.3.1

David
0.3.1.1

XML
Update
0.3.5.1

author
0.4.2.2

David
0.4.2.2.1

title
0.4.2.1

XML XQuery
0.4.2.1.1

title
0.4.3

chair
0.4.1

David
0.4.1.1

paper
0.4.2

name
0.1

XML
2006
0.1.1

paper
0.3.3

author
0.3.3.2

David
0.3.3.2.1

title
0.3.3.1

paper
0.3.4

author
0.3.4.2

David
0.3.4.2.1

title
0.3.4.1

XML
View

0.3.4.1.1

chair
0.5

David
0.5.1

streaming
0.4.3.1

XML
Survey

0.3.3.1.1

S1: XML nodes S2: David nodes elca(S1,S2)

Figure 1: Example XML document

tors [10, 14, 22, 15, 19]. Section 4 presents the Indexed
Stack algorithm, and also provides the complexity analysis
of the Indexed Stack algorithm and the algorithms in [10]
for both main memory and disk accesses. Our experimental
results comparing the Indexed Stack algorithm and the two
core algorithms in [10] appear in Section 5. We conclude in
Section 6.

2. ELCA QUERY SEMANTICS
We model XML documents as trees using the conventional
labeled ordered tree model. Each node v of the tree corre-
sponds to an XML element and is labeled with a tag λ(v).

The notation v ≺a v′ denotes that node v is an ancestor of
node v′; v �a v′ denotes that v ≺a v′ or v = v′.

We first introduce the Lowest Common Ancestor (LCA) of
k nodes (sets) before we formally define the ELCA query
semantics.

The function lca(v1, . . . , vk) computes the Lowest Common
Ancestor (LCA) of nodes v1, . . . , vk. The LCA of sets S1, . . . , Sk

is the set of LCA’s for each combination of nodes in S1

through Sk.

lca(S1, ..., Sk) = {lca(n1, . . . , nk)|n1 ∈ S1, . . . , nk ∈ Sk}

For example, in Figure 1, lca(S1, S2)=[0, 0.2, 0.2.2, 0.3,
0.3.2, 0.3.3, 0.3.4, 0.4, 0.4.2].

A node v is called an LCA of sets S1, . . . , Sk if
v ∈ lca(S1, . . . , Sk).

A node v is called an Exclusive Lowest Common Ancestor
(ELCA) of S1, . . . , Sk if and only if there exist nodes n1 ∈
S1, . . . , nk ∈ Sk such that v = lca(n1, ..., nk) and for every
ni (1 ≤ i ≤ k) the child of v in the path from v to ni is
not an LCA of S1, . . . , Sk itself nor ancestor of any LCA of
S1, . . . , Sk.

According to the ELCA query semantics proposed in XRank
[10], the query result of a keyword query Q consisting of k

keywords w1, . . . , wk is defined to be

elca(w1, . . . , wk) = elca(S1, . . . , Sk)

where elca(S1, . . . , Sk) = {v | ∃n1 ∈ S1, . . . , nk ∈ Sk(v =
lca(n1, ..., nk)∧ ∀i(1 ≤ i ≤ k)∄x(x ∈ lca(S1, . . . , Sk)∧
child(v, ni) �a x)) } where Si denotes the inverted list of
wi, i.e., the list of nodes sorted by id whose label directly
contains wi and child(v, ni) is the child of v in the path from
v to ni. The node ni is called an ELCA witness node of v

in Si. Note that a node v is an ELCA of S1, . . . , Sk if and
only if v ∈ elca(S1, . . . , Sk).

Notice that the above definition is based on LCAs and is ex-
pressed differently than but it is equivalent to [10]. In Fig-
ure 1 elca(“XML”, “David”)= elca(S1, S2)=[0, 0.2, 0.2.2,
0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2]. The node 0.1.1 is an ELCA

witness node of the node 0 in S1 and the node 0.5.1 is an
ELCA witness node of the node 0 in S2.

The Smallest Lowest Common Ancestor (SLCA) of k sets
S1, . . . , Sk is defined to be

slca(S1, . . . , Sk) =

{v|v ∈ lca(S1, . . . , Sk) ∧ ∀v
′ ∈ lca(S1, . . . , Sn) v ⊀ v

′}

A node v is called a Smallest Lowest Common Ancestor
(SLCA) of S1, . . . , Sk if v ∈ slca(S1, . . . , Sk). Note that
a node in slca(S1, . . . , Sn) cannot be an ancestor node of
any other node in slca(S1, . . . , Sn).

In Figure 1, slca(S1, S2)=[0.2.2, 0.3.2, 0.3.3, 0.3.4, 0.4.2].
Clearly slca(S1, . . . , Sk) ⊆ elca(S1, . . . , Sk) ⊆ lca(S1, . . . , Sk).
For example, consider S1 and S2 in Figure 1. The node 0.2
is not in slca(S1, S2) but in elca(S1, S2) and the node 0.4 is
not in elca(S1, S2) but in lca(S1, S2).

Similarly to [10, 22], each node is assigned a Dewey id pre(v)
that is compatible with preorder numbering, in the sense
that if a node v1 precedes a node v2 in the preorder left-to-
right depth-first traversal of the tree then pre(v1) < pre(v2).
Dewey numbers provide a straightforward solution to lo-
cating the LCA of two nodes. The usual < relationship
holds between any two Dewey numbers. Given two nodes
v1, v2 and their Dewey numbers p1, p2, lca(v1, v2) is the
node with the Dewey number that is the longest common
prefix of p1 and p2. The cost of computing lca(v1, v2) is O(d)

where d is the depth of the tree. For example, in Figure 1
lca(0.2.2.1.1, 0.2.2.2.1)=0.2.2.

3. RELATED WORK
Extensive research has been done on keyword search in both
relational and graph databases [9, 1, 11, 12, 3, 13]. There
are works on keyword search on XML databases modeled as
trees [10, 14, 22, 15, 19, 4, 18]. This work falls in this cate-
gory. Finally [16, 6, 7, 18, 20, 21, 14, 2] integrate keyword
search into XML query languages.

We focus on the following most closely related works: XRank
([10]), Schema-Free XQuery ([14]), XKSearch ([22]), XSeek
([15]), and Multiway SLCA-based keyword search ([19]), all
of which base keyword search in XML on the notation of
lowest common ancestors of the nodes containing keywords.

XRank ([10]) defines the answer to a keyword search query
Q “w1, . . . , wk” to be elca(S1, . . . , Sk) where Si is the in-
verted list of wi (1 ≤ i ≤ k). It also extends PageRank’s
ranking mechanism to XML by taking the nested structure
of XML into account. Each node in the tree is assigned
a precomputed ranking score which is independent of any
keyword query. The ranking score of an answer node (i.e.,
an ELCA node) v to the query Q is computed by XRank’s
aggregate ranking function which takes into account indi-
vidual scores of the witness nodes of v and the distance
between the witness nodes and the answer nodes— the con-
tribution of a witness node x’s ranking to the node v decays
by the distance between v and x. [10] proposes two core
algorithms, DIL (Dewey Inverted List) and RDIL (Ranked
Dewey Inverted List), to return the top m answers from
elca(S1, . . . , Sk). Notice that the ranking functions and the
search algorithms (DIL and RDIL) are independent of each
other, in the sense that the same search algorithms could
apply to other ranking functions 1.

The DIL algorithm in [10] keeps an inverted list sorted by
Dewey id for each keyword. DIL (conceptually) sort merges
the k inverted lists of the k query keywords and reads each
node v in the sorted merged list in order. Intuitively it is
easy to verify the correctness of the DIL algorithm since it
reads all nodes in the k inverted lists in document order
and has enough information to determine whether a lowest
common ancestor of k nodes from the k inverted list is an
ELCA node or not. Notice that the DIL algorithm has to
scan to the end of all inverted lists. The complexity of the
DIL algorithm is O(kd|S|) where |S| is the size of the largest
inverted list among S1, . . . , Sk and d is the depth of the tree.

The RDIL algorithm in [10] maintains two separate data
structures: inverted lists sorted by the individual nodes’
ranking score in descending order and B+ trees built on
inverted lists sorted by Dewey id in ascending order. The
underlying assumption of RDIL is that higher ranked results
(ELCA nodes) are likely to come from nodes in the front
of inverted lists sorted by ranking score in descending order
and query processing may terminate without scanning to
the end of all of the inverted lists. RDIL works as follows:

1as long as the aggregate ranking functions are monotone
with respect to individual keyword ranks (See Section 2.3 in
[10] for more details).

1. it reads a node v from the k inverted lists sorted by
rank, in round-robin fashion 2.

2. then it uses the B+trees built on inverted lists sorted
by Dewey id to find the lowest common ancestor l that
contains v and all other keywords. The key observa-
tion is that given a node v, an inverted list S sorted
by document order and the B+ tree BT built on S, it
takes only a single range scan ([8]) in BT to find the
node v′ in S whose id is the least that is greater than
the id of v such that either v′ or its immediate prede-
cessor in S shares the longest common prefix with v

which is the Dewey id of l.

3. however the node l produced in the second step may
not be an ELCA node. RDIL first determines whether
each child of l contains all keywords or not (O(kdp log |S|)
where p is the maximum number of children of any
node in the tree). Then for each keyword wi, RDIL
checks that keyword witness nodes of l are not under
any of its children that contain all keyword instances.
The complexity of RDIL is O(k2d|S|p log |S|+k2d|S|2).

Given a node v in an inverted list, as can be seen from the
above explanation, the RDIL algorithm does not completely
scan other inverted lists in order to find an LCA node that
contains v and all other keywords. However, in order to
guarantee correctness (not losing any answer nodes and not
returning non-answer nodes), scan is repeatedly performed
and that is why the complexity of the RDIL is high in the
worst case. Furthermore, it is not guaranteed that individ-
ual nodes with higher ranking scores always lead to answer
nodes with higher overall ranking score because the com-
bination ranking function takes into account the distance
between witness nodes and answer nodes. Moreover, given
a keyword query, there is no practical way to determine a
priori whether the DIL or the RDIL algorithm will perform
better. The experiments in [10] have demonstrated that the
performance of RDIL can be significantly worse than that of
DIL for returning the top m query answers. [10] proposes a
hybrid algorithm which starts using RDIL and switches to
DIL when it finds out that RDIL has spent too much time
on answering the query.

XKSearch ([22]) defines the answers to a keyword query Q

of ”w1, . . . , wk” to be slca(S1, . . . , Sk) where Si is the in-
verted list of the keyword wi. The complexity of the In-
dexed Lookup Eager algorithm in [20] is O(kd|S1| log |S|)
and hence can be orders of magnitude better than the Stack
based algorithm adopted from [10] or [14] when a query
contains keywords of orders of magnitude of different fre-
quencies. The key property of SLCA search in [22] is that,
given two keywords w1 and w2 and a node v that contains
keyword w1, one need not inspect the whole node list of
keyword w2 in order to discover potential solutions. In-
stead, one only needs to find the left and right match of
in the list of w2, where the left (right) match is the node
with the greatest (least) id that is smaller (greater) than
or equal to the id of v. The property generalizes to more
than two keywords. [22] also extends the algorithm com-
puting slca(S1, . . . , Sk) to compute all LCAs of k sets (i.e.,
lca(S1, . . . , Sk)). The intuition is that we can first compute

2e.g., it reads a node from each inverted list in turn.

all SLCA nodes of S1, . . . , Sk. Then we visit every node u in
the path from every SLCA node to the root and determine
whether u is a LCA node or not. The complexity of the
algorithm in [22] based on the above intuition to compute
all LCAs is O(kd2|S1| log |S|). We may attempt to com-
pute elca(S1, . . . , Sk) similarly. That is, in order to com-
pute elca(S1, . . . , Sk), we could do the following: (1) first
compute slca(S1, . . . , Sk) using the Indexed Lookup Eager
algorithm in [22] whose complexity is O(kd|S1| log |S|). (2)
then for each SLCA node v computed in the first step, we
walk up from v to the root and determine whether each an-
cestor node l of v is an ELCA node. However the difficulty
is then that we have to perform the same expensive opera-
tions we described in the third step of the RDIL algorithm
in [10] a few paragraphs before. Therefore the complexity
of such an algorithm would be O(k2d|S|p log |S| + k2d|S|2)
where p is the maximum number of children of any node in
the tree.

Multiway SLCA-based keyword search in XML data [19]
generalizes the SLCA query semantics to support keyword
search beyond the AND semantics to include both AND and
OR boolean operators. For AND-only SLCA query seman-
tics, [19] notices that we may not need to completely scan
the smallest keyword list for certain data instances. Instead
certain keyword instances in the smallest keyword list can
be skipped for faster processing, though the complexity of
the algorithm proposed in [19] is still O(kd|S1| log |S|).

Schema-Free XQuery ([14]) uses the idea of Meaningful LCA
(MLCA), similar to SLCA, and proposes a stack based sort
merge algorithm which scans to the end of all inverted lists.
The complexity of the algorithm in [14] is the same as that
of DIL (O(kd|S|)). [14] shows that keyword search function-
ality can be easily integrated into the structured query lan-
guage XQuery as built-in functions, enabling users to query
XML documents based on partial knowledge they may have
over underlying data with different and potentially evolv-
ing structures. The recall and precision experiments in [14]
shows that it is possible to express a wide variety of queries
in a schema-free manner and have them return correct re-
sults over a broad diversity of schema. The demonstrated
integration of MLCA based keyword search functionality
into XQuery can also apply to the ELCA query semantics.

XSeek [15] studies the problem of inferring the most relevant
return nodes without elicitation of user preferences. It works
for data with or without schema information. XSeek gener-
ates two types of nodes: return nodes that can be inferred
explicitly by analyzing keyword match patterns; and return
nodes that can be inferred implicitly by considering both
keyword match patterns and XML data structure. The ex-
periments show that XSeek generates results with improved
precision and recall over prior approaches with reasonable
cost.

In this paper we will only focus on the algorithmic aspects of
the problem of efficiently finding answers to keyword queries
in XML documents. we will not attempt a comparison of
the quality of different query semantics.

Intuitively answering a keyword query according to the ELCA

query semantics is more computationally challenging than

according to the SLCA query semantics. In the latter the
moment we know a node l has a child c which contains all
keywords, we can immediately determine that the node l

is not a SLCA node. However we cannot determine that l

is not an ELCA node because l may contain keyword in-
stances that are not under c and are not under any node
that contains all keywords. Notice that given the same
query, the size of the answers of the SLCA semantics can-
not be more than that of the ELCA semantics because
slca(S1, . . . , Sk) ⊆ elca(S1, . . . , Sk).

In this paper, we propose an efficient algorithm, Indexed
Stack algorithm (IS), which takes advantage of the benefits
of both stack based algorithms and indexed lookup based
algorithms. The complexity is O(kd|S1| log |S|).

4. INDEXED STACK ALGORITHM (IS)
This section presents the Indexed Stack (IS) algorithm that
computes elca(S1, . . . , Sk). We choose S1 to be the smallest
among S1, . . . , Sk since elca(S1, . . . , Sk) = elca(Sj1 , . . . , Sjk

),
where j1, .., jk is any permutation of 1, 2, . . . , k, and there is
a benefit in using the smallest list as S1 as we will see in
the complexity analysis of the algorithm. We assume |S|
denotes the size of the largest inverted list. The Indexed
Stack algorithm, leveraging key tree properties described in
this section, starts from the smallest list S1, visits each node
in S1, but does not need to access every node in other lists.
It achieves high efficiency, especially when the smallest list
is significantly smaller than the largest list.

The algorithm’s efficiency is based on first discovering the
nodes of a set elca can(S1; S2, . . . , Sk) (short for ELCA

Candidates) defined in Section 4.1, which is a superset of
elca(S1, . . . , Sk) but can be computed efficiently in
O(kd|S1| log |S|), as shown in Section 4.2. Section 4.3 de-
scribes an efficient function isELCA() that determines whether
a given node of elca can(S1; S2, . . . , Sk) is a member of
elca(S1, . . . , Sk). Section 4.4 presents a stack-based algo-
rithm that puts together the computation of elcan can and
isELCA, avoiding redundant computations. Section 4.4
also presents the complexity analysis of the algorithm.

4.1 The ELCA candidate set elca can()
We define next the set elca can(S1; S2, . . . , Sk), whose mem-
bers are called ELCA CAN nodes (of S1 among S2, . . .,
Sk).

elca can(S1; S2, . . . , Sk) =
⋃

v1∈S1

slca({v1}, S2, . . . , Sk)

Note that a node v is an ELCA CAN node iff there exist
n1 ∈ S1, . . ., nk ∈ Sk such that v = lca(n1, . . . , nk) and
there must not exist n′

2 ∈ S2, . . . , n
′

k ∈ Sk such that v′ =
lca(n1, n

′

2, . . . , n
′

k) and v ≺a v′. Every ni (1 ≤ i ≤ k) is
called an ELCA CAN witness node of v in Si.

For example, in Figure 1 elca can(S1; S2)=[0, 0.2, 0.2.2, 0.3,
0.3.2, 0.3.3, 0.3.4, 0.4.2]. Next, consider the ELCA CAN

node 0.2. The nodes 0.2.1.1 and 0.2.2.2.1 are its witness
nodes in S1 and S2 respectively. However the node 0.2.2.1.1
is not a witness node for 0.2 in S1. This is because although
the node 0.2 is the LCA of the node 0.2.2.1.1 from S1 and

the node 0.2.3.1 from S2, there exists the node 0.2.2.2.1 from
S2 such that the LCA of 0.2.2.1.1 and 0.2.2.2.1 (i.e., 0.2.2)
is a descendant of 0.2.

Note that elca can(S1; S2, . . . , Sk) may contain nodes that
are ancestors of other nodes of elca can(S1; S2, . . . , Sk). The
following inclusion relationship between elca and elca can

applies.

Property 1.

∀i ∈ [1, . . . , k],

elca(S1, . . . , Sk) ⊆ elca can(Si; S1, . . . , Si−1, Si+1, . . . , Sk).

Proof. If v ∈ elca(S1, . . . , Sk), there must exist ELCA

witness nodes n1 ∈ S1, . . . , nk ∈ Sk such that v = lca(n1, . . . , nk)
and there must not exist n′

1 ∈ S1, . . . , n
′

i−1 ∈ Si−1, n
′

i+1 ∈
Si+1, . . . , n

′

k ∈ Sk such that
v′ = lca(n′

1, . . . , n
′

i−1, ni, n
′

i+1, . . . , n
′

k) and v ≺a v′ (Other-
wise ni cannot be an ELCA witness node of v). Thus
v ∈ elca can(Si; S1, . . . , Si−1, Si+1, . . . , Sk) by definition.

Of particular importance is the instantiation of the above
property for i = 1 (i.e.,
elca(S1, . . . , Sk) ⊆ elca can(S1; S2, . . . , Sk)) since
elca can(S1; S2, . . . , Sk) has the most efficient computation
(recall S1 is the shortest inverted list).

In Figure 1, elca(S1, S2) and elca can(S1; S2) happen to be
the same. However if we remove the node 0.3.1.1 from the
tree of Figure 1, then elca can(S1; S2) stays the same but the
node 0.3 would not be in elca(S1, S2) anymore. Therefore,
it would be elca(S1, S2) ⊂ elca can(S1; S2).

For presentation brevity, we define elca can(v) for v ∈ S1 to
be the node l where {l}=elca can({v}; S2, . . . , Sk)=
slca({v}, S2, . . . , Sk). The node elca can(v) is called the ex-
clusive lowest common ancestor candidate or ELCA CAN

of v (in sets of S2, . . . , Sk). Note that each node in
lca({v}, S2, . . . , Sk) is either an ancestor node of v or v itself
and elca can(v) is the lowest among all nodes in
lca({v}, S2, . . . , Sk). For instance, consider S1 and S2 in
Figure 1. elca can(0.1.1) = 0, elca can(0.2.1.1) = 0.2,
elca can(0.2.2.1.1) = 0.2.2, elca can(0.3.2.1.1) = 0.3.2,
elca can(0.3.3.1.1) = 0.3.3, elca can(0.3.4.1.1) = 0.3.4,
elca can(0.3.5.1) = 0.3 and elca can(0.4.2.1.1) = 0.4.2.

4.2 Computing elca can(v)
In this section we describe how prior work ([22]) can be
extended to efficiently compute elca can(v) in the interest
of completeness and clarity.

Let us assume that we want to compute slca({v}, S2) where
S2 = {u1, . . . , un}. The key observation in [22] is that the
witness node in S2 for slca(v1, S2) must be one of the two
closest nodes (in document order) to v among all nodes in
the set S2. We can efficiently find the only two nodes of
{u1, . . . , un} that are candidates for witnessing the SLCA,
by using two important functions: the function rm(v, S)
computes the right match of v in a set S, that is the node
of S that has the smallest id that is greater than or equal

v

u1 uc

… …

Fi

ui ui+1

p.c p.(c+1)

y

p

……

Figure 2: v and its ELCA CAN children

to pre(v); lm(v, S) computes the left match of v in a set
S, that is the node of S that has the biggest id that is less
than or equal to pre(v). The function rm(v, S) (lm(v, S))
returns null when there is no right (left) match node. For
example, consider again S1 and S2 in Figure 1 and the node
v = 0.3.2.1.1 from S1. The right match for v in S2 is the
node 0.3.2.2.1, and the left match for v in S2 is the node
0.3.1.1. Consequently slca({v}, S2) is the lower node from
lca(v, rm(v, S2)) and lca(v, lm(v, S2)). Consider again S1,
S2, and v = 0.3.2.1.1 from S1 in Figure 1,
elca can(0.3.2.1.1)=0.3.2. This is because
lca(v, rm(v, S2))=lca(v, 0.3.2.2.1)=0.3.2,
lca(v, lm(v, S2))=lca(v, 0.3.1.1)=0.3, and 0.3 ≺a 0.3.2.

The cost of computing rm(v, S) (lm(v, S)) is O(d log |S|)
since it takes O(log |S|) steps (each step being a Dewey num-
ber comparison) to find the right (left) match node and the
cost of comparing the Dewey ids of two nodes is O(d).

The key point in [22] applies to the computation of
slca({v}, S2, . . . , Sk). The node elca can(v) (i.e.,
slca({v}; S2, . . . , Sk)) can be efficiently computed as follows:
First we compute the (unique) SLCA v2 of v and of the
nodes of S2. It continues by iteratively computing the (unique)
SLCA vi of vi−1 and Si, until i becomes k. The node vk is
the result.

Notice though that the nodes of elca can(S1; S2, . . . , Sk)
may be obtained out of order by applying the above com-
putation on each node in S1. For example in Figure 1,
elca can(0.3.2.1.1) = 0.3.2 and elca can(0.3.5.1) = 0.3. Thus
the ELCA CAN node 0.3 is computed after the ELCA CAN

node 0.3.2. The time complexity of computing elca can(v)
is O(kd log |S|).

4.3 Determine whether an ELCA CAN node is
an ELCA node

This section presents the function isELCA which is used
to determine whether an ELCA CAN node v is an ELCA

node or not. Let child elcacan(v) be the set of children of
v that contain all keyword instances. Equivalently
child elcacan(v) is the set of child nodes u of v such that
either u or one of u’s descendant nodes is an ELCA CAN

node, i.e.,

child elcacan(v) = {u|u ∈ child(v) ∧

∃x (u �a x ∧ x ∈ elca can(S1; S2, . . . , Sk))}

where child(v) is the set of child nodes of v. We use ELCA CAN

in the above definition of child elcacan(v) because we can

efficiently compute elca can(S1; S2, . . . , Sk) as discussed in
Section 4.2. For S1 and S2 of the running example in Fig-
ure 1,
child elcacan(0)=[0.2, 0.3, 0.4] and child elcacan(0.2)=[0.2.2].

Assume child elcacan(v) is {u1, . . . , uc} (See Figure 2). By
definition, an ELCA node v must have ELCA witness nodes
n1, . . . , nk such that n1 ∈ S1, . . . , nk ∈ Sk and every ni is not
in the subtrees rooted at the nodes from child elcacan(v).

To determine whether v is an ELCA node, we probe every
Si to see if there is a node xi ∈ Si such that xi is either
in the forest under v to the left of the path vu1, or in the
forest under v to the right of the path vuc, or in any forest
Fi that is under v and between the paths vui and vui+1,
i = 1, . . . , c − 1. The last case can be checked efficiently by
finding the right match rm(y, Si) of the node y in Si where
y is the immediate right sibling of ui among the children
of v. Assume pre(v) = p, pre(ui) = p.c where c is a single
number, then pre(y) = p.(c + 1), as shown in Figure 2.
Let the right match of y in Si be x (i.e., x = rm(y, Si)).
Then x is a witness node in the forest Fi if and only if
pre(x) < pre(ui+1).

Given the list ch which is the list of nodes in child elcacan(v)
sorted by id, the function isELCA(v, ch) (Figure 3) returns
true if v is an ELCA node by applying the operations de-
scribed in the previous paragraph. As an example, consider
the query “XML David” and the inverted lists S1 and S2 in
Figure 1.
child elcacan(0)= [0.2, 0.3, 0.4]. We will see how
isELCA(0, [0.2, 0.3, 0.4]) works and returns true. In this ex-
ample, the number of keywords is two (k = 2) and |ch|=3.
First the function isELCA searches and finds the existence
of an ELCA witness node (i.e., the node 0.1.1) for 0.2 in S1

in the subtree rooted under 0 to the left of the path from 0
to 0.2 (0.2 is the first child ELCA CAN node of 0). Then
the function searches the existences of an ELCA witness
node in S2 for 0 in the forest to the left of the path from 0
to 0.2; in the forest between the path from 0 to 0.2 and the
path from 0 to 0.3; in the forest between the path from 0 to
0.3 and the path from 0 to 0.4; in the forest to the right of
the path from 0 to 0.4. All of the above searches fail except
that the last search successfully finds a witness node (0.5.1)
for 0.2 in S2. Therefore, isELCA(0, [0.2, 0.3, 0.4]) returns
true.

The time complexity of isELCA(v, ch) is
O(kd log |S||child elcacan(v)|) (line 1, 3 and 4).

4.4 Indexed Stack Algorithm
In Section 4.1 we stated that elca can(S1; S2, . . . , Sk) is a
superset of elca(S1, . . . , Sk). Section 4.2 described how to
efficiently compute elca can(S1; S2, . . . , Sk) and Section 4.3
described how to efficiently check whether an ELCA CAN

node in elca can(S1; S2, . . . , Sk) is an ELCA node, when the
list of child nodes of v that contain all keyword instances are
given. Therefore, the only missing part of efficient computa-
tion of elca(S1, . . . , Sk) is how to compute child elcacan(v)
for each ELCA CAN node v. Since we can easily compute
child elcacan(v) if we know every ELCA CAN node xi un-

isELCA(v, ch){
(* return true if v is an ELCA node. ch=child elcacan(v) *)

1 for 1 ≤ i ≤ k {
2 x=v
3 for 1 ≤ j ≤ |ch| {
4 x = rm(x, Si) (* x is a witness node for v in Si*)
5 if(pre(x) < pre(ch[j])) break;
6 else {
// The function sibling(u) returns the immediate right
//sibling node of u among the list of child nodes of v.
7 x=sibling(ch[j])
8 }
9 }
10 if (j==|ch| + 1) {
11 x = rm(sibling(ch[|ch|]), Si)
12 if(v ⊀a x) return false;
13 }
14 return true;

Figure 3: Determine whether an ELCA CAN node
is an ELCA node

session
0.2

session
0.3

paper
0.2.2

Conference
0

paper
0.3.2

paper
0.4.2

paper
0.3.3

paper
0.3.4

Figure 4: The tree structure of all ELCA CAN nodes
in Figure 1

der v 3, we can just compute all ELCA CAN nodes and
then compute child elcacan(v) for each ELCA CAN node
v.

A straightforward approach would compute all ELCA CAN

nodes and store them in a tree which keeps only the original
ancestor-descendant relationships of all ELCA CAN nodes
in the input document. As an example, such a tree describ-
ing all ELCA CAN nodes in Figure 1 is shown in Figure 4.
Note that though 0.4.2 is a descendant of 0 in Figure 1, it
is a child of 0 in Figure 4.

A straightforward algorithm to compute elca(S1, . . . , Sk) works
as follows where TS is a tree structure initialized to empty:

1. For each node v in S1, compute l = elca can(v) based
on Section 4.2 and do TS.insert(l) which inserts l to
the appropriate place in TS based on l’s ancestor-
descendant relationship with nodes already inserted in
TS. The tree in Figure 4 shows the result from this
step for computing elca(S1, S2) in Figure 1.

2. For each node l in TS check whether l is an ELCA CAN

node or not by calling isELCA(l, child elcacan(l)) where
child elcacan(l) can be easily computed from the list
of child nodes of l in TS.

However the above approach has the following disadvan-
tages:
3child elcacan(v) is the set of child nodes ui of v on the
paths from v to xi, which can be efficiently computed with
Dewey numbers.

elca_canv2=elca_canv1(a)

(b)

potential_elcacan

(c) (d) (e)

top_elcacan

elca_canv2

elca_canv1 elca_canv2

elca_canv1
elca_canv2

elca_canv1

elca_canv1 elca_canv2

Figure 5: Relationships between any two nodes l

and s

• the complexity of the approach is O(d|S1|
2+|S1|kd log |S|)

where the O(d|S1|
2) component comes from the cost

of creating and maintaining the tree structure;

• and all (O(|S1|)) ELCA CAN nodes have to be com-
puted first and kept in memory before we can start to
recognize any ELCA nodes.

Instead, a “one pass” stack-based algorithm, whose com-
plexity is O(|S1|kd log |S|), is presented in Figure 6. The In-
dexed Stack algorithm does not have to keep all ELCA CAN

nodes in memory; it uses a stack whose depth is bounded by
the depth of the tree based on some key tree properties. At
any time during the computation any node in the stack is a
child or descendant node of the node below it (if present) in
the stack. Therefore the nodes from the top to the bottom
of the stack at any time are from a single path in the input
tree.

We will first present the Indexed Stack algorithm, illustrated
with a running example, then discuss at the end of this
section optimization techniques in the implementation of the
algorithm.

4.4.1 Algorithm Description
We go through every node v1 in S1 in order, compute
elca canv1

= elca can(v1) and create a stack entry stackEntry

consisting of elca canv1
. If the stack is empty, we simply

push stackEntry to the stack to determine later whether
elca canv1

is an ELCA node or not. If the stack is not
empty, what the algorithm does depends on the relationship
between stackEntry and the top entry in the stack. The al-
gorithm either discards stackEntry or pushes stackEntry

to the stack (with or without first popping out some stack
entries). The algorithm does not need to look at any other
non top entry in the stack at any time and only determines
whether an ELCA CAN node is an ELCA node at the time
when a stack entry is popped out.

Each stack entry stackEntry created for a node v1 in S1 has
the following three components.

• stackEntry.elca can is elca can(v1);

• stackEntry.CH records the list of child or descendant
ELCA CAN nodes of stackEntry.elca can seen so
far, which will be used by isELCA() to determine
whether
stackEntry.elca can is an ELCA node at the time
when this entry is popped out from the stack;

• and stackEntry.SIB (short for siblings) is the list of
ELCA CAN nodes before stackEntry.elca can (in doc-
ument order) such that the LCA node of nodes from

the list and stackEntry.elca can potentially can be an
ELCA CAN node that has not been seen so far.

Let us illustrate the need for and role of stackEntry.SIB

with the running example “XML David”. Before we com-
pute elca can(0.3.5.1)=0.3, we have already computed 0.3.2,
0.3.3, 0.3.4 as ELCA CAN nodes which are the child
ELCA CAN nodes of 0.3. We have to store these three
ELCA CAN nodes in order to determine whether 0.3 is an
ELCA node or not before we see 0.3 in the processing, which
is achieved by first storing 0.3.2 in the SIB component of
the stack entry associated with 0.3.3 and then storing 0.3.2
and 0.3.3 in the SIB component of the stack entry associ-
ated with 0.3.4 (after the stack entry associated with 0.3.3 is
popped out) during the processing before we see 0.3. Note
that if the node 0.3.1.1 was not in the tree in Figure 1, we
would still see 0.3 in the processing as an ELCA CAN node
and still see 0.3 after 0.3.2, 0.3.3, and 0.3.4, but then 0.3
would not be an ELCA node, which could be determined
only if we have kept the information that 0.3.2, 0.3.3 and
0.3.4 are ELCA CAN nodes until we see 0.3 and know that
0.3 would not have any child or descendant ELCA CAN

nodes in the processing later after we see 0.3. It is possible
that we would not see 0.3 at all in the processing (i.e., if
the node 0.3.5.1 was not in the tree, 0.3 would be not be an
ELCA CAN node) in which case we still need to keep 0.3.2,
0.3.3 and 0.3.4 until the point we are sure that those nodes
cannot be child or descendant of any other ELCA CAN

nodes.

Figure 6, which presents the Indexed Stack pseudo-code, and
Figure 7, which has snapshots of the stack during operation
of the algorithm, also include an entry stackEntry.witNodes,
which we temporarily ignore, as it is used only in the opti-
mization version of the algorithm, described at the end of
this section.

For each node v1 in S1 (line 2), the Indexed Stack algo-
rithm computes elca canv1

= elca can(v1) as discussed in
Section 4.2 (line 4). We create a stack entry stackEntry

consisting of elca canv1
(line 6). If the stack is empty (line

7), we simply push stackEntry to the Stack to determine
later whether elca canv1

is an ELCA node or not. If the
stack is not empty, let the node at the top of the stack be
elca canv2

(line 9-10). Figure 5 shows the only five relation-
ships the two ELCA CAN nodes elca canv2

and elca canv1

(in fact any two nodes) can have.

• In the first case where elca canv1
and elca canv2

are
the same (Figure 5(a), line 11), elca canv1

is discarded.

• In the second case where elca canv2
is an ancestor

of elca canv1
(Figure 5(b)), we push stackEntry to

the stack to determine later whether elca canv1
is an

ELCA node or not (line 12).

• In the third case (Figure 5(c)) where elca canv2
and

elca canv1
have no ancestor-descendant relationship

and elca canv1
appears after elca canv2

in document
order (line 13), we pop the top stack entry repeat-
edly (line 14) until either the stack is empty or the
ELCA CAN node of the top entry in the Stack (named
top elcacan in Figure 5(c), line 15) is an ancestor of

elca canv1
by calling the function popStack(). When

a stack entry is popped out, the ELCA CAN node
in the stack entry is checked whether it is an ELCA

node or not (by isELCA()). Note that there will
not be any ELCA CAN node in later processing that
can be a child or descendant node of any popped out
ELCA CAN node. That is why we can pop out those
entries and check for ELCA nodes. Let popEntry be
the last popped out entry and potential elcacan be
the LCA of popEntry.elca can and elca canv1

(Fig-
ure 5(c), line 16). If the stack is not empty and the
top stack entry’s node top elcacan is an ancestor of
potential elcacan (Figure 5(c), line 17), then we set
the SIB list associated with elca canv1

to be the con-
catenation of the SIB list in popEntry and
popEntry.elca can (line 18). We then push stackEntry

to the stack (line 19). The reason that we need to
carry on the nodes stored in the SIB component of
popEntry to stackEntry was explained a few para-
graphs before in the example illustrating the need for
and role of the SIB component in a stack entry. Dur-
ing the processing of the example, at one point elca canv2

is 0.3.2, elca canv1
is 0.3.3, potential elcacan is 0.3,

top elcacan is 0, and after the stack entry for 0.3.2 is
popped out, 0.3.2 is stored in the SIB component of
the stack entry for 0.3.3. Notice that potential elcacan

could be a node that we have not seen so far in the pro-
cessing (i.e., it has not been computed as an
ELCA CAN node) and it could be an ELCA CAN

and an ELCA node. Although we have guessed its
existence here, it may or may not appear later in the
processing. That is why we need to carry elca canv2

and nodes in the SIB component of elca canv2
to the

SIB component of elca canv1
for potential elcacan.

• In the fourth case where elca canv1
≺a elca canv2

(line 21, Figure 5(d)), it is certain that elca canv2

has no more descendant ELCA CAN nodes. Thus we
pop from the stack repeatedly until either the stack is
empty or the ELCA CAN node in the top entry is an
ancestor of elca canv1

(line 22). Again, the ELCA CAN

node in each popped out entry is checked whether it
is an ELCA node or not. Let the last popped out
entry be popEntry (line 22). We copy the SIB list
in popEntry and popEntry.elca can to the CH field
of elca canv1

(line 23). Then stackEntry is pushed to
the top of the stack (line 24). Notice that nodes stored
in the SIB field by the processing in the third case are
used in the fourth case to set the CH field.

• The fifth case, where elca canv1
and elca canv2

have
no ancestor-descendant relationship and elca canv1

ap-
pears before elca canv2

, is not possible in the compu-
tation when S1 is sorted in document order.

Now we discuss the details of the function popStack(elca canv1
)

(called in the processing of the third and fourth cases in Fig-
ure 5). It repeatedly pops out the top entry (line 31) until
the ELCA CAN node in the top entry is an ancestor of
elca canv1

or the stack becomes empty. Each popped out
entry is checked on whether it contains an ELCA node or
not by calling the function isELCA presented in Section 4.3
(line 33). Notice that the function

1 Stack = empty
2 for each node v1 in S1 {
3 (* elca canv1

:the ELCA CAN of v1; *)
4 elca canv1

= elca can(v1)
5 (* create a Stack entry stackEntry for elca canv1

*)
6 stackEntry = [elca can = elca canv1

; SIB = []; CH = []]
7 if (Stack.isEmpty()) Stack.push(stackEntry)
8 else {
9 topEntry = Stack.top()
10 elca canv2

= topEntry.elca can

11 if(pre(elca canv2
) == pre(elca canv1

)) {} (* Figure 5(a) *)
12 else if (elca canv2

≺a elca canv1
)

Stack.push(stackEntry)(* Figure 5(b) *)
13 else if (pre(elca canv2

) < pre(elca canv1
)){ (* Figure 5(c) *)

14 popEntry = popStack(elca canv1
)

15 top elcacan = Stack.top().elca can

16 potential elcacan = lca(elca canv1
, popEntry.elca can)

17 if(!Stack.isEmpty() && top elcacan ≺a potential elcacan)
18 stackEntry.SIB= [popEntry.SIB,popEntry.elca can]
19 Stack.push(stackEntry)
20 }
21 else if (elca canv1

≺a elca canv2
) { (* Figure 5(d) *)

22 popEntry = popStack(elca canv1
)

23 stackEntry.CH=[popEntry.SIB, popEntry.elca can]
24 Stack. push(stackEntry)
25 }
26 }
27 } (* end of for loop *)
28 popStack(0) (* clean up the stack *)

29 popStack(elca canv1
) : StackEntry

(* pop out all top entries of the stack whose nodes are not
ancestors of elca canv1

*)
30 popEntry=null;
31 while(Stack.top() !=NULL

&& Stack.top().elca can ⊀ elca canv1
) {

32 popEntry=Stack.pop()
33 if(isELCA(popEntry.elca can,
34 toChildELCA CAN(popEntry.elca can, popEntry.CH))
35 output popEntry.elca can as an ELCA

36 Stack.top().CH += popEntry.elca can
37 }
38 return popEntry;

Figure 6: The Indexed Stack Algorithm

toChildELCA CAN(v, L) inputs a node v and a list L each
node of which is a child or descendant ELCA CAN node
of v and returns child elcacan(v). Each popped out node
is added to the top entry’s CH field (line 36) because at
any time any ELCA CAN node in a stack entry is a child
or descendant node of the ELCA CAN node in the stack
entry below it (if present).

The time complexity of the Indexed Stack algorithm is
O(|S1|kd log |S|) where k is the number of keywords in the
query, d is the depth of the tree and |S1| (|S|) is the oc-
currence of the least (most) frequent keyword in the query.
The time complexity comes from two primitive operations:
elca can() and isELCA(). The total cost of calling elca can(v)
is O(kd|S1| log |S|) as discussed in Section 4.2. The cost of
calling the function isELCA(v, CH) once is O(|CH |.kd log |S|)
or |child elcacan(v)|kd log |S| (see Figure 2). The accumu-
lated total cost of calling isELCA is
O(

∑
v∈elca can(S1;S2,...,Sk) |child elcacan(v)|kd log |S|). Let

Z =
∑

v∈elca can(S1;S2,...,Sk) |child elcacan(v)|. Note that

|elca can(S1; S2, . . . , Sk)| ≤ |S1| and |child elcacan(v)| ≤
|S1|. Each node in elca can(S1; S2, . . . , Sk) increases the
value of Z by at most one (see Figure 4). Thus
O(

∑
v∈elca can(S1;S2,...,Sk) |child elcacan(v)|) = O(|S1|). There-

fore the time complexity of the Indexed Stack algorithm is
O(|S1|kd log |S|).

The number of disk access needed by the Indexed Stack al-
gorithm is O(k|S1|) because for each node in S1 the Indexed
Stack algorithm just needs to find the left and match nodes
in each one of the other k − 1 keyword lists. Note that
the number of disk accesses of the Indexed Stack algorithm
cannot be more than the total number of blocks of all key-
word lists on disk because the algorithm accesses all keyword
lists strictly in order and there is no repeated scan on any
keyword list. Since B+ tree implementations usually buffer
non-leaf nodes in memory, we assume the number of disk
accesses of a random search in a keyword search is O(1) as
in [10, 22]. The complexity analysis of the Indexed Stack,
the two algorithms in [10], DIL and RDIL are summarized
in Table 1 for both main memory and disk accesses for find-
ing all query answers and only top m query answers where
|S1|(|S|) is the occurrence of the least (most) frequent key-
word in the query, B is the total number of blocks of all
inverted lists on disk, d is the maximum depth of the tree
and p is the maximum number of children of any node in
the tree.

4.4.2 Running Example
We illustrate the algorithm using the query “XML David”
on the data of Figure 1. Figure 7 shows the states of the
stack after the processing of each node in S1 for comput-
ing elca(S1; S2). The caption under each figure describes
which node v1 in S1 has just been processed, the id of the
node elca canv1

= elca can(v1), which of the four cases in
Figure 5 has happened, and the pop/push actions that hap-
pened.

Figures 7(a), 7(b), and 7(c) show the processing of the first
three S1 nodes, 0.1.1, 0.2.1.1 and 0.2.2.1.1. The case of
Figure 5(b) is applied.

Figure 7(d) shows the processing of the node 0.3.2.1.1. The
case of Figure 5(c) is applied. The two nodes 0.2.2 and 0.2
are popped out from the stack and determined to be ELCA

nodes; the CH field associated with the node 0 is updated
with the addition of the node 0.2; and elca can(0.3.2.1.1)=0.3.2
is pushed onto the stack.

Figure 7(e) shows the result of processing 0.3.3.1.1 from S1.
Note that elca canv1

= 0.3.3. The processing for the case
of Figure 5(c) is applied. The node 0.3.2 is popped out and
reported as an ELCA. Also 0.3.2 is stored in the SIB field
of the entry associated with 0.3.3. Figure 7(f) shows the
processing of the node 0.3.4.1.1 from S1 which is similar
to the processing shown in Figure 7(e). The node 0.3.3 is
popped out and reported as an ELCA, and added to the
SIB field of the stack entry associated with 0.3.4. Note that
the ELCA CAN node 0.3 has not been seen yet.

The processing for the node 0.3 shown in Figure 7(g) is
interesting in that it picks up the nodes previously stored
in SIB and uses it to update the CH field of the stack
entry associated with 0.3. Without this action, we cannot
determine whether the node 0.3 is an ELCA or not because
some of its child ELCA CAN nodes (0.3.2, 0.3.3 and 0.3.4)
have been seen and they have to been stored. The node
0.3.4 is popped out and determined to be an ELCA node.

Figure 7(h) shows the processing of the last node 0.4.2.1.1

number of disk accesses main memory complexity
IS O(k|S1|) O(kd|S1| log |S|)
DIL O(B) O(kd|S|)

RDIL O(k2d|S|p log |S| + k2d|S|2) O(k2d|S|p log |S| + k2d|S|2)

Table 1: Main memory and Disk Complexity Anal-
ysis of Indexed Stack, DIL and RDIL

from S1 which is similar to the processing shown in Fig-
ure 7(d). The node 0.3 is popped out and determined to be
an ELCA node. The node 0.4.2 is pushed onto the stack. At
this stage every node in S1 has been processed. Figure 7(i)
shows that after cleaning up the stack, the stack becomes
empty and nodes 0.4.2 and 0 are determined to be ELCA

nodes.

4.4.3 Algorithm Optimization
To emphasize the key ideas behind the Indexed Stack al-
gorithm and for presentation simplicity, we did not present
some optimization techniques in the implementation of the
algorithm shown in Figure 6.

Incremental isELCA(). Notice that we can do without
storing the child or descendant ELCA CAN nodes of an
ELCA CAN node in the stack. That is, we can remove
the CH field in the structure of a stack entry. The above
can be achieved by the following two changes: i) extend-
ing the computation of elca can(v) along with an array of
ELCA CAN witness nodes of elca can(v); ii) changing the
function isELCA’s signature accordingly to
isELCA(l, WN) where l is an ELCA CAN node and WN

is the list of l’s ELCA CAN witness nodes. The idea is that
some of the ELCA CAN witness nodes of elca can(v) kept
along the way of computing elca can(v) may be ELCA wit-
ness node for elca can(v). If an ELCA CAN witness node
x is also an ELCA witness node for elca can(v) in a set Si,
then there is no need in isELCA() to search for ELCA wit-
ness nodes for elca can(v) in Si. For example in the stack
state shown in Figure 7(h), the child ELCA CAN node 0.2
of the node 0 is stored in the CH field associated with the
node 0 at the bottom of the stack. Instead of carrying the
child ELCA CAN 0.2 of the node 0 from the state shown
in Figure 7(d) to the state shown in Figure 7(h), we can
at the step shown in Figure 7(d) update the witness node
of 0 from [0.1.1, 0.2.2.2.1] to [0.1.1, 0.3.1.1] after 0.2.2 and
0.2 are popped out and before 0.3 is pushed onto the stack,
and update at the step shown in Figure 7(e) the witness
node array of 0 from [0.1.1, 0.3.1.1] to [0.1.1, 0.4.1.1]. In the
last step (Figure 7(i)) after popping out 0.4.2, we update
the witness node array of 0 to [0.1.1, 0.5.1] and determine
that 0 is an ELCA node. Essentially, we remove the need
of storing child ELCA CAN nodes in the stack’s CH fields
and carrying them around by reusing the computation of
elca can() in the function isELCA() and by doing some of
the work in isELCA() (searching for ELCA witness nodes)
as early as possible.

Reducing |SIB|. Assume at some point in the processing
of the algorithm, the following list of ELCA CAN nodes are
computed in the exact order as they appear—r, v1, v2, . . .,
vn, l (See Figure 8). The algorithm presented in Figure 6
will at some point push the node r onto the stack; push v1

onto the stack; pop out v1, push v2, and add v1 to the SIB

0 [0.1.1, 0.2.2.2.1] [] []
elca can witness nodes SIB CH

(a) v1 = 0.1.1; elca canv1
= 0; Fig-

ure 5(b); push 0 to stack.

0.2 [0.2.1.1, 0.2.2.2.1] [] []
0 [0.1.1, 0.2.2.2.1] [] []
elca can witness nodes SIB CH

(b) v1 = 0.2.1.1: elca canv1
= 0.2; Fig-

ure 5(b); push 0.2 to stack.

0.2.2 [0.2.2.1.1, 0.2.2.2.1] [] []
0.2 [0.2.1.1,0.2.2.2.1] [] []
0 [0.1.1,0.2.2.2.1] [] []
elca can witness nodes SIB CH

(c) v1 = 0.2.2.1.1: elca canv1
= 0.2.2; Fig-

ure 5(b); push 0.2.2 to stack.

0.3.2 [0.3.2.1.1,0.3.2.2.1] [] []
0 [0.1.1, 0.3.1.1] [] [0.2]
elca can witness nodes SIB CH

(d) v1 = 0.3.2.1.1: elca canv1
= 0.3.2; Fig-

ure 5(c); pop out 0.2.2 and 0.2 and deter-
mine them as ELCAs; add 0.2 to top entry’s
CH; push 0.3.2 to stack.

0.3.3 [0.3.3.1.1, 0.3.3.2.1] [0.3.2] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2]
elca can witness nodes SIB CH

(e) v1 = 0.3.3.1.1: elca canv1
= 0.3.3; Figure 5(c);

pop out 0.3.2 and determine it as an ELCA; add
0.3.2 to 0.3.3’s SIB; push 0.3.3 to stack.

0.3.4 [0.3.4.1.1, 0.3.4.2.1] [0.3.2,0.3.3] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3]
elca can witness nodes SIB CH

(f) v1 = 0.3.4.1.1; elca canv1
= 0.3.4; Figure 5(c); pop out

0.3.3 and determine it as an ELCA; add 0.3.3 to 0.3.4’s SIB;
push 0.3.4 to stack.

0.3 [0.3.1.1, 0.3.4.2.1] [] [0.3.2, 0.3.3, 0.3.4]
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3,0.3.4]
elca can witness nodes SIB CH

(g) v1 = 0.3.5.1; elca canv1
= 0.3; Figure 5(d); pop out

0.3.4 and determine it as an ELCA; add 0.3.4 entry’s SIB
list and 0.3.4 to 0.3’s CH; push 0.3 to stack.

0.4.2 [0.4.2.1.1,0.4.2.2.1] [] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3,0.3.4,0.3]
elca can witness nodes SIB CH

(h) v1 = 0.4.2.1.1; elca canv1
= 0.4.2; Figure 5(c); pop out

0.3 and determine it as an ELCA; push 0.4.2 to stack.

(i) No more “XML” nodes: clean up the stack; pop out 0.4.2
and 0 and determine them as ELCAs; Stack becomes empty.

Figure 7: States of stack during evaluation of “XML
David”

v
1

…

v
2

u
1

u
2

U
n-1

v
3

v
n

l

r

…

Vn-1

U
n-2

Figure 8: Optimizing the history information of an
ELCA CAN node

1

10

100

1000

10000

(10, 10000) (10, 100000) (100, 10000) (100, 100000) (1000, 10000) (1000, 100000)

m
se

c

IS DIL

Figure 9: Finding all query answers (evaluating the
Indexed Stack algorithm and DIL): queries contain
two keywords; frequencies shown on X-axis

field associated with v2; pop out v2, push v3, and add v1 and
v2 to the SIB field associated with v3. When the algorithm
pushes vn onto the stack, the SIB field associated with vn

contains v1, . . . , vn−1. We only describe the basic idea of
the optimization to reduce the number of nodes stored in
the SIB field. The idea is that we only need to store v1 in
the SIB field of v2; u1 in the SIB field of v3; . . .; un−2 in
the SIB field of vn.

5. EXPERIMENTAL EVALUATION
System Implementation and Setup We have implemented
in Java a prototype called XKeywordSearch to evaluate the
proposed Indexed Stack algorithm and the two core algo-
rithms in [10].

We have run XKeywordSearch on both real and synthetic
data, respectively, DBLP [5] and XMark [17] data. The
experiments have been done on a 766 MHz computer with
512MB of RAM. We only report the experimental results
on the DBLP data in this paper; the results on XMark are
similar.

The DBLP data was first grouped by journal and conference
names, then by years. The size of the XML file of DBLP
data after grouping is 120MB. The depth of the DBLP tree is
10; the number of distinct keywords is 180, 126; the number
of nodes in the tree is 6, 267, 592.

We evaluated the Indexed Stack algorithm, DIL and RDIL
discussed in Section 1 for the ELCA query semantics by
varying the number and frequency of keywords both on hot
cache and on cold cache. We report only results on hot
cache in this paper. The relationships among three evalu-
ated algorithms on cold cache are similar in the sense that
if one algorithm wins another algorithm in the hot cache it
also wins in the corresponding cold cache experiment but

1

10

100

1000

10000

100000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
Number of Keywords

ms
ec

IS DIL

`

small frequency=10 small frequency=100 small frequency=1000 small frequency=10000

Figure 10: Finding all query answers (evaluating the Indexed Stack algorithm and DIL): varying the number
of keywords from 2 to 5; large Frequency= 100000

the differences are smaller because of dominance of the disk
access. For example, in the hot cache experiments shown in
Figure 9, the response time of the Indexed Stack algorithm
for a query with two keywords of frequencies of 10 and 10000
is below 10 milliseconds; in the cold cache experiments, the
response time of the Indexed Stack algorithm for the same
query is close to 100 milliseconds. But the response time of
the DIL algorithm does not increase significantly from hot
cache to cold cache experiments.

One hundred queries were randomly selected for each exper-
iment by a script. Note that when the script fails to choose
a sufficient number of keywords of a specified frequency, it
chooses keywords with frequencies close to the specified fre-
quency. Each query was run three times and the average
time was reported.

Search Performance First, we compare the search per-
formances of the Indexed Stack (IS) algorithm and the DIL
algorithm for finding all query results. There is no point to
run the RDIL algorithm to find all query results because it
is designed for returning top m answers and it has higher
complexity than the IS algorithm. For space reason, we do
not report experiments where the response time of both al-
gorithms are less than 100 milliseconds.

In Figure 9 each query contains two keywords. The perfor-
mance of the DIL algorithm degrades linearly when the size
of the large inverted list increases, while the response time
of the IS algorithm is almost constant, linear in the size of
the smaller keyword list, and its performance is orders of
magnitude better than DIL.

In the experiments shown in Figure 10, we vary the number
of keywords from two to five. Each query has a keyword
of small frequency shown on the top of Figure 10, while
the frequency of all other keywords in the query is fixed
at 100000. We vary the small frequency from 10 to 10000.
As can been seen from Figure 10, when the number of the
keywords is fixed, the performance of the DIL algorithm is
essentially independent of |S1| when the small frequency in-
creases from 10 to 10000, while the performance of the IS
algorithm degrades linearly when the size of the small fre-
quency increases. When the small frequency is fixed, the
performance of IS is essentially constant while the perfor-
mance of DIL degrades linearly when the number of key-
words increases. As demonstrated in Figure 9, Figure 10
shows that the performance of the IS algorithm is orders of

1

10

100

1000

(10, 10000) (10, 100000) (100, 10000) (100, 100000) (1000, 10000) (1000, 100000)

m
se

c

IS RDIL

Figure 11: Finding top 10 query answers (evaluat-
ing the Indexed Stack algorithm and RDIL): queries
contain two keywords; frequencies shown on X-axis

magnitude better than DIL.

We also stress tested the Indexed Stack algorithm on queries
where all keywords have the same frequency. The experi-
ments showed that although DIL often performs better than
IS, the difference is not significantly. It is less than 5% in
most experiments and less than 12% on average.

Next, we compare the search performance of the Indexed
Stack algorithm and the RDIL algorithm for returning only
the top ten query results. The DIL algorithm is not eval-
uated in this set of experiments because both the DIL and
IS algorithms have to find all query results to determine the
top ten answers and the experiments shown in Figures 9
and 10 in finding all query results have showed that IS is a
better choice than DIL. As discussed in Section 3, there is
no guarantee that RDIL can always find the top ten queries
without having to compute all query results.

We evaluated the queries in Figure 9 and Figure 10 and re-
ported the time on returning the top ten query answers in
Figure 11 and Figure 12 respectively. We used a ranking
module that is identical to the one used in the experiments
of [10]. Both Figure 11 and Figure 12 show that the In-
dexed Stack algorithm performed significantly better than
the RDIL algorithm.

There is a space where RDIL can outperform IS (and DIL)
and here is a scenario that exhibits the conditions under
which this happens. Consider a query “w1 w2” on a XML
document that contains a large number of occurrences of w1

1

10

100

1000

10000

100000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
Number of Keywords

ms
ec

IS RDIL

`

small frequency=10 small frequency=100 small frequency=1000 small frequency=10000

28

Figure 12: Finding top 10 query answers (evaluating the Indexed Stack algorithm and RDIL): varying the
number of keywords; large Frequency= 100000

and w2, and only ten pairs of w1 and w2 have non-root nodes
as their lowest common ancestors. Assume that the ten pairs
of w1 and w2 nodes have higher ranking than all other w1

and w2 nodes before them in the document. The RDIL al-
gorithm outperforms the IS algorithm for the above query
“w1 w2” because the IS algorithm has to scan to the end of
one of the two inverted lists to return the top ten answers
while the RDIL algorithm starts from inverted lists sorted
by ranking scores and can terminate much earlier than IS.
As one direction of future work, we plan to investigate how
to return top m answers without having to completely scan
the smallest inverted list, by either adjusting the ranking
mechanism or relaxing the exact top m requirement to ap-
proximate top m query answers.

6. CONCLUSIONS
We have presented an efficient keyword search algorithm,
named Indexed Stack, that returns nodes that contain all
instances of all keywords in the query, after excluding the
keyword instances that appear under nodes whose children
already contain all keyword instances according to the query
semantics proposed in [10]. We demonstrated the superior-
ity of the Indexed Stack algorithm over DIL and RDIL in
[10] both analytically and experimentally. We showed that
the complexity is O(kd|S1| log |S|) where k is the number of
keywords in the query, d is the depth of the tree and |S1|
(|S|) is the occurrence of the least (most) frequent keyword
in the query. In comparison, the complexity of the best prior
work algorithm is O(kd|S|).

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

system for keyword-based search over relational
databases. In ICDE, 2002.

[2] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
TeXQuery: A full-text search extension to XQuery. In
WWW, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, 2002.

[4] S. Cohen, J. Namou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In
VLDB, 2003.

[5] DBLP. http://www.informatik.uni-trier.de/ ley/db.

[6] D. Florescu, D. Kossmann, and I. Manolescu.
Integrating keyword search into XML query
processing. In WWW9, 2000.

[7] N. Fuhr and K. Grojohann. XIRQL: A Query
Language for Information Retrieval in XML
documents. In SIGIR, 2001.

[8] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice-Hall, 2000.

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity Search in Databases.
In VLDB, 1998.

[10] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
2002.

[12] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In ICDE,
2003.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
VLDB, 2005.

[14] Y. Li, C. Yu, and H. V. Jagadish. Schema-free
XQuery. In VLDB, 2004.

[15] Z. Liu and Y. Chen. Identifying meaningful return
information for xml keyword search. In SIGMOD,
2007.

[16] D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman, and
J. Widom. Querying semistructured heterogeneous
information. In Deductive and Object-Oriented
Databases, pages 319–344, 1995.

[17] R.Busse et al. XMark, the XML benchmark project,
http://monetdb.cwi.nl/xml.

[18] A. Schmidt, M. L. Kersten, and M. Windhouwer.
Querying XML documents made easy: Nearest
concept queries. In ICDE, 2001.

[19] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway
slca-based keyword search in xml data. In WWW.

[20] A. Theobald and G. Weikum. Adding relevance to
XML. In WebDB, 2000.

[21] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In EDBT, 2002.

[22] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In
SIGMOD, 2005.

