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ABSTRACT
We study the problem of querying data sources that accept
only a limited set of queries, such as sources accessible by
Web services which can implement very large (potentially
infinite) families of queries. We revisit a classical setting
in which the application queries are conjunctive queries and
the source accepts families of conjunctive queries specified as
the expansions of a (potentially recursive) Datalog program.

We say that query Q is expressible by the program P if it
is equivalent to some expansion of P. Q is supported by P
if it has an equivalent rewriting using some finite set of P’s
expansions. We present the first study of expressibility and
support for sources that satisfy integrity constraints, which
is generally the case in practice.

1. INTRODUCTION
The recent proliferation of data sources accessible via Web

services has renewed interest in the problem of querying
sources with restricted querying capabilities [21, 15, 26, 27].
One reason is that, due to commercial, load-control or pri-
vacy considerations, Web sources do not typically accept
arbitrary application queries against their schema. Instead,
they allow only a (potentially infinite) family of parameter-
ized queries implemented by the Web services. For instance,
Amazon provides a service that takes an author name as pa-
rameter and returns the corresponding books, but will not
allow queries that list all the available books. We refer to
the queries accepted by a source as views.

In this setting, an application query issued against the
source schema can experience two levels of service. It can be
fully answerable at the source when the query is equivalent
to some view exported by the source (provided the right
view can be identified). In many cases, the set of answerable
queries is extended by a source wrapper [21], which intercepts
client queries and answers them by automatically identifying
a series of relevant views, issuing the corresponding Web
service calls and post-processing their results locally.

In this paper, we revisit the setting of [15, 27], in which the
application queries are conjunctive queries and the source
accepts families of possibly parameterized conjunctive queries
specified as the expansions of a (potentially recursive) Dat-
alog program. The program is said to generate these views.
As argued in [15, 27] and illustrated below, the choice of Dat-
alog as the view specification formalism enables concise yet
expressive descriptions of large (even infinite) sets of views
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over a given schema.
We say that query Q is expressible by the program P if

it is equivalent to some view generated by P. Expressible
queries can therefore be evaluated at the source, requiring
no post-processing at the wrapper. Q is supported by P
if it has an equivalent rewriting R using some finite set V
of views generated by P. Note that finding such R and V
witnessing support enables the following execution plan at
the wrapper: call the Web services implementing the queries
in V, materialize their results locally and run query R over
the materialized database.

The challenge in deciding expressibility and support lies
in the fact that the family of views to pick from can be very
large or even infinite. This renders infeasible any systematic
enumeration of views. Remarkably, the two problems were
previously shown to be decidable [15], however only when
ignoring any knowledge of constraints satisfied by the source.
In this work, we investigate the effect of source constraints.

The following example shows that source constraints gen-
erate new opportunities for detecting support, calling for
algorithms which exploit them. (Example 1.1 illustrates a
limited-query-capability setting and will be our running ex-
ample in this paper.)

Example 1.1. Consider a travel information source con-
forming to the following schema:

flight(origin, destination) shuttle(origin, destination)
train(origin, destination) bus(origin, destination).

The source admits only views concerning arbitrary-length
itineraries by plane, such that Paris is reachable by train
or bus from the destination airport. This family of views
is described as the set of all expansions of the distinguished
IDB predicate ans in program P below:

ans(A,B) :− f(A,C), ind(C,B)

ind(C,B) :− f(C,B), b(B, “Paris”)

ind(C,B) :− f(C,C′), ind(C′, B)

ind(C,B) :− f(C,B), t(B, “Paris”)

Consider a query that asks for 2-leg itineraries ending in
an airport from which Paris is reachable by train, bus and
shuttle.

Q : q(A,B) :− f(A,C), f(C,B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”)



Clearly, Q is neither expressible nor supported by P be-
cause the views generated by P do not even mention shut-
tle information. However, suppose we knew the following
constraint to hold on the source (stating that any city pair
connected by train and bus is also connected by shuttle):

∀A,S t(A,S) ∧ b(A,S) −→ s(A,S). (1)

Then we would like the wrapper to find the rewriting

(R) r(A,B) :− V b1 (A,B), V t1 (A,B)

where {V bi }i≥1 (resp. {V ti }i≥1) are families of views gener-
ated by P, returning endpoints of itineraries of i flight legs
where the destination has a bus link (resp. a train link) to
Paris. Indeed, it can be checked that R is equivalent to Q on
all databases satisfying (1). Therefore Q is supported by P
when (1) holds.

The problem of deciding support is also of interest for im-
plementing security policies. For security reasons, a source
would only allow data access via a set of authorized views,
which are meant to enforce security policies and check user
credentials [18, 24]. This type of access control is provided
in particular by the so-called “non-Truman” access control
model [24], in which the only allowed queries are those that
are equivalent to authorized views or a combination thereof.
The difference with respect to the previous scenario is that
the system does not actually need to build a rewriting, as it
will run the original query, provided that support holds.

Authorized views may be parameterized. For example, a
security policy may require that a physician access a patient
record only after providing the corresponding record identi-
fier (see Example 1.2). In the so-called non-Truman access
control model [24], a user query is considered legal only if
it has an equivalent rewriting based on authorized views,
or, in our terminology, if it is supported. Illegal queries are
rejected by the source.

Example 1.2. Consider a source for medical data, which
grants access to patient records only under some conditions.
The source conforms to the following schema (where the
recordNumber attribute refers to patient visit record num-
ber):

mrecord(patientId, recordNumber)
visit(symptoms, diagnosis, recordNumber)
nextVisit(vID, vID’)

and assume that recordNumber is a key for the visit relation.
A physician may have access to a limited amount of in-

formation concerning patients whose medical records belong
to other colleagues, as described by the policy:

“A physician can access the diagnosis for patients only as
follows. (1) He can obtain the diagnosis provided he knows
the patient identifier and the visit record number. (2) He can
also access the diagnosis of visits for patients with symptoms
similar to those of a patient whose id and visit record num-
ber he knows, as well as of any other follow-up visits. (3)
However, the physician can access neither the patient id, nor
the visit number for the visits from (2).”

Parts (1) and (2) of the policy could be implemented by
separate services, whose authorized views are represented by

expansions of distinguished IDB predicate ans1 and ans2 re-
spectively in program P ′ below (the ? annotation denotes
parameters):

ans1(S,D) :− mrecord(?N, ?R), visit(S,D, ?R),

ans2(D) :− mrecord(?N, ?R), visit(S,D′, ?R),

ind1(S,D,R′)

ind1(S,D,R) :− visit(S,D′, R), ind2(D,R)

ind1(S,D,R) :− visit(S,D,R)

ind2(D,R) :− nextV isit(R,R′), ind2(D,R′)

ind2(D,R) :− visit(S,D,R)

The physician wants to find the symptoms for the visit with
record number r1 of a patient identified by pid1, together
with the diagnosis D1 for any visit with similar symptoms,
and the diagnosis D2 for a subsequent visit. A conjunctive
query that is supported by P ′ and provides the information
needed is q′ below. The primary key constraint is needed to
validate the authorization because otherwise there would be
no correlation between the information about symptoms used
by the views witnessing support.

q′(S,D1, D2) :− mrecord(pid1, r1), visit(S,D0, r1),

visit(S,D1, R1), visit(S,D′1, R
′
1),

nextVisit(R′1, R2), visit(S2, D2, R2)

Note that the system rejects any query trying to retrieve
patient ids or visit record numbers, conforming to part (3)
of the policy.

Contributions. In this paper, we carry out the (to the
best of our knowledge) first study of the problems of express-
ibility and support under source constraints. In particular,
our contributions include:

Most permissive restrictions for decidability. We identify
practically relevant restrictions on the program which ensure
decidability under a mix of key and weakly acyclic foreign
key constraints and beyond. The restrictions are partic-
ularly useful as they enable decidability via a reduction to
the constraint-free case, which allows one to modularly“plug
in” any existing algorithm to this end (such as those in [15,
26, 27] or the one we propose here for an improved upper
bound). We show that these restrictions are as permissive
as possible, since their slightest relaxation leads to undecid-
ability in the presence of even a single key constraint. This
result is counter-intuitive, since the existence of a rewriting
of a conjunctive query using a finite set of non-parameterized
conjunctive query views under key constraints (and beyond)
is known to be decidable in NP.

A widely-applicable sound test. It is unsatisfactory in
practice to refuse to test support and expressibility when
the decidability restrictions are violated. A more useful ap-
proach consists in devising an algorithm which functions as
a decision procedure under these restrictions, yielding only a
best-effort “approximation” otherwise. One pragmatic artic-
ulation of what “approximation” could mean in this context
is the following: the algorithm should be sound (i.e. no false
positives) yet it may return false negatives (i.e. is not com-
plete) for inputs that do not obey the decidability restric-
tions. We present such an algorithm for both expressibility
and support, applicable to arbitrary programs under weakly
acyclic sets of embedded dependencies [1], which are suffi-
ciently expressive to capture key and foreign key constraints



and beyond. The algorithm runs in deterministic exponen-
tial time in the size of the query, the size of the program
and the maximum size of a constraint, which is as good as
the best algorithm for rewriting queries using a finite list of
views.

As a side-effect of our investigation, we settle two open
problems left from prior work in the constraint-free setting.

Improved, practically tight upper bounds. We improve
the previously best known upper bounds for deciding sup-
port in the constraint-free case: from non-deterministic ex-
ponential time in [27] and doubly-exponential time in [15],
to deterministic exponential time in combined query and
program size. Notice that in a practical implementation,
the non-deterministic exponential time upper bound of [27]
would still result in a doubly-exponential algorithm. The
improvement is achieved using the sound algorithm men-
tioned above, which provably acts as an exponential-time
decision procedure in the absence of constraints. We show
our algorithm to be optimal in the program size (we give a
deterministic EXPTIME lower bound for fixed query) and
optimal for practical purposes in the query size (we give
an NP lower bound for fixed program). The question of the
tightness of this NP lower bound remains open. An interest-
ing consequence of our new upper bound is that, in practical
implementations, rewriting using an infinite set of views is
no more expensive than using finitely many views listed in-
dividually (still deterministic exponential time).

The relationship between expressibility and support. We
establish that expressibility and support are inter-reducible
in PTIME in both the absence and the presence of con-
straints. This enables us to characterize the complexity of
expressibility as well, and to employ the same algorithm
for solving both problems. The result comes as a pleasant
surprise, since prior work reports distinct upper bounds for
these problems, suggesting (in line with intuition) that find-
ing a rewriting of the query using program expansions is
harder than finding a single equivalent expansion.

A one-size-fits-all solution. It is remarkable (and practi-
cally appealing) that all our upper bound results are based
on the same algorithm for support, which serves simulta-
neously as (i) an essentially optimal decision procedure in
the constraint-free case, improving prior upper bounds, (ii)
a decision procedure under constraints in all known decid-
able cases, (iii) a sound procedure in general, and (iv) all
of the above for the problem of expressibility, due to our
inter-reducibility result.

Parameters. For presentation simplicity, we ignore, at
first, the presence of parameters in the views generated by
the program, and show how parameters are handled in Ap-
pendix C.

Paper outline. After introducing preliminary concepts,
results and notation in Section 2, in Section 3 we establish
the PTIME inter-reducibility of expressibility and support.
Section 4 presents decidable restrictions and Section 5 con-
tains a sound algorithm in the case of general constraints.
We also show there the improved upper bounds for the
constraint-free setting (Section 5.1). We map the bound-
aries of decidability in Section 6. We discuss related work

in Section 7 and conclude in Section 8. The proofs are given
in Appendix D.

2. PRELIMINARIES
We denote with CQ the language of conjunctive queries.
Constraints. We consider constraints ξ of the form

∀ū∀w̄ φ(ū, w̄) −→ ∃v̄ ψ(ū, v̄)

where φ (the premise) and ψ (the conclusion) are conjunc-
tions of relational or equality atoms. Such constraints are
known as embedded dependencies and are sufficiently ex-
pressive to specify all usual integrity constraints, such as
keys, foreign keys, inclusion, join, multivalued dependen-
cies, EGDs, TGDs etc. [1]. We call φ the premise and
ψ the conclusion. If v̄ is empty, then ξ is a full depen-
dency. If ψ consists only of equality atoms, then ξ is an
equality-generating dependency (EGD). If ψ consists only of
relational atoms, then ξ is a tuple-generating dependency
(TGD). If the premise and conclusion of a TGD contain one
atom each, we call it an inclusion dependency (IND). An
IND in which the variables ū appear precisely in the key
attributes of the relation mentioned in the conclusion is a
foreign key constraint. A key constraint on relation R can
be expressed by the EGD ∀ū, v̄1, v̄2 R(ū, v̄1) ∧ R(ū, v̄2) −→
v̄1 = v̄2. We write A |= C if the instance A satisfies all the
constraints in C.

Containment and Equivalence. Query Q1 is con-
tained in query Q2 under the set C of constraints (denoted
Q1 vC Q2) iff Q1(D) ⊆ Q2(D) for every database D |= C,
where Q(D) denotes the result of Q on D. Q1 is equiva-
lent to Q2 under C (denoted Q1 ≡C Q2) iff Q1 vC Q2 and
Q2 vC Q1.

Mappings. A partial mapping from CQ query Q1 to CQ
query Q2 is a function h from the variables and constants
of Q1 to the variables and constants of Q2 such that (i) h
is the identity mapping on all constants, and (ii) for every
relational atom (also called subgoal) R(X̄) of Q1, if h is
defined for all variables in (X̄), then R(h(X̄)) is a subgoal
of Q2. A homomorphism from a set of subgoals C1 to a set of
subgoals C2 is a partial mapping from the query Q1() :− C1

to the query Q2() : − C2 which is defined on all variables
of Q1. A containment mapping from CQ query Q1 with
tuple of head variables X̄1 to CQ query Q2 with tuple of
head variables X̄2 is a homomorphism h from Q1 to Q2 such
that h(X̄1) = X̄2. We represent mappings as sets of pairs
associating variables with either variables or constants, and
use the notation X : Y for the pair (X,Y ). The union of
two mappings is simply the union of their sets of pairs. A
mapping is consistent if it does not map the same variable
to two distinct values. A set of mappings is compatible if
their union is consistent. Composition of mappings is the
standard function composition, denoted by the operator ◦.

Expansion using views. Given a CQ query R formu-
lated in terms of a set of view names V(where the views are
also CQs), the expansion of query R w.r.t. the views in V
(denoted expandV(R)) is the query E obtained as follows:
every subgoal V (X̄) in R is replaced by a copy of the body
of V , in which the head variables of V are renamed to X̄
and all other variables are replaced by variables occurring in
no other view bodies introduced during the expansion. It is
easy to see that this variable renaming defines a homomor-
phism h from V into the expansion E, which we refer to as
the expansion homomorphism.



Rewriting using views. We say that a conjunctive
query R formulated in terms of view names V is a rewrit-
ing of a query Q using V under a set C of dependencies iff
Q ≡C expandV(R).

Equivalence under views and constraints. Given
queries R1, R2 formulated in terms of the view names in V
and a set of dependencies C, we say that R1 is equivalent to
R2 under V and C, denoted R1 ≡VC R2, iff
expandV(R1) ≡C expandV(R2).

The chase. We will use the classical chase procedure
for rewriting conjunctive queries using a set of embedded
dependencies [1]. For arbitrary sets C of dependencies, the
chase is not guaranteed to terminate. The least restrictive
condition on C known to date which is sufficient to ensure
termination of the chase with C regardless of the query Q
is called weak acyclicity [10] (see also [9]). Weak acyclic-
ity of C implies termination of the chase of Q with C in
time polynomial in the size of Q and exponential in the size
of C. Assuming termination of the chase, we denote with
chaseC(Q) the query obtained by chasing conjunctive query
Q with C to termination (this query is unique up to equiva-
lence). Besides introducing new variables (for instance due
to chasing with TGDs), the chase may equate the original
variables of Q to constants or to each other (for instance due
to chasing with key constraints) [1]. Denoting this variable
renaming with r, it is a well-known fact that r is a homomor-
phic mapping from Q into chaseC(Q), also called the chase
homomorphism [1].

Datalog expansions. A finite expansion (in short “ex-
pansion”) of an IDB predicate p of a Datalog program P is
a CQ query with head p(X̄) and body obtained as follows:
initialize the body to body := p(X̄), then apply the following
expansion step a finite number of times until no more IDBs
are left in the body: for every IDB goal gi in the body, pick
a rule ri in P defining gi and collect all picked rules in a list
V. Treating V as views, replace body with expandV(body),
where each gi is expanded using ri. The set of expansions
of P is infinite if P is recursive.

Convention. In the remainder of this paper, unless ex-
plicitly stated otherwise, all queries and views are conjunc-
tive queries, all programs are Datalog programs, and all de-
pendencies are embedded dependencies.

3. EXPRESSIBILITY VERSUS SUPPORT
We say that a view V is generated by program P if V is a

CQ expansion of P.

Definition 3.1. Given a Datalog program P, a conjunc-
tive query Q and a set of embedded dependencies C, we say
that

1. Q is supported by P under C (denoted SuppCP(Q)), iff
there is a finite set of views V generated by P and a
conjunctive query rewriting of Q using V under C.

2. Q is expressible by P under C (denoted ExprCP(Q)),
iff Q is equivalent under C to some view V generated
by P.

In previous work, the problems of support and express-
ibility were introduced separately (in [15], respectively [27]).
They were shown to be decidable, yet their reported com-
plexity upper bounds were different even in the absence of

constraints: doubly-exponential deterministic time for sup-
port [15], and EXPTIME for expressibility [27]. These re-
sults seemed to follow the intuition that finding a rewriting
of the query using some expansions of the program is harder
than finding a single equivalent expansion.

We establish a counter-intuitive relationship between the
two problems, showing them to be inter-reducible in poly-
nomial time even in the presence of dependencies.

Theorem 3.1. Let C be a weakly acyclic set of embedded
dependencies. Then there is a reduction from the problem of
support of a query Q by a program P under C to an instance
of the expressibility problem, which is in PTIME in the size
of Q and P and in EXPTIME in the size of C.

Corollary 3.1. If the size of the schema (with depen-
dencies) is bounded by a constant, then there is a PTIME
reduction from support to expressibility provided the set of
embedded dependencies is weakly acyclic.

Corollary 3.2. In the absence of dependencies, there is
a PTIME reduction from support to expressibility.

The next result shows the existence of a polynomial-time
reduction in the other direction, requiring no restrictions on
the embedded dependencies.

Theorem 3.2. Expressibility reduces in PTIME to sup-
port.

In particular, since dependency-free support is known to
be decidable [15], Theorem 3.2 implies decidability of dep-
endency-free expressibility, with the same complexity.

4. DECIDABLE CASES
In this section, we give restrictions under which the prob-

lems of expressibility and support are decidable under con-
straints. As will be seen in Section 6, the restrictions are
needed because the two problems are in general undecid-
able, and they are fairly tight, in the sense that even slight
relaxations thereof lead to undecidability.

Because it is interesting in its own right, we show a partic-
ular route to decidability based on reducing to the depend-
ency-free setting, which is known to be decidable [15]. How-
ever, this does not yet provide the improved upper bound,
which requires improving prior results for the dependency-
free case. We shall do so in Section 5, obtaining a more
general result: a novel algorithm that does not rely on re-
duction to the dependency-free case, but serves as an op-
timal decision procedure when dependencies are absent or
when they satisfy the restrictions presented in this section,
and gracefully degenerates to a sound procedure otherwise.

We introduce properties of the program and of the views
it generates that suffice for our reduction to the dependency-
free case. The idea is to pre-process the program to explicitly
incorporate into it the knowledge about the dependencies, so
that these can then be ignored, thus reducing the problem
to dependency-free expressibility and support for the new
program. The pre-processing technique relies on the chase
procedure. This was a natural choice, as the chase tool has
been traditionally employed successfully to reduce classical
decision problems (such as query equivalence or implication
of dependencies [1]) from the presence of dependencies to
their absence. We start with expressibility.

Given a Datalog program P, we denote with chaseC(P)
the program obtained by chasing each rule of P with C.



Definition 4.1 (C-Local Program). Let C be a weak-
ly acyclic set of dependencies. We say that a program P is
C-local iff for every view V generated by P there is a view
W generated by chaseC(P), and for every view W gener-
ated by chaseC(P) there is a view V generated by P, such
that chaseC(V ) is equivalent to W even in the absence of
dependencies.

The intuition behind C-locality is as follows. Recall that
when checking expressibility under C, one needs to exhibit
some view V generated by P, such that Q ≡C V . By the
chase theorem [1, 17], if the chase terminates, the equiv-
alence under C reduces to the following equivalence in the
absence of dependencies (i.e. under the empty set of de-
pendencies): chaseC(Q) ≡∅ chaseC(V ). C-locality ensures
that the chase of view V can be avoided by simply search-
ing among the views generated by chaseC(P). These must
include some W with W ≡∅ chaseC(V ), so the existence of
V as above is equivalent to the existence of W generated by
chaseC(P), with chaseC(Q) ≡∅ W . This in turn is by defi-
nition dependency-free expressibility of query chaseC(Q) by
program chaseC(P). Indeed, we can show the following.

Theorem 4.1. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local program. Then
ExprCP(Q) holds iff Expr∅chaseC(P)(chaseC(Q)) holds.

The reduction of support to the dependency-free case re-
quires an additional restriction on the views generated by
the program. In this case, we need to exhibit a set V of
views generated by P and a rewriting R of Q in terms
of V. Again by the chase theorem [1, 17], this is equiv-
alent (provided the chase terminates) to exhibiting V and
R such that chaseC(Q) ≡∅ chaseC(expandV(R)). The idea
behind the reduction is to require the views to be such
that no matter how they are used in R, chasing R’s ex-
pansion gives the same result as first chasing each view in-
dividually and then expanding R with the chased views:
chaseC(expandV(R)) ≡∅ expand{chaseC(V1),...,chaseC(Vn)}(R).
Now if P is C-local, then the chased views are equivalent
to some views W = {W1, . . . ,Wn} generated by chaseC(P),
and we have chaseC(Q) ≡∅ chaseC(expandW(R)), which is
the definition of dependency-free support of chaseC(Q) by
chaseC(P ). We formalize this intuition next.

Definition 4.2 (C-Independent View Set). Let C be
a weakly acyclic set of dependencies. We say that a set of
views V = {V1, . . . , Vn} is C-independent iff, for every query
R′ formulated in terms of V, there exists query R also for-
mulated in terms of V, such that

(i) R′ ≡VC R,

(ii) and such that

chaseC(expand{V1,...,Vn}(R))

is equivalent even in the absence of dependencies to

expand{chaseC(V1),...,chaseC(Vn)}(R).

Notice that we do not require property (ii) in Definition 4.2
to hold for all queries R′ over V, since there are potentially
many equivalent forms of R′. It sufficies if one of them
satisfies (ii). In that case, we can show the following.

Theorem 4.2. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local program. Then,
if the views generated by P are C-independent, then SuppCP(Q)

iff Supp∅chaseC(P)(chaseC(Q)).

We next provide various syntactic restrictions on the de-
pendencies in C and on P to guarantee C-independence and
C-locality.

Theorem 4.3. Let C be a weakly acyclic set of inclusion
dependencies. Then any Datalog program P is C-local and
every finite subset of its generated views is C-independent.

Theorems 4.1, 4.2 and 4.3 immediately imply that for
weakly acyclic sets of inclusion dependencies, expressibility
and support reduce to the dependency-free versions:

Corollary 4.1. If C is a weakly acyclic set of inclu-
sion dependencies, then for any program P and query Q,
ExprCP(Q) iff Expr∅chaseC(P)(chaseC(Q)) and

SuppCP(Q) iff Supp∅chaseC(P)(chaseC(Q)).

Example 4.1. Consider a source for travel data using the
following schema:

train(origin, destination, operator)
bus(origin, destination,operator)

where each origin-destination pair is connected by a non-stop
leg. It accepts queries for train itineraries with arbitrary
many legs in which the same operator is used. It returns
the origin, the destination, one intermediary stop and the
operator. This family of queries is described by program P:

(P) ans(A,B,C,O) :− ind(A,B,O), ind(B,C,O)

ind(B,C,O) :− t(B,B′, O), ind(B′, C,O)

ind(B,C,O) :− t(B,C,O)

Let Q be an application query searching for a one-way trip
with connection in Paris, such that starting from Paris one
can either continue the trip by bus, and stay with the first
operator, or take another train with any available operator.

(Q) q(A,B) :− t(A,C,O1), b(C,B,O1), t(C,B,O2), C = “Paris”

Notice that Q is not supported by P in the absence of
constraints (the source does not even allow views mentioning

the bus predicate): Supp∅P(Q) does not hold.
Assume that the source satisfies C which contains the in-

clusion dependency (2) below, stating that an operator will
also cover by bus any leg important enough to be covered by
train.

∀X,Y,O t(X,Y,O) −→ b(X,Y,O) (2)

Since C is (trivially) a weakly acyclic set of INDs, by
Corollary 4.1 SuppCP(Q) holds if and only if so does

Supp∅chaseC(P)(chaseC(Q)).
Chase steps apply on the extensional parts of the second

and third rules of P, yielding the new rules (we underline
the newly added tuples):

ind(B,C,O) :− t(B,B′, O), b(B,B′, O), ind(B′, C,O)

ind(B,C,O) :− t(B,C,O), b(B,C,O)



The new program chaseC(P) generates the views Vij de-
noting the expansion with i legs from the origin to the in-
termediary point and j legs from the intermediary point to
the destination. This includes the view V11, which gives the
shortest itineraries:

(V11) v(A,B,C,O) :− t(A,B,O), b(A,B,O), t(B,C,O), b(B,C,O)

By chasing also the query, we obtain Q′ = chaseC(Q):

(Q′) q(A,B) :− t(A,C,O1), b(A,C,O1), b(C,B,O1),

t(C,B,O2), b(C,B,O2), C = “Paris”

Observe that Supp∅chaseC(P)(chaseC(Q)) (and SuppCP(Q)) still
does not hold because all the views Vij require that only one
operator be used. To enforce this requirement on Q′, one
would need a constraint enforcing that the subgoals b(C,B,O1)
and b(C,B,O2) from Q′ refer to the same operator, making
the equality O1 = O2 hold.

Key safety. We next introduce the notion of a pro-
gram being “key-safe”, which guarantees C-locality and C-
independence in the presence of key constraints.

Let R be a relation with an n-attribute composite key
and let P̄ = (p1, . . . , pk) be an ordered sequence of k distinct
values in the range 1 to n. We say that a rule of P outputs the
key of R, by positions P̄ , into the sequence of head variables
X̄ = (Xi1 , . . . , Xik ) if X̄ appears in the rule body either

• in the positions p1, . . . , pk of the key attribute sequence
of some R-subgoal, with the remaining n− k positions
(if any) of the key being bound to constant values, or
• in the positions j1, . . . , jk of some p-subgoal, where
p is an IDB predicate with at least one rule that in
turn outputs the key of R by key positions P̄ into the
sequence of head variables with indices j1, . . . , jk.

We say that a subgoal g outputs the key of R, by posi-
tions P̄ = (p1, . . . , pk), into the sequence of variables X̄ =
(Xi1 , . . . , Xik ) if

• g uses EDB predicate R and X̄ appears in positions
p1, . . . , pk in the key attributes of g, with the remaining
n − k positions (if any) of the key being bound to
constant values, or
• g uses IDB predicate p and there exists some rule defin-

ing p which outputs the key of R, by the key positions
P̄ , into variables X̄.

We say that a rule is safe for the key constraint on R
if whenever one of its IDB subgoals outputs the key of R
by some sequence of k key positions P̄ into k variables X̄ =
(Xi1 , . . . , Xik ), no other subgoal does the same (for the same
key positions P̄ ). Notice that several EDB subgoals may
output the key of the same R by the same key positions and
into the same sequence of variables X̄, as long as no IDB
goal does.

Example 4.2. Suppose that, in Example 4.1, C contains
also a key constraint on the b table, stating that bus operators
cover disjoint legs:

∀X,Y,O b(X,Y,O), b(X,Y,O′) −→ O = O′ (3)

Notice that chaseC(P) is the same as in Example 4.1 because
no chase step applies with the key constraint.

The rules in chaseC(P) are safe. Indeed, in the second
rule, b outputs the key into the sequence B,B′, while ind
outputs it into B′, C. The two subgoals in the first rule also
output the key, but into different sequences: A,B and B,C
respectively.

Intuitively, safety of the rules in a program P is designed
to guarantee C-locality. It disallows two IDB goals in a rule
from outputting the key of some EDB R into the same vari-
ables because this could lead, in the expansion of the rule, to
two R goals agreeing on the key attributes and thus trigger-
ing a chase step with the key constraint. Since the R goals
would come from the expansion of distinct IDB goals in the
rule, the effect of this chase would not be reproducible by
chasing the program rules in isolation (as in the definition
of chaseC(P )).

We now give a condition ensuring that every set of views
generated by P is C-independent. This requires additional
restrictions on the rules of the distinguished predicates.

Definition 4.3. A program P is key-safe for a set of key
constraints K if

1. each rule is safe for all key constraints in K, and
2. for all distinguished predicates ans of P, all defining

rules r of ans, and all relational symbols R in the
schema, if r outputs the key attributes Ā (as defined
above) of some goal R(Ā, B̄), it also outputs all non-
key attributes B̄ (by the same definition that applied to
the key attributes).

If I is a set of weakly acyclic INDs, we say that P is
key-safe for C = K ∪ I if chaseI(P) is key-safe for K.

Note that key-safety can be checked in PTIME in the size
of P and K.

Example 4.3. Continuing Example 4.2, we observe that
distinguished predicate ans outputs the pairs of key attributes
A,B and B,C, but it also outputs O, the only non-key at-
tribute. Therefore, P is key-safe.

Intuitively, the key safety condition on the distinguished
predicates ensures that, given query R′ in terms of some
views V generated by P, there is query R ≡VC R′ such that no
chase step with a key constraint will apply to expandV(R).
This is because, if two view atoms in R′ happen to output
the key of some EDB goal G into the same variables Ā,
then by key-safety they each must also output all non-key
attributes of G, say in variables B̄1, respectively B̄2. But
then there is a query R, equivalent to R′, obtained by adding
to R′ the equalities B̄1 = B̄2. This equality is preserved in
expandV(R), so the chase step with the key constraint does
not apply on expandV(R). More formally, we can show the
following.

Theorem 4.4. Let C consist of key constraints and an
acyclic set of inclusion dependencies. Any Datalog program
P that is key-safe for C is also C-local and all views generated
by it are C-independent.

Corollary 4.2. If C consists of key constraints and an
acyclic set of INDs and P is key-safe for C, then for any
query Q, ExprCP(Q) iff Expr∅chaseC(P)(chaseC(Q)) and

SuppCP(Q) iff Supp∅chaseC(P)(chaseC(Q)).



Example 4.4. Continuing Example 4.3, a chase step with
(3) applies on Q′, introducing the equality atom O1 = O2.

With this, Supp∅chaseC(P)(chaseC(Q)) holds, as witnessed by
the rewriting

q(A,B) :− V11(A, “Paris”, B,O).

Remarks. The definition of key-safety described above is
over-conservative: it considers all constants as being equat-
able in a chase step. This is because it only keeps track of
the positions bound to constants, ignoring the actual con-
stant values. We describe in Appendix B a refined version
of key-safety that takes into account these values. This re-
fined notion of key-safety is implied by the one presented
here and detects strictly more decidable cases, but, for ease
of presentation, it is omitted from the main text.

According to the results presented so far in this section,
and in Section 3, under the decidability restrictions (C-indep-
endence and C-locality), we can solve expressibility under C
even by using our favorite solver for dependency-free support
(first reduce to dependency-free expressibility, then reduce
to dependency-free support). Symmetrically, we can solve
support under C using any solver for dependency-free ex-
pressibility. It turns out that the same cross-use of solvers
can be achieved by first reducing from expressibility under
C to support under C (using Theorem 3.2), and then to
dependency-free support (using Theorem 4.1) (and symmet-
rically for support), as the reductions preserve restrictions
for decidability. More details can be found in Appendix E.

5. A WIDELY APPLICABLE SOUND TEST
We next present a sound algorithm for testing support, ap-

plicable to any program and set of weakly acyclic dependen-
cies. It is a decision procedure (no false negatives) under the
decidability restrictions of Section 4, and in the dependency-
free case (where it provides an exponentially better upper
bound than previous work).

Our solution is based on the following overall strategy.
Since a systematic enumeration of all (potentially infinitely
many) views generated by a program P is infeasible, we in-
stead “describe the behavior” (in a sense formalized shortly)
of any view generated by P w.r.t. a decision procedure (de-
scribed below) for the existence of a rewriting under C us-
ing finitely many views. This description will abstract away
from the view body, focusing on how the view behaves in
essential tests performed by this decision procedure. As it
will turn out, under our decidability restrictions, there are
only finitely many distinct behaviors, each exhibited by a
possibly infinite set of views. It suffices therefore to find one
representative view from each set, thus reducing the prob-
lem of checking support by P to checking the existence of
a rewriting using the finitely many representatives. This
problem is known to be decidable under weakly acyclic de-
pendencies (Lemma 5.1 below). We start by describing the
associated decision procedure.

Canonical Rewriting Candidate. Given a finite set
of views V, an acyclic set of constraints C, and a query Q,
call the canonical rewriting candidate of Q using V under C,
denoted CRC CV(Q), the query obtained as follows: (i) it has
the same head variables as Q, and (ii) its body is constructed
by evaluating each view V ∈ V over the body of chaseC(Q)
(viewed as a symbolic database, also known as the canonical
instance [1]) and adding the subgoal V (t) for every tuple t
in the result of the evaluation.

We show next that the canonical rewriting candidate yields
a decision procedure for the existence of a rewriting. This
result reformulates a theorem in [9] (see also [8])1:

Lemma 5.1 (Corollary of [9]). Q has a rewriting us-
ing V under C iff CRC CV(Q) is one. Moreover, this in turn
holds iff (a) CRC CV(Q) is safe (its head variables appear in
its body), and (b) there is a containment mapping from Q
into the result of chasing with C the expansion of CRC CV(Q):
chaseC(expandV(CRC CV(Q))) v Q.

Example 5.1. Revisiting Example 1.1, consider the fol-
lowing set of views V = {V1, V2}:

(V1) ans1(Z1, Z2) : − f(Z1, X), f(X,Z2), t(Z2, “Paris”)

(V2) ans2(Z1, Z2) : − f(Z1, Y ), f(Y, Z2), b(Z2, “Paris”)

generated (among others) by P. We will follow, step by step,
the rewriting algorithm from [9]. The first step consists in
finding mappings from the view queries into the body of Q
and adding, to Q, atoms corresponding to the head of the
view query. V1 is mapped into Q by m1 = {Z1 : A;X :
C;Z2 : B}, which leads to adding ans1(A,B). Similarly, for
V2 we discover the mapping m2 = {Z1 : A;Y : C;Z2 : B}
and add ans2(A,B). We stop here, since no more mappings
can be inferred. The result is an expanded query

U : q(A,B) :− f(A,C), f(C,B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”),

ans1(A,B), ans2(A,B)

in which the newly added atoms are underlined. U is called
the universal plan in [9], and it is guaranteed that any exact
rewriting of Q is a subquery of U .
R = CRC CV(Q) is then obtained from U by keeping only

the atoms from the view schema:

R(A,B) :− ans1(A,B), ans2(A,B).

R is equivalent to Q under dependency (1), as can be verified
by first constructing the expansion E = expandV(CRCCV(Q))
as:

E(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”)

which chases with (1) to query (cE):

cE(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”),

s(B, “Paris”)

into which there is a containment mapping from Q, cmq =
{A : A,B : B,C : X ′}. The reverse containment also holds,
as witnessed by the containment mapping from cE into Q,
cme = {A : A,B : B,X ′ : C, Y ′ : C}, hence R is indeed a
rewriting.

Note that both views contribute to the rewriting, since both
t and b atoms are needed as images of the t and b atoms from
Q. The contribution of V1 consists in mv1, a partial mapping

1Lemma 5.1 is a corollary of [9], where it is also proven that
there are only finitely many rewritings of Q using V that
are minimal under C, and that all of them are subqueries of
CRC CV(Q).



of Q into cE, obtained by restricting the domain of cmq to
the first three atoms of Q:

mv1 = {A : A,B : B,C : X ′}.

In this case, the image of mv1, E1, is the entire expansion
of ans1:

E1 = f(A,X ′), f(X ′, B), t(B, “Paris”).

The contribution of V2 is enabled by a partial mapping

mv2 = {B : B}

from (the b atom of) Q into the expansion of ans2, with the
image

E2 = b(B, “Paris”).

mv1 and mv2 agree on the common B variable, and, since
together they cover the whole of the body of Q, we obtain
by combining them the containment mapping cmq that maps
the entire Q into cE.

Redundant views Let us add now to program P a new rule,
corresponding to the definition of the view V3 given below:

(V3) ans3(Z1, Z3) :− f(Z1, T ), f(T, Z2), b(Z3, “Paris”).

Running the same rewriting algorithm as above on the set

V ′ = {V1, V2, V3}, we discover that V3 maps into Q by m3 =
{Z1 : A, T : C,Z2 : B,Z3 : B}, which leads to a rewriting
candidate CRC CV′(Q) of the form

R′(A,B) :− ans1(A,B), ans2(A,B), ans3(A,B).

V3 does not modify the way in which the expansion query
(which already had t and b atoms) chases, hence the resulting
chased expansion of R′ is:

cE′(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”),

f(A, T ′), f(T ′, T ′′), b(B, “Paris”),

s(B, “Paris”)

We can argue here that V2 and V3 are mutually redundant
w.r.t. finding a rewriting of Q. The partial mapping mv3 =
{B : B} from Q into the expansion of ans3, with the im-
age b(B, “Paris”), is isomorphic to the partial mapping mv2

from Q into the expansion of ans2. To this, add the fact that
both mappings from the bodies of the two views into Q, v2

and v3, agree on the images of the distinguished variables,
mapping them into variables A and B of Q. Without going
into further details, this would be enough to allow us to dis-
card one of the two views and to obtain as a rewriting either
ans1(A,B), ans2(A,B) or ans1(A,B), ans3(A,B).

According to Lemma 5.1 and the observations above, in
order for a view to contribute to the rewritability of Q

(i) it must generate a subgoal g of the canonical rewriting
candidate
e.g. V1 generates ans1(A,B), introduced by the map-
ping m1 from V1 into Q;

(ii) g’s expansion may participate in the chase with C of
the expansion E of the canonical rewriting candidate
e.g. the expansion E1 of ans1(A,B) contains the atom
t(B, “Paris”), which, together with the expansion of
V2, E2 = b(B, “Paris”), allows a chase step with de-
pendency (1) to apply;

(iii) since Q maps into the chase of E, the expansion of g
must include (after the chase) the image of a partial
map from Q
e.g. E1 is the image of mv1.

We shall therefore describe a view V with respect to its
behavior for (i), (ii) and (iii), using the notion of descriptor.

Normalized program. For uniformity of treatment, we
will assume from now on w.l.o.g. that the program P is nor-
malized as follows. For every k-ary IDB predicate p, every
rule for p has the head variables Z̄ = Z1, . . . , Zk, in that
order. Furthermore, for every EDB predicate e, introduce a
new IDB e′, replace each occurrence of e in P with e′, and
add the rule e′(Z̄) :− e(Z̄). The normalized program has
only two kinds of rules: those whose bodies consist of a single
EDB subgoal (called EDB rules), or solely of IDB subgoals
(called IDB rules). For technical reasons, we additionally
compute (as in [15]), the closure of the program, which con-
sists in adding for every rule r in P all rules obtained from
r by systematically equating in all possible ways the head
variables of r with each other and with the constants in Q.

Definition 5.1 (Descriptors). For a query Q and a

program P, E(p(t),fr) is called a descriptor w.r.t Q and P iff
• p is an IDB predicate from P,
• E is a conjunctive query body over EDBs from P,
• P generates as expansion of p a query of head variables
Z̄, p(Z̄) :− body,
• there is a homomorphism to : body → chaseC(Q) s.t.

to(Z̄) = t,
• fr is a partial variable mapping from Q into chaseC(body)

such that the image of Q under fr is E.
We call E the expansion fragment described by the descrip-
tor, and (p(t), fr) the adornment of E. We call variables
{Z1, . . . , Zk} (where k is the arity of p) the distinguished
variables of the descriptor, while all other variables in the
range of fr are hidden.

In the following, when referring to a descriptor we will
omit the program P and the query Q if they are obvious
from the context.

Example 5.2. In the setting of Example 5.1, d1 =

E
(p1(t1),fr1)
1 and d2 = E

(p2(t2),fr2)
2 below are descriptors for

the views V1 and V2, respectively:

d1 : E1 = [f(Z1, X), f(X,Z2), t(Z2, “Paris”)],

p1(t1) = ans(A,B), fr1 = {A : Z1, C : X,B : Z2}
d2 : E2 = [b(Z2, “Paris”)],

p2(t2) = ans(A,B), fr2 = {B : Z2}

Note that, though the two views contribute the same
ans(A,B) goal to the canonical rewriting candidate, the two
descriptors distinguish among V1 and V2 by the images of Q
into the view bodies (E1 includes the image of Q’s t and two
f goals, E2 only the b goal).

Before explaining in detail how descriptors are found, we
show how they can be used to soundly infer support. Intu-
itively, a descriptor represents the fragment of a chased view
generated by P that serves as image of the partial mapping
from Q. Our goal is to put together such fragments in a
consistent way to create (if it exists) the image of Q under
a containment mapping.



Partial rewriting candidate. More formally, consider
a finite set of descriptors w.r.t. to query Q, program P and

dependencies C: D = {E(pi(ti),fri)
i }1≤i≤n, where all pi are

(not necessarily distinct) distinguished IDBs of P. Introduce
for each predicate pi a fresh predicate pii (using the rank i
of the predicate in an arbitrary ordering of the descriptor
set) such that pii 6= pjj for all 1 ≤ i, j ≤ n, i 6= j. Assuming

w.l.o.g. that Q’s tuple of head variables is X̄, we call the
query

R(X̄) :− p1
1(t1), . . . , pnn(tn)

the partial rewriting candidate described by D. The set
V := {VFi : pii(Z̄) :− Ei}1≤i≤n is called the view fragments
described by D. The view fragments VFi are not necessarily
safe queries, if not all the head variables serve as image of
the partial mapping fri.

Example 5.3. For the set of descriptors D = {d1, d2}
from Example 5.2, the fresh view goals are ans1, ans2 re-
spectively. The partial rewriting candidate described by D
is

R(A,B) :− ans1(A,B), ans2(A,B)

(it happens to coincide with the canonical rewriting candi-
date shown in Example 5.1). The view fragments are

(VF1) ans1(Z1, Z2) :− f(Z1, X), f(X,Z2), t(Z2, “Paris”)

(VF2) ans2(Z1, Z2) :− b(Z2, “Paris”).

Notice how VF1’s,VF2’s bodies are isomorphic to fragments
of the bodies of V1, respectively V2 from Example 5.1. Also,
VF2 is not safe as variable Z1 does not appear in the body.

The following result allows us to test support, as in Lemma 5.1,
but using descriptors instead of explicit views. The key idea
is to use the partial rewriting candidate instead of the canon-
ical rewriting candidate.

Corollary 5.1 (of Lemma 5.1). Let D be a finite set
of descriptors w.r.t. query Q, program P and dependencies

C: D = {E(pi(ti),fri)
i }1≤i≤n. Denote with

• R the partial rewriting candidate described by D,
• V the view fragments described by D,
• E the expansion expandV(R).

If (a) R is safe and (b) there exists a containment mapping
cfr from Q into chaseC(E), then Q is supported by P under
C.

We say that any set D as in Corollary 5.1 witnesses support.
Notice that conditions (a) and (b) in Corollary 5.1 reformu-
late the corresponding conditions from Lemma 5.1 in terms
of descriptors.

Example 5.4. The set of descriptors D in Example 5.3
witnesses support for the query, program and dependency
in our running Example 1.1. Indeed, if we apply the test
of Corollary 5.1 to the partial rewriting candidate R and
the view fragments VF1 and VF2 described by D(shown in
Example 5.3), we obtain

• the expansion

EF(A,B) :− f(A,X′), f(X′, B), t(B,“Paris”),

b(B,“Paris”)

• the result (cEF) of chasing EF with dependency (1),

cEF(A,B) :− f(A,X′), f(X′, B), t(B,“Paris”),

b(B,“Paris”), s(B,“Paris”)

Notice that EF and cEF are fragments of E, respectively cE
from Example 5.1. Let cfr be the mapping {A : A,B : B,C :
X ′}. Observe that (a) R is safe; and (b) cfr is a containment
mapping from Q into cEF, thus satisfying the conditions of
Corollary 5.1.

The number of descriptors is infinite due to the unbounded
set of hidden variables, but there are only finitely many iso-
morphism types of descriptors modulo renaming of the hid-
den variables, in the following sense:

Definition 5.2 (Similarity). Two descriptors

E
(p1(t1),fr1)
1 and E

(p2(t2),fr2)
2 are similar iff p1 = p2 (and

hence the distinguished variables of the descriptors are the
same), t1 = t2, and there is an isomorphism i between the
ranges of fr1 and fr2 which is the identity on the distin-
guished variables, and i witnesses the isomorphism of E1

and E2.

Intuitively, the condition on fr1 and fr2 ensures that the
partial containment mapping of Corollary 5.1, restricted to
the view fragment, is the same for both descriptors. It is
easy to see that similarity is an equivalence relation, and that
there are only finitely many equivalence classes of descriptors
under similarity. Indeed in E(p(t),fr), p is a predicate from
P; t a tuple of variables and constants from chaseC(Q), thus
the number of distinct values it can take is polynomial in
the size of chaseC(Q) and exponential in the arity of p; the
number of distinct (up to isomorphism) partial mappings fr
is exponential in the number of variables in Q.

Similarity plays a key role in our support test. Indeed we
can show that any representative of a similarity equivalence
class is as good as any member of the class for the purpose
of witnessing support, in the following sense:

(†)
if descriptor d1 is similar to d2, then for any set D
of descriptors, D∪{d1} is a support witness if and
only if D ∪ {d2} is one.

Algorithm findDescriptors. We next present a bottom-
up algorithm for computing representatives of descriptor
equivalence classes under similarity. The algorithm findDe-
scriptors consists in initializing a set of descriptors D to the
empty set, then repeatedly carrying out the rule steps de-
scribed below until D reaches a fixpoint (under similarity),
finally returning D.

EDB rule step. Consider an EDB rule

e′(Z1, . . . , Zk) :− e(Z1, . . . , Zk)

For every variable mapping to from Z1, . . . , Zk into Q’s
variables and constants, such that the goal e(to(Z1), . . . , to(Zk))
appears in chaseC(Q); and every partial variable mapping
fr from the variables of Q to {Z1, . . . , Zk} (including the

empty-domain one), add to D the descriptor E(e(to(Z̄)),fr),
where E = e(Z̄). Note that descriptors with empty-domain
mappings capture the situation when none of the query goals



maps into the described e goal2.
IDB rule step. Consider an IDB rule

p(X̄) :− p1(X̄1), . . . , pn(X̄n)

If there exists a homomorphism h from the rule body into
chaseC(Q), and a set of descriptors

E
(p1(h(X̄1)),fr1)
1 , . . . , E(pn(h(X̄n)),frn)

n

in D, then:
Construct the views Vi : pi(Z̄i) :− Ei. Denote with E the

expansion of the rule body using these views, and with xhi
the corresponding expansion homomorphism xhi : Ei → E
(i.e. the variable renaming performed on each Vi during
expansion). Chase E with C and denote with ch the cor-
responding chase homomorphism ch : E → chaseC(E). If
the set {ch◦xhi ◦ fri}1≤i≤n of partial mappings from Q into
chaseC(E) is compatible, construct the combined mapping
cfr :=

Sn
i=1 ch◦xhi◦fri, otherwise exit the rule step. For ev-

ery partial mapping fr from Q into chaseC(E) which extends
cfr (including the trivial extension fr = cfr) by mapping ad-
ditional variables of Q into fresh variables added during the

chase, compute the descriptor d = F (p(h(X̄)),fr), where F is
the image under fr of all goals in Q such that fr is defined
on all their variables. If d is not similar to any descriptor in
D, add it to D.

Example 5.5. We next illustrate the rule steps of algo-
rithm findDescriptors for Example 1.1 showing how de-
scriptors d1 and d2 from Example 5.2 are derived. First,
observe that no chase step applies on Q, so Q = chaseC(Q).

For brevity, we work on the unnormalized program P. Ap-
plications of EDB rule steps produce (among others) the fol-
lowing descriptors:

d3 = [f(Z1, Z2)](f(A,C),{A:Z1,C:Z2})

d4 = [f(Z1, Z2)](f(A,C),{})

d5 = [f(Z1, Z2)](f(C,B),{C:Z1,B:Z2})

d6 = [f(Z1, Z2)](f(C,B),{})

d7 = [t(Z1, “Paris”)](t(B,“Paris”),{B:Z1})

d8 = [b(Z1, “Paris”)](b(B,“Paris”),{B:Z1}).

Notice that for the same match of EDB goal f(Z1, Z2) into
goal f(A,B) of chaseC(Q), several partial mappings from the
query are considered. We show only two here (in descriptors
d3 and d4, where the latter uses the empty mapping, meaning
that no query variable is mapped into its fragment).
An IDB rule step for the fourth P rule combines the descrip-
tors d5 and d7 yielding a new descriptor:

(d9) [f(Z1, Z2), t(Z2, “Paris”)](ind(C,B),{C:Z1,B:Z2})

which combines with d3 using the first rule of P, yielding d1.
Descriptors d6 and d8 combine via an IDB rule step with

the third rule in P to

2Technically, descriptors for EDB rule IDBs using empty-
domain partial mappings do not fully conform to Defini-
tion 5.1 as the expansion fragment contains a goal that is
not the image under the partial mapping. As seen in the
IDB rule step, the definition holds for all other IDBs, which
are the pre-normalization IDBs.

(d10) [b(Z2, “Paris”)](ind(C,B),{B:Z2})

which combines with d4 using the first rule of P, yielding d2.

We next prove that the inflationary process for descrip-
tor discovery implemented by algorithm findDescriptors
always terminates for weakly acyclic sets of constraints.

Lemma 5.2. If C is weakly acyclic, then algorithm find-
Descriptors is guaranteed to

(a) terminate in time exponential in the sizes of P, C, and
Q.

(b) output only descriptors, which are all pairwise dissim-
ilar.

Algorithm testSupport. Our algorithm for testing sup-
port amounts to deciding if the descriptors computed by
algorithm findDescriptors give a support witness (in the
sense of Corollary 5.1). According to Corollary 5.1, the ex-
istence of such a witness is sufficient for support, but, due to
our undecidability results, when the program is unrestricted
(see Section 6), it is not always a necessary condition. That
is why algorithm testSupport is in general only sound.

algorithm testSupport
input: query Q, program P, set of dependencies C;
begin
N := the normalization of P;
D := findDescriptors(Q,N , C);
D′ := all descriptors from D pertaining to

distinguished predicates of N ;
if D′ witnesses support (tested as in in Corollary 5.1)

then return true;
else return false;

end

Algorithm testSupport satisfies the following properties.

Theorem 5.1. If C is weakly acyclic, the following hold:
(1) algorithm testSupport is sound for testing support, and
(2) it runs in time exponential in the size of P, C, and Q.

Algorithm testSupport produces strictly less false nega-
tives than the approach of reducing away dependencies de-
scribed in Section 4. First, it is a decision procedure when-
ever the reduction succeeds:

Theorem 5.2. If C is weakly acyclic and P is a C-local
program generating C-independent views, then algorithm test-
Support is a decision procedure for support.

Corollary 5.2. If C is a weakly acyclic set of key and
foreign key constraints, and chaseC(P ) is safe for the keys
in C, then testSupport is a decision procedure for support.

Second, the setting of Example 1.1 exhibits a case in which
the restrictions required in Section 4 for reduction to the
dependency-free case do not apply (they involve keys and
foreign keys, while dependency (1) is neither). Indeed, it is
easy to check that the chased program does not support the
chased query in the absence of dependencies. We therefore
need a qualitatively better approach, which is provided by
algorithm testSupport: Example 5.5 shows that the call
to findDescriptors yields (among others) the descriptors
d1, d2, which, according to Example 5.4, witness support.

Algorithm testExpressibility. While we could use the
reduction from expressibility to support used in Theorem 3.2,
the following variation on testSupport constitutes a direct



test: call findDescriptors, keep only the descriptors for
distinguished IDB predicates, and perform the test of Corol-
lary 5.1 only on singleton sets of descriptors.

Finding the actual views. So far, we have only pro-
vided algorithms for deciding support and expressibility. To
turn them into algorithms exhibiting the actual views gen-
erated by P as well as the rewriting using it requires extra
bookkeeping. All we need to do is to carry along with a de-
scriptor d the actual expansion built during its derivation,
noticing that the derivation tree of d coincides with the ex-
pansion tree of the expansion described by d.

Finding minimized witnesses for support. Let us
note that while the partial rewriting candidate described
by D′ in algorithm testSupport may contain redundant
atoms, in security applications we only need to check if a
query is supported by authorized views [24], which amounts
to checking the existence of a rewriting without ever using it.
Instead, the original query is executed once it is authorized.
For non-security applications in which the wrapper needs
to find and execute the rewriting in order to service a user
application, one can plug in any technique for minimization
under constraints already studied in the literature. One of
them is the backchase minimization [8] which starts from the
rewriting candidate (corresponding to R from Corollary 5.1)
and considers subsets of view atoms at a time. This tech-
nique is amenable to further optimization by reusing the
information from the partial mappings stored in the descrip-
tors: find subsets of descriptors whose partial mappings are
compatible and yield a total mapping from the query into
the partial rewriting candidate. The presentation of such an
optimization algorithm combining the discovered descriptors
more efficiently goes beyond the scope of this paper.

5.1 Revisiting the Dependency-free Case
Based on algorithm testSupport, we now improve the

previously best-known upper bound for checking support in
the dependency-free setting. [15] reported a deterministic
doubly-exponential upper bound in the size of the query
and program. We obtain an exponentially improved upper
bound, implied by Theorem 5.2 and Theorem 5.1:

Corollary 5.3. In the absence of dependencies, algo-
rithm testSupport

(a) is a decision procedure for support of a query Q by an
arbitrary program P, and

(b) runs in deterministic EXPTIME in the sizes of P and
Q.

We next show that this upper bound is tight in the pro-
gram size, and tight for practical purposes in the query size.

Theorem 5.3. Supp∅P(Q) is NP-hard in the size of Q and
EXPTIME-complete in the size of P.

6. BOUNDARIES OF DECIDABILITY
We next justify the restrictions of Section 4 by exploring

the boundaries of decidability for the problems of express-
ibility and support. To calibrate our results, we start with
the following: allowing unrestricted sets of constraints im-
mediately leads to undecidability even if the program ex-
presses a single view. This result is unsurprising given that
unrestricted sets of embedded dependencies notoriously lead
to undecidability of many fundamental database decision
problems, such as equivalence of queries and implication of
dependencies [1]:

Theorem 6.1. If C contains arbitrary embedded depen-
dencies, ExprCP(Q) and SuppCP(Q) are undecidable even if
P expresses a single view.

Theorem 6.1 shows that decidability requires the set of con-
straints to conform at least to the restrictions yielding de-
cidability in the single-view case. The most permissive re-
striction known to date requires C to be a weakly acyclic
set of embedded dependencies [9, 10]. As we show below,
weak acyclicity turns out to be too generous for sets of views
described by unrestricted programs.

Indeed, it turns out that the interaction of recursion in
the program and the presence of dependencies leads to un-
decidability even under strong restrictions on the depen-
dencies and on the program which are known to lead to
decidability in many classical decision problems as long as
recursion and dependencies are mutually exclusive. For in-
stance, query rewritability using finitely many views (listed
explicitly, not described by a program) is known to be de-
cidable under weakly acyclic dependencies [9], in particu-
lar under only functional dependencies (which include key
constraints), or only full TGDs. In the absence of depen-
dencies, expressibility and support for arbitrary recursive
programs is decidable [15]. Moreover, many classical unde-
cidable Datalog-related problems, such as containment and
boundedness (undecidable by [12]) are known to become de-
cidable for recursive monadic programs [6]. However when
considering recursion and dependencies together, we obtain
surprisingly strong undecidability results.

Recall that a program is monadic if all its IDB predicates
have arity 1, and it is linear if each rule body contains at
most one intentional subgoal.

Theorem 6.2. If P is recursive and not key-safe, then
ExprCP(Q) is undecidable even if C consists of a single key
constraint, and P is a linear monadic program.

This justifies our key-safety restriction, showing that it is
maximally permissive. Theorems 6.2 and 3.2 immediately
yield:

Corollary 6.1. If P is recursive and not key-safe, then
SuppCP(Q) is undecidable even if C consists of a single key
constraint and P is a linear monadic program.

Sets of full TGDs are trivially weakly acyclic, and yet we
have:

Theorem 6.3. If P is recursive, then ExprCP(Q) is unde-
cidable even if C contains only full TGDs and P is a monadic
program.

Corollary 6.2. If P is recursive, then SuppCP(Q) is un-
decidable even if C contains only full TGDs and P is monadic.

Since INDs are a particular case of TGDs, it is interesting to
contrast Theorem 6.3 and Corollary 4.3. Notice that there is
no contradiction here, as weakly acyclic sets of INDs and sets
of full TGDs have incomparable expressive power: weakly
acyclic sets of INDs can express non-full TGDs, but INDs
allow only one atom in the premise, while full TGDs allow
multiple atoms.

7. RELATED WORK
The necessity of describing infinite families of views exported
by the source was first argued in [21] and the problem of de-
ciding support first solved (in the absence of constraints)



in [14, 15]. [15] pioneers the idea of reducing support to
rewriting the query using finitely many views. Views gen-
erated by the program are compared for interchangeability:
V1 and V2 are interchangeable if in every rewriting R of
Q, by replacing the V1 goals with V2 goals we still obtain a
rewriting. [15] shows that interchangeability induces finitely
many equivalence classes on the set of all views generated by
the program, and gives an algorithm to find one representa-
tive of each class. This finite set of representative views is
then used to check for a rewriting. The resulting algorithm
runs in doubly-exponential deterministic time. We can show
however that interchangeability under dependencies yields
infinitely many equivalence classes, thus precluding the re-
duction from [15] (see Example F.1 in Appendix F). Even in
the absence of dependencies, we observe that interchange-
ability is unnecessarily strong, leading to a refinement of
the view equivalence classes that yields exponentially more
representatives than truly needed. Intuitively, instead of in-
terchangeability in every rewriting of Q, the descriptor simi-
larity condition (†) from Section 5 detects interchangeability
with respect to only the canonical rewriting. This allows us
to manipulate mapping/partial mapping pairs rather than
sets thereof as in [15], which yields the upper bound improve-
ment from doubly-exponential to single-exponential time.

In the dependency-free setting, [27] improves the upper
bound for support of [15] to non-deterministic exponential
time in the combined query and program size. However for
practical purposes this still yields implementations that run
in doubly-exponential time. In addition to the extension
to constraints, our solution improves on [27] even in the
dependency-free case, by achieving an exponentially better
upper bound, proven to be essentially tight.

The problem of support strictly extends that of rewriting
queries using finitely many views. The latter was treated in
depth in the literature, considering various extensions per-
taining to the language of queries and views [13, 3, 2, 5],
to adding limited access patterns for the views [11, 19], to
adding constraints (see the references in [8]), and to mixing
such extensions [7]. The problem is NP-complete in the size
of the query and views, in practice leading to deterministic
exponential-time implementations, which is no better than
for support. Prior work on information integration [16] stud-
ied answering queries using a finite set of views with limited
access patterns with a different goal, namely finding maxi-
mally contained answers.

8. CONCLUSION
In this paper, we revisit the problem of deciding support

and expressibility of a conjunctive query by (possibly pa-
rameterized) views generated as the expansions of a Datalog
program, investigating for the first time the effect of source
constraints.

We identify practically relevant restrictions on the pro-
gram which lead to decidability for the most prevalent con-
straints in practice (weakly acyclic sets of keys and foreign
keys). Moreover, we show that even slight relaxations to
our restrictions lead to undecidability. We present an al-
gorithm which is applicable to unrestricted programs and
weakly acyclic sets of embedded dependencies, yielding a de-
cision procedure in all known decidable cases, and a sound
test in general.

We also settle two problems left open by work on the
constraint-free case. First, we show that in the absence of

constraints our algorithm is a decision procedure which im-
proves the previously known upper bounds for support in the
absence of constraints (from 2-EXPTIME [14] and NEXP-
TIME [27] to EXPTIME in the query and program size). We
also give practically tight lower bounds, showing EXPTIME-
hardness for fixed query and NP-hardness for fixed program.
Second, we show that expressibility and support are inter-
reducible in PTIME (even under constraints), which allows
us to use essentially the same algorithm for solving them.

Note that the support problem discussed in this paper
and in prior work decides whether a user query can be han-
dled by the source or not by testing the existence of an
exact rewriting using the generated views. This indeed rep-
resents the fundamental functionality one may expect in a
limited-query-capability setting. However, when no equiv-
alent rewriting exists, a user may also accept a best-effort
approach in which instead of the exact answer she obtains
its tightest approximations, either from below (contained in
the answer) or from above (containing the answer). These
approximations are known in the literature on view-based
query rewriting as the minimally containing and maximally
contained rewritings of the query. We leave for future re-
search the problem of answering approximately a query us-
ing a potentially infinite family of views.
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APPENDIX
A. WEAK ACYCLICITY

We repeat for the reader’s convenience the definition of
weakly acyclic set of dependencies, and the associated result.

Definition A.1. (Weakly Acyclic)[9, 10] A position is
a pair (R, i) (which we write Ri) where R is a relation symbol
of arity r and i satisfies 1 ≤ i ≤ r. The dependency graph
of a set Σ of TGDs is a directed graph where the vertices
are the positions of the relation symbols in Σ and, for every
TGD ξ of the form

∀ū, w̄ φ(ū, w̄) −→ ∃v̄ ψ(ū, v̄)

there is an edge between Ri and Sj whenever (1) some u ∈
{ū} occurs in Ri in φ and in Sj in ψ or (2) some u ∈ {ū}
appears in Ri in φ and some v ∈ {v̄} occurs in Sj in ψ.
Furthermore, these latter edges are labeled with ∃ and we
call them existential edges. A set Σ of TGDs and EGDs is
weakly acyclic if the dependency graph of its TGD set has
no cycles through an existential edge.

Theorem A.1. For every weakly acyclic set C of embed-
ded dependencies, there are b and c such that, for any set of
subgoals A, regardless of the order of the chase, chaseC(A) is
guaranteed to terminate in O(|A|b) steps and in time O(|A|c),
where |A| denotes the size of A.

B. REFINED VERSION OF KEY-SAFETY
The notion of key-safety presented in the main text keeps

only track of the positions bound to constants, ignoring the
actual constant values that may appear in these positions.
As a consequence, it may fail to detect decidable instances of
expressibility or support, where the constraints can still be
ignored after the program and the query have been chased.
We give in this section a refined definition for the key-safety
restriction that addresses this problem, allowing us to solve
strictly more cases by reduction to the dependency-free case.

Let R be a relation with an n-attribute composite key. By
a template of constants (in short, template) for the key of
R we denote a sequence of values T = (v1, . . . , vn), where
each vi can be either a constant value or a special value
denoted blank. By the variable positions of T we denote the
ordered sequence of positions P̄T = (p1, . . . , pk) of T that
are occupied by blank.

We say that a rule of P outputs the key of R, by template
T , into the sequence of head variables X̄ = (Xi1 , . . . , Xik ) if
X̄ appears in the rule body either
• in the positions P̄T = (p1, . . . , pk) of the key attribute

sequence of some R-subgoal, with the remaining n− k
positions (if any) of the key being bound to the constant
values given in T .
• in the positions j1, . . . , jk of some p-subgoal, where p

is an IDB predicate with at least one rule that in turn
outputs the key of R by the template T , into the se-
quence of head variables with indices j1, . . . , jk.

We say that a subgoal g outputs the key of R, by template
T , into the sequence of variables X̄ = (Xi1 , . . . , Xik ) if
• g uses EDB predicate R and X̄ appears in positions
P̄T = (p1, . . . , pk) in the key attributes of g, with the
remaining n−k positions (if any) of the key being bound
to the constant values given in T , or



• g uses IDB predicate p and there exists some rule defin-
ing p which outputs the key of R, by the template T̄ ,
into variables X̄.

We say that a rule is safe for the key constraint on R if when-
ever one of its IDB subgoals outputs the key of R by some
template of constants T into k variables X̄ = (Xi1 , . . . , Xik ),
no other subgoal does the same (for the same template T ).
Notice that several EDB subgoals may output the key of the
same R by the same template and into the same sequence
of variables X̄, as long as no IDB goal does. A program P
is key-safe for a set of key constraints K if

• each rule is safe for all key constraints in K, and
• for all distinguished predicates ans of P, all defining

rules r of ans, and all relational symbols R in the
schema, if r outputs the key attributes Ā, by some tem-
plate, of some goal R(Ā, B̄), it also outputs all non-key
attributes B̄, by some template (using the same defini-
tion that applied to the key attributes).

If I is a set of weakly acyclic INDs, we say that P is key-safe
for C = K∪I if chaseI(P) is key-safe for K. Notice that this
new definition of key-safety can still be checked in PTIME
in the size of P and K.

Example B.1. Assuming the schema and constraints of
Example 4.3, consider the following modified program P ′

(P ′) ans(A,B,C,O) :− ind(A,B,O), ind′(B,O)

ind(B,C,O) :− t(B,B′, O), ind(B′, C,O)

ind(B,C,O) :− t(B,C,O)

ind′(B,O) :− indP (B,O), indSD(B,O)

indP (B,O) :− t(B, “Paris”, O)

indSD(B,O) :− t(B, “SanDiego”, O)

Notice that P ′ is not key-safe under the weaker restriction,
since the rule defining ind′ is not safe. But we can easily see
that the two constants appearing in the second attribute of
the key cannot be equated during the chase, and P ′ is indeed
key-safe under the refined definition.

More precisely, in the sixth rule, b outputs the key into the
sequence of variables B, by the template

T1 = (blank, “SanDiego”).

Similarly, in the fifth rule, b outputs the key into the sequence
of variables B, by the template

T2 = (blank, “Paris”).

Since T1 and T2 are different, the rule defining ind′ is safe.
Then, in the first rule, the ind′ subgoal outputs the key in
B, by any of these two templates. Finally, ans outputs the
key attributes in A,B (by the ind subgoal) and in B (by the
ind′ subgoal) but in both cases it also outputs O, the non-key
attribute.

C. PARAMETERS
Our solutions to checking expressibility and support can

be extended to the case when sources implement parameter-
ized queries, expecting applications to provide the parameter
values (recall Example 1.2).

There are two kinds of query evaluation plans one may
adopt in the presence of parameters. The straightforward
execution consists in the wrapper issuing in a first stage a
series of service calls to the source without inspecting any

intermediate results to determine how to instantiate param-
eters for the other calls. Once all call results come in, dur-
ing the second stage the rewriting query is run over them
and the result passed to the application query. This is the
approach taken in [14, 15]. We shall call this approach the
two-stage evaluation. A more sophisticated evaluation strat-
egy is based on the idea of interleaving query execution at
the wrapper with service calls to the source. The evaluation
of a subquery of the rewriting can thus provide parameter
values for the subsequent calls needed by the non-evaluated
part of the rewriting. This approach is used in [26] and, for
finite sets of parameterized views, in [11], where it is known
as the dependent-join evaluation.

If only two-stage evaluation is considered, there is an im-
mediate reduction to the problem of non-parameterized views,
based on the following observation:

Lemma C.1. In two-stage evaluation, for the views to be
relevant to the problem of support or expressibility, their pa-
rameters must be filled in with constants appearing in the
query or the source dependencies.

This result follows immediately from Lemma 5.1 and gen-
eralizes a similar observation from [14] to the presence of
dependencies. It implies that it suffices to generate a new
program in which the parameters are replaced in all possible
ways by the (bounded) set of constants in Q and C, and test
support and expressibility for the new program. In practice,
an efficient implementation would extend the rewriting al-
gorithm as suggested in [14], by mapping parameters into
constants from the query.

We next present expressibility and support under the more
advanced dependent-join evaluation strategy. Our solution
comes with no complexity overhead, in the sense that in
the dependency-free case, our decision procedures have the
same complexity as in the parameter-less case. This is non-
trivial since the number of parameters that can occur in an
expansion is a priori unbounded.

We start by introducing some auxiliary notions.
Notation. For parameters we adopt the ?X notation

of [14, 15], enabling the generation of parameterized views.
We stress that by this notation, an input variable ?X will be
considered different from some other variable X appearing
in the same program rule.

Access patterns. An access pattern for a view V (X1, . . . , Xk)
is an expression α in {o, i}k. We say that the Xj is an output
(resp. input) variable if α(j) = o (resp. α(j) = i). A view
with access pattern α is denoted V α(X1, . . . , Xk). Views
generated by a Datalog program with parameters will be
presented using this notation, by introducing an input head
variable for each parameter.

Executable query. Notice that, for a (rewriting) query
whose atoms have access patterns, there may not always be
a way to satisfy the bindings for the input variables, i.e. the
query is not executable. Following [20, 7], we say that a
query R formulated in terms of view names with binding
patterns V is executable if the access patterns of R are such
that every input variable appears first in an output position
of some previous goal.

Expressibility / Support. We are now ready to extend
the definitions of expressibility and support in the presence
of parameterized views. We say that a query Q is express-
ible by a program P iff the query is equivalent to a query
obtained from an expansion of P by replacing all input vari-
ables by constants. Note that this is the natural choice,



since expressibility captures the cases in which a query can
be fully answered by just one “service call”, without any
post-processing. We say that Q is supported by P iff there
exists an executable rewriting R using some finite set V of
views with access patterns generated by P.

Before going into the specific details, we first give a brief
outline on how the solutions of the previous section can be
extended to deal with parameterized programs. As before,
we aim at reducing these problems to query answering us-
ing only a finite family of the specified views, defined by
descriptors. First, since by the dependent-join mechanism
input variables play an important role in how view goals
interact in a rewriting, we need to keep track in descrip-
tors of their query-view and view-query mappings. While
this leads to descriptors of unbounded size (since the num-
ber of input variables is not bounded), we show that only
a finite set of descriptors needs to be considered. Then, we
extend algorithm testSupport to find an executable order-
ing of a rewriting in terms of descriptors. For this phase,
we show that an expensive ordering search can be avoided,
by relying on a canonical executable rewriting candidate.
In conclusion, similar to the case without parameters, we
obtain a sound, exponential-time, algorithm for expressibil-
ity and support, which becomes complete in the absence of
constraints or under restrictions on the interaction between
program and constraints.

Modifying Example 1.1, the running example in this sec-
tion is the following:

Example C.1. Consider the schema from Example 1.1
extended with a relation airport(name) and the set of views
specified by the parameterized Datalog program P ′′, with 2
distinguished IDB predicates (ans1 and ans2):

ans1(A) :− a(A)

ans2(A,B) :− f(A,C), ind(C,B)

ind(C,B) :− f(C,C′), ind(C′, B)

ind(C, ?B) :− f(C, ?B), b(?B, “Paris”)

ind(C, ?B) :− f(C, ?B), t(?B, “Paris”)

Note that the program differs from the one of Example 1.1
in two aspects: (a) the source admits direct access to the
airport relation (by ans1) and (b) the destination of views
concerning itineraries (by ans2) is an input variable.

Besides dependency (1)

∀A,S t(A,S) ∧ b(A,S) −→ s(A,S)

we assume the source verifies also the dependency

∀A b(A, “Paris”), t(A, “Paris”) −→ a(A) (4)

which guarantees that any airport with a bus and train
connection to Paris can be found in the airport relation.

Consider that the user asks the same query as in Exam-
ple 1.1, i.e., itineraries of length 2 ending in an airport from
which Paris is reachable by all the three transportation means

(Q) q(A,B) :− f(A,C), f(C,B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”).

We recall that this query was supported in the setting of
Example 5.1, as witnessed by the rewriting

(R) r(A,B) :− V1(A,B), V2(A,B).

However, under the given access patterns, R no longer
witnesses support since the conjunction of V oi1 (A,B) and
V oi2 (A,B) is not executable. But by adding to this rewriting
Uo(B) as a first subgoal, where U is the one view generated
by predicate ans1, the query becomes executable:

(R′) r(A,B) :− Uo(B), V oi1 (A,B), V oi2 (A,B),

and moreover equivalent to Q. Indeed, the values for B
are now passed by the dependent-join, and it can be easily
checked that R′ is equivalent to Q under the two dependen-
cies, since the airport goal of the rewriting maps in the result
of chasing Q with (4).

We next discuss the decision procedure for view-based
query answering using a finite set of parameterized views,
under dependencies. This procedure will be then adapted
to a finite set of view descriptors.

Answerable part. Given a query R formulated in terms
of view names with access patterns V, we call the answerable
part of R (denoted ans(R)) the executable query with the
same head as R and the body built one goal at a time from
body(R) as follows:

• start with an empty set of bounded variables, B, then
repeatedly

• find the first view goal gα(X̄) in R not added to ans(R)
such that all the input variables of g are in B; add this
goal to ans(R) and add its head variables X̄ to B.

Clearly, ans(R) is an executable query and this procedure
runs in quadratic time.

Executable Canonical Rewriting Candidate. Given
a finite set of views with access patterns V, an acyclic set of
constraints C, and a queryQ, we call the executable canonical
rewriting candidate ofQ using V under C, denoted ECRC CV(Q),
the query obtained as follows:

(i) compute CRC CV(Q) (as described in Section 5),
(ii) find its answerable part, ans(CRC CV(Q)).
Similar to Lemma 5.1, results from [7] guarantee that Q

has a rewriting using V under C iff ECRC CV(Q) is itself one.
We omit further details and only illustrate the main idea by
an example.

Example C.2. Revisiting Example C.1, we know that the
views V1, V2, U , generated (among others) by P ′′, give an
executable rewriting for Q, under C = {(1), (4)}.

Assume that an additional distinguished predicate is present
in P ′′, defined by the rule:

ans3(A,B) :− f(A, ?C), ind(?C,B)

This rule generates, among others, two views that have the
same subgoals as V1 and V2, but in which the intermediary
stop is an input variable, too. Hence these views, denoted W1

and W2, will have one output and two inputs, their access
pattern being (o, i, i).

Consider the set of views V = {V1, V2, U,W1,W2}, which
can all be mapped into chaseC(Q). By evaluating them on
the body of chaseC(Q), we obtain the intermediary CRC CV(Q):

R(A,B) :− V oi1 (A,B), V oi2 (A,B), Uo(B),

W oii
1 (A,C,B),W oii

2 (A,C,B)

which is not executable since no value can be assigned to the
C input variable. However, by computing ans(CRC CV(Q)),



we eliminate the last two goals and reorder the rewriting,
obtaining the ECRC CV(Q):

R(A,B) :− Uo(B), V oi1 (A,B), V oi2 (A,B)

which we know is indeed an executable rewriting of Q.

Testing expressibility and support. Similarly to the
case without access patterns, we capture the usefulness of a
view in the executable rewriting candidate by a descriptor,
which takes also into account parameters and the access pat-
terns they impose. Once the set of descriptors is obtained,
checking expressibility amounts to checking if one of them
denotes a view which becomes equivalent to Q after replac-
ing input variables by constants. For testing support, we
first construct the partial rewriting candidate, as described
in Section 5. Since this candidate may not be executable, we
need to compute its answerable part, which we call the ex-
ecutable partial rewriting candidate. Finally, we check as in
Corollary 5.1 whether this candidate is equivalent to Q un-
der the dependencies, starting from the corresponding view
fragments.

Finding descriptors. Since now we need to describe
also the role of view goals in the answerable part of the
rewriting candidate, we enrich the descriptor definition by
taking into account input variables. More precisely, (a) in-
put variables are treated as head variables, and (b) we add
the corresponding access patterns to each descriptor, thus
discriminating among views which are similar according to
Definition 5.2 if they have distinct access patterns. We omit
the formal definition and illustrate these changes on the set-
ting of Example C.2:

Example C.3. The descriptor for the view V oi1 has, be-
sides the components given in Example 5.2, the access pat-
tern α1 = (o, i). Similarly, the descriptor for the view W oii

1

has the components

E1 = [f(Z1, Z2), f(Z2, Z3), t(Z3, “Paris”)]

p1(t1) = ans(A,C,B)

fr1 = {A : Z1, C : Z2, B : Z3}
α2 = (o, i, i)

One difficulty in extending descriptors in this way comes
from the fact that there may be no bound on the number of
input variables of generated views, leading to an unbounded
number of descriptors and excluding any rewriting approach
based on descriptors. However, we know from [22] that, in
the absence of constraints, if a rewriting using views with
binding patterns exists, then one with at most n (the number
of variables of Q) distinct variables exists. This can in fact
be extended to the case with constraints, showing that if a
rewriting with a finite set of views exists, then there is also
one in which the view atoms have at most n input variables,
n being the number of variables of chaseC(Q). The intuition
for this is that if a view with more than n parameters appears
in a rewriting, then for sure some of those parameters will be
bound to the same value. Hence it is sufficient to consider
only descriptors with at most n inputs. Moreover, it was
shown in previous work [9], that if the constraints C are
weakly acyclic, n is upper-bounded by a polynomial in the
size of Q whose largest exponent depends only on C.

Therefore, the procedure findDescriptors can easily be
extended to take parameters into account. The bottom-
up step will infer descriptors in which the binding pattern
component may contain up to n distinct input variables.

The following theorem summarizes the results of this sec-
tion:

Theorem C.1. If C is weakly acyclic, the following hold:

• Procedure findDescriptors extended with parameters
outputs all pairwise dissimilar descriptors and is guar-
anteed to terminate in time exponential in the sizes of
P, C and Q.

• Procedure testSupport extended with parameters is a
sound algorithm for checking support and runs in time
exponential in the sizes of P, C and Q. It becomes a
complete decision procedure if P is a C-local program
generating C-independent views.

D. PROOFS
Proof: (Theorem 3.1) Given Q, P and C, we construct

a new query Q′, program P ′ and set of dependencies C′, such
that Q is supported by P under C iff Q′ is expressible by P ′
under C′.

The reduction starts from the following result, which gen-
eralizes a result of [13] to the presence of dependencies:

Lemma D.1. Let C be a weakly acyclic set of embedded
dependencies. Then SuppCP(Q) holds iff there is a rewriting
R of Q under C using views generated by P, where R has no
more variables than chaseC(Q).

It was shown in prior work [7] that, if C is weakly acyclic,
then chaseC(Q) contains v variables, where v is upper-bounded
by a polynomial in the number of goals in Q and exponen-
tial in the maximum arity of a relation appearing in the
conclusion of a dependency in C.

From this, we will build in PTIME in the size of chaseC(Q)
and P a new program P ′ that basically enumerates all pos-
sible conjunctions of expansions of P.

For this proof, it helps to consider Q and conjunctions
of expansions as rectified. More precisely, no constants are
allowed in predicate subgoals, and no variable appears twice
in subgoals. Instead, joins are made explicit by subgoals
equals(X,Y ), and selections with a constant c by subgoals
equals(X, c). Note that we can pass from any conjunctive
query to its rectified version and vice-versa in linear time.

Given Q, denote with aQ the arity of Q (the number of
its distinguished variables). Assume w.l.o.g. that the dis-
tinguished predicate of P is ans, of arity aP . We add a new
IDB predicate ans′, as well as a new unary EDB predicate
D.

We build the following program, of distinguished predicate



ans′:

ans′(V1, . . . , VaQ) :− pick(V1, X1, . . . , Xv),

pick(V2, X1, . . . , Xv), . . .

pick(VaQ , X1, . . . , Xv),

temp(X1, . . . , Xv)

temp(X1, . . . , Xv) :− D(X1), . . . , D(Xv)

temp(X1, . . . , Xv) :− ans(Y1, Y2, . . . , YaP ),

pick(Y1, X1, . . . , Xv),

pick(Y2, X1, . . . , Xv), . . .

pick(YaP , X1, . . . , Xv),

temp(X1, . . . , Xv)

pick(V,X1, . . . , Xv) :− equals(V,X1),

D(V ), D(X1), . . . , D(Xv)

pick(V,X1, . . . , Xv) :− equals(V,X2),

D(V ), D(X1), . . . , D(Xv)

...

pick(V,X1, . . . , Xv) :− equals(V,Xv),

D(V ), D(X1), . . . , D(Xv)

+

modified rules of P with D atoms for all variables

The rules of P appear in P ′ modified as follows. Each rule
of P of the form

headi(X̄i) :− bodyi(X̄i, Ȳi)

is transformed into a rule

headi(X̄i) :− bodyi(X̄i, Ȳi),

D(X1), . . . , D(Xni), D(Y1), . . . , D(Ymi)

The rules added in addition to those of P have the task
of expressing all possible conjunctive queries with aQ head
variables and at most v variables in total, formulated against
the distinguished goal of P, ans. The ans subgoals are then
expanded into views generated by P (plus D subgoals), due
to the inclusion of the (modified) rules of P into P ′.

Note that the temp subgoal lists the pool of v variables the
expansions of P ′ will use. Each temp subgoal expands into
arbitrarily many ans subgoals which will build the body of
the rewriting. The variables appearing in the head ans’ and
in the various ans subgoals in the body are each associated
with pick subgoals. The pick subgoal has v possible expan-
sions, each having the role of picking one of the v variables
in the pool to equate with the variable in its first argument.
In this way, every assignment of variables from the pool to
variables of (the head and body of) the conjunctive query
over ans subgoals is realizable by some expansion of the pick
subgoals.

The D predicate is introduced for technical purposes, to
avoid generating unsafe Datalog rules for the pick goal. Its
effect is that each view generated by P ′ has a D subgoal for
each of its variables. This does not influence expressibility
as long as we add such subgoals for all variables appearing
in the query and in the dependencies. Indeed, if Q has the
form

Q(Z1, . . . , ZaQ) :− body(Z1, . . . , ZvQ)

with body a conjunction of subgoals, we build a new boolean
query

Q′(Z1, . . . , ZaQ) :− body(Z1, . . . , ZvQ),

D(Z1), . . . , D(ZvQ)

Finally, we construct a new set of dependencies C′ by
adding in the conclusion of each dependency σ from C the
predicate D(X) for every variable X appearing in σ.

Notice that C′ and Q′ are obtained in linear time from
C and Q, respectively. P ′ is obtained in PTIME from P
and v, where the latter is polynomial in the size of Q but
exponential in the maximum arity of a relation appearing in
the conclusion of some dependency from C.

It is easy to show that SuppCP(Q) holds if and only if

ExprC
′
P′(Q

′) does.
Proof: (Theorem 3.2) Given Q,P and C, we construct

a boolean query Q′′, boolean program P ′′ and set of depen-
dencies C′′, such that Q is expressible by P under C iff Q′′

is supported by P ′′ under C′′.
For presentation simplicity, we first show a first-cut solu-

tion which works only if the query graph is connected, then
we explain how the reduction can be adapted to arbitrary
queries.

Denote with aQ the arity of Q and assume w.l.o.g. that
Q has the form

Q(Z1, . . . , ZaQ) :− body(Z1, . . . , ZvQ)

with body a conjunction of subgoals and vQ ≥ aQ the total
number of variables appearing in Q. We build the boolean
query

Q′() :− head(Z1, . . . , ZaQ), body(Z1, . . . , ZvQ)

using a fresh EDB relation head of arity aQ.
Assume w.l.o.g. that the distinguished IDB of P is ans.

Notice that, for Q to be expressible by P, ans must have the
same arity as Q. P ′ is constructed by adding to the rules of
P a new rule defining a fresh, boolean IDB predicate ans’:

ans′() :− ans(X1, . . . , XaQ), head(X1, . . . , XaQ).

The distinguished IDB predicate of P ′ is ans’.
Note that the views generated by P ′ are in one-to-one cor-

respondence to those generated by P: any view V ′ generated
by P ′ simply extends the body of some view V generated
by P with a head subgoal containing the head variables of
V . Q is equivalent to V if and only if Q′ is equivalent to
the corresponding view V ′: the head subgoals appearing in
both Q′ and V ′ ensure the desired correspondence between
the distinguished variables of Q and those of V . We have
thus proven

Claim 1. ExprCP′(Q
′) iff ExprCP(Q).

Also note that, since each view generated by P ′ is boolean,
any rewriting using such views is really a Cartesian product
thereof. We therefore make the following claim:

Claim 2. Consider a boolean query Q′′ and the set of
embedded dependencies C′′. If

(a) Q′′ performs no Cartesian products (i.e. if its hyper-
graph [1] is connected), and



(b) all constraints in C′′ have premises with connected hy-
pergraph,

then Q′′ is equivalent under C′′ to some boolean conjunctive
query R iff it is equivalent under C′′ to a connected subquery
of R. �

Proof of Claim 2. The “if” direction is immediate, we
prove the “only if” direction next.

Let Q′′ be connected, and R() :− V1(), V2(), where the
hypergraphs of V1 and V2 are disjoint.

Assume toward a contradiction that V1 6vC′′ V2 and V2 6vC′′
V1. Then there must exist two databases, DB1, DB2, with
disjoint active domains, such that both DB1, DB2 satisfy
C′′, and such that V1(DB1) = true, V2(DB1) = false,
V1(DB2) = false and V2(DB2) = true. Since Q′′ is equiv-
alent to R under C′′, we obtain that Q(DB1) = Q(DB2) =
false.

Let DB3 be the database obtained by unioning the two:
DB3 := DB1 ∪DB2.

We claim that DB3 satisfies C′′ as well: the components
DB1, DB2 do so by hypothesis, and their disjoint union
cannot violate any constraint in C′′ because all constraint
premises are connected and thus cannot match across the
databases.

Note that Q′′(DB3) = false, as Q′′ has no match into
any of DB1, DB2, and no match across them because it
is connected. Also note that R(DB3) = true, as V1 and
V2 have a match against the sub-databases DB1 and DB2,
respectively.

We have thus exhibited a database DB3 |= C′′ such that
R(DB3) = true, but Q′′(DB3) = false, contradicting the
equivalence of Q to R under C′′. Therefore, either of V1, V2

must be contained in the other under C′′, so R can be min-
imized under C′′ to just one component. The reasoning ex-
tends to arbitrarily many components by induction.
End of proof of Claim 2.

By Claim 2, we have that, under restrictions (a) and (b),
all rewritings of Q′ under C using views generated by P ′
contain a single view goal or can be minimized to a single
view goal. This implies that ExprCP′(Q

′) holds if and only
if SuppCP′(Q

′) does. Considering also Claim 1, we obtain
SuppCP′(Q

′) iff ExprCP′(Q
′) iff ExprCP(Q).

We now refine the reduction, lifting restrictions (a) and
(b). To this end, we obtain from Q′,P ′ and C, Q′′,P ′′ and

C” such that ExprCP(Q) holds iff ExprC
′′
P′′(Q

′′) does, and
such that Q′′ and the premises of all constraints in C′′ are
connected. Then Claim 2 will apply to Q′′ and C′′, complet-
ing the proof.

The head of Q′′ is the same as that of Q′. The distin-
guished IDB of P ′′ is the same as that of P ′. Every remain-
ing goal and subgoal of Q′ and P ′, say G(X̄) of arity a, is
extended to an a + 1-ary goal G(X̄, U), where U is a fresh
variable shared across all goals.

We replace in the same way all subgoals appearing in de-
pendencies in C: for every σ ∈ C of form

∀X̄ premise(X̄)→ ∃Ȳ conclusion(X̄, Ȳ ),

we construct σ′′ of form

∀X̄∀U premise′′(X̄, U)→ ∃Ȳ conclusion′′(X̄, Ȳ , U),

where premise” and conclusion” are obtained from premise
and conclusion, respectively, by extending the goals with the

new variable U , as done above for Q′ and P ′.

Claim 3. ExprCP′(Q
′) holds iff ExprC

′′
P′′(Q

′′) does.

The theorem follows from Claims 1, 3 and 2.
Proof: (Theorem 4.1) Let V be the view generated by

P, witnessing ExprCP(Q), i.e.

Q ≡C V (5)

Because C is weakly acyclic, the chase with it is guaranteed
to terminate, so (5) is equivalent to

chaseC(Q) ≡ chaseC(V ) (6)

Since P is C-local, there is W generated by chaseC(P) with

chaseC(V ) ≡W. (7)

By (7) and (6) and by transitivity of ≡ relation, we obtain

chase(Q) ≡W (8)

and thus W witnesses Expr∅chaseC(P)(chaseC(Q)).
The opposite direction is analogous.

Proof: (Theorem 4.2)
Assume w.l.o.g. that SuppCP(Q) is witnessed by the views
V = {V1, . . . , Vn} generated by P and the rewriting R in
terms of V. By C-locality of P, there are W1, . . . ,Wn gen-
erated by chaseC(P) such that Wi ≡ chaseC(Vi) for every
1 ≤ i ≤ n. We therefore have:

Q ≡C expandV(R), (9)

which is equivalent (due to weak acyclicity of C) to

chaseC(Q) ≡ chaseC(expandV(R)), (10)

By C-independence of Vthere must be another query R′ over
the view schema such that

chaseC(expandV(R′)) ≡ expand{chaseC(V1),...,chaseC(Vn)}(R
′)

(11)
and

expandV(R′) ≡C expandV(R) (12)

hence again by weak acyclicity of C,

chaseC(expandV(R′)) ≡ chaseC(expandV(R)) ≡ chaseC(Q)
(13)

From (11) and (13), we infer:

chaseC(Q) ≡ expand{chaseC(V1),...,chaseC(Vn)}(R
′), (14)

which is equivalent to

chaseC(Q) ≡ expand{W1,...,Wn}(R
′) (15)

because the semantics of a query composition is preserved
under replacement with equivalent queries.

But then {W1, . . . ,Wn} and R′ witness

Supp∅chaseC(P)(chaseC(Q)).

Proof: (Theorem 4.3)
Let α be a conjunctive query whose body contains both

EDB and IDB relations of P. We say that β is obtained in
one expansion step with rule r, denoted

α
r

=⇒ β,



iff β is obtained by expanding with r one of α’s subgoals
that uses the IDB relation defined by r. Given a sequence
of expansion steps

ans(X̄) = α0
r1=⇒ α1 . . .

rn=⇒ αn

where each ri is a rule of P and ans is a distinguished IDB
of P, we call each αi a partial expansion of P.

To prove the theorem, we claim more specifically that the
result of chasing any partial expansion α of P can be alter-
natively obtained by replacing the rules in the derivation of
α with their chased form (these are rules of chaseC(P)):

Claim 1. For every n, and every sequence of expansion
steps

ans(X̄) = α0
r1=⇒ α1 . . .

rn=⇒ αn,

there is a sequence of expansion steps

ans(X̄) = β0
chaseC(r1)

=⇒ β1 . . .
chaseC(rn)

=⇒ βn

such that for every 0 ≤ i ≤ n, βi is isomorphic to chaseC(αi).

Notice that, if the claim holds, then any partial expansion
αn of P can be obtained (up to isomorphism) as an expan-
sion βn of chaseC(P). This immediately gives C-locality for
the particular case of full expansions (which are the gener-
ated views): to find the viewW generated by chaseC(P) that
corresponds to view V generated by P, retrace the deriva-
tion of V by P using the chased rules instead.

Proof of Claim 1. The claim is proven by induction on
n, using for the induction step the observation that INDs
have only one atom in the premise, so the EDB goals in
αi cannot cooperate with the new EDB goals introduced in
αi+1 to enable a chase step. The chase of αi+1 therefore
progresses in isolation on the goals appearing in αi, and on
the new goals introduced by the expansion step. Its effect is
therefore alternatively achievable by expanding chaseC(αi)
in one step using the chased rule chaseC(ri+1).
End of proof of Claim 1.

C-independence of the views follows from essentially the
same observation about INDs, which actually gives a stronger
result:

Claim 2. Any set V of views (regardless of whether gener-
ated by some program or not) is C-independent if C consists
only of INDs.

Indeed, any join of renamed copies of view bodies (corre-
sponding to the expansion of some rewriting), when chased,
gives the same result as chasing the view bodies in isola-
tion and then joining them. This is because the single-atom
premises of the INDs preclude the interaction (w.r.t. en-
abling chase steps) of goals from distinct view bodies.

Proof: (Theorem 4.4) C-locality follows from the fact
that Claim 1 in the proof of Theorem 4.3 holds also for
C = I ∪ K, where I is a set of INDs, and K a set of key
constraints.

The proof is similar, using for the induction step a few
additional observations about the chase with key constraints
and INDs.

A first observation is that the chase of any query α with
C yields a result that is equivalent to that obtained by first

chasing with I, then with K:

chaseC(α) ≡ chaseK(chaseI(α)),

as the key constraints from K never introduce new variables
or new relational atoms.

A second observation is the following. Since P is key-safe
for C, this means by definition that chaseI(P) is key-safe for
K. This in turn implies that the result of chaseK(chaseI(αi))
can be alternatively obtained by expanding chaseK(chaseI(αi−1))
with chaseC(ri). This is because the chase steps with INDs,
as shown in the proof of Theorem 4.3, are triggered by sin-
gle subgoals and not by the interaction of the EDB goals
in αi−1 and the new goals in αi. The same isolation prop-
erty holds for the chase steps with key constraints. Key
constraints (when expressed as dependencies) do have two
goals in the premise, but due to the key safety restriction
(see condition 1 in the definition of key-safety), the image of
the premise can never span the EDB goals in αi−1 and the
new EDB goals in αi.

C-independence follows similarly. Say that the set of gen-
erated views is V, and CR is a canonical rewriting of query
Q using V.

The way in which views are joined in CR depends on Q,
and therefore CR could conceivably contain two view sub-
goals both of which output the key of some relation into the
same variables X̄. But then by construction of the canonical
rewriting, Q itself joins two R-goals on the key, R(X̄, Ȳ ) and
R(X̄, Ū). But then the key constraint applies when chasing
Q (and this is a step in constructing the canonical rewrit-
ing), so Ū must be the same variables as Ȳ in chaseC(Q),
and therefore in CR. Since by key-safety of P, all views
that output keys must also output the non-key attributes,
the equality of Ȳ and Ū is guaranteed in the expansion of
CR, and the chase step of CR with R’s key constraint does
not apply. In summary, we obtain that

chaseC(expandV(CR)) =

chaseK(chaseI(expandchaseC(V)(CR))) = (16)

chaseI(expandchaseC(V)(CR)) = (17)

expandchaseI(chaseC(V))(CR) = (18)

expandchaseC(V)(CR). (19)

Here, (18) follows from Claim 2 in the proof of Theorem 4.3,
since any set of views, including chaseC(V) is I-independent.
(19) follows from the fact that chaseC(V) yields views on
which no further chase step with any constraint in C applies,
in particular with the constraints in I ⊆ C.

Proof: (Theorem 5.1) (1.) follows from Lemma 5.2(b)
and Corollary 5.1.

(2.) follows from Lemma 5.2(a) and Corollary 5.1, notic-
ing that the containment mapping cfr can be computed in
EXPTIME in the size of Q and in PTIME in the size of the
result of chasing the partial rewriting candidate. In turn, the
size of the chase result is exponential in the maximum ar-
ity of a constraint in C and polynomial in that of the partial
rewriting candidate [9]. The size of the partial rewriting can-
didate is given by the maximum number of distinct descrip-
tors that can be built, which by Lemma 5.2(a) is worst-case
exponential in the size of Q, C, and the maximum arity of a
predicate in N (which remains unchanged during normaliza-
tion, so it coincides with the maximum arity of a predicate
in P). Notice from the proof of Lemma 5.2 that only the



maximum arity a of the program N , and the size s of its
rules may appear in the exponent. The number of rules in
N does not appear in the exponent. It is easy to check that
the normalization process affects only the number of rules
(which blows it up exponentially from P toN ) and preserves
the values a and s from P.

Proof: (Lemma 5.2) (a) Notice that the initializa-
tion stage and each individual rule step terminate, since the
chase terminates when C is weakly acyclic. The set D must
saturate, as there are only finitely many dissimilar descrip-
tors. Their number is upper bounded by an exponential in
the maximum arity of a predicate in P and the size of Q,
which bounds the number of rule step applications. At ev-
ery rule step, finding that the rule applies involves matching
it against the set of descriptors, which is exponential in the
rule size. By Theorem A.1, the ensuing chase terminates in
time exponential in the size of C and polynomial in the size
of the descriptor.

(b) An easy proof by induction on the structure of the
derivation tree of each descriptor.

Proof: (Theorem 5.3) The NP lower bound follows
from a reduction from the problem of checking conjunctive
query equivalence (NP-complete by [4]), via the problem of
checking expressibility. Given conjunctive queries Q1, Q2,
we have that Q1 ≡ Q2 iff Q1 is expressible by the single-rule
Datalog program Q2. The latter reduces in PTIME to the
problem of support by Theorem 3.2.

The EXPTIME lower bound is obtained by a reduction
from the problem of checking containment of a query Q in a
Datalog program P, known to be PTIME in the size ofQ and
EXPTIME-complete in the size of P [23]. First, we carry out
a reduction to the problem of checking expressibility, then
compose it with the PTIME reduction from expressibility to
support given by Theorem 3.2:

Given query Q(X̄) :− body(X̄, Ȳ ) and program P of dis-
tinguished predicate ans (necessarily of same arity as the
query), we construct program P ′ which includes all rules of
P, the additional rule ans′(Z̄) :− ans(Z̄), body(Z̄, Ȳ ) and
pick ans′ as the new distinguished predicate of P ′. Notice
that P ′ generates all intersections of Q with views gener-
ated by P, whence we have that Q is contained in P iff
Expr∅P′(Q) holds.

Proof: (Theorem 6.1) The undecidability of support
follows from the undecidability of expressibility and the re-
duction of Theorem 3.2. As for the undecidability of express-
ibility, it follows from a reduction from query containment
under embedded dependencies (known to be undecidable [1])
to support of a query by a non-recursive Datalog program
which expresses a single view.

Proof: (Theorem 6.2) The proof is by reduction from
the Post Correspondence Problem (PCP), known to be un-
decidable [25, 1]. Let {vi}1≤i≤n, {wi}1≤i≤n be the PCP
instance, where vi, wi are words over alphabet {a, b}. This
is a “yes” instance iff there exists a natural number l and a
sequence of integers σ ∈ {1, . . . , n}l such that

vσ(1) ◦ vσ(2) ◦ . . . ◦ vσ(l) = wσ(1) ◦ wσ(2) ◦ . . . ◦ wσ(l)

where σ(i) denotes the ith integer in the sequence, and ◦
is the word concatenation operator. Any such σ is called a
solution of the PCP problem. Any sequence σ (regardless
of whether it is a solution) determines a word obtained by
concatenating the corresponding w-words, and one obtained
by concatenating the corresponding v-words.

We construct a monadic, linear (recursive) Datalog pro-
gram P, the singleton set C comprising a key constraint,
and a query Q such that the PCP problem has a solution iff
ExprCP(Q).

We use only one EDB relation e(X, l, Y ), intended to de-
note a directed edge with source X, target Y and label l.
The (boolean) query Q is the following, where all lower-case
letters (e.g. l, r, a, b, c, d) are constants, and upper-case let-
ters are variables:

Q() :− e(A, l, B), e(A, r, C), e(D, c,A),

e(D, a,D), e(D, b,D), e(D, d,D).

The program P is constructed as follows (again, lower-case
letters are constants and upper-case letters are variables). P
consists of

• the rule V () :− C(X);

• the rule

Cr(X) :− e(X, d, Y ),

e(X, c,X ′), e(X ′, l, Z),

e(Y, c, Y ′), e(Y ′, r, T ),

e(U, a, U), e(U, b, U), e(U, d, U),

e(U, c,X ′);

• for every 1 ≤ i ≤ n, assuming w.l.o.g. that
vi = αi1 . . . α

i
ki

and wi = βi1 . . . β
i
li

, the rules

C(X) :− e(X,αi1, X1), . . . , e(Xki−1, α
i
ki
, Xki),

e(X,βi1, Y1), . . . , e(Yli−1, β
i
li , Yli),

e(Xki , d, Yli), Cr(Xki);

Cr(X) :− e(X, d, Y ),

e(X,αi1, X1), . . . , e(Xki−1, α
i
ki
, Xki),

e(Y, βi1, Y1), . . . , e(Yli−1, β
i
li , Yli),

e(Xki , d, Yli), Cr(Xki);

C comprises just one key constraint, stating that the source
and label of an edge determine its target:

∀X,L, Y, Y ′ e(X,L, Y ) ∧ e(X,L, Y ′)→ Y = Y ′.

P is designed to generate, for every sequence σ of inte-
gers from {1, . . . , n}, an expansion which encodes the two
concatenations of v-words and w-words determined by σ. A
word is encoded by a chain of edges, each edge label encod-
ing a character in the word. The expansion thus contains
two chains of words (one for the vi’s, one for the wi’s), each
of them ended by a c-labeled edge followed by an l-edge, re-
spectively an r-edge. The chains start from the same node
(according to the C rule), and continue in parallel, chain-
ing together pairs of subchains which correspond to pairs
of words (vi, wi) for some i (this is the role of the repeated
expansions of IDB Cr according to the rule for i). The ex-
pansion is ended by a subgraph given by the expansion of
the first rule of Cr, whose role will be explained shortly.

To enable mappings from the arbitrarily long chains of the
expansions into the query, Q contains cycles into which every
pair of chains can map. Indeed, it is easy to see that any
expansion of P has a containment mapping into Q. Since
the cycles in Q cannot map into the straight chains in the



expansions of P, the v-chain is ended by the cycles generated
by the first rule of Cr.

We therefore have that ExprCP(Q) holds iff P expresses
some view V such that V vC Q (since the opposite con-
tainment holds for every expansion, even in the absence of
constraints). Because C contains only a key constraint, the
chase with it is guaranteed to terminate, and V vC Q holds
iff chaseC(V ) v Q [1].

Observe that successive expansions of the Cr IDB chain
only the v-words together; the vi-words in the expansion
of each rule start from variable X which is also the end
of the previous vj-word in the concatenation, but the wi-
words start from the fresh variable Y which is not connected
to the end Ykj of the previous wj-word. Connecting the
successive w-words explicitly would require IDB Cr to be
binary, carrying both ends of v and w-words. To use only
monadic rules, we rely instead on the key constraint: the
variable beginning any w-word and the variable ending the
previous w-word in the chain are both targets of d-edges
emanating from the junction of the previous and current v-
word. The chase with the key constraint will “glue” the two
chain segments corresponding to the w-words.

The intuition behind the construction is that, if we log
for each one-step expansion of IDB Cr the i corresponding
to the rule used, the obtained sequence of integers is the
candidate for the solution of the PCP problem. All possible
sequences of one-step expansions thus generate all possible
solution candidates.

The theorem follows from the following claim, stating that
a candidate solution is verified as a true solution only by
finding a containment mapping from Q into the chase result
of the corresponding expansion:

Claim. There is some view V generated by P such that

chaseC(V ) v Q

iff V encodes a solution of the PCP problem. �
Proof. Notice that the chase of any expansion E with the

key constraint can only start at the common origin of the
v- and w-chains, and can only continue as long as the labels
in the chains situated at the same distance from the origin
coincide. The chains are determined by a solution to the
PCP problem if and only if they match on their entire length,
which is equivalent to the chase proceeding to collapse the
chains all the way to their ends. This is detected by the
fact that the l- and the r-edges eventually share the same
source, which in turn is the only way in which the query
pattern can map into the chase result of E.
End of proof of claim.

Proof: (Theorem 6.3) We use a reduction from PCP,
adapting the construction from the proof of Theorem 6.2.
The main difficulty here is to control that the two chains
of v- and w-words are determined by the same sequence of
integers, and that the chains match each other in length
and labels. This was achieved in the proof of Theorem 6.2
by chasing with the key constraint.

We introduce fresh edge labels, 1, . . . , n, for n being the
number of PCP words. We also use the labels sync, end,
up, down.

We construct a monadic, (recursive) Datalog program P,
the set C comprising three families of TGDs, and a query Q
such that the PCP problem has a solution iff ExprCP(Q).

The Datalog program P contains:

• a rule for the distinguished IDB predicate ans: ans() :
− C(X);

• for every 1 ≤ i ≤ n, assuming w.l.o.g. that
vi = αi1 . . . α

i
ki

and wi = βi1 . . . β
i
li

, the rules

C(X) :− e(X, sync,X),

e(X,αi1, X1), . . . , e(Xki−1, α
i
ki
, Xki),

e(X,βi1, Y1), . . . , e(Yli−1, β
i
li , Yli),

e(X, i,Xki), e(X, i, Yli),

Cv(Xki), Cw(Yli);

Cv(X) :− e(X,αi1, X1), . . . , e(Xki−1, α
i
ki
, Xki),

e(X, i,Xki), Cv(Xki);

Cw(X) :− e(X,βi1, Y1), . . . , e(Y ′li−1, β
i
li , Yli),

e(X, i, Yli), Cw(Yli);

• the rules

Cv(X) : − e(X, end, Y ), e(Y, up, Z)

Cw(X) : − e(X, end, Y ), e(Y, down,Z)

e(X, a,X), e(X, b,X),

e(X, 1, X), . . . , e(X,n,X),

e(X, sync,X)

The program expands into chains that are not necessarily
synchronized. We control synchronization by constraints.
More precisely, we use TGDs to control that the two chains
are determined by the same sequence of integers, and to
control that the two chains match. C comprises:

• for each 1 ≤ i ≤ n, the full TGD

∀X,Y, Z, T (20)

e(X, sync, Y ) ∧ e(X, i, Z) ∧ e(Y, i, T )→ e(Z, sync, T )

• for each l, l′ ∈ {a, b}, the full TGD

∀X,Y, Z, T (21)

e(X, l, Y ), e(X, l, Z), e(Y, l′, T )→ e(Z, l′, T )

• for each l ∈ {a, b}, the full TGD

∀X,Y, Z, T, U, V,W (22)

e(X, l, Y ), e(X, l, Z), e(Z, end, T ),

e(Y, end, V ), e(T, up, U), e(V, down,W ),

e(Y, sync, Z)→ e(V, up, U)

Intuitively, an expansion has an end-edge to signal the
end of each chain, then an up-edge to signal the end of the
chain of v-words, and a down-edge to signal the end of the
chain of w-words.

The sync edges are added by the chase of the expansion
with the family of TGDs (20), to mark the pairs of nodes
on the two chains which represent chain prefixes determined
by the same sequence of integers from {1, . . . , n}.

Since the two chains of the expansion have a common ori-
gin (due to the expansion of IDB C), the chase with the



family of TGDs (21) can only start at the origin, and con-
tinues down the chains only as far as the labels of the chain
prefixes match. The two chains match entirely if and only
if the chase with (21) stops at the chain ends (marked by
end-edges).

If the chase with both families of TGDs (20) and (21)
goes all the way to the end of the two chains, then both
the sequence of integers and the sequence of labels coincide,
hence the chains encode a PCP solution. This is detected
by the family of TGDs (22), which apply only in that case,
recording this fact by copying the up-edge from the end of
the v-chain to the end of the w-chain, thus creating a node
with both up and down edges emanating from it.

This is precisely what the query checks for:

Q : q() :− e(T, a, T ), e(T, b, T )

e(T, 1, T ), . . . , e(T, n, T ),

e(T, sync, T ),

e(T, end,X), e(X,up, Y ), e(X, down,Z)

Similar to proof of Theorem 6.2, in order to enable map-
pings from the arbitrarily long chains of the expansions into
the query, Q contains cycles into which every pair of chains
can map. Indeed, it is easy to see that any expansion of P
has a containment mapping into Q. Since the cycles in Q
cannot map into the straight chains in the expansions of P,
the w-chain is ended by the cycles generated by the second
rule of Cw.

It is easy to verify that Q can be mapped into the result
of chasing some expansion of P with C iff the expansion
encodes a PCP solution.

E. INTER-REDUCIBILITY PRESERVES DE-
CIDABILITY RESTRICTIONS

Proposition E.1. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local Datalog pro-
gram. Let Q′, C′ and P ′ be obtained, in PTIME, as in the
reduction used in the proof of Theorem 3.1 such that we have

SuppCP(Q) iff ExprC
′

P′(Q
′). Then (i) P ′ is C′-local and (ii)

if any finite set of views generated by P is C-independent,
then the views generated by P ′ are C′-independent.

Please also note that, as in Theorem 4.3, if C is a weakly
acyclic set of inclusion dependencies, then so is C′, hence P ′
is also C′-local and the views it expresses are C′-independent.

Proof: In the following, for a query Q, we will denote
by bodyQ the conjunction of atoms in the body of Q.

(i) Any view V ′ generated by P ′ is of the form

ans′(Z1, . . . Zm) :− equals(Z1, Xi1), . . . , equals(Zm, Xim),

D(X1), . . . , D(Xm),

bodyV1
(Y

(1)
1 , . . . , Y

(1)
k1
, U

(1)
1 , . . . , U

(1)
l1

),

equals(Y
(1)
1 , X

(1)
j1 ), . . . , equals(Y

(1)
k1
, X

(1)
jk1

),

D(Y
(1)
1 ), . . . , D(Y

(1)
k1

), D(U
(1)
1 ), . . . , D(U

(1)
l1

),

. . . bodyVn
(Y

(n)
1 , . . . , Y

(n)
kn

, U
(n)
1 , . . . , U

(n)
ln

),

equals(Y
(n)
1 , X

(n)
j1 ), . . . , equals(Y

(n)
kn

, X
(n)
jkn

),

D(Y
(n)
1 ), . . . , D(Y

(n)
kn

), D(U
(n)
1 ), . . . , D(U

(n)
ln

)

where Vi(Y
(i)
1 , . . . , Y

(i)
ki

) are views generated by P. Let us
write it shortly

ans′(Z̄) :− extra(Z̄, X̄, Ȳ , Ū), bodyV1
(Ȳ1, Ū1), . . . bodyVn

(Ȳn, Ūn)

where Ȳ and Ū are the union of all Ȳi and all Ūi variables,
respectively. Since there are no D atoms in C′, we have that
chaseC′(V

′) is obtained by chasing only bodyVi
, i.e.

extra(Z̄, X̄, Ȳ , Ū), chaseC′(bodyV1
(Ȳ1, Ū1)), . . . ,

chaseC′(bodyVn
(Ȳn, Ūn))

which is of the form

extra(Z̄, X̄, Ȳ , Ū),

chaseC(bodyV1
(Ȳ1, Ū1)), D(F

(1)
1 ), . . . D(F (1)

p1 ), . . .

chaseC(bodyVn
(Ȳ1, Ū1)), D(F

(n)
1 ), . . . D(F (n)

pn
)

for some sets of variables F̄ (i) ⊂ Ūi ∪ Ȳi.
Since P is C-local, for each Vi, there is a view Wi generated

by chaseC(P) such that chaseC(Vi) ≡Wi. If we denote

w′i = bodyWi
(Ȳi, Ūi), D(F

(i)
1 ), . . . D(F (i)

pi
)

we have that

chaseC′(V
′) ≡ extra(Z̄, X̄, Ȳ , Ū), w′1(Ȳ1, Ū1), . . .

w′n(Ȳn, Ūn).

Hence chaseC′(V
′) is equivalent to a view W ′ generated

by chaseC′(P ′) because chase steps only apply on the rules
of P ′ obtained from the rules of P (by adding D atoms) and
all the w′i can be obtained by chasing the rules inherited
from P.

For the converse, we consider a view W ′ generated by
chaseC′(P ′). Using the same observation, W ′ has the sub-
goals from the bodies of n views W1, . . .Wn generated by
chaseC(P) (for some n ≥ 1) plus the ones in the conjunction
extra defined above and some other D atoms introduced by
the chase. As P is C-local, for each Wi there is a view Vi
generated by P such that chaseC(Vi) ≡ Wi. Reasoning in
the same manner as above, we can put all the Vi views to-
gether and obtain a view V ′ generated by chaseC′(P ′) such
that chaseC′(V

′) ≡W ′.
(ii) Consider n views V ′1 , . . . , V

′
n expressed by P ′. Each

V ′i is of the form

V ′i (Ȳi) :− V
(i)
1 (Ȳ

(i)
1 ), . . . , V

(i)
ki

(Ȳ
(i)
ki

), extrai(Z̄i, X̄i, Ȳi, Ūi)

where
Ski
j=1 Ȳ

(i)
ki

= Ȳi and extrai is a conjunction of D

and equals predicates, similar to extra from (i). Let ex-
tra be the conjunction of all the extrai and R be a query
over {V ′1 , . . . , V ′n}. Please note that the chase with C′ of

expand{V ′1 ,...,V ′n}
(R) will only apply to the bodies of the V

(i)
j

views generated by P. It follows that

chaseC′(expand{V ′1 ,...,V ′n}
(R))

is equivalent to a query having a body of the form

extra(Z̄, X̄, Ȳ , Ū), chaseC′
“

expand{V1,...,Vn}(conjP(Ȳ , Ū))
”
,

where extra is a conjunction of extrai subqueries and conjP
is a conjunction of views Vi generated by P.

Since C′ is obtained from C by adding D atoms in the
conclusions, the latter conjunction is equivalent to:



extra(Z̄, X̄, Ȳ , Ū), chaseC
`
expandV (conjP (Ȳ , Ū))

´
,
^
D(Fijk)

where the D(Fijk) subgoals are added by the conclusions

of dependencies from C′.
But we assumed the views generated by P to be C-independent.

Hence there is a query T ≡VC conjP (T outputs all the vari-
ables of conjP) such that

chaseC(expand{V1,...,Vn}(T )) ≡
expand{chaseC(V1),...,chaseC(Vn)}(T ). (23)

Let T ′ be the query obtained from T in the following way.
We replace every view atom Vi (from V) with a V ′j , (from
V ′) such that
• V ′j is constructed using only one expansion of the sec-

ond rule (from program P ′) for the temp IDB predicate,
such that the variables X̄ of the ans predicate are the
output variables of the Vi(X̄) atom;
• notice also that the equalities between pairs of output

variables of V ′j (X̄) are already satisfied in T because
those equalities are needed in order for conjP to map
into T .

From T ≡VC conjP , it follows that

chaseC(expandV(T )) ≡ chaseC(expandV(conjP)).

The mappings witnessing the latter equivalence can be ex-
tended to show that

chaseC′(expandV′(T
′)) ≡ chaseC′(expandV′(R)),

proving that R ≡V
′

C′ T
′. We can extend the mapping because

chasing with C′ instead of C only brings D goals that can
be inferred using bodies of views from V (there is no D goal
in the premise of a rule from C′). Hence expandV′(T

′) and
expandV′(R) will behave the same way during the chase,
since their subqueries based on V views, expandV(T ) and
conjP respectively, are equivalent. The rest of the subgoals
are D atoms coming from the expansions of the views from
V ′ (which are formed by bodies of views from V plus D
atoms).

From equivalence (23) we can also infer that

chaseC′(expand{V ′1 ,...,V ′n}
(T ′)) ≡

expand{chaseC′ (V ′1),...,chaseC′ (V
′
n)}(T

′)

because the D atoms, including those from the bodies of
V ′ views, are not involved in the chase and because chasing
with C′ is only different from chasing with C in that D atoms
are added. But, by construction of C′, the variables in these
D atoms are variables that already existed in (23) hence
the mappings witnessing (23) extend to the D atoms.

Since R ≡V
′
C′ T

′, we can conclude that the views generated
by P ′ are C′-independent.

Proposition E.2. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local Datalog pro-
gram. Let Q′′, C′′ and P ′′ be obtained, in PTIME, as in the
reduction used in the proof of Theorem 3.2 such that we have

ExprCP(Q) iff SuppC
′′
P′′(Q

′′). Then (i) P ′′ is C′′-local and (ii)
if every finite set of views generated by P is C-independent,
then the views generated by P ′′ are C′′-independent.

Proof: Notice that the constraints do not mention head
predicate used in the definition of Q′, hence the head atoms
are not involved in the chase.

Let V ′′ be a view generated by P ′′ of the form

V ′′() :− head(X̄), bodyP′′(X̄, Ȳ , U).

One can see that if we replace all EDB predicates of bodyP′′
with predicates that do not use the U variable, we obtain
the unfolding of a view V generated by P, whose body is a
conjunction bodyP(X̄, Ȳ ).

Under the assumption that P is C-local, for every view V
generated by P, there is a view W generated by chaseC(P)
such that chaseC(V ) ≡ W . We can prove by induction
on the length of the chase sequence that there is a termi-
nating chasing sequence for bodyP′′(X̄, Ȳ , U) similar to the
one for bodyP(X̄, Ȳ ) modulo the transformation of the EDB
predicates. Hence there is also a view W ′′ produced by
chaseC′′(P ′′) with chaseC′′(V

′′) ≡W ′′.
To conclude (i), we can show that, conversely, for each

view W ′′ generated by chaseC′′(P ′′) there is a correspond-
ing W generated by chaseC(P) and a V generated by P such
that W ≡ chaseC(V ) implies W ′′ ≡ chaseC′′(V

′′), where
body of V ′′ is formed by body of V and a head atom. For
that, we can use the same argument, namely the isomor-
phism between the two chase sequences.

To prove (ii), let R′′ be a query formulated in terms of
views V ′′. Let R′ be a query in terms of V, obtained from R′′

by removing the head predicates and the replacing the sub-
goals with corresponding subgoals on the original schema,
by removing the U variable. Since the views produced by
P are C-independent, there is a query R ≡CV R′ such that
chaseC(expandV(R)) ≡ expand{chaseC(V1),...}(R). Let then T
be the query obtained from R by introducing back all the
head atoms that were removed and by replacing the other
subgoals with predicates that have one more variable, U . By
extending the mappings that witness R ≡CV R′ to predicates
with the arity increased by one and to the head subgoals, we
can also show that T ≡CV R′′. We conclude by noticing that
chaseC′′(expandV′′(T )) ≡ expand{chaseC′′ (V ′′1 ),...}(T ) follows

from the similar property satisfied by R.

F. INTERCHANGEABILITY IS UNHELPFUL
UNDER DEPENDENCIES

The following example shows that under dependencies,
there are infinitely many equivalence classes of views with
respect to interchangeability. This precludes the reduction
described in [15] from the problem of support to that of
rewriting using finitely many views, as it involves focusing
on representatives of the equivalence classes.

Example F.1. We have a program P that produces unary
views as follows:

V (X) : − e(X, a, Y ), Cr(Y )

Cr(X) : − e(X, a, Y ), Cr(Y )

Cr(X) : − e(X, b, Y ), e(Y ′, b, Y ), e(Y ′, a, Y ′),

e(Y, up, Z)

Cr(X) : − e(X, b, Y ), e(Y ′, b, Y ), e(Y ′, a, Y ′),

e(Y, down,Z)

Expansions are chains of a-labeled edges ending with a b-
labeled edge and one of up or down.



Consider the query Q:

Q() : − e(D, a,D), e(D, b,A),

e(A, up,B), e(A, down,C)

The source obeys also one key constraint for each l ∈
{a, b}:

∀X,Y ′, Y ′′ e(X, l, Y ′), e(X, l, Y ′′) −→ Y ′ = Y ′′.

We write Vn for the expansion with n a-labeled edges and
ending with up. We write Un for the expansion with n a-
labeled edges and ending with down.

We can see that, for any n, the rewriting Rn defined as

Rn() :− Vn(X), Un(X)

is an equivalent rewriting of Q.
However, replacing in Rn the Vn goal with any other view

(Vi or Ui) would not yield another equivalent rewriting. So
each Vn (and each Un) is in its own equivalence class w.r.t.
interchangeability in rewritings for Q. There are therefore
infinitely many such equivalence classes.


