
The Chase Revisited

Alin Deutsch∗

UC San Diego
deutsch@cs.ucsd.edu

Alan Nash†

IBM Almaden
anash3@gmail.com

Jeff Remmel
UC San Diego

remmel@math.ucsd.edu

ABSTRACT
We revisit the classical chase procedure, studying its properties as
well as its applicability to standard database problems. We settle
(in the negative) the open problem of decidability of termination
of the standard chase, and we provide sufficient termination con-
ditions which are strictly less over-conservative than the best pre-
viously known. We investigate the adequacy of the standard chase
for checking query containment under constraints, constraint im-
plication and computing certain answers in data exchange. We find
room for improvement after gaining a deeper understanding of the
chase by separating the algorithm from its result. We identify the
properties of the chase result that are essential to the above applica-
tions, and we introduce the more general notion of an F -universal
model set, which supports query and constraint languages that are
closed under a class F of mappings. By choosing F appropriately,
we extend prior results all the way to existential first-order queries
and ∀∃-first-order constraints (and various standard sublanguages).
We show that the standard chase is incomplete for finding univer-
sal model sets, and we introduce the extended core chase which is
complete, i.e. finds an F -universal model set when it exists. A
key advantage of the new chase is that the same algorithm can be
applied for the mapping classes F of interest, by simply modify-
ing appropriately the set of constraints given as input. Even when
restricted to the typical input in prior work (unions of conjunc-
tive queries and embedded dependencies), the new chase supports
certain answer computation and containment/implication tests in
strictly more cases than the incomplete standard chase.

1. INTRODUCTION
The chase [3, 22, 21, 12, 4, 2] is a fundamental algorithm that

has been widely used in databases. Examples of its uses include: (i)
checking containment of queries under constraints (which in turn
is used in such query rewriting tasks as minimization, rewriting
using views, and semantic optimization), (ii) checking implication

∗Partially funded by NSF grants IIS-0705589, IIS-0415257 and
IIS-0347968 and an Alfred P. Sloan fellowship.
†Current affiliation: Tradeworx, 54 Broad Str. Suite 200, Red
Bank, NJ 07701.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

of constraints, (iii) computing solutions to data exchange problems,
and (iv) computing certain answers in data integration settings. The
applicability of the same tool to these seemingly different problems
is not accidental, and it is due to a deeper, tool-independent reason:
to solve these problems, it suffices to exhibit a representative in-
stance U with two key properties, and the chase is an algorithm for
finding such an instance. It takes as input an initial instance I and a
set of constraints Σ and, if it terminates (which is not guaranteed),
its result is a finite instance U satisfying:

(a) U is a model of Σ and I

(we say that U is a model1 of Σ and I if U satisfies the constraints
Σ and there is a homomorphism from I to U ), and

(b) U is universal for Σ and I : that is, it has a homomorphism
into every model of Σ and I .

We call a finite instance with these properties a universal model
for Σ and I . We can show that the applications above use both
properties of a universal model essentially, and nothing else (as
detailed in Section 3). The common applicability of the chase can
therefore be explained simply as follows:

The chase is an algorithm for computing universal models.

A universal model can be thought of as a generalization of the no-
tion of a universal solution used in data exchange, in a sense formal-
ized in Section 3. We do not claim the introduction of the universal
model concept as a contribution; rather it is the starting point for
our study of the chase. By separating the algorithm from its re-
sult, we not only learn more about the power and limitations of the
chase, but we also identify extensions (of both algorithm and result)
which allow us to handle more expressive classes of constraints and
queries. What follows is a study of applications of universal mod-
els and the adequacy of the chase as an algorithm to compute them.
In particular, we investigate the following questions:

1. When does the chase terminate?
2. Could there be universal models even when the chase does

not terminate?
3. Could there be other algorithms that will find them?

The chase has been primarily applied to embedded dependencies
and to unions of conjunctive queries. It is hence natural to ask:

4. Can we handle larger classes of queries and constraints?
1We use the word “model” in this somewhat non-standard way be-
cause we do not know of any compact way to denote this relation-
ship between U , Σ, and I . Notice that in the special case where I
is empty, this is the standard notion of “model” and notice also that
given Σ and I , we can define a set of embedded dependencies ΣI

such that U |= ΣI iff U is a model of Σ and I in our sense.



The insights we obtain through our study lead to the natural gen-
eralization of universal models to universal model sets, and the gen-
eralization of universality to mappings other than homomorphisms.
These generalizations allow us to apply the same techniques to han-
dle larger classes of queries and constraints, in particular involving
disjunction, negation, and inequalities.

Contributions. We show that, given an instance I and a set Σ of
embedded dependencies, it is undecidable whether the chase of I
with Σ terminates, thus settling a fundamental open problem. In
prior work, effectively-checkable conditions on a set of embedded
dependencies Σ have been identified which are sufficient for the
chase of any instance I with Σ to terminate. Our undecidability
result implies that any such conditions will not detect termination
in some cases. We provide new sufficient termination conditions
which are effectively-checkable and are better than the best previ-
ously known ones, “weak acyclicity” [13, 11], in that they fail to
detect termination in strictly fewer cases.

We show that universal models formalize in an algorithm-indep-
endent fashion the notion of chase result, by proving that all ter-
minating chase sequences produce universal models. This implies
that our termination conditions are sufficient for the existence of a
universal model. It is natural to ask whether, quite apart from the
chase, there are conditions on a set of constraints that are effectively-
checkable, sufficient, and necessary for the existence of universal
models. We show that no such conditions exists: given set Σ of
embedded dependencies and instance I , it is undecidable whether
a universal model for Σ and I exists.

This result raises the next-best hope (after decidability): is there
a proof procedure for universal models? That is, a procedure which
is complete, i.e. guaranteed to terminate and find a universal model
whenever one exists? A natural first candidate is the standard chase.
We show that the standard chase is not complete for finding uni-
versal models. We introduce a new kind of chase, which we call
the core chase, whose step consist of two phases: (a) “firing” all
applicable standard chase steps simultaneously, then (b) comput-
ing the core of the result. We show that the core chase is complete
for finding universal models. In particular, this implies that there
are instances of the problems of containment, implication, data ex-
change and certain answer computation which cannot be solved us-
ing the standard chase because it does not terminate, but are solved
by the core chase (we exhibit concrete examples).

So far, we have discussed the case of embedded dependencies
and conjunctive queries. We consider richer constraint and query
languages next. These include disjunction, negation, and inequal-
ity, expressing queries by existential first-order formulas and con-
straints by ∀∃ first-order sentences. Our results extend significantly
the prior work on certain answer computation, which tackled pri-
marily the case of unions of conjunctive queries and a restricted
kind of embedded dependencies [13, 15]. Our extensions apply
also to query containment and constraint implication.

We show that, for more expressive constraints, there are cases
when there is no universal model for Σ and I , yet there is a finite
set of models which together is universal for Σ and I . We therefore
introduce the more general concept of universal model set. We next
consider notions of universality under mappings other than homo-
morphisms. Given a class of mappings F , we obtain the notion of
F -universal model set. By choosing the appropriate class F , we
show how to handle general ∀∃ constraints and general existential
queries, and their subclasses (such as unions of conjunctive queries
with negation or inequality) for the problems mentioned above.

We then turn to the problem of computing F -universal model
sets. We show how to extend any homomorphism-based chase that
can handle disjunction, to obtain a chase that achieves universal-
ity for other mappings while supporting constraints with disjunc-
tion, negation and inequality. A key advantage of our extension
is that the same algorithm yields universality with respect to the
various mappings involved. We achieve this by simply modify-
ing the set of constraints. We show that, in particular, the core
chase can be extended in this way, and we prove that the extended
core chase is complete for finding F -universal model sets. Prior
work [8] showed how to chase (incompletely) with larger classes of
constraints, but not how to obtain universality for mappings other
than homomorphisms. Our results enable the application of the
extended core chase instead, which supports certain answers for
queries beyond unions of conjunctive queries, and successful con-
tainment/implication checks in strictly more cases than handled by
the incomplete chase extensions in prior work.

One implication of our contributions so far is that they enable so-
lutions to containment/implication checks and certain answer com-
putation when the standard chase does not terminate. We inves-
tigate the potential for solving these problems when not even the
extended core chase terminates (or, equivalently by completeness,
when no F -universal model set exists). F -universal models and
model sets are finite structures, but they have mappings into all
models of Σ and I , whether finite or infinite. As explained above,
this definition is motivated by the fact that it is precisely what a
terminating chase produces. However, we observe that, in many
applications (including those described above), it suffices to con-
sider a relaxed notion of F -universality, which we call weak F -
universality, defined as the existence of F -mappings only into all
finite models of Σ and I . By definition, every F -universal model
is also a weak F -universal model, but we show that the converse is
false, even when Σ is a set of embedded dependencies and F is the
class of homomorphisms. In the following, we refer to plain univer-
sality as strong, to emphasize the distinction. We show that when-
ever the standard or core chase terminate, weak and strong univer-
sality coincide. Prior work focuses on the case where the standard
chase terminates, which is perhaps why it did not distinguish be-
tween weak and strong universality. As we did for strong universal
models, we show that it is undecidable whether a weak universal
model for Σ and I exists even when Σ is a set of embedded de-
pendencies and the universality is with respect to homomorphisms.
This result raises the completeness question. In contrast to the case
of strong universality, we prove that there exists no complete proce-
dure for finding weak universal models. Since the core chase finds
all weak universal models that are also strong, and since no pro-
cedure can find all weak universal models, this prompts the ques-
tion whether there is at least some incomplete procedure for finding
strictly weak (i.e. weak but not strong) universal models. We show
that an essential aspect of both the standard and core chase is that
strong universality is preserved at every step. The same holds for
any variation of the chase which introduces new witnesses in the
freest possible way; we call any such algorithm chase-like. There-
fore, if procedures for finding strictly weak universal models do
exist, we need to seek them beyond chase-like algorithms.

Paper Outline. After introducing basic definitions and notation in
Section 2, we define universal models and describe their applica-
tions in Section 3. We study the termination of the standard chase
in Section 4, its adequacy for computing universal models in Sec-
tion 5, and introduce the core chase in Section 6. Section 7 gener-
alizes universal models to F -universal model sets and shows their
applications to richer query and constraint languages. In Section 8,



we extend the core chase to compute F -universal model sets. We
discuss weak universality in Section 9, related work in Section 10,
and conclude in Section 11. Proofs are given in the full version [9].

2. PRELIMINARIES
Basics. A schema σ is a list of constants and relation symbols

and their arities. An instance A over σ has one relation for every
relation symbol in σ, of the same arity. For an instanceA, we write
dom(A) for the active domain of A, |A| for the size of dom(A),
and RA for the value of the relation R in A. We need to consider
instances which have two types of values: constants and variables.
The latter are also known as labeled nulls. If A,B are both over σ,
we write A ⊆ B if for every relation symbol R ∈ σ, RA ⊆ RB .

Homomorphisms and Other Mappings. A function
h : dom(A) → dom(B) is a homomorphism if whenever R(ā)
holds in A, R(h(ā)) holds in B and if h(c) = c for every constant
in A. We write A → B in case there is a homomorphism between
A and B. We say that a homomorphism h : A → B is full if
A |= R(x̄) iff B |= R(hx̄) for all relations R in A and B. An
embedding is a full injective homomorphism.

If A → B and B → A, we say that A and B are homomor-
phically equivalent and we write A ↔ B. We extend → to sets of
instances K,L: K → L iff (∀B ∈ L)(∃A ∈ K)(A → B). We
call an instance or set of instances T universal for K if T → K.

A homomorphism r : A → B ⊆ A is a retraction if r is the
identity on dom(B). In this case we say that A retracts to B and
that B is a retract ofA. A retraction is proper if it is not surjective.
An instance is a core if it has no proper retractions. A core C of an
instance A is a retract of A which is a core. Cores of an instance A
are unique up to isomorphism [18] and therefore we can talk about
“the” core of A, which we denote core(A).

Queries. We consider the class CQ of conjunctive queries (with
equality) and the class UCQ of unions of conjunctive queries (with
equality) and their extensions to include inequality (CQ�=,UCQ �=),
negation (CQ¬,UCQ¬), or both (CQ¬, �=,UCQ¬, �=). Notice that
UCQ¬, �= is the same as the class of existential queries ∃Q. A query
Q is monotonic ifA ⊆ B impliesQ(A) ⊆ Q(B). We write MonQ
for the class of monotonic queries.

Query Q is contained in query P (denoted Q � P ) if for every
finite instance A, Q(A) ⊆ P (A).

Every conjunctive queryQ can be regarded as a symbolic database
instance db(Q), the so-called “frozen instance” or canonical in-
stance [7]. db(Q) is obtained by regarding each atom in Q as a
tuple over the domain consisting of Q’s variables and constants.
Q’s free variables are treated as constants c̄.

Constraints. We consider constraints ξ of the form

φ(ū, w̄) → ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of atoms, which may include equa-
tions. Such constraints are known as embedded dependencies and
are sufficiently expressive to specify all usual integrity constraints,
such as keys, foreign keys, inclusion, join, multivalued dependen-
cies, etc. [12, 2]. We call φ the premise and ψ the conclusion. For a
given constraint ξ, we write Pξ for the former and Cξ for the latter
and we write P ′

ξ for ∃w̄Pξ and C′
ξ for ∃v̄Cξ. If ψ consists only

of equations, then ξ is an equality-generating dependency (egd).
If ψ consists only of relational atoms, then ξ is a tuple-generating
dependency (tgd). Every set Σ of embedded dependencies is equiv-
alent to a set of tgds and egds [2]. We write A |= Σ if the instance
A satisfies all the constraints in Σ. We will extend our treatment to
more expressive constraints in Section 7. All sets of constraints we
refer to are finite.

We say that query Q is contained in query P under set of con-
straints Σ (denoted Q �Σ P ) if for every finite instance A such
that A |= Σ, we have Q(A) ⊆ P (A).

Standard Chase. In this section we concentrate on the standard
chase with embedded dependencies. For the reader’s convenience,
we present a brief overview here (the formal definitions are rele-
gated to Appendix A).

A chase stepA
ξ,ā→ B takes an instanceA on which a tgd or egd ξ

fails on ā (we say that ξ applies toA on ā) and adds some tuples (for
tgds) or collapses some elements (for egds) so that B |= ξ(ā). A
Σ-chase sequence S (or just chase sequence if Σ is clear from con-
text) is a sequence of instances A0, A1, . . . such that every instance
As+1 in it is obtained from the previous one As by a chase step.
A chase sequence A = A0, . . . , An is terminating if An |= Σ. In
this case we say that AΣ = An is the result of the chase. We will
see later that all chase results are homomorphically equivalent, so
we can speak about AΣ (unique up to homomorphic equivalence)
without referring to a particular chase sequence.

Data exchange. We consider the setting where we have two
schemas σ and τ which do not share any relation symbols. Given
an instance S over σ and instance T over τ , the instance (S, T )
over σ ∪ τ is the instance which has all the relations in S and all
those in T . Given a set of constraints Σ over σ ∪ τ , we say that
T is a solution for S under Σ if (S, T ) |= Σ. When Σ is clear
from context, we simply say that T is a solution for S. We say
that U is a universal solution for S if it is a solution for S and
if it is universal for the set of all solutions for S. Furthermore,
we require the homomorphisms witnessing this universality to be
the identity on dom(S). Equivalently, the values in dom(S) are
seen as constants. A constraint ξ over σ ∪ τ is source-to-target
if the premise of ξ is over σ and the conclusion of ξ is over τ
and target if the premise and conclusion are both over τ . Among
others, we consider the special case Σ = Σst ∪ Σt with Σst a set
of source-to-target tgds and Σt a set of target tgds and egds. With
these restrictions, (σ, τ,Σst,Σt) is known in the literature [20, 13]
as a data exchange setting.

Certain Answers. We consider the same setting as for data ex-
change, adding an r-ary client query Q over the target schema τ .
Given source instance S, we are interested in finding the certain
answers to Q for S under Σ, certΣQ(S) =

⋂
(S,T )|=ΣQ(T ).

3. UNIVERSAL MODELS
In this section we define universal models and show how they

come into play in several classical database problems.

DEFINITION 1. A universal model for a set of embedded de-
pendencies Σ and an instance I is a finite instance U such that:

1. I → U (we say that U is a model of I)
2. U |= Σ (U is a model of Σ), and
3. For every instance A, if A |= Σ and I → A then U → A

(U is universal for Σ and I).

Note that the instances A in point (3) are unrestricted: they can
be finite or infinite. We justify this choice in Section 5, where we
show that it faithfully captures chase results. In Section 9, we dis-
cuss an alternative definition focusing only on finite models.

It is immediate from Definition 1 that any two universal mod-
els for Σ are homomorphically equivalent. We write [IΣ] for the
universal model for Σ and I (unique up to homomorphism), if one
exists. If I is the empty instance ∅, we write [Σ] short for [∅Σ].
In our applications, homomorphic equivalence is sufficient; that is,
our results hold for any choice of universal model.



Universal models are relevant to a list of database problems, in-
cluding the following.
Query Containment Under Constraints. A key technique in solv-
ing conjunctive query containment is to view a queryQ as its canon-
ical instance db(Q).

We first observe that canonical instances are universal models.
We want to be able to speak of a set of instances associated with
a query Q. Therefore, given a query Q, we define a sentence Q̂
obtained from Q by replacing the free variables x̄ of Q with new
constants c̄ (the same fresh constants used for Q s free variables
when constructing the canonical instance db(Q)).

LEMMA 1. IfQ is a conjunctive query, then db(Q) is a univer-
sal model for Σ = {Q̂} and I = ∅.

It follows that [{Q̂}] always exists, and is homomorphically equiv-
alent to db(Q). We can therefore restate the homomorphism theo-
rem [7] in terms of universal models:

PROPOSITION 1. Given P,Q ∈ CQ, we have

P � Q iff db(Q) → db(P ) iff [{Q̂}] → [{P̂}].
Containment under constraints similarly reduces to reasoning

about universal models.

PROPOSITION 2. For conjunctive queries P andQ and a set Σ
of embedded dependencies, if [{P̂} ∪ Σ] exists, then

P �Σ Q iff [{Q̂}] → [{P̂} ∪ Σ].

Constraint Implication. Implication can be reduced to the prob-
lem of query containment under constraints and therefore can be
solved using universal models. This is due to the well-known ob-
servation that every embedded dependency ξ is equivalent (i.e. sat-
isfied by the same instances) to an expression of form ∀x̄ P (x̄) →
Q(x̄) where P and Q are conjunctive queries with equalities [2].

PROPOSITION 3. Let Σ be a set of embedded dependencies and
ξ an embedded dependency written equivalently as ∀x̄ P (x̄) →
Q(x̄) with P,Q ∈ CQ=. If [{P̂ } ∪ Σ] exists, then

Σ |= ξ iff P �Σ Q iff [Q̂] → [{P̂} ∪ Σ].

Universal Solutions. Universal models are slight generalizations
of universal solutions in data exchange settings [13], and can be
used to compute them. Essentially, a universal solution is the target
half of a universal model for the involved source and constraints.
More specifically, let (σ, τ,Σst,Σt) be a data exchange setting
where the source-target and target constraints in Σst, respectively
Σt are embedded dependencies. If universal model
U = [(S, ∅)Σst∪Σt ] exists, (where (S, ∅) is a σ ∪ τ -instance), the
restriction U |τ of U to schema τ is a universal solution for S.
Certain Answers. [13] reveals a beautiful connection between the
data exchange and the certain answer computation problems: if the
client query Q is a union of conjunctive queries and the constraints
in Σ are source-to-target and target embedded dependencies, then
any universal solution U of the data exchange problem provides a
means to compute certain answers: the certain answers to Q are
the tuples in Q(U) over the active domain of the source. It fol-
lows from the above discussion that certain answers can also be
computed from universal models.

PROPOSITION 4. Consider a data exchange setting (σ, τ,Σst,Σt)
where constraints in Σst ∪ Σt are embedded dependencies. Let S
be a source instance andQ a conjunctive query of arity r expressed
against schema τ . If U = [(S, ∅)Σst∪Σt ] exists, then

certΣQ(S) = dom(S)r ∩Q(U).

4. CHASE TERMINATION
In this section, we revisit the common tool for attacking the ap-

plications mentioned in Section 3, namely the classical chase pro-
cedure (reviewed in Section 2). The chase is successfully applied
provided it terminates. More specifically, we retrieve classical re-
sults on the applications of the chase by substituting in all propo-
sitions from Section 3 every occurrence of a universal model [IΣ]
with the result IΣ of chasing I with Σ. Every test “if [IΣ] exists”
is replaced by “if the chase of I with Σ terminates, yielding IΣ”.

Therefore a fundamental question, of interest independent of uni-
versal models, is:

When does the chase terminate?

Given its importance, it is surprising that this question has not been
settled previously. We do so next.

We recall first that when several chase steps apply, the standard
chase picks one nondeterministically (as long as fairness is pre-
served) [2]. Consequently, there are instances and sets of con-
straints for which certain choices lead to a terminating chase se-
quence, while others to non-termination [2]. When asking whether
the chase terminates, one must therefore refine the question to per-
tain to the termination of either some or all chase sequences. It
turns out that both refinements are undecidable:

THEOREM 1. Consider an instance I and a set Σ of tgds.

1. It is undecidable whether some chase sequence of I with Σ
terminates;

2. It is undecidable whether all chase sequences of I with Σ
terminate.

The undecidability holds even over a fixed schema, and even if I is
the empty instance.

By Theorem 1, we can not hope for effectively-checkable, suffi-
cient, and necessary conditions for chase termination. A sufficient
condition on a set of tgds Σ for the termination of the chase, weak
acyclicity, was given in [11, 13]. We reproduce the definition in
Appendix A, but encourage the reader to abstract from it, focusing
on its effect: the chase with weakly acyclic sets of tgds and egds is
guaranteed to terminate [11, 13] in PTIME in the size of I (the for-
mal result is recalled for the reader’s convenience in Theorem 18 in
Appendix A). We say that a set Σ of tgds and egds is weakly acyclic
if the set Σ′ ⊆ Σ consisting of the tgds in Σ is weakly acyclic.

We introduce the condition of stratification on a set of dependen-
cies, which is also sufficient for termination of the chase and is less
restrictive than weak acyclicity (stratification is implied by, yet not
equivalent to, weak acyclicity). This new condition is motivated by
the following example.

EXAMPLE 1. Consider Σ = {ξ} where ξ is the following tgd:

∃y R(x, y), R(y, x) → ∃u, v R(x, u), R(u, v), R(v, x).

It is easy to check that Σ is not weakly acyclic, yet it is clear that
for any A, AΣ is defined for any chase order since introducing 3-
cycles will never create any new 2-cycles. That is, firing ξ will
never cause ξ to fire yet again.

DEFINITION 2. (Stratified) Given tgds or egds α and β we
write α ≺ β if there exists A, B, ā ∈ dom(A), and b̄ ∈ dom(B)
such that

1. β does not apply toA on b̄, possibly because {b̄} �⊆ dom(A),

2. A
α,ā→ B, and



3. β applies to B on b̄. That is, B �|= β(b̄).

Intuitively, α ≺ β if firing α may cause β to fire.
The chase graph G(Σ) of a set of tgds Σ has as vertices the con-

straints in Σ and there is an edge between two constraints α, β ∈ Σ
iff α ≺ β. A set of tgds and egds Σ is stratified if the set of con-
straints in every cycle of G(Σ) is weakly-acyclic.

THEOREM 2. For every stratified set Σ of tgds and egds, there
are integers b and c upper bounded by the size of Σ such that for
every instance A,

1. every chase sequence of A with Σ terminates, and
2. AΣ can be computed in O(|A|b) steps and in time O(|A|c).

THEOREM 3. Given tgds α and β, we can check whether α ≺
β in NP. Therefore, we can check whether Σ is stratified in coNP.

Note that the stratification check is performed once and for all
off-line, when the constraints are declared, so its complexity is im-
material for the run-time response (when the new constraints ar-
rives for testing implication, or the queries arrive for testing con-
tainment, or for computing certain answers).

The following result formalizes the sense in which stratification
is strictly better than weak acyclicity at avoiding false negatives,
i.e. failures on sets of dependencies with which the chase actually
terminates.

THEOREM 4. All weakly-acyclic sets of tgds and egds are strat-
ified, but not conversely.

PROOF. If a set of tgds and egds is weakly acyclic, then it is
stratified by the definition. The set Σ = {ξ} from Example 1 sat-
isfies ξ �≺ ξ and therefore is stratified, yet not acyclic. To see this,

notice if A
α,ā→ B then B has no new 2-cycles or 1-cycles, that is,

no such cycles which are not already in A.

5. CHASING FOR UNIVERSAL MODELS
We first show that the universal model is the right notion to for-

malize the chase result in an algorithm-independent fashion, by
proving that every terminating chase sequence produces a universal
model (Theorem 5).

THEOREM 5. Let Σ be a set of embedded dependencies and I
an instance. If the standard chase of I with Σ terminates, it yields
a universal model for Σ and I .

Theorem 5 and Theorem 2 immediately imply that, quite apart
from the chase, stratification is a sufficient existence condition for
universal models:

COROLLARY 1. There exists a universal model [IΣ] for every
instance I and every stratified set Σ of embedded dependencies.

Next we investigate whether there are universal model existence
conditions that are sufficient, necessary, and efficiently checkable.
We answer this question negatively, proving that it is undecidable
whether a universal model exists (Theorem 6).

THEOREM 6. It is undecidable, given an instance I and a set
Σ of tgds and egds, whether a universal model for Σ and I exists
(even over a fixed schema σ and if I = ∅).

Incompleteness of the Standard Chase. Given the undecidability
of checking existence of a universal model, we turn to the next-best
hope: is there a procedure which is complete for finding universal

models? That is, whenever a universal model exists, the procedure
terminates and finds such a model (possibly diverging otherwise).

A natural first candidate is the standard chase itself. More pre-
cisely, we ask: if a universal model for Σ and I exists, will any
chase sequence of I with Σ terminate, yielding one?

The answer is no, as the following example shows.

EXAMPLE 2. Consider the set Σ consisting of following tgds:

ξ1: ∃u, v E(u, v), E(v, u)
ξ2: E(x, y), E(y, x) → ∃uE(u, u)
ξ3: E(x, y) → ∃uE(x, u), E(u, y)

The universal model consisting of the self-loop is a universal model
for Σ, yet any Σ-chase sequence starting with ∅ must be infinite.
This is because ξ1 must fire first to give a cycle of length 2. Assume
ξ2 fires next to give a disjoint self-loop. From now on, ignore this
loop. Set A0 := C2, the cycle of length 2. Now it is easy to show

that if As
ξ3,a,b→ As+1 where a �= b, then two new edges ac and

cb are added to As+1 and that As+1 �|= C′
ξ3(ac) and As+1 �|=

C′
ξ3

(cb). Therefore, As+1 �|= ξ3, and this leads to an infinite chase
sequence.

6. THE CORE CHASE
We introduce a new chase procedure, the core chase, which is

complete for finding universal models. To distinguish among the
two chase flavors, we refer to the classical chase mentioned so far
as standard chase. Intuitively, the core chase step proceeds by first
firing all applicable standard chase steps simultaneously, then min-
imizing the resulting instance by computing its core. We formalize
the procedure below.

DEFINITION 3. (Parallel chase step)

If Σ is a set of tgds, we write A
Σ→ B if

1. A �|= Σ and
2. B =

⋃
ξ∈Σ,ā∈dom(A),A

ξ,ā→D
D.

That is,B is the instance obtained fromA by simultaneously firing
all applicable standard chase steps. If Σ also contains egds, then
we also identify all elements which have been identified by every
egd ξ and any tuple ā such that ξ applies to A on ā.

A core chase step is a parallel chase step, followed by a core
computation:

DEFINITION 4. (Core chase step)

We write A
Σ↓→ B if A

Σ→ B′ and B = core(B′).

We extend the definition of chase sequence to core chase se-
quence in the obvious way. Notice that core chase sequences are
determined up to isomorphism, since cores are determined up to
isomorphism [18] and since at every step all applicable standard
chase steps are fired (instead of picking one non-deterministically
as in the standard chase). We use the notation AΣ to refer also
to the result of a terminating core chase sequence. Such result is
unique up to isomorphism.

EXAMPLE 3. Consider the set Σ of tgds from Example 2, for
which the standard chase does not terminate. In the first step, con-
straint ξ1 fires to give a cycle of length 2 and the minimization step
does nothing, since the core of a cycle of length 2 is itself. In the
second step, both constraints ξ2 and ξ3 fire, the latter twice on the
2-cycle. Now the minimization step reduces everything to the self-
loop introduced by ξ2. At this point, Σ is satisfied and therefore the
core chase terminates.



The core chase is complete for finding universal models. In the
result below, termination of the core chase refers to the unique (up
to isomorphism) core chase sequence determined by Σ and I .

THEOREM 7. If I is an instance and Σ is a set of tgds and egds,
then there exists a universal model for Σ and I iff the core chase of
I with Σ terminates and yields such a model.

In particular, Theorem 7 implies that there are instances of the
problems of containment, implication, data exchange and certain
answer computation which cannot be solved using the standard
chase because it does not terminate, but are solved by the core
chase. We illustrate for the case of containment.

EXAMPLE 4. Consider Σ = {ξ2, ξ3}, with ξ2, ξ3 from Exam-
ple 2, and conjunctive queries Q1() :− E(x, y), E(y, x) and
Q2() :− E(x, x). Similar reasoning as in Example 2 shows that
the standard chase of Q1 with Σ does not terminate. However,
Q1 �Σ Q2 holds: the core chase of Q1 with Σ terminates and
yields exactly Q2.

7. RICHER LANGUAGES
Our results so far pertain to conjunctive queries and embedded

dependencies. In this section, we exploit the insights on the chase
(obtained by separating the algorithm from its result) to extend the
notion of universal model to apply to more expressive query and
constraint languages, which include disjunction, negation, and in-
equalities. It turns out that two extensions are required.

First, we show that there are cases when no single model is uni-
versal for a classK of models (and therefore none of our motivating
applications can be solved as described in Section 3), yet there is a
set of models U such that every model in K has a mapping from
some model in U . We call such U a universal model set, and show
that its existence enables solutions to the problems in the introduc-
tion even for constraint sets with no universal model.

The second extension is motivated by the observation that queries
and constraints expressed in languages beyond conjunctive queries
and embedded dependencies can distinguish among two homomor-
phically equivalent universal model sets: queries yield distinct an-
swers on them, and so do constraints when viewed as boolean queries.
We say that these languages are not closed under homomorphism.
It turns out that, to extend the applicability of universal model sets
to languages that are not closed under homomorphisms, we need
to extend the notion of universality to other kinds of mappings,
namely precisely those under which the corresponding languages
are closed. We call the model sets that are universal w.r.t. a class F
of mappings F -universal.

In the remainder of the section, we present the definition and ap-
plications of F -universal model sets. We discuss their computation
in Section 8.

We start by defining closure under a class of mappings F .

DEFINITION 5. A query Q is closed under a class of mappings
F if for every h ∈ F , every instances A,B and every tuple ā,

h : A→ B and ā ∈ Q(A) implies h(ā) ∈ Q(B).

We say that a query language L is closed under F if everyQ ∈ L
is closed under F .

The following result is part of the folklore. It lists some well-
known examples of query languages and mapping classes under
which they are closed. We denote with hom,ihom,fhom,emb the
class of homomorphisms, injective homomorphisms, full homo-
morphisms, respectively embeddings.

THEOREM 8.

1. UCQ and Datalog are closed under hom.
2. MonQ is closed under ihom.
3. UCQ¬ is closed under fhom.
4. UCQ¬, �= is closed under emb.

In order to state general results in a simple manner we consider
some fixed class of mappings F and we write A ���F B if there
is a mapping h : A → B such that h ∈ F . We extend ���F to
sets of instances as we did for →. We say that an instance or set of
instances T is F -universal forK if T ���F K. We say that a class
of instances K is closed under ���F if A ∈ K,A ���F B imply
B ∈ K. Similarly, we say that a set Σ of first-order sentences is
closed under ���F if so is mod(Σ), the class of all models of Σ.

DEFINITION 6. A set U of finite instances is an F -universal
model set for a set of instances K if it satisfies the following con-
ditions:

1. (F -universality) (∀M ∈ K)(∃T ∈ U) T ���F M ,
2. (conformance) U ⊆ K,
3. (finiteness) U is finite, and
4. (minimality) there is no U ′ ⊂ U such that U ′ ���F U .

Given a set Σ of first-order sentences and an instance I , we say that
U is an F -universal model set for Σ and I if it is an F -universal
model set for the class of models of both Σ and I .

For conciseness, we refer to model sets that are hom-universal as
plain universal.

The F -universal model set for a set of sentences Σ and an in-
stance I is unique up to equivalence under F -mappings (in the
sense formalized in Proposition 5 below). We can therefore refer to
“the” model set, denoting it as [IΣ]F .

PROPOSITION 5. If T and T ′ are both F -universal model sets
for a set of instances K, then |T | = |T ′| and there is an ordering
T1, . . . , Tn of the elements of T and an ordering T ′

1, . . . , T
′
n of

the elements of T ′ such that Ti ���F T ′
i and T ′

i ���F Ti for
1 ≤ i ≤ n.

Certain Answers. As reviewed in Section 3, the standard way to
compute certain answers to a query Q is to run Q over the uni-
versal solution. This was applied in prior work to UCQ queries
and constraints given by source-target and target tgds [13]. This
approach breaks down as soon as more expressive queries or con-
straints are considered. As already observed in [13], if the query
contains even one inequality, then its result on a universal solu-
tion may strictly contain the certain answers. Furthermore, it is
shown in [15] that, when the constraints in Σ are not only source-
to-target, it may be that there exists no universal solution, yet the
set of certain answers is non-empty. Looking at constraints beyond
the source-to-target class is motivated in [15, 17] in the setting of
peer data management. This case is also relevant to incorporating
materialized warehouses and cached queries into the mediator for
data integration [10].

We show here that, while in these settings (and beyond) one can-
not use universal solutions to compute certain answers, they are
computable from F -universal model sets. Essentially, given query
Q closed under class F of mappings, and F -universal model set U ,
the computation involves taking the intersection of Q’s results on
each member of U :

⋂
M∈U Q(M). Our results significantly extend

prior work on certain answer computation: from unions of conjunc-
tive queries, source-target tgds and target tgds and egds [13], all



the way to existential first-order queries and constraints given by
universal-existential first-order sentences.

The following example (adapted from [13]) shows that, even in a
classical data exchange setting in which the constraints are source-
to-target embedded dependencies, if the query contains even one
inequality, then even if a universal solution exists, it is inadequate
for computing the certain answers. However, it also shows that
there is an ihom-universal model set U that suffices for correct
computation of certain answers.

EXAMPLE 5. Let the source schema consist of the binary rela-
tion symbol E, and the target schema contain binary relations F
and G. Consider a source instance

S = {E(a1, b1), E(a2, b2)}.
The two schemas are connected by Σ = {ξst}, where

ξst : E(x, z) → ∃y F (x, y), G(y, z)

Consider the query Q(x, z) :− F (x, y), G(y′, z), (y �= y′).
Q has no certain answers, since its result on the solution

T1 = {F (a1, y),G(y, b1), F (a2, y),G(y, b2)}
is already empty. Yet according to [13], a universal solution is

T0 = {F (a1, y1), G(y1, b1), F (a2, y2), G(y2, b2)}
and the result of Q on T0 is non-empty (when interpreting labeled
nulls as distinct constants as in [13]): Q(T0) = {(a1, b2), (a2, b1)}.

However, using the techniques described in Section 8, we can
show that there exists an ihom-universal model set U (universal
for injective homomorphisms), which correctly captures the certain
answers toQ under the same interpretation of labeled nulls. Indeed,
U = {U0 = (S,T0), U1 = (S, T1)}. Then certΣQ(S) = Q(U0) ∩
Q(U1) = ∅ correctly yields the empty set of certain answers.

Notice that there is a homomorphism, but no injective homomor-
phism, from (S, T0) into (S, T1). U0 is therefore a hom-universal
model, but not an ihom-universal model for Σ and S. According to
Theorem 9 below, sinceQ is closed under ihom but not hom, using
U0 alone is inappropriate.

The following example shows that there are cases when certain
answers cannot be computed based on any universal solution be-
cause there is none, and yet there is a universal model set enabling
the computation. This is illustrated in a standard peer data ex-
change setting [15], with UCQ queries and constraints expressed
as source-to-target and target-to-source tgds.

EXAMPLE 6. Let the source schema and target schema consist
of the binary relation symbol E, respectively the quaternary rela-
tion symbol F , and consider a source instance S:

S = {E(a, b1), E(b1, c), E(a, b2), E(b2, c)}.
The constraint set Σ = {ξst, ξts} connects the two schemas:

ξst : E(x, y), E(y, z) → ∃u∃w F (x, u, z, w)

ξts : F (x, u, z, w) → E(x, u), E(u, z)

Consider the target queryQ(x, z) :− F (x, b1, z, w)∨F (x, b2, z, w).
It is easy to check that the set of solutions for S contains, among
others, T1 = {F (a, b1, c, w1)}, T2 = {F (a, b2, c, w2)}, where
w1, w2 are distinct. Indeed, (S, T1) and (S, T2) satisfy Σ. Note
that there are infinitely many solutions, since w1 and w2 can be
replaced by any other values. However, it can be shown that each
solution must include either T1 or T2, for some value of w1, re-
spectively w2. Therefore, Q has the certain answer (a, c).

Note that there is no single universal solution C yielding the cer-
tain answers to Q. This is because by universality, C would have
to map homomorphically into both T1 and T2 and therefore cannot
contain the values b1 or b2. The answer to Q on C would therefore
be empty and thus not coincide with the certain answers.

However, the certain answers can be computed from a hom-
universal model set. It turns out (as will be detailed later) that a uni-
versal model set U in this setting contains precisely two elements,
U = {U1 = (S, T1), U2 = (S, T2)}, where w1, w2 are interpreted
as labeled nulls. It is easy to check that the certain answers toQ can
be obtained by computing Q(U1) ∩ Q(U2). Indeed, certΣQ(S) =
Q(U1) ∩Q(U2) = {(a, c)} ∩ {(a, c)} = {(a, c)}.

The next result summarizes the application of F -universal model
sets to certain answer computation. It applies to generalized peer
data exchange settings. Standard peer data exchange [15] strictly
generalizes (plain) data exchange [13] by allowing target-source
tgds in addition to the source-target tgds and target tgds and egds
of data exchange. We generalize peer data exchange settings by
allowing constraints expressed by arbitrary ∀∃-sentences over the
combined source and target schemas. ∀∃-sentences have the form
∀x̄∃ȳ φ(x̄, ȳ), with φ a quantifier-free first-order formula. Prior
work shows how to compute certain answers for unions of con-
junctive queries. We do so now for larger classes of queries.

THEOREM 9. Consider a generalized peer data exchange set-
ting (σ, τ,Σ), with Σ a set of ∀∃-sentences over σ ∪ τ . Let S be
a σ-instance, and Q be a query of arity r over τ . Let U be an
F -universal model set for Σ and S, U = [SΣ]F . If

1. F = hom and Q ∈ UCQ ∪ Datalog, or
2. F = ihom and Q ∈ MonQ, or
3. F = fhom and Q ∈ UCQ¬, or
4. F = emb and Q ∈ UCQ¬, �=,

then

certΣQ(S) = dom(S)r ∩
⋂

T∈U

Q(T ).

Query Containment Under Constraints. We generalize Proposi-
tion 2, showing how to use F -universal model sets to check con-
tainment under constraints for expressive query and constraint lan-
guages.

THEOREM 10. Given a set Σ of ∀∃-sentences, a class F of
mappings, and queries P,Q, if

1. P,Q ∈ UCQ and F = hom, or
2. P,Q ∈ MonQ and F = ihom, or
3. P,Q ∈ UCQ¬ and F = fhom, or
4. P,Q ∈ UCQ¬, �= and F = emb,

then [{Q̂}]F exists, and if [{P̂ } ∪ Σ]F exists as well, the following
are equivalent:

1. P �Σ Q.
2. (∀B ∈ [{P̂ } ∪ Σ]F ) (∃A ∈ [{Q̂}]F ) A ���F B.

Constraint Implication. We extend our consideration of the im-
plication problem to constraints of the form

(∃w̄
∨

1≤i≤p

φi(ū, w̄))

︸ ︷︷ ︸
P (ū)

→ (∃v̄
∨

1≤i≤c

ψi(ū, v̄))

︸ ︷︷ ︸
Q(ū)

(1)



where each φi and ψi is a conjunction of relational atoms, negated
relational atoms, equations, or inequalities. We call such constraints
negation disjunctive embedded dependencies or NDEDs to be con-
sistent with the name disjunctive embedded dependencies or DEDs
for the same class of constraints without negation introduced in
[11]. It is easy to check that every set of ∀∃-sentences is equivalent
to a set of NDEDs of form (1), in which P,Q ∈ UCQ¬, �=.

The following corollary of Theorem 10 and Theorem 8 general-
izes Proposition 3 from embedded dependencies to NDEDs:

COROLLARY 2. Given NDED d := P (ū) → Q(ū) and set
Σ of NDEDs, we have that [{Q̂}]emb exists, and if [{P̂} ∪ Σ]emb

exists as well, the following are equivalent:

1. Σ |= d.

2. (∀B ∈ [{P̂ } ∪ Σ]emb) (∃A ∈ [{Q̂}]emb) A ���emb B.

Partial results on containment and implication are known for sev-
eral query and constraint languages, based on the standard chase
and its extensions [8]. Our contribution in Theorem 10 and Corol-
lary 2 is to provide a general and uniform treatment of these prob-
lems by reducing them to finding F -universal model sets for ap-
propriate F . Moreover, the separation from the traditionally used
tool (the chase, incomplete already for embedded dependencies),
creates the opportunity to improve the prior results by using a com-
plete algorithm instead. We do so in Section 8.
Why standard data exchange admits a universal solution. We
have shown that universal model sets apply to generalized peer data
exchange settings, in which constraints are more expressive than
embedded dependencies and are not necessarily source-to-target.
In these settings, it may be that no universal model exists, but there
is a universal model set (which is not a singleton). In contrast, in
standard data exchange [13], one searches for a universal model
(which yields a universal solution as shown in Section 3). It is nat-
ural to ask whether, when no universal model exists, one could find
a universal model set instead. It turns out that this is not the case:
we show next that in standard data exchange settings, the associ-
ated hom-universal model set always degenerates to a singleton.
This is a basic property of embedded dependencies, independent of
the algorithm used to find their universal model set.

PROPOSITION 6. For any instance I and set Σ of embedded
dependencies, if [IΣ]hom exists, it is a singleton.

COROLLARY 3. Given standard data exchange setting
(σ, τ,Σst,Σt) and source instance S, if hom-universal model set
U = [SΣst∪Σt ]hom exists, then U must be a singleton, U = {T}.
Moreover, T |τ is a universal solution.

8. FINDING F -UNIVERSAL MODEL SETS
In this section, we present a complete algorithm for finding F -

universal model sets. A key advantage of our solution is that the
same algorithm yields universality for various classes of mappings
F , by simply taking as input appropriate constraints.

Our result is enabled by two orthogonal contributions. First,
we show how to extend any homomorphism-based chase that can
handle disjunction to obtain a chase that achieves universality for
other mapping classes (though not yet completeness). As a bonus,
this same extension allows us to support chasing with constraints
that are significantly more expressive than embedded dependen-
cies: NDEDs. Then we show that, in particular, the core chase can
be extended in this way, and we prove that the extended core chase
is complete for finding F -universal model sets for NDEDs.

We start recalling techniques from our prior work for extend-
ing the standard chase to constraints with disjunction and inequal-
ity [11] and negation [8]. Our contribution consists in relating these
extensions to F -universality, and in combining them with the core
chase to obtain completeness.

Chase with DEDs. We recall an extended chase for DEDs intro-
duced in [11]. The definition of the extended chase step parallels
Definition 7, working with sets of instances instead. The extended

chase step K
ξ,ā→ L (where K and L are finite sets of instances

and ξ an NDED of form (1)), yields the set of instances L when ξ
applies on ā to at least one instance in I ∈ K. Every such I is re-
placed by a set of instances, each extending I to satisfy one disjunct
in the conclusion of ξ. The full definition is given in Appendix A.

Chase with DEDFs. We explain next a further extension intro-
duced in [8] to support negation. It extends DEDs with constraints
that may have ⊥ (for “false”) as their conclusion. We call such
constraints DEDFs for DEDs with falsehood. A chase step with a
DEDF is defined as follows. If ξ has ⊥ as its conclusion, then

K
ξ,ā→ L iff L = {A ∈ K,A �|= P ′

ξ(ā)}.
That is, if ξ applies to A on ā, it “kills” A, removing it from the
result. The definitions of chase sequence, chase result, etc. ex-
tend naturally to DEDFs. Note that the chase with DEDFs remains
homomorphism-based.
F -Universality. Using appropriate DEDFs, we “trick” the chase

with DEDFs into yielding F -universal model sets for NDEDs as
follows. Given set Σ of NDEDs over schema σ, we extend σ to
σ̂ := σ ∪ {R̂ : R ∈ σ} ∪ {N}. We construct a set of DEDs Σ̂
by replacing each negated literal ¬R(x̄) and inequality x �= y in Σ

with R̂(x̄), respectively N(x, y). Notice that the constraints in Σ̂
are DEDs. Next, we construct a set Λ of DEDFs over σ̂ such that
if the chase of I with the DEDFs from Σ̂ ∪ Λ terminates, it yields
an F -universal model set for Σ and I . Λ is defined as follows.
(a) If F ∈ ihom or N appears in Σ̂, set Λ to contain the DEDFs

x = y ∨N(x, y) x = y,N(x, y) → ⊥.
(b) If F ∈ fhom, set Λ to contain all DEDFs of the form

R(x̄) ∨ R̂(x̄) R(x̄), R̂(x̄) → ⊥
for every relation symbol R ∈ σ with R̂ appearing in Σ̂.
(c) If F ∈ emb, since embeddings are precisely full injective ho-
momorphisms, set Λ to the union of the DEDF sets in (a) and (b).

The fact that, when it terminates, the chase of I with Σ̂∪Λ yields
[IΣ]F , follows from the following basic (and chase-independent)
property of the involved DEDFs.

THEOREM 11. Given schema σ, if F ∈ {ihom, fhom, emb},
then every instance I over σ has a unique expansion Î over σ̂ (i.e.
Î |σ= I) such that Î |= Λ and ⊥ �∈ Î. Moreover, for every set Σ

of NDEDs, I |= Σ iff Î |= Σ̂. Further, for every mapping h and in-
stances A,B, h : A ���F B iff h : Â→ B̂ is a homomorphism.

Extended Core Chase. We obtain the extended core chase by
following each step of the chase with DEDFs by a core computa-
tion (see details in Definition 11 in Appendix A). Notice that the
resulting chase remains homomorphism-based. We prove that this
chase is complete for F -universal model sets for NDEDs, when
using appropriate DEDFs:

THEOREM 12. If Σ is a set of NDEDs over schema σ and F ∈
{hom, ihom, fhom, emb}, then for σ̂, Σ̂ and Λ constructed as de-
scribed above, the following are equivalent for every instance I:



1. There is an F -universal model set for Σ and I over σ.
2. There is a hom-universal model set for the class
K = {M |M over σ̂,M |= Σ̂ ∪ Λ, I →M,⊥ �∈M}.

3. The extended core chase of I with Σ̂∪Λ terminates, and the
restriction of its result to σ is [IΣ]F .

9. STRONG AND WEAK UNIVERSALITY
We now investigate the potential of solving such applications

as containment/implication tests and certain answer computation
when no F -universal model sets exist (or, equivalently by com-
pleteness, when the extended core chase does not terminate). For
simplicity, we discuss only universal models, but the results carry
over in a straightforward fashion to F -universal model sets.

Recall from Definition 1 that a universal model U has homo-
morphisms into every model A of Σ and I , be it finite or infinite.
This definition is motivated by the fact that it captures precisely the
chase result (Theorem 5), and it is clearly adequate for resolving
problems that involve only finite instances—this is why the chase
is useful in databases. However, we note that, for resolving prob-
lems that involve only finite instances (as is the case in all database
applications), it suffices to produce U which has homomorphisms
only into every finite model of Σ and I (in the sense that the results
in Sections 3 and 7 hold even under this interpretation of universal-
ity). We say that such U is weakly universal and, to emphasize the
distinction, we refer from now on to the plain universality notion of
Definition 1 as strong. By definition, every strong universal model
is also a weak universal model, but (by the following separation
theorem) not conversely:

THEOREM 13.
1. There is a set Σ of tgds which has a strong universal model.
2. There is a set Σ of tgds which has a strictly weak universal

model (i.e. one that is weak but not strong).
3. There is a set Σ of tgds which has no weak universal model.

This raises the hope of resolving applications with no strong uni-
versal model by exhibiting a weak universal model instead, which
leads us to study the computation of weak universal models. As in
Theorem 6 for strong universal models, we find that checking the
existence of a weak universal model is undecidable:

THEOREM 14. It is undecidable, given a set Σ of tgds and egds
and an instance I , whether a weak universal model for Σ and I
exists (even over a fixed signature σ and if I = ∅).

However, in contrast to strong universal models and the core
chase (Theorem 7), we show that there is no complete procedure
for weak universal models (Corollary 4 below). This follows from
the following stronger result which establishes the exact complex-
ity of checking a given structure for weak/strong universality.

THEOREM 15. Given a set Σ of tgds and an instance U :
1. it is undecidable (in fact, RE-complete) to check whether U

is a strong universal model for Σ and
2. it is undecidable (in fact, coRE-complete) to check whether
U is a weak universal model for Σ.

Since a complete procedure for finding weak universal models would
imply that checking whether an instance U is a weak universal
model is in RE (run the procedure and if it terminates, check for
homomorphic equivalence with U ) and thus decidable by Theo-
rem 15(2), we have the following important corollary.

COROLLARY 4. There is no complete procedure for finding weak
universal models.

It is natural to wonder whether one can improve on the core
chase in the search for weak universal models. Since by Theorem 7
the core chase finds precisely the weak universal models that are
also strong, we ask whether there are algorithms for finding strictly
weak universal models. Of course, such algorithms are unavoid-
ably incomplete by Corollary 4.

Given that the core chase does not qualify, and neither does the
standard chase by Theorem 5, it is natural to wonder about the
power of the chase (any chase) towards finding strictly weak uni-
versal models. There are several flavors of the chase procedure,
even for the case of embedded dependencies. We have already dis-
cussed the standard chase and the core chase. There is also the
parallel chase in which all constraints which apply are fired simul-
taneously (but no core is computed). We identify what makes an
algorithm “chase-like” and it follows easily that no chase-like al-
gorithm can find strictly-weak universal models. We summarize
below what is common to all chase procedures we are aware of.
All known chase procedures starting with A produce a sequence
of instances A0, A1, . . . with the following properties which are
known to be the essential properties of the standard chase. These
results are considered folklore or appear implicitly in proofs related
to the chase [3, 22, 21, 12, 4, 2].

THEOREM 16. If Σ is a set of tgds and egds, andA = A0, A1, . . .
is a finite or infinite standard chase sequence, then:

1. A0 → A1 → A2 → . . .
2. If B is an instance (possibly infinite) and B |= Σ and A →
B, then A0, A1, A2, . . .→ B

3. If AΣ is defined, then AΣ |= Σ.
4. If B |= Σ and there is a homomorphism h : An → B, then

there is a homomorphism h′ : An+1 → B extending h (if ξ
is a tgd) or identifying some values in the domain of h (if ξ
is an egd).

5. If B |= Σ, AΣ is defined, and there is a homomorphism
h : A → B, then there is a homomorphism h′ : AΣ → B
extending h.

Calling chase-like every procedure that produces a sequence of
instances satisfying the properties in Theorem 16, we obtain as a
corollary of our results so far that (i) the core chase is itself chase-
like; (ii) whenever any chase-like procedure terminates on I and
Σ, so does the core chase; and (iii) every chase-like procedure
produces strong universal models. To find procedures that yield
strictly weak universal models, one must therefore consider com-
pletely different breeds of algorithms.

One loose end we have left is the following. It is clear from the
definition that a strong universal model is also a weak universal
model. The same holds for F -universal models sets, but it is less
obvious. This is because if T is a strong universal model set, then it
clearly satisfies conditions 1, 2, and 3 forK, the set of finite models
of Σ. T also satisfies minimality for K, as follows. Assume, to get
a contradiction, that T ′ ⊂ T is a universal model set for K. Since
T consists of finite instances, we must have T ′ → T so T ′ is also
a strong universal model set for Σ, contradicting minimality of T .

10. RELATED WORK
We have already discussed above the line of data exchange work

in [13, 15]. In the restricted context of standard peer data ex-
change, [15] independently introduced the concept of a universal
basis, which is a particular case of a hom-universal model set re-
stricted to the target schema. The concept was used only to com-
pute certain answers to unions of conjunctive queries when the con-
straints between the source and the target include a restricted form



of disjunctive egds. Corollary 3 was first published in [23], then
independently in the full version of [15] (in terms of the univer-
sal basis). A result similar to Theorem 14 appeared in [19], which
shows undecidability of existence of a solution in data exchange.

Instead of using a universal solution, for restricted classes of
queries and constraints, the certain answers of a query Q can also
be computed by finding a rewriting of Q over the source [1, 26]
(the constraints in [1] are expressed by view definitions). Such
rewritings are based explicitly or implicitly on universal solutions.
Notable exceptions are [5, 6], which present rewriting algorithms
based on the properties of the chase (in general infinite). Rewriting-
based results do not readily apply to our more expressive query and
constraint classes, for which no rewriting algorithm is known.

The chase was introduced in [22] where its connection to logical
implication was established (an early ancestor appeared in [3]). Re-
lated formulations of the chase for various kinds of dependencies
were introduced in [21, 25]. The chase was extended to embedded
dependencies in [4], to include disjunction and inequality in [11],
and to arbitrary ∀∃-sentences in [8]. However, all prior chase fla-
vors are incomplete, and they do not preserve universality beyond
homomorphisms.

11. CONCLUSION
The common applicability of the standard chase to a list of clas-

sical database problems (typically involving unions of conjunctive
queries and embedded dependencies) is due to a deeper connec-
tion between them: they all can be solved by exhibiting a universal
model, and the chase happens to be one (imperfect) algorithm for
computing universal models. By separating the algorithm from its
result, we gain a deeper understanding that enables us (i) to im-
prove the algorithm (the complete core chase supports certain an-
swer computation and containment/implication checks in strictly
more cases than the incomplete standard chase); (ii) to generalize
universal models to F -universal model sets which apply to much
richer query and constraint languages; and (iii) to extend the core
chase to a complete procedure for F -universal model sets.

We also show that the finite (weak) and unrestricted (strong) ver-
sions of universality differ in general, but coincide whenever the
chase terminates. We show that there is no complete procedure for
weak universal models, and that all chase-like algorithms preserve
strong universality. Therefore, to find even incomplete procedures
for strictly weak universal models, one needs to look beyond chase-
like algorithms.

We did not explore the complexity of the core chase. Finding the
core of a general structure is NP-complete [7]. However, we hope
that the techniques for computing cores of chase results in [14, 16]
can be applied to improve efficiency. In addition, we observe that
one way to think about the completeness of the chase is as follows.
It is easy to check that as soon as a chase sequence produces an
instance that is homomorphically equivalent to a model U (which
must be universal) of Σ and I , every subsequent instance in that
sequence will also be homomorphically equivalent to U . It may be
that none of them are themselves models of Σ and I and in this case
the chase sequence is non-terminating. However, if the constraints
are closed under computing cores, as embedded dependencies are,
then as soon as we compute the core of any of these instances, we
have a model of Σ and I and the chase sequence terminates. An
interesting corollary of this is that we can compute the core arbi-
trarily infrequently, as long as we keep computing it (i.e. we alter-
nate increasingly long but finite sequences of parallel chase steps
with single core chase steps). If we ever enter the homomorphism
class of a model, eventually we will detect this once we compute
the core. The cost of the core computation can thus be amortized,

being spread arbitrarily thin across the chase sequence.
We close with an intriguing connection that offers a character-

ization of existence of hom-universal model sets. Given a set of
instances K, set K̄ := {B | ∃A ∈ K,A → B}. That is, K̄ is
the homomorphic closure of K. The following result follows from
the infinite and finite versions of the “preservation under homomor-
phisms” theorems, the latter recently proven by B. Rossman [24].

THEOREM 17.
1. Σ and I have a strong hom-universal model set iff K̄ is ax-

iomatizable by a first-order sentence, where K is the set of
unrestricted models of Σ and I .

2. Σ and I have a weak hom-universal model set iff K̄ is ax-
iomatizable by a first-order sentence, where K is the set of
finite models of Σ and I .

12. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries

using materialized views. In PODS, 1998.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison Wesley, 1995.
[3] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in

relational databases. ACM Trans. Database Syst., 4(3), 1979.
[4] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies.

J. ACM, 31(4):718–741, 1984.
[5] A. Calì, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Data

integration under integrity constraints. Inf. Syst., 29(2), 2004.
[6] A. Calì, D. Lembo, and R. Rosati. Query rewriting and answering

under constraints in data integration systems. In IJCAI, 2003.
[7] A. K. Chandra and P. M. Merlin. Optimal implementation of

conjunctive queries in relational data bases. In STOC, 1977.
[8] A. Deutsch, B. Ludaescher, and A. Nash. Rewriting queries using

views with access patterns under integrity constraints. In ICDT, 2005.
[9] A. Deutsch, A. Nash, and J. Remmel. The Chase Revisited (full

version). UCSD Tech. Report 2008, http://db.ucsd.edu.
[10] A. Deutsch and V. Tannen. Mars: A system for publishing xml from

mixed and redundant storage. In VLDB, pages 201–212, 2003.
[11] A. Deutsch and V. Tannen. Reformulation of XML Queries and

Constraints. In ICDT, 2003.
[12] R. Fagin. Horn clauses and database dependencies. JACM, 29(4),’82.
[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:

Semantics and Query Answering. ICDT 2003, full version in Theor.
Comput. Sci. 336(1): 89-124 (2005).

[14] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core. In PODS, 2003. Full version in TODS, 30(1), 2005.

[15] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data
exchange. In PODS, 2005. Full version in TODS, 31(4), 2006.

[16] G. Gottlob and A. Nash. Data exchange: Computing cores in
polynomial time. In PODS, 2006.

[17] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
Mediation in Peer Data Management Systems. ICDE 2003.

[18] P. Hell and J. Nešeťril. The core of a graph. Discr. Math.,
109(1-3):117–126, 1992.

[19] P. G. Kolaitis, J. Panttaja, and W. C. Tan. The complexity of data
exchange. In PODS, pages 30–39, 2006.

[20] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
PODS, pages 233–246, 2002.

[21] Maier, Sagiv, and Yannakakis. On the complexity of testing
implication of functional and join dependencies. J. ACM, 1981.

[22] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of
data dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[23] A. Nash, A. Deutsch, and J. Remmel. Data exchange, data
integration, and the chase. UCSD Tech. Report CS2006-0859, 2006.

[24] B. Rossman. Existential positive types and preservation under
homomorphisisms. In LICS, pages 467–476, 2005.

[25] M. Vardi. Inferring multivalued dependencies from functional and
join dependencies. Acta Informatica, 1983.

[26] C. Yu and L. Popa. Constraint-Based XML Query Rewriting For
Data Integration. In SIGMOD, pages 371–382, 2004.



APPENDIX

A. ADDITIONAL DEFINITIONS
For the reader’s convenience, we start with a review of the basic

concepts involved in the standard chase (which we call the standard
chase), including the fundamental concepts of chase step and chase
sequence. Theorem 5 below is the main result about the result of
the chase.

In this section we concentrate on embedded dependencies. In
Section 7 we show how to extend the chase to compute univer-
sal models for larger classes of constraints and under more general
universality assumptions, as required by queries which are more
expressive than unions of conjunctive queries.

A chase stepA
ξ,ā→ B takes an instanceA on which a tgd or egd ξ

fails on ā (we say that ξ applies toA on ā) and adds some tuples (for
tgds) or collapses some elements (for egds) so that B |= ξ(ā). A
Σ-chase sequence S (or just chase sequence if Σ is clear from con-
text) is a sequence of instancesA0, A1, . . . such that every instance
As+1 in it is obtained from the previous one As by a chase step.
A chase sequence A = A0, . . . , An is terminating if An |= Σ. In
this case we say that AΣ = An is the result of the chase. We will
see later that all chase results are homomorphically equivalent, so
we can speak about AΣ (unique up to homomorphic equivalence)
without referring to a particular chase sequence. If Σ consists of
tgds only and A = A0, A1, . . . is an infinite chase sequence, we
set AΣ

ω =
⋃

i Ai. If no sequence is specified, we take AΣ
ω to be

obtained as above from any fair infinite chase sequence. (i.e. one
where every constraint that applies eventually fires.) Then AΣ

ω is
only defined up to homomorphic equivalence as in the case of AΣ.

DEFINITION 7. (Chase Step) If ξ is a tgd or egd, we write

A
ξ,ā→ B if

1. A |= P ′
ξ(ā),

2. A �|= C′
ξ(ā), and

3. B =

{
Aā⊕ Cξ if ξ is a tgd
h(A) if ξ is an egd

whereAā⊕Cξ is the result of attaching toA a copy of Cξ by iden-
tifying ā with the free variables of Cξ and where h(ai) = h(aj) =
ai and h is the identity elsewhere in case P ′

ξ has as free variables ū
and Cξ is ui = uj . If 1 and 2 hold, we say that ξ applies to A on
ā. We do not require ā ∈ dom(A), which is important in case the
premise has constants.

DEFINITION 8. (Chase Sequence) Assume Σ is a set of tgds
and egds.

1. A Σ-chase sequence S (or just chase sequence if Σ is clear
from context) is a sequence of instances A0, A1, . . . such that
every instance As+1 in it is obtained from the previous one
As by a chase step. That is, there are ξ ∈ Σ and ā such that

As
ξ,ā→ As+1. We say that S starts with A if A0 = A.

2. A chase sequence A = A0, . . . , An is terminating if An |=
Σ. In this case we say that AΣ = An is the result of the
chase.

3. We say that the chase terminates if there is a terminating chase
sequence. AΣ is defined whenever there is some terminating
chase sequence starting with A, but its value may depend on
the chase sequence. We will see later that all chase results
are homomorphically equivalent, so we can often speak about
AΣ without referring to a particular chase sequence.

4. We say that an infinite chase sequence is fair if whenever ξ
applies toAs on ā there is some r > s such thatAr |= C′

ξ(ā).

5. If Σ consists of tgds only and A = A0, A1, . . . is an infinite
chase sequence, we setAΣ

ω =
⋃

i Ai. If no sequence is speci-
fied, we takeAΣ

ω to be obtained as above from any fair infinite
chase sequence. ThenAΣ

ω is only defined up to homomorphic
equivalence as in the case of AΣ.

DEFINITION 9. (Weakly Acyclic)[11, 13] A position is a pair
(R, i) (which we write Ri) where R is a relation symbol of arity
r and i satisfies 1 ≤ i ≤ r. The dependency graph of a set Σ of
tgds is a directed graph where the vertices are the positions of the
relation symbols in Σ and, for every tgd ξ of the form

φ(ū, w̄) → ∃v̄ ψ(ū, v̄)

there is an edge between Ri and Sj whenever (1) some u ∈ {ū}
occurs in Ri in φ and in Sj in ψ or (2) some u ∈ {ū} appears in
Ri in φ and some v ∈ {v̄} occurs in Sj in ψ. Furthermore, these
latter edges are labeled with ∃ and we call them existential edges.
Σ is weakly acyclic if its dependency graph has no cycles with an
existential edge.

THEOREM 18 ([11, 13]). For every weakly-acyclic set Σ of
tgds and egds, there are integers b and c upper bounded by the size
of Σ such that for every instance A,

1. every chase sequence of A with Σ terminates, and
2. AΣ can be computed in O(|A|b) steps and in time O(|A|c).

DEFINITION 10. (Extended Chase Step) First assume that ξ is
a DED of the form shown above. Set

ξi :=
∨

1≤i≤p

φi(ū, w̄) → ∃v̄, ψi(ū, v̄)

so that Pξ = Pξ1 = . . . = Pξp and Cξ =
∨

1≤i≤c Cξi .

We write A
ξ,ā→ {B1, . . . , Bc} if

1. A |= P ′
ξ(ā),

2. A �|= C′
ξ(ā), and

3. for each i, A
ξi,ā→ Bi.

If 1 and 2 hold, we say that ξ applies to A on ā. Notice that this is
consistent since if 2 holds, then also A �|= C′

ξi
(ā) for every i. That

is, we create one new instance for every disjunct in the conclusion.

We write K
ξ,ā→ L where K and L are finite sets of instance if

L = K1 ∪
⋃

A∈K2,A
ξ,ā→M

M

where

K1 := {A ∈ K : {ā} �⊆ A or A �|= P ′
ξ(ā) or A |= C′

ξ(ā)}
and K2 := K − K1. That is, K1 is the set of instances in K to
which ξ does not apply on ā and K2 is the set of instances in K to
which ξ does apply on ā. The instances in L are those obtained by
a chase step with ξ and ā from an instance in K or those instances
in K to which ξ does not apply on ā.

DEFINITION 11. (Extended Core Chase with DEDFs) The
extension of the core chase to DEDFs starts from an instanceA and
produces a sequence of sets of instancesL0 = {A}, L1, . . . , Ln, . . .
such that Ln+1 is obtained from Ln by

1. applying in parallel all applicable chase steps with DEDFs to
every instance in Ln to obtain set L′, then

2. computing the core of every instance in L′ to obtain L′′, then
3. minimizing L′′ to Ln+1 by removing every M ∈ L′′ such

that for some N ∈ L′′, N →M .



B. ADDITIONAL PROOFS

PROOF. (Theorem 1, Outline) We outline a reduction of the
halting problem to the problem of whether some chase sequence
with Σ terminates. That is, the computation halts iff the chase does.
Furthermore, we arrange the constraints such that some chase se-
quence terminates if and only if all of them do. Thus, the same
reduction proves both parts of the theorem.

We will encode a computation as a grid-shaped graph with “hor-
izontal” edges and “vertical” edges. Each row of the grid (a set of
nodes connected by horizontal edges) encodes one configuration of
the Turing Machine, i.e. the content of the tape, the state of the
head, and the position of the head at one moment. Successive rows
indicate successive configurations and are connected by two kinds
of “vertical” edges, those immediately to the left of the head and
those immediately to the right of the head.

We use the signature σ consisting of the relation symbols:

T (x, a, y) tape “horizontal” edge from x to y with symbol a,
H(x, s, y) head “horizontal” edge from x to y with state s,
L(x, y) left “vertical” edge,
R(x, y) right “vertical” edge,

one constant for every tape symbol, one constant for every head
state, and the special constants B and E marking the beginning
and end of the tape.

The set Σ of tgds is as follows.

1. To set the initial configuration:

∃w, x, y, z T (w,B, x), T (x,#, y),H(x, s0, y), T (y,E, z)

where # is the blank symbol and s0 is the initial state (both
are constants).

2. For every state transition which moves the head to the right,
replacing symbol a with a′ and going from state s to state s′:

T (x, a, y),H(x, s, y), T (y, b, z) →
∃x′, y′, z′ L(x, x′), R(y, y′), R(z, z′),

T (x′, a′, y′), T (y′, b, z′),H(y′, s′, z′).

Here a, s, a′, and s′ are constants.

3. For every state transition which moves the head to the right
past the end of the tape replacing symbol a with a′ and going
from state s to state s′:

T (x, a, y),H(x, s, y), T (y,E, z) →
∃w′, x′, y′, z′ L(x, x′), R(y, y′), R(z, z′),

T (x′, a′, y′), T (y′,#, z′),H(y′, s′, z′), T (y′, E,w′).

Here a, s, a′, and s′ are constants.

4. Similarly for state transitions which move the head to the left
or leave the head position unchanged.

5. Left copy:

T (x, a, y), L(y, y′) → ∃x′ L(x, x′), T (x′, a, y′).

6. Right copy:

T (x, a, y), R(x, x′) → ∃y′ T (x′, a, y′), R(y, y′).

The first constraint will apply exactly once, starting the computa-
tion on a tape with a blank symbol. The other constraints will apply
whenever there is a matching state transition, and then will copy the
remaining of the tape going left and right from the head position.

If there is no state transition that applies, and if all the applicable
copying has concluded, the computation will end.

Now the computation halts, if and only if the standard chase has a
corresponding terminating sequence. It is easy to check that, in that
case, all chase sequences terminate, because any sequence must
reach a step when no more state transitions are possible, after which
there is only a finite number of remaining copy steps.

Notice that in our construction the signature σ is fixed (includ-
ing the constants used to encode the tape symbols and states). It
is known that the halting problem is undecidable even for a small
fixed number of tape symbols and states.

PROOF. (Theorem 2, sketch) Consider the chase graph G(Σ)
and its associated graph G′ where every cycle has been replaced
by a single vertex. Clearly, G′ is acyclic. Each vertex in G′ is a
set of weakly-acyclic tgds or a single tgd. Now chase as follows.
Pick a vertex v of indegree 0 inG′, chase with the associated tgd or
weakly-acyclic set of tgds until this sub-chase terminates, remove
v from G′ and repeat. Each sub-chase must terminate because β
fires after α only if α ≺ β and because a sub-chase with a weakly-
acyclic set of tgds terminates by Theorem 18.

PROOF. (Theorem 3) Assume α ≺ β. Then, by the definition,
there are A,B, ā, b̄ satisfying conditions 1, 2, and 3 of the defi-
nition. In particular, there is a homomorphism h : P ′

β → Bb̄.
Set B′ to be a minimal instance such that h(Pβ) ⊆ B′ ⊆ B and

such that there is A′ ⊆ B′ satisfying A′ α,ā→ B′. Then A′, B′, ā, b̄
also satisfy condition 2 of the definition by construction, condition
1 by monotonicity of Pβ and condition 3 by monotonicity of Cβ

together with h(Pβ) ⊆ B′. Furthermore, such B′ must satisfy
|B′| ≤ |Pα| + |Cα| + |Pβ| so we only need to examine a finite
set of candidates A′, B′, of size bounded by |α| + |β|. In fact, it is
enough to consider unions of homomorphic images of Pα and Pβ

with a copy of Cα as candidates for B and remove from them an
induced subinstance isomorphic to Cα to get candidates for A.

To check that Σ is not stratified, guess a set of constraints which
is not stratified and which appears in a cycle in G(Σ).

PROOF. (Theorem 5) Immediate from parts 2 and 3 in Theo-
rem 16.

PROOF. (Theorem 6) A similar construction as in the proof of
Theorem 1 serves as a reduction of the halting problem to the prob-
lem of whether Σ and I = ∅ has a universal model. That is, [Σ]
exists if and only if the computation of the Turing Machine halts.

We construct Σ to include all tgds from the proof of Theorem 1.
Indeed, by the proof of Theorem 1, if the computation halts, then

the standard chase terminates, and then by Theorem 5, the chase
result must be a universal model [Σ].

If the computation does not halt, then if there are finite models
of Σ, they must contain L- and R-cycles. But then there is an
infinite set of such models, with progressively longer L- and R-
cycles obtained by unfolding the existing cycles arbitrarily many
times. None of these models can be universal, as no cycle can map
into longer cycles. Finally, if there are no finite models of Σ, then
there are in particular no universal models.

Observe that the signature σ is fixed.

PROOF. (Theorem 7, sketch) By Theorem 16, since the core
chase preserves universality at every step, if it terminates when ap-
plying Σ to I then there is a universal model for Σ and I , namely
the result of the core chase.

For the converse, assume first that Σ consists only of tgds and as-
sume there is a universal model U for Σ and I and there is no finite
core chase sequence starting with I . Then there must be an infi-
nite core chase sequence starting with I : I = A0, A1, A2, . . .. Set



AΣ
ω =

⋃
i Ai, which is well defined because for all i, Ai ⊆ Ai+1.

Since U is a model for Σ, we have that AΣ
ω → U by Theorem 16.

But since U is a universal model and since AΣ
ω |= Σ, we also have

U → AΣ
ω . Since U is finite, U → An for some n and, by Theo-

rem 16,An → U . But then core(U) and core(An) are isomorphic
and therefore both satisfy Σ. Now consider the core chase sequence
starting with I : A0, A1, . . .. It is easy to verify by induction that
for every s, As = core(As). In particular, AΣ

n = core(An) and
therefore AΣ

n |= Σ and this sequence is finite.
If Σ consists of egds and tgds, we can simulate the egds with tgds

to obtain Σ̄ as explained in [16]. Then also core(U) and core(An)
are isomorphic for some n as above and the rest of the argument
goes through unchanged.

PROOF. (Theorem 8)

1. Assume that h : A → B is a homomorphism, ā ∈ Q(A),
Q ∈ UCQ, and Q :=

∨
1≤i≤k Qi where each Qi ∈ CQ.

Then ā ∈ Qi(A) for some i and this happens iff there is a
homomorphism g : Qi → Aā, that is a homomorphism from
Qi to A which maps the free variables x̄ of Qi to ā. But then
h ◦ g : Qi → Bh(ā) and therefore h(ā) ∈ Q(B).

2. Assume that h : A → B is an injective homomorphism,
ā ∈ Q(A), and Q ∈ MonQ. Set A′ = h(A). That is, for
every relation inA, setRA′

= h(RA). ThenA′ ⊆ B and h is
an isomorphism between A and A′. Therefore, by genericity,
h(ā) ∈ Q(A′) and by monotonicity, h(ā) ∈ Q(B).

3. Similar to part 1. If ā ∈ Qi(A) then there is a homomorphism
g : Qi → Aā which also preserves the absence of some
tuples. Composing h with g gives a homomorphism which
preserves the absence of those tuples.

4. Similar to part 3, but with embeddings.

PROOF. (Proposition 5) We show the proof for hom-universal
models sets. The proofs for all other classes of mappings are anal-
ogous.

Assume that T and T ′ are both hom-universal model sets for
K. Then by conditions 1 and 2 we must have T ′ ↔ T . Now
assume, to get a contradiction, that |T ′| < |T |. Then T ↔ T ′

must be witnessed by a proper subset T ′′ of T and we have T ′′ →
T ′′ → T , which implies that T ′′ satisfies conditions 1, 2, and 3,
contradicting the minimality of T .

Notice that condition 4 also implies that for any two Ti, Tj ∈ T ,
it does not hold that Ti → Tj . Otherwise, T − {Tj} ⊂ T would
satisfy conditions 1, 2, and 3 and contradict the minimality of T .
To obtain the desired ordering, having picked T1, . . . , Ti−1 ∈ T
and T ′

1, . . . , T
′
i−1 ∈ T ′ such that T1 ↔ T ′

1, . . . , Ti−1 ↔ T ′
i−1,

pick Ti ∈ T . Since T ↔ T ′ and both T and T ′ satisfy condition
4, there must be A ∈ T ′ such that Ti → A. We must have A /∈
{T ′

1, . . . , T
′
i−1 ∈ T ′} since otherwise we would have Ti → A →

Tj for some j < i. Set T ′
i = A.

PROOF. (Theorem 9) 1. The inclusion ⊆ is clear, since U
consists only of solutions for S under Σ and since certΣQ(S) ⊆
dom(S)r by genericity ofQ. For the opposite inclusion it is enough
to show that for every solution T ′, there is T ∈ U such thatQ(T )∩
dom(S)r ⊆ Q(T ′). Accordingly, pick a solution T ′. Then there
must be T ∈ U and a homomorphism h such that h : T → T ′

and h is the identity on dom(S). Since UCQ is closed under ho-
momorphisms by Theorem 8, we have ā ∈ Q(T ) implies h(ā) ∈
Q(T ′). Furthermore, since h is the identity on dom(S), we have
ā ∈ dom(S)r implies h(ā) = ā and therefore

dom(S)r ∩Q(T ) ⊆ dom(S)r ∩Q(T ′) ⊆ Q(T ′)

as desired.
The proofs of parts 2, 3, and 4 are essentially the same, also using

Theorem 8.

PROOF. (Theorem 10) This follows immediately from Theo-
rem 19 below.

THEOREM 19 (CONTAINMENT). IfK,L are sets of instances,
L is closed under ���F , and [K] and [L] exists, then the following
are equivalent:

1. K ⊆ L.
2. [K] ⊆ L. and
3. [L] ���F [K].

PROOF. If (1) holds, then [K] ⊆ K ⊆ L so (2) holds. If (2)
holds, then [L] ���F L and therefore [L] ���F [K] so (3) holds.
Now assume (3) holds and pick A ∈ K. Since [K] ���F K, there
is B ∈ [K] such that B ���F A. Since [L] ���F [K], there is
C ∈ [L] such that C ���F B ���F A. Since [L] ⊆ L, C ∈ L.
Since F is closed under composition, C ���F A and since L is
closed under ���F , A ∈ L. This shows that (1) holds.

PROOF. (Proposition 6) Let K be the set of models of Σ and
I . Then [IΣ] satisfies conditions 1, 2, and 3 of the definition of
universal model set for K.

W.l.o.g., set [IΣ] = {T1, . . . , Tn}. We claim that the product
T0 = T1 × . . . × Tn of the members of [IΣ] satisfies condition
1 (because the product of any number of instances has homomor-
phisms into all those instances) and condition 2 (by Theorem 20
below). Conditions 3 and 4 are trivially satisfied, so {T0} is a sin-
gleton universal model set for K.

Embedded dependencies have a nice closure property which is part
of the folklore (for a definition of the product A×B see, e.g., [2]):

THEOREM 20. If Σ is a set of embedded dependencies, then Σ
is closed under products. That is: if A,B |= Σ, then A×B |= Σ.

PROOF. (Theorem 11) (a) If F ∈ ihom, set σ̂ := σ ∪ {N}
where N is a new binary relation symbol and set Λ to contain the
DEDFs

x = y ∨N(x, y) x = y,N(x, y) → ⊥
where N stands for �=. If h : Â → B̂ is a homomorphism, then
also h is a homomorphism A → B. Now if x �= y, we must
have A |= N(x, y) by the first DEDF in Λ and therefore B |=
N(h(x), h(y)). Then the second DEDF in Λ and the fact that ⊥ �∈
B̂ imply h(x) �= h(y). That is, h is injective. The converse is
obvious.

(b) If F ∈ fhom, set σ̂ := σ ∪{R̂ : R ∈ σ} where each relation
symbol R̂ is new and of the same arity as R. Set Λ to contain all
DEDFs of the form

R(x̄) ∨ R̂(x̄) R(x̄), R̂(x̄) → ⊥
for every relation symbol R ∈ σ. The rest of the proof is similar to
case (a).

(c) Embeddings are precisely full injective homomorphisms, so
this case is handled by combining the DEDFs from (a) and (b).

The one-to-one correspondence between I and Î is straightfor-
ward for all three cases of F . The equivalence of I |= Σ and
Î |= Σ̂ is immediate from the construction of Σ̂,Λ and the fact that
⊥ �∈ Î.

PROOF. (Theorem 12) Set σ̂, Σ̂ and Λ as in the proof of Theo-
rem 11.



1 ⇒ 2: Assume there is an F -universal model set U = [IΣ]F .
Define Û := {T̂ | T ∈ U}. Then we claim that Û satisfies all
conditions for a hom-universal model set of Σ̂ ∪ Λ and I , except
minimality. Finiteness is obvious. Conformance is given by the
following: Every T̂ ∈ Û satisfies Λ by definition. Every T̂ |= Σ̂
(by Theorem 11, since T |= Σ by conformance of U ). We also
have I → T̂ . This is because for every T ∈ U , I → T by confor-
mance of U , and because homomorphisms are preserved under ex-
pansions. hom-Universality of Û for K follows as described next.
For everyM ∈ K, setM ′ := B |σ and observe thatM = M̂ ′. We
have that I → M ′ since I is over schema sigma. Also, M ′ |= Σ
by Theorem 11. So M ′ is a model of Σ and I , whence there is
A ∈ U and h ∈ F with h : A �→M ′. This implies by Theorem 11
that h is a homomorphism from Â to M̂ ′ = M .

It is easy to obtain Û ′ ⊆ Û which is minimal and thus is a hom-
universal model set.

2 ⇒ 1: Assume there is a hom-universal model set Û for K.
Then the set U := {T |σ | T ∈ Û} satisfies all conditions for an
F -universal model set of Σ and I except minimality: Conformance
and finiteness are obvious. Universality is satisfied by Theorem 11,
since if B |= Σ, there is an expansion B̂ ∈ K. Then there is
Â ∈ Û such that Â → B̂ and therefore the reduction A of Â to σ
satisfies A ���F B. It is easy to obtain U ′ ⊆ U which satisfies
minimality as well.

2 ⇔ 3: Recall the extended core chase with DEDFs from Def-
inition 11 in Appendix A. The proof follows from the following
claim and from Theorem 11.

Claim 1. Given instance I and set Σ of DEDFs, there is a hom-
universal model set for the class of models of Σ and I which do not
contain ⊥ iff the extended core chase of I with Σ terminates and
yields [IΣ].

The proof of Claim 1 is very similar to that of Theorem 7. It
analogously relies on two key properties of the extended core chase
with DEDFs:

(i) for every n, Ln is uniquely determined (up to isomorphism)
by I and Σ, and

(ii) the core chase with DEDFs preserves hom-universality (for
all models M of Σ and I where ⊥ �∈ M , and for every n,
there is some N ∈ Ln with N →M ).

PROOF. (Theorem 13) (1) Consider the set of tgds Σ contain-
ing the single degenerate tgd ∃x, y E(x, y). The instance U which
consists of a single edge satisfies Σ and is strongly universal, be-
cause any model of Σ must have an edge. Therefore, U is a strong
universal model for Σ.

(2) Consider the set of tgds Σ:

ξ1: ∃x, y E(x, y)
ξ2: E(x, y) → ∃z E(y, z)
ξ3: E(x, y), E(y, z) → E(x, z)

Any model of tgds ξ1 and ξ2 must have an infinite walk. There-
fore, if the model is finite, it must have a cycle. If it has a cycle,
then by tgd ξ3 it must have a self-loop. Since the instance with a
single self-loop satisfies these tgds, it is a weak universal model for
Σ. On the other hand, the transitive closure of an infinite path also
satisfies tgds ξ1, ξ2, and ξ3, but no finite instance with a cycle has a
homomorphism into it. Therefore Σ has no strong universal model.

(3) Now consider Σ := {ξ1, ξ2}. As we have seen above, any
finite model of Σ must have a cycle. But for any finite setU of such
models, there is another model Cn, a cycle larger than any cycle in
U and therefore U �→ Cn.

PROOF. (Theorem 14) The proof is identical to that of Theo-
rem 6, since when the computation halts, so does the standard chase
and then the resulting strong universal model is also weak. When
the computation does not halt by entering a loop, the L- and R-
cycles in any finite model of Σ preclude existence of both strong
and weak universal models.

PROOF. (Theorem 15)
(1) The problem is in RE by the completeness of the core chase

(Theorem 7). To show RE-hardness, we outline a reduction of the
halting problem to the problem of whether a set Σ′ of tgds has a
weak universal model. Given the description of a Turing machine
T , we show how to construct effectively a set of constraints Σ′

and an instance U such that U |= Σ′ and such that U is strongly
universal for Σ′ iff T halts.

For this, we set Σ′ to be the union of the set Σ of tgds from the
proof of Theorem 6—except that we assume that there is a unique
halting state sh which is reached iff the computation holds—and
the following additional tgds:

H(x, sh, y) → H(x, a, x)
H(x, sh, y) → T (x, s, x)

for all symbols a and all states s.
Now as can be seen from the proof of Theorem 6, if the com-

putation halts, then every model must include the halting state. It
follows from the last two tgds that such a model must have the fact
H(v, a, v) and T (v, s, v) for some value v and for all symbols a
and all states s. It follows that the instance U which consists of
the V (n, n) and the facts H(n, a, n) and T (n, s, n) for some null
n and for all symbols a and all states s has a homomorphism into
M . That is, whenever Σ specifies a computation that halts, U is
strongly universal for Σ′.

On the other hand, if the computation specified by Σ does not
halt, then there are infinite models for which the halting state is not
reached. It follows that, in this case, U is not universal for Σ′

Notice that we have not ruled out that the computation specified
by Σ does not halt, yet all finite models force the introduction of
the halting state. Therefore, we can not conclude that U fails to be
weakly universal for Σ′

(2) It is clear that the problem is in coRE: we can enumerate
finite models of Σ to find a counterexample to weak universality. To
show coRE-hardness, we outline a reduction of the halting problem
to the problem of whether a set Σ′ of tgds has a weak universal
model. Given the description of a Turing machine T , we show how
to construct effectively a set of constraints Σ′ and an instance U
such that U |= Σ′ and such that U is weakly universal for Σ′ iff T
does not halt.

For this, we set Σ′ to be the union of the set Σ of tgds from the
proof of Theorem 6 and the following additional tgds:

L(x, y) → V (x, y)
R(x, y) → V (x, y)

V (x, y), V (y, z) → V (x, z)
V (x, x) → H(x, a, x)
V (x, x) → T (x, s, x)

for all symbols a and all states s.
Now as can be seen from the proof of Theorem 6, if the compu-

tation enters an infinite loop, then every finite model M of Σ′ must
have an L-cycle and an R-cycle. Therefore, such a model M must



have a V -cycle and, by transitivity, a V -loop. It follows from the
last two tgds that such a model must have the fact H(v, a, v) and
T (v, s, v) for some value v and for all symbols a and all states s. It
follows that the instance U which consists of the V (n, n) and the
factsH(n, a, n) and T (n, s, n) for some null n and for all symbols
a and all states s has a homomorphism into M . That is, whenever
Σ specifies a computation that enters an infinite loop, U is weakly
universal for Σ′. It is easy to verify that U |= Σ′ and therefore U is
a weak universal model of Σ′. The same holds if the computation
specified by Σ goes on forever using more and more space on the
tape. In this case we also have U |= Σ′ and every model of Σ′

must also have an L-cycle and an R-cycle so the same reasoning
above applies. Notice that if the computation does not halt, there
are infinite acyclic models. Therefore, we can not conclude that U
is strongly universal for Σ′ in this case.

On the other hand, if the computation specified by Σ halts, then
it has a finite acyclic model. It follows that, in this case, U is not
weakly universal for Σ′

PROOF. (Theorem 16)

1. Follows from the definition of
ξ,ā→.

2. Follows from 5 below.
3. Follows immediately from the definition of AΣ.
4. If AΣ

ω �|= Σ, then for some ā and ξ ∈ Σ, we must have
AΣ

ω |= P ′
ξ(ā) and AΣ

ω �|= C′
ξ(ā). But then this must also

hold for As for some s, the former because the range of any
homomorphism h : P ′

ξ → AΣ
ω ā is finite and the latter by

monotonicity of C′
ξ. But then, by definition of fairness, there

must be Ar for some r > s such that Ar |= C′
ξ(ā), contra-

dicting AΣ
ω �|= C′

ξ(ā).

5. Assume An
ξ,ā→ An+1. Then since An |= P ′

ξ(ā), B |=
P ′

ξ(h(ā)). Therefore, there is b̄ (possibly empty) such that
B |= Cξ(h(ā), b̄). If ξ is a tgd, then we can map Cξ to
Cξ(h(ā), b̄) to get the desired extension h′. If ξ is an egd,
then h must map the equated values to the same value in B,
so the restriction h|dom(An+1) is also a homomorphism.

6. Follows from 5 above.


