
Static Analysis of Active XML Systems

Serge Abiteboul∗
INRIA-Saclay & U. Paris Sud

France
www-rocq.inria.fr/~abitebou

Luc Segoufin
INRIA & LSV - ENS Cachan

France
www-rocq.inria.fr/~segoufin

Victor Vianu†

UC San Diego
USA

vianu@cs.ucsd.edu

ABSTRACT
Active XML is a high-level specification language tailored to data-
intensive, distributed, dynamic Web services. Active XML is based
on XML documents with embedded function calls. The state of a
document evolves depending on the result of internal function calls
(local computations) or external ones (interactions with users or
other services). Function calls return documents that may be ac-
tive, so may activate new subtasks. The focus of the paper is on the
verification of temporal properties of runs of Active XML systems,
specified in a tree-pattern based temporal logic, Tree-LTL, that al-
lows expressing a rich class of semantic properties of the applica-
tion. The main results establish the boundary of decidability and
the complexity of automatic verification of Tree-LTL properties.
Categories and Subject Descriptors: H.2.3 [Database Manage-
ment]: Languages – XML
General Terms: Reliability, Theory, Verification
Keywords: Active XML, temporal logic, automatic verification

1. INTRODUCTION
Data-intensive, distributed, dynamic applications are pervasive

on today’s Web. The reliability of such applications is often critical,
but their logical complexity makes them vulnerable to potentially
costly bugs. Classical automatic verification techniques operate on
finite-state abstractions that ignore the critical semantics associated
with data in such applications. The need to take into account data
semantics has spurred interest in studying static analysis tasks in
which data is explicitly present (see related work). In this paper,
we make a contribution in this direction by investigating automatic
verification in a model tightly integrating the XML and Web service
paradigms. Specifically, we consider Active XML, a high-level
specification language tailored to data-intensive Web applications,
and Tree-LTL, a tree-based temporal logic that can express a rich
class of temporal properties of such applications. We establish the
∗Work supported by the Agence Nationale de la Recherche under
grant Docflow, 06-MDCA-005.
†Work supported in part by the National Science Foundation under
grant number IIS-0415257.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

boundary of decidability and the complexity of automatic verifica-
tion in this setting. In particular, we isolate an important fragment
of Active XML (sufficient to describe a large class of applications)
for which the verification of temporal properties is decidable.

Active XML documents [2, 4] (AXML for short) are XML doc-
uments [23] with embedded function calls realized as Web service
calls [24]. In the spirit of [18, 21], a document is seen as a pro-
cess that evolves in time. A function call is seen as a request to
carry out a subtask whose result may lead to a change of state in
the document. An Active XML system specifies a set of interact-
ing AXML documents. Our goal is to analyze the behavior of such
systems, which is especially challenging because the presence of
data induces infinitely many states.

To illustrate the kind of applications we target, consider a mail
order processing system. The arrival of a new order corresponds
to the initiation of a new task. At each moment, the system is run-
ning a possibly large number of orders, initiated by different users.
Processing each order may involve various sub-tasks. For instance,
a credit check may be requested from a credit service, and its out-
come determines how the order proceeds. In our approach, the
entire mail order system, as well as each individual order, are seen
as AXML documents that evolve in time.

Our goal is to analyze the behavior of AXML systems, and in
particular to verify temporal properties of their runs. For instance,
one may want to verify whether some static property (e.g., all or-
dered products are available) and some dynamic property (e.g. an
order is never delivered before payment is received) always hold.
The language Tree-LTL allows to express a rich class of such prop-
erties.

A main contribution of the paper is to carefully design an appro-
priate restriction of AXML that is expressive enough to describe
meaningful applications, and can also serve as a convenient for-
mal vehicle for studying decidability and complexity boundaries
for verification in the model. This has lead to Guarded AXML, that
we briefly describe next.

In Guarded AXML (GAXML for short), document trees are un-
ordered. With ordered trees, verification quickly becomes intractable.
GAXML distinguishes between internal and external services. An
internal service is a service that is completely specified, i.e., its
precise semantics is known. External services capture interactions
with other services and with users. For these, only partial infor-
mation on their input and output types is available. Finally, the
most novel feature of the model in the AXML context is a guard
mechanism for controlling the initiation and completion of sub-
tasks (formally function calls). Guards are Boolean combinations
of tree patterns. They facilitate specifying applications driven by
complex workflows and, more generally, they provide a very useful
programming paradigm for active documents.

An AXML system consists of AXML documents running on dif-
ferent peers and interacting between them and with the external
world. To simplify the presentation, we consider here single-peer
systems. We will mention how the model can be extended to mul-
tipeer systems and how our results can be applied to this larger
setting, that actually motivated this work.

Our main results establish the boundary of decidability of sat-
isfaction of Tree-LTL properties by GAXML systems. We obtain
decidability by disallowing recursion in GAXML systems, which
leads to a bound on the number of total function calls in runs.
We prove that for such recursion-free GAXML, the satisfaction of
Tree-LTL formulas is CO-2NEXPTIME-complete. We also consider
various relaxations of the non-recursiveness restriction and show
that they each lead to undecidability. This establishes a fairly tight
boundary of decidability of verification. At the same time, we show
that certain limited but useful verification tasks remain decidable
even with recursion. For instance, we provide a decidable suffi-
cient condition for safety with respect to a Boolean combination
of tree patterns. We also show that it is decidable whether a state
satisfying a Boolean combination of tree patterns can be reached
within a specified number of steps in a run.

Related work Most of previous works on static analysis on XML
(with data values) was dealing with documents that do not evolve
with time. Typically, they considered the consistency problem for
XML specifications using DTDs and (foreign) key constraints [6,
7], the query containment problem [5] or the type checking prob-
lem [8]. This motivated studies of automata and logics on strings
and trees over infinite alphabets [20, 12, 9]. See [22] for a survey
on related issues.

Previous works also considered the evolution of documents. For
instance, static analysis was considered in [1] for a restricted mono-
tone AXML language, positive AXML. Their setting is very dif-
ferent from ours as their systems are monotone. In contrast, we
consider a broader verification task for nonmonotone systems.

Verification of temporal properties of Web services has mostly
been considered using models abstracting away data values (see
[17] for a survey). Verification of data-intensive Web services was
studied in [13, 15], and a verifier implemented [14]. As in our case,
this work takes into account data and establishes the boundary of
decidability and complexity of verification for a restricted class of
services and properties expressed in a temporal logic. While this
is related in spirit to the present work, the technical differences
stemming from the AXML setting render the two investigations
incomparable.

Organization After presenting in Section 2 the GAXML model
and the language Tree-LTL, we present in Section 3 the decidability
and complexity results for recursion-free GAXML services. Relax-
ations of non-recursiveness are considered in Section 4, and shown
to lead to undecidability. The decidability results on safety and
bounded reachability are also presented in Section 4. The paper
concludes with a brief discussion. Due to space limitations, most
proofs are omitted or limited to informal sketches.

2. THE GAXML MODEL
We formalize in this section the GAXML model. To simplify the

presentation, we consider a system with a single peer (we discuss
this issue in Section 5). To illustrate our definitions, we use frag-
ments of a Mail Order GAXML processing system, detailed in the
appendix.

In this paper, trees are unranked and unordered. A forest is a set
of trees. The notions of node, child, descendant, ancestor, and par-
ent relations between nodes are defined in the usual way. A subtree

of a tree T is the tree induced by T on the set of all descendants of
a particular node.

We assume given the following disjoint infinite sets: nodes N
(denoted n,m), tags Σ (denoted a, b, c, . . .), function names F ,
data values D (denoted α, β, . . .) data variables V (denoted X,Y,
Z, . . .), possibly with subscripts. The set F is the union of two
disjoint sets of marked function symbols F ! and F?, where F ! is
a set of symbols of the form !f , and F? = {?f | !f ∈ F !}.
Intuitively, !f labels a node where a call to function f can be made
(possible call), and ?f labels a node where a call to f has been
made and some result is expected (running call).

A Guarded AXML (GAXML) document is a tree whose internal
nodes are labeled with tags in Σ and whose leaves are labeled by
either tags, function names, or data values. A GAXML forest is a
set of GAXML trees. An example of GAXML document is given in
Figure 1 (see Appendix for the full specification of the Mail Order
example).

To avoid repetitions of isomorphic sibling subtrees, we define the
notion of reduced tree. Two trees T1 and T2 are isomorphic iff there
exists a bijection from the nodes of T1 to the nodes of T2 that pre-
serves the edge relation and the labeling of nodes. A tree is reduced
if it contains no isomorphic sibling subtrees. Clearly, each tree T
can be reduced by eliminating duplicate isomorphic subtrees, and
the result is unique up to isomorphism. We henceforth assume that
all trees considered are reduced, unless stated otherwise. However,
forests may generally contain multiple isomorphic trees.

Patterns We use patterns as the building blocks for guards for con-
trolling the activation of function calls and as a basis for our query
language. A pattern is a forest of tree patterns. A tree pattern is
a tree whose edges and nodes are labeled. An edge label indicates
a child (/) or descendant (//) relationship. A node label either re-
stricts the label of the node or is a variable denoting a data value.
A constraint consisting of a Boolean combination of (in)equalities
between the variables and/or data constants may also be given. For-
mally, a tree pattern is a tuple (M,G, λM , λG), where:

• (M,G) is a tree with M ⊂ N ,

• λM : M → Σ∪F ∪D∪V ∪{∗} is a node labeling function
such that λM (n) ∈ Σ ∪ {∗} for every internal node n,

• λG : G → {/, //}.

Let P be a tree pattern and T a tree. A matching of P into T is
a mapping µ from the nodes of P to the nodes of T such that: (i)
the root of P is mapped to the root of T , (ii) µ interprets / as child
and // as descendant, (iii) µ preserves the label (with ∗ acting as
a wildcard), (iv) nodes labeled with variables are mapped to data
values.

A pattern is a pair ({P1, . . . , Pn}, cond), where each Pi is a tree
pattern and cond is a Boolean combination of expressions X = α
or X 6= α, where X ∈ V and α ∈ V ∪ D. In particular cond
could include joins of the form X = Y . A matching of Q into a
forest F is a mapping µ that is a matching of each Pi into some
tree of F , and for which cond is satisfied. An example is given in
Figure 2 (a). The pattern shown there expresses the fact that the
value Order-Id is not a key. It does not hold on the GAXML
document of Figure 1. (Indeed, we want Order-Id to be a key).
We say that a pattern Q holds in a forest F iff there exists at least
one matching of Q into F . We then say that Q(F) is true, other-
wise it is false. This definition extends to Boolean combination of
patterns by replacing each pattern Q by Q(F). In particular this
means that the patterns are matched independently of each other:
If a variable X occurs in two different patterns Q and Q′ of the

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Figure 1: A GAXML document.

Boolean combination, then it is treated as quantified existentially
in Q and independently quantified in Q′.

In some guards and queries, we use patterns that are evaluated
relative to a specified node in the tree. More precisely, a relative
pattern is a pair (P , self) where P is a pattern and self is a node of
P . A relative pattern (P , self) is evaluated on a pair (F, n) where
F is a forest and n is a node of F . Such a pattern forces the node
self in the pattern to be mapped to n. Figure 2 (b) provides an
example of relative pattern. The pattern shown there checks that a
product that has been ordered occurs in the catalog. It holds in the
GAXML document of Figure 1 when evaluated at the unique node
labeled !Bill.

We also consider Boolean combinations of (relative) patterns.
The (relative) patterns are matched independently of each other and
the Boolean operators have their standard meaning.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’
Y 6= Y’ or Z 6= Z’

(a)

Main

Product

Pname

X

MailOrder

Pname

X

self

(b)

Figure 2: Two patterns

Queries As previously mentioned, patterns are also used in queries,
as shown next. A query is defined by pairs of patterns, a Body and
a Head. When evaluated on a forest, the matchings of Body define
a set of valuations of the variables. The Head pattern then specifies
how to construct the result from these valuations. A particular node
(“constructor” node below) specifies a form of nesting.

More formally, a query is an expression Body → Head where
Body and Head are patterns such that for each H in Head,

• all its edges are labeled / (there are no descendant edges)

• its internal nodes have labels in Σ and its leaves have labels
in Σ ∪ F ! ∪ V;

• there is no repeated variable inH and each variable occurring
in it also occurs in Body; and

• there is one designated node c in H called the constructor
node, such that the subtree rooted at c contains all variables
in H . In graphical representations, this constructor node is
marked with set parenthesis. (In absence of variables in H ,
the constructor may be omitted).

As for patterns, we consider queries evaluated relative to a specified
node in the input tree. A relative query is defined like a query,
except that its body is a relative pattern (P , self). An example of
relative query is given in Figure 3. The label of the constructor
node is Process-bill.

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self

{Process-bill}

Pname

X

Amount

Y

!Invoice

Figure 3: Example of a relative query

Let F be a forest and Q = Body → H a query with a single tree
for head. Let M be the set of matchings of Body into F . Let c
be the constructor node of H and Hc the subtree of H rooted at
c. For each matching µ ∈ M, let µ(Hc) be an isomorphic copy
of Hc with new nodes, in which every variable label X occurring
in H is first replaced by µ(X) and the tree is next reduced. Then
the result Q(F) is the forest obtained by replacing c in H by the
reduced forest {µ(Hc) | µ ∈ M}. Note that if M = ∅ then c is
simply removed. Observe also that, when c is not the root, Q(F) is
a single-tree forest. When c is the root, the forest may have 0, 1 or
more trees. Now consider a query Q = Body → H1, ..., Hn. Then
Q(F) = ∪Qi(F) where for each i, Qi = Body → Hi.

A relative query is evaluated on a pair (F, n) where F is a forest
and n is a node of F . The result Q(F, n) is defined as for queries,
except that matchings of the body must map self to n.

REMARK 2.1. The constructor node provides explicit control
over nesting of results. Note that this can be seen as syntactic
sugaring in AXML, since the same effect can be achieved using
function calls. However, the explicit constructor node is convenient
from a specification viewpoint. Observe also that one could con-
sider nesting of constructor nodes, in the spirit of group-by op-
erators. Such an extension, which for simplicity we do not consider
here, would not affect our results.

Consider the evaluation of the query of Figure 3 on the GAXML
document of Figure 1 at the unique node labeled !Bill. There is
a unique matching of the Body pattern and the result is isomorphic
to the Head pattern of the query with X replaced by Nikon and Y
by 199 (and no more parenthesis for Process-bill).

DTD Trees used by a GAXML system may be constrained using
DTDs and tree pattern formulas. For DTDs, we use a typing mech-
anism that restricts, for each tag a ∈ Σ, the labels of children that a-
nodes may have. As our trees are unordered we use Boolean com-
binations of statements of the form |b| ≥ k for b ∈ Σ∪F ∪{dom}

and k a non-negative integer1. (The word dom stands for any data
value.) Validity of trees and of forests relative to a DTD is defined
in the standard way. Details are omitted.

Schema and instance A GAXML schema S is a tuple
(Φint,Φext,∆) where

• The set Φint contains a finite set of internal function specifi-
cations.

• The set Φext contains a finite set of external function specifi-
cations.

• ∆ provides static constraints on instances of the schema. It
consists of a DTD and a Boolean combination of patterns.

We next detail Φint and Φext. For each f ∈ F , let af be a new
distinct label in Σ. Intuitively, af will be the label of the root of
a tree where a call to f will be evaluated. (This tree may be seen
as work space for the evaluation of the function.) Each function f
of Φint is specified as a tuple 〈arg(f), kind(f), γ(f), ρ(f), ret(f)〉
where:

• arg(f) (the input query) is a (relative) query. Intuitively, its
role is to define the argument of a call to f , which is also the
initial state in the evaluation of f . If the query defining the
argument is relative, self binds to the node at which the call
!f is made.

• kind(f) ∈ {non-continuous, continuous}. If f is non con-
tinuous, a call to f is deleted once the answer is returned. If
f is continuous, the call is kept after the answer is returned,
so f can be called again.

• γ(f) (the call guard) is a Boolean combination of relative
patterns. A call to f can only be made if γ(f) holds. (Ob-
serve that negative conditions are allowed.)

• ρ(f) (the return guard) is a Boolean combination of patterns
rooted at af . The result of a call to f can only be returned
when the return guard is satisfied.

• ret(f) (the return query) is a query rooted at af .

Example 2.2 We continue with our running example. The func-
tion Bill used in Figure 1 is specified as follows. It is internal and
non-continuous. Its call guard is the pattern in Figure 2 (b). The ar-
gument query is the query in Figure 3. Assuming that Invoice is
an external function eventually returning Payment (with product
and amount paid) the return guard and query of Bill are:

aBill

Payment

aBill

Payment

Pname

X

Amount

Y

−→ {Paid}

Pname

X

Amount

Y

Return guard Return query

Each function f in Φext is specified similarly, except that the re-
turn guard ρ(f) and the return query ret(f) are missing. Intuitively,
an external call can return any answer at any time. Its answer can
only be constrained by ∆.

An instance I over a GAXML schema S = (Φint,Φext,∆) is a
pair (T , eval), where T is a GAXML forest and eval an injective
function over the set of nodes in T labeled with ?f for some f ∈
Φint such that:
1For the purpose of complexity analysis, we take the size of |b| ≥ k
to be k. This is commensurate with the classical specification of
DTDs using regular expressions.

1. For each n with label ?f , eval(n) is a tree in T with root
label af .

2. Every tree in T with root label af is eval(n) for some n
labeled ?f .

An instance of S is valid if it satisfies ∆.

Runs Let I = (T , eval) and I ′ = (T ′, eval’) be instances of a
GAXML schema S = (Φint,Φext,∆). The instance I ′ is a possible
next instance of I, denoted I ` I ′, iff I ′ is obtained from I in one
of the following ways:

External call there exists some node n in T ∈ T , labeled !f for
f ∈ Φext, such that γ(f)(T , n) holds, where γ(f) is the call guard
of f ; and I ′ is obtained from I by changing the label of n to ?f .

Internal call This is like for external function except that f ∈ Φint.
Furthermore, we add to the graph of eval the pair (n, T ′) where
T ′ is a tree consisting of a root af connected to the forest that is
the result of evaluating the argument query arg(f) on input (T , n).
(All nodes occurring in T ′ are new.)

Return of internal call There is some node n labeled ?f in some
tree of T , where f ∈ Φint, such that T = eval(n) contains no
running call labels ?g and the return guard of f is true on T . Then
I ′ is obtained from I as follows:

• evaluate the return query ret(f) on T and add the resulting
forest as a sibling of the node n;

• remove eval(n) from T and n from the domain of eval;

• if f is non-continuous remove the node n, otherwise change
n’s label to !f .

Return of external call There exists some node n labeled ?f in
some tree of T , for f ∈ Φext. Then I ′ is obtained as for the return
of internal calls, except that (i) there is no corresponding running
computation to remove from eval and (ii) the result (a forest with
labels in Σ∪F ! ∪D appended as a sibling to n) is chosen arbitrar-
ily. (Observe that constraints on the results of external calls can be
imposed by ∆.)

Figure 4 shows a possible next instance for the instance of Fig-
ure 1 after an internal call has been made to !Bill. Recall the
specification of Bill from Example 2.2. The call was enabled as
the guard of !Bill is true on the instance of Figure 1 (see Fig-
ure 2). As !Bill is an internal call, the subtree aBill contains
the result of the query defining !Bill (see Figure 3). The dotted
arrow indicates the function eval.

An initial instance of S is an instance of S consisting of a single
tree whose root is not a function call and for which there is no
running call.

An instance I is blocking if there is no instance I ′ such that I `
I ′. A run of S is an infinite sequence I0, I1, . . . , Ii, . . . of instances
over S such that I0 is an initial instance of S and for each i ≥ 0,
either Ii ` Ii+1 or Ii is blocking and Ii+1 = Ii. Note that, for
uniformity, we force all runs to be infinite by repeating a blocking
instance forever if it is reached. A run is valid if all of its instances
satisfy ∆. For a run ρ, we denote by adom(ρ) the set of data values
occurring in ρ, which may be infinite due to external function calls.

Temporal properties As mentioned in the introduction, we are in-
terested in verifying certain properties of runs of a GAXML sys-
tems. These may include generic desirable properties, such as al-
ways reaching a successful final instance (blocking and with no
active function calls), as well as properties specific to the particular

Main

Catalog

· · ·

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

?Bill !Deliver !Reject

aBill

Process-bill

Pname

Nikon

Amount

199

!Invoice

Figure 4: An instance with an eval link

application, such as “no product is delivered before it is paid in the
right amount”.

To express such temporal properties of runs, we use patterns con-
nected by Boolean and temporal operators. This yields the lan-
guage Tree-LTL (and branching-time variants Tree-CTL or Tree-
CTL∗). More precisely, we use the auxiliary notion of QPattern
(for quantified pattern). A QPattern is an expression P (X̄) where
P is a pattern and X̄ some of its variables, designated as free. All
other variables will be seen as quantified existentially, locally to P .
(So logically, P (X̄) may be seen as ∃Ȳ (P), where Ȳ is the set
of variables occurring in P and not X̄ .) The syntax of Tree-LTL
formulas is defined by the following grammar:

ϕ := QPattern | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ U ϕ | Xϕ

where U stands for until and X for next, with the usual semantics,
e.g. see [16]. Given a Tree-LTL formula ϕ, its free variables are the
free variables of its patterns. A Tree-LTL sentence is an expression
∀X̄ϕ(X̄), where ϕ is a Tree-LTL formula and X̄ are the free vari-
ables of ϕ. (As previously mentioned, variables that are not free
are existentially quantified locally to each pattern.)

Whenever convenient, we use as shorthand additional temporal
operators expressible using X and U, such as F (eventually) and G
(always).

We now turn to the semantics of Tree-LTL. Intuitively, a sentence
∀X̄ϕ(X̄) holds for a schema S iff ϕ(X̄) holds on every valid run
of S with every interpretation of X̄ into the active domain of the
run. More formally, consider first the case when ϕ has no free
variables. Consider a run ρ of S. Satisfaction of a pattern without
free variables by an instance was defined previously. Therefore,
patterns can be treated as propositions and we can use the standard
semantics of LTL to define when ρ satisfies ϕ, denoted by ρ |= ϕ.
Consider now a Tree-LTL sentence σ = ∀X̄ϕ(X̄). For a run ρ
of S, we say that ρ satisfies ∀X̄ϕ(X̄), and denote this by ρ |=
∀X̄ϕ(X̄), if ρ satisfies ϕ(h(X̄)) for each valuation h of X̄ into
adom(ρ). We say that S satisfies σ, denoted S |= σ, if every valid
run of S satisfies σ.

Two examples of Tree-LTL formulas are given below.
The branching-time variants Tree-CTL(∗) are defined analogously.
Not surprisingly, satisfaction of Tree-LTL sentences is undecid-
able for arbitrary GAXML systems. To obtain positive results, we
need to place drastic but natural restrictions on these systems. We
present in the next section such restrictions and results, and then
show how even small relaxations yield undecidability.

3. RECURSION-FREE GAXML
Most of our positive results are obtained under the assumption

that AXML services are recursion-free. This restriction essentially
bounds the number of function calls in a run of the system.

The external functions clearly are a source of difficulty for en-
forcing non-recursiveness syntactically, since an external function
f may return some data with a call to some external function g, and
g some data with a call to f . To circumvent this, we must assume
some signature information on external functions. We do this by

Every mail order is eventually completed (delivered or rejected):

∀X[G(Main

MailOrder

Order-Id

X

→ F(Main

MailOrder

Order-Id

X

Delivered

∨ Main

MailOrder

Order-Id

X

Rejected

))]

Every product for which a correct amount has been paid is eventually de-
livered (note that the variable Z is implicitly existentially quantified in the
left pattern):

∀X∀Y [G(Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

→ F(Main

MailOrder

Pname

X

Order-Id

Y

Delivered

))]

Figure 5: Some Tree-LTL formulas.

including in the specification of each external function f the set
fun(f) of functions that are allowed to appear in the results of calls
to f . The definition of valid run is modified so that this restriction
is obeyed. For internal functions f and g, g is in fun(f) if !g oc-
curs in the result of the argument or return query of f . (This can
be checked syntactically by inspecting the head of the respective
queries.)

To define non-recursiveness, we use the auxiliary notion of call
graph that captures (syntactic) dependencies between function calls
in the schema. Let S = (Φint,Φext,∆) be a GAXML schema. The
call graph G of S is a directed graph whose nodes are Φint ∪ Φext
and there is an edge from f to g if g ∈ fun(f).

DEFINITION 3.1. LetS = (Φint,Φext,∆) be a GAXML schema.
We say that S is recursion-free iff the following hold:

(i) the DTD of ∆ is non-recursive,

(ii) no function call !f occurs more than once in a tree satisfying
the DTD of ∆,

(iii) no function of S is continuous, and

(iv) the call graph of S is acyclic.

As mentioned above, the definition of recursion-free schema is
meant to enforce a static bound on the number of function calls
made in a valid run. While conditions (i), (iii) and (iv) achieve
this by prohibiting the immediate causes of recursion, condition
(ii) deals with another source of unbounded calls, the presence of
an arbitrary number of them in the initial instance or in answers to
external function calls. Condition (ii) could be relaxed without loss
by allowing a bounded number of calls to each function rather than

a single one. Also note that condition (ii) restricts each tree in an
instance, but not the instance as a whole. Thus, a function call may
appear in several different trees of the same instance.

The main result of the section is that satisfaction of a Tree-LTL
sentence by a recursion-free GAXML schema is CO-2NEXPTIME-
complete. We first outline the proof of the upper bound, then pro-
ceed with the lower bound.

Upper bound The proof requires several auxiliary results. The
first shows that if S is recursion-free, then each valid run of S
reaches a blocking instance after a number of transitions that is
exponential in the size of the schema. This is a consequence of the
fact that without recursion, only finitely many calls to each function
can be made.

PROPOSITION 3.2. Let S = (Φint,Φext,∆) be a recursion-free
GAXML schema. There exists a non-negative integer k, exponential
in |Φint ∪ Φext|, such that all valid runs of S reach a blocking
instance in at most k transitions.

Next, let S be a recursion-free GAXML schema. A pre-run of
S is a finite prefix of a run ending in the first occurrence of its
blocking instance. We say that a pre-run of S satisfies a Tree-LTL
sentence ξ iff its infinite extension satisfies ξ. We note the follow-
ing useful fact. Its proof uses standard Büchi automata techniques,
after replacing each pattern in ξ by a suitable proposition.

PROPOSITION 3.3. Given a pre-run ρ = I0, . . . Ik of S and a
Tree-LTL sentence ξ, one can check whether ρ satisfies ξ using a
non-deterministic algorithm in time O(|ρ||ξ|).

The next proposition is key to our decision algorithm. It shows
that only runs with small instances need to be considered. This
is the most difficult part of the proof and is achieved by carefully
identifying a “small” set of nodes sufficient to witness satisfaction
of the patterns needed for the run to be valid and satisfy ξ.

PROPOSITION 3.4. If there exists a valid pre-run of S satisfying
ξ, then there exists a valid pre-run of the same length satisfying ξ,
such that each of its instances has size doubly exponential in ξ and
S.

PROOF. The main idea of the proof is as follows. Let I0, . . . , Ik

be a valid pre-run of S satisfying ξ. We construct another valid
pre-run R0, . . . , Rk such that for each m ∈ [0, k], Rm is a sub-
instance of Im whose size can be statically bounded, and Rm and
Im satisfy exactly the same patterns used in ξ. The idea is to make
sure that each Rm contains witnesses for all patterns in ξ satis-
fied by Im, and also that it can mimic the transitions in the orig-
inal run by keeping the “skeleton” of Im (all paths from roots to
nodes labeled with function symbols ?f or af) and also witnesses
required to make the appropriate guards true. Satisfaction of the
DTD must also be ensured, which requires additional witnesses.
The construction is done in two passes: first, the needed witnesses
are collected starting from Ik and backward to I0. Then, the actual
pre-run R0, . . . , Rk is generated starting from the sub-instance of
I0 containing the collected witnesses, by mimicking the transitions
in the original run.

We are now ready to show the desired upper bound. Let S =
(Φint,Φext,∆) be a recursion-free GAXML schema and ϕ a Tree-
LTL sentence of the form ∀X̄ψ(X̄). Clearly, S 6|= ϕ iff there
is a valid run of S that satisfies ¬ϕ = ∃X̄¬ψ(X̄). Let DX̄ be
an arbitrary subset of D with as many elements as variables in X̄ .
Clearly, the above is equivalent to the following: there is a valid
run ρ of S with domain D ⊇ DX̄ and a mapping h from X̄ to DX̄

such that ρ satisfies ξ = ¬ψ(h(X̄)) (ψ(h(X̄)) is obtained from
ψ by replacing, for each pattern in ψ for which Y ∈ X̄ is a free
variable, the label Y by h(Y)). In view of Propositions 3.2 - 3.4,
a 2NEXPTIME decision procedure for checking whether S 6|= ϕ is
the following:

1. Guess DX̄ and the valuation h of X̄ into DX̄ ; construct the
formula ξ

2. Guess an initial instance R0 of a valid pre-run of S, of size
doubly exponential in S and ξ.

3. Generate non-deterministically a valid pre-run R0, . . . , Rk

of S; in the case of external function calls, guess an arbi-
trary answer of size at most doubly exponential in S and ξ.
A blocking instance Rk is guaranteed to be reached after a
number of transitions exponential in S.

4. Check that R0, . . . , Rk satisfies ξ.

Note that (4) remains in 2NEXPTIME by Proposition 3.3.
We have established the following.

PROPOSITION 3.5. It is decidable in CO-2NEXPTIME, given a
recursion-free GAXML schema S and a Tree-LTL sentence ϕ,
whether each valid run of S satisfies ϕ.

Lower bound To show the matching lower bound, we consider
a non-deterministic Turing Machine M running in time 22n

on in-
puts of size n. We construct a Tree-LTL sentence ϕ and a recursion-
free GAXML schema S such that S 6|= ϕ iff M accepts w. The
main difficulty of the proof lies in simulating a Turing machine run-
ning in time 22n

with a recursion-free GAXML schema using only
n functions and hence with runs of length 2n. This requires a very
efficient use of the available functions. We informally outline the
construction.

The general idea is to ensure that S 6|= ϕ iff some initial in-
stance of S encodes an accepting computation of M on w. Initial
instances of S have the following shape:

M

R

N

P

N

P

. . . N

P

R

N

P

. . . N

P

. . . R

N

P

. . . N

P

Each tree rooted at a symbol R is expected to code a configu-
ration of M . Data values (not depicted above) are attached to the
N and P -nodes in order to form a successor relation between the
leaves (recall that our trees are unordered). The label of each leaf
(the round circles in the figure above) is a tape symbol of M . In
eachR-subtree, the sequence of labels of the leaves induced by this
successor relation codes a configuration ofM . The global structure
can easily be enforced using a DTD.

The difficult part of the construction is checking that the instance
indeed holds a successor relation coded using the data values at-
tached to each N -node and P -node. More precisely, define a di-
rected graph G as follows. Its vertices are the data values of N -
nodes. There is an edge (α, β) in G iff α and β are distinct data
values of N -nodes x and y, such that the data value of the P -child
of y is α. We specify S such that we can detect whether G induces
a sequence long enough in each R-subtree for coding a configura-
tion ofM and such thatG also induces a sufficiently long sequence

of configurations. In particular, for coding the run of M , G must
contain a sequence of length 2(2n) · 2(2n) = 2(2n+1).

We need to distinguish between three kinds of N -nodes, Nbeg,
Nlast, and Ninner. We ensure that each R-subtree contains exactly
one occurrence of Nbeg, one occurrence of Nlast, and that all the
remaining N -nodes are Ninner. This can be done by adding a child
to each N -node with a label identifying its kind. The constraints
above can then be enforced using a DTD. We use these nodes to
code respectively the first, last, and the other elements of the se-
quence induced by G on each R-tree. Similarly, we mark one of
theR-subtree as the initial configuration, one as the final configura-
tion, and denote them byRbeg and Rlast. Again this can be enforced
by a DTD.

It is easy to enforce, using data constraints, that every node of
G has at most one outgoing edge and at most one incoming edge,
and that G has no self loops. We can also make sure that the next
element of a Nlast node can only be a Nbeg node. It remains to take
care of loops and of sequences that may stop abruptly. For this we
use function calls and compute, step by step, the transitive closure
of G and the nodes at distance 2(2n+1). Then suitable Tree-LTL
formulas can check that G has the right format.

The transitive closure of G is computed by induction as follows:
If T is the relation computed at some step, the next step computes
∃zT (x, z) ∧ T (z, y). The double recursion allows to detect the
cycles of G of length up to 2(2n+1). This is enough to simulate M ,
because M terminates on w in at most 2(2n) steps.

With the successor relation in place, it remains to check that
consecutive R-trees hold consecutive configurations of M . Check-
ing this efficiently requires some additional non-trivial bookkeep-
ing whose details we omit. In summary, the S and ϕ constructed
from M and w are such that S violates ϕ iff M accepts w. This
establishes the desired lower bound.

PROPOSITION 3.6. It is CO-2NEXPTIME-hard to check whether
a recursion-free GAXML schema satisfies a Tree-LTL sentence.

We now have the main result of the section.

THEOREM 3.7. It is CO-2NEXPTIME-complete to decide, given
a recursion-free GAXML schema S and a Tree-LTL sentence ϕ,
whether each valid run of S satisfies ϕ.

REMARK 3.8. While the worst-case CO-2NEXPTIME complex-
ity of verification we have just shown may appear daunting, the
complexity is likely to be much lower in many practical situations.
For example, for GAXML schemas whose call graph is a tree (a
likely occurrence when functions model a hierarchical set of tasks)
the complexity goes down to CO-NEXPTIME. Within the broader
landscape of static analysis, this is quite reasonable. For instance,
recall that even satisfiability of Barnays-Schönfinkel FO sentences,
a much simpler question, already has complexity NEXPTIME [10].

Using similar techniques, we can show decidability of other use-
ful static analysis tasks for recursion-free GAXML.

THEOREM 3.9. The following are decidable in CO-2NEXPTIME
for a recursion-free GAXML schema S = (Φint,Φext,∆):

• Successful termination: each valid run of S ends in a block-
ing instance with no running function calls.

• Typechecking: for every run of S, if the initial instance sat-
isfies ∆, then every instance in the run satisfies ∆.

PROOF. Successful termination can be reduced to satisfaction of
a Tree-LTL sentence by a recursion-free system. For successful ter-
mination, the property to be verified is F [α∧

V

f∈Φint∪Φext
¬ γ′(f)]

where α is a formula stating that no function symbol ?f is present,
and each γ′(f) is obtained from the guard γ(f) by replacing the
label self by !f . This uses the fact that, in a tree without function
calls, the DTD of ∆ does not allow multiple occurrences of nodes
labeled !f (thus, the relative pattern γ(f) can be turned into the
pattern γ′(f) without any loss). Also note that, since the initial in-
stance of a run consists of a single tree, every reachable instance
without running function calls is also a single tree.

For typechecking, the proof is analogous to that of Proposition
3.4. Suppose ∆ consists of a DTD ∆′ and a data constraint ψ. We
first typecheck ∆′: we show that whenever ρ = I0, . . . , Ik is a pre-
fix of a run of S such that I0 satisfies ∆, Ik satisfies ∆′. Suppose,
to the contrary, that there exists ρ = I0, . . . , Ik such that I0 is an
initial instance (satisfying ∆), Im ` Im+1, and Ik violates ∆′. We
construct a sequence ρ′ = R0, . . . , Rk with the same properties,
such that the size of ρ′ is doubly exponential in S. The construction
is similar to that in the proof of Proposition 3.4. This shows that
checking the existence of a violation of typechecking with respect
to the DTD ∆′ can be done in 2NEXPTIME, so typechecking with
respect to ∆′ is in CO-2NEXPTIME. Now consider ∆. If the answer
to the above is negative (there is a violation of ∆′) then we are done
(∆ is also violated). Otherwise, let S′ = (Φint,Φext,∆

′), and check
that every valid pre-run of S′ satisfies the Tree-LTL property ψ →
G ψ. This can be done in CO-2NEXPTIME by Theorem 3.7. In
summary, typechecking is decidable in CO-2NEXPTIME.

REMARK 3.10. The above notion of typechecking is quite strict,
since it declares a violation even if it is caused by the result of a call
to an external function (in other words, a service will typecheck
only if at any point in the run, any result of an external function
call is acceptable with respect to ∆). A more lenient variant would
typecheck subject to the assumption that results from calls to ex-
ternal functions do not cause violations. The decidability result of
Theorem 3.9 can be easily extended to this variant.

4. BEYOND RECURSION-FREE
In this section we prove that decidability of satisfaction of a Tree-

LTL formula by a GAXML schema is lost even under minor relax-
ations of non-recursiveness. However, certain restricted but useful
verification tasks remain decidable. We provide several such results
in the second part of this section.

Undecidability We next consider relaxations of each of the
recursion-free conditions and show that each such relaxation in-
duces undecidability of satisfaction of Tree-LTL sentences. Specif-
ically, we consider each of the following extensions: allowing (1)
recursive DTDs, (2) an unbounded number of function calls in trees
satisfying ∆, (3) continuous functions, (4) a cyclic call graph.

For (1), undecidability is a simple consequence of the fact that
satisfiability of Boolean combination of patterns in the presence
of a DTD is already undecidable [11]. The first result concerns
extensions (2-3). We prove a strong undecidability result, show-
ing that even reachability of an instance satisfying a single positive
pattern without variables becomes undecidable with any of these
extensions. Furthermore, the result holds for schemas without data
constraints and using no external functions. The proof is by re-
duction from the implication problem for functional and inclusion
dependencies (FDs and IDs), known to be undecidable (see [3]).

THEOREM 4.1. It is undecidable, given a positive pattern P
without variables and a GAXML schema S with no data constraints

or external functions, satisfying the non-recursiveness conditions
relaxed by any of (2) or (3) above, whether some instance satisfying
P is reachable in a valid run of S.

In order to show that Condition (4) also yields undecidability, we
use the fact that, with cyclic call graphs, we can generate arbitrarily
long sequences of running function calls allowing us to code two-
counter automata. Note that this result holds even without any data
values.

THEOREM 4.2. It is undecidable, given a positive pattern P
without variables and a GAXML schema S with no data values
and no external functions, satisfying the non-recursiveness condi-
tions relaxed by allowing a cyclic call graph, whether some in-
stance satisfying P is reachable in a valid run of S.

REMARK 4.3. The results for extensions (3) and (4) point to
significant qualitative differences between recursion obtained by
using continuous functions, and by allowing cyclic call graphs.
Theorem 4.2 suggests that the latter is much more powerful. The
distinction is further highlighted by considering the instance depen-
dent variant of verification: given a GAXML schema S, an initial
instance I of S, and a Tree-LTL formula ϕ, does every run start-
ing from I satisfy ϕ? An immediate consequence of the proof of
Theorem 4.2 is that this is undecidable for GAXML schema with
cyclic call graphs (even with no data values and only internal func-
tions). On the other hand, it is easily seen that this is decidable for
arbitrary GAXML schemas with continuous internal functions (but
acyclic call graph). This follows from the fact that the fixed initial
instance renders the state space finite, which is not the case if cyclic
call graphs are allowed.

The above results show that relaxations of the non-recursiveness
requirements quickly lead to strong forms of undecidability. Or-
thogonally, one might wonder if decidability can be preserved for
recursion-free schemas for more powerful queries or temporal prop-
erties. We next show that this is not the case.

We first consider an extension to the patterns used so far in the
GAXML model, allowing negative sub-patterns. Specifically, let
us allow labeling by ¬ one subtree of the pattern, with the safety
restriction that all variables occurring in the negative subtree must
also occur positively in the pattern. The semantics is the natural
one: a match requires the positive part of the subtree to be matched
to the input document, and the negative subtree to not be matched.
An example of such query is: r[/a/X][¬ /b/X]. We show the
following, using again a reduction from the implication problem
for FDs and IDs.

THEOREM 4.4. It is undecidable, given a positive pattern P
without variables, and a recursion-free GAXML schema S with no
data constraints and no external functions, but using patterns with
negative sub-patterns, whether there exists an instance satisfying
P that is reachable in a valid run of S.

We next consider an extension of the Tree-LTL language. Re-
call that by definition, all free variables in the patterns of a Tree-
LTL formula are universally quantified to yield the final Tree-LTL
sentence. One might wonder if this restriction on the quantifier
structure is needed for decidability of satisfaction for recursion-
free GAXML schemas. We next show that this is in fact the case.
Specifically, let ∃Tree-LTL be defined the same as Tree-LTL, ex-
cept that the free variables are quantified existentially in the end,
yielding a sentence of the form ∃X̄ξ(X̄).

THEOREM 4.5. It is undecidable, given a recursion-free GAXML
schema S and a ∃Tree-LTL sentence ϕ, whether S satisfies ϕ.

We finally consider the impact on decidability of allowing path
quantifiers in the temporal property. To this end, we consider Tree-
CTL properties and prove the following strong undecidability re-
sult (A is the universal quantifier and E the existential quantifier on
runs). It shows that allowing even a single path quantifier alterna-
tion leads to undecidability.

THEOREM 4.6. It is undecidable, given a positive pattern P
without variables and a recursion-free GAXML schema S, if S sat-
isfies2 AXEG (¬P).

Decidability As promised, we now exhibit several useful verifica-
tion tasks that remain decidable even for recursive GAXML
schemas. A recurring concern in verification is safety with re-
spect to a specified property. Recall that reachability, and therefore
safety, is undecidable by Theorem 4.1. We next provide a decid-
able sufficient condition for safety with respect to a Boolean com-
bination of patterns. The proof uses a variation of the small model
technique developed for showing Proposition 3.5.

THEOREM 4.7. (Safety) It is decidable in CO-NEXPTIME,
given a GAXML schema S and a Boolean combination ϕ of pat-
terns, whether (i) all valid initial instances of S satisfy ϕ, and (ii)
for all valid instances I and J of S such that I ` J , if I |= ϕ then
J |= ϕ.

Another practically significant problem is bounded reachability:
for given k, is it possible to reach in at most k steps an instance
satisfying a Boolean combination ϕ of patterns? The following is
shown similarly to the proof of Theorem 3.7.

THEOREM 4.8. (Bounded reachability) It is decidable in
2NEXPTIME, given a GAXML schema S, a Boolean combination
ϕ of patterns, and a fixed integer k, whether there exists a prefix
I0, . . . , Ij of a valid run of S such that j ≤ k and Ij |= ϕ. If k is
fixed, the complexity is NEXPTIME.

The dual of bounded reachability is bounded safety: for given S,
ϕ and k, is it the case that every instance of S reachable in at most k
steps satisfies ϕ ? Clearly, this is the case iff no instance satisfying
¬ϕ can be reached in at most k steps. Thus, bounded safety can be
decided in CO-2NEXPTIME (and CO-NEXPTIME for fixed k).

5. DISCUSSION
We studied the verification of an expressive set of properties for

a large class of AXML systems. We aimed at providing a model
capturing significant applications, while at the same time allow-
ing for non-trivial verification tasks. Some of our choices include:
unordered rather than ordered trees, set-oriented rather than bag
semantics for trees, patterns with local existential quantification
and without negated sub-patterns, and queries based on tree pat-
tern matchings rather than more powerful computation. Despite
the limitations, this goes beyond previous formal work on AXML,
which considered only monotone systems [1]. Note that the use
of guard conditions induces non-monotone behavior, since a call
guard that is satisfied may later be invalidated when new data is
received. Indeed, guards provide a powerful control mechanism,
that allows simulating complex application workflows. Altogether,
we believe the model captures a significant class of AXML ser-
vices. Finally, the Tree-LTL language providing a novel coupling
of temporal logic and tree patterns seems particularly well suited
for expressing properties of the evolution of such systems.
2We assume a unique start state from which there is a transition to
each initial instance of S.

Our results provide a tight boundary of decidability for verifica-
tion of GAXML systems. As a side effect, they also provide insight
into the subtle interplay between the various features of GAXML.
Decidability for full verification holds for recursion-free GAXML.
While this may appear quite limited, applications often satisfy the
recursion-free conditions required.

Even in more complex applications that do not satisfy these con-
ditions, one can isolate and verify recursion-free portions that are
semantically significant. For instance, the Mail Order example can
be made recursion-free by making !MailOrder non-continuous.
Intuitively, this corresponds to the processing of a single order, and
properties of each such process can be verified. We also showed
that more limited but useful verification tasks, such as bounded
reachability and verifying sufficient conditions for safety, are de-
cidable even for unrestricted GAXML systems.

We conclude by discussing how our results can be extended to
multi-peer systems, for which AXML was originally intended. The
GAXML model can simulate a multi-peer systems in a straightfor-
ward manner, by viewing the general system as a single GAXML
document with a separate portion assigned to each peer. This
amounts to viewing the state of the multi-peer system as the product
of the states of its components, in which each peer has access to its
own state. Such a GAXML system can easily simulate a multi-peer
system under strong synchronicity assumptions ensuring that each
function call causes simultaneous state transitions in the calling and
receiving peers. This assumption can be immediately relaxed by
introducing additional peers simulating communication channels,
which weakens synchronicity by allowing arbitrary delays between
state transitions in different peers. Simulating a finer-grained multi-
peer model, with explicit messages and queues, requires an exten-
sion of our GAXML model. This raises new interesting questions
left for future work.

Acknowledgements We wish to thank the participants in the
ANR Docflow project for discussions on the verification of AXML
systems, and in particular, Albert Benveniste and Anca Muscholl.

6. REFERENCES

[1] S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active
XML. Proc. ACM PODS 2004: 35-45.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML
project, an overview, VLDB journal. To appear, 2008.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases, Addison-Wesley, 1995.

[4] Active XML homepage. http://activexml.net
[5] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in

the presence of DTDs. Proc. ACM PODS 2005: 25-36.
[6] W. Fan and L. Libkin, On XML Integrity Constraints in the

Presence of DTDs. Proc. ACM PODS 2001: 114-125.
[7] M. Arenas, W. Fan and L. Libkin, On Verifying Consistency

of XML Specifications. Proc. ACM PODS 2002: 259-270.
[8] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML

with Data Values: Typechecking Revisited. JCSS 66(4):
688-727 (2003). Also Proc. ACM PODS 2001: 138-149.

[9] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on words with data. In
LICS’06, pp. 7-16, 2006.

[10] E. Borger, E. Gradel and Y. Gurevich, The Classical
Decision Problem, Springer 1997.

[11] C. David. Complexity of Data Tree Patterns over XML
Documents, Manuscript.

[12] S. Demri and R. Lazic. LTL with the Freeze Quantifier and
Register Automata. In LICS’06, pp. 17-26, IEEE 2006.

[13] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven Web applications. J. Comput. Syst.
Sci. 73(3): 442-474 (2007). Also Proc. ACM PODS 2004.

[14] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and D. Zhou. A
Verifier for Interactive, Data-Driven Web Applications. Proc.
ACM SIGMOD 2005: 539-550.

[15] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of
communicating data-driven web services. Proc. ACM PODS
2006: 90-99.

[16] E. Allen Emerson, Temporal and Modal Logic, in Handbook
of Theoretical Computer Science, Vol. B: Formal Models
and Sematics, (ed. J. Van Leeuwen), North-Holland/MIT
Press, 1990.

[17] R. Hull, M. Benedikt, V. Christophides and J. Su. E-Services:
a look behind the curtain. Proc. ACM PODS 2003: 1-14.

[18] R. Khalaf, A. Keller, and F. Leymann, Business Processes for
Web Services: Principles and Applications. IBM Systems
Journal, Volume 45, Number 2, IBM Corp., 2006.

[19] M. Minsky. Computation, Finite and Infinite Machines.
Prentice Hall, 1967.

[20] F. Neven, T. Schwentick, and V. Vianu. Finite state machines
for strings over infinite alphabets. ACM Transactions on
Computational Logic 15(3): 403-435 (2004).

[21] A. Nigam, N.S. Caswell. Business Artifacts: An approach to
operational specification. IBM Systems Journal, 2003.

[22] L. Segoufin. Static Analysis of XML Processing with Data
Values. In Sigmod Record 36(1), 2007.

[23] The Extensible Markup Language (XML) 1.0 (2nd Edition).
http://www.w3.org/TR/REC-xml.

[24] The W3C Web Services Activity.
http://www.w3.org/2002/ws.

APPENDIX
Running Example
We provide here a more complete specification for our running
MailOrder example. The purpose of this GAXML system is to
process mail orders. The system has access to a Catalog, provid-
ing product and price information. A new mail order is initiated
by an external call !MailOrder. The processing of a mail order
follows this simple workflow:

1. Receive an order from a customer Cname for a product Pname.
The order is given a unique identifier Order-ID (uniqueness
is enforced by the data constraint specified further).

2. If the product is available, initiate processing a bill by calling
the internal function Bill.

3. To process a bill, send an invoice to the customer, modeled
by a call to the external function Invoice. This returns a
Payment for Pname in the amount found under Amount.
This completes the processing of the bill. Pname and Amount
are returned to the calling MailOrder as the answer to the
call !Bill.

4. If the payment is correct (the catalog price of the product
Pname is the paid Amount) then deliver the product by call-
ing the external function Deliver. Otherwise reject the or-
der by calling the external function Reject.

We now provide more details on the specification (for conve-
nience, some aspects already described in the main text are repeated

here). An initial instance of the system has the shape shown in Fig-
ure 1. The DTD enforces the specified shape, and also that of the
results to external function calls, described further. The uniqueness
of mail order IDs is enforced by the data constraint consisting of
the negation of the following pattern:

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’
Y 6= Y’ or Z 6= Z’

We next provide the specifications of functions.

MailOrder is external and continuous. Its call guard is true and
argument query empty. Its result has the following type, enforced
by the DTD:

MailOrder

Order-Id

dom

Cname

dom

Pname

dom

!Bill !Deliver !Reject

Bill is internal and non-continuous. Its call guard, that checks that
the ordered product is available, is the following:

Main

Product

Pname

X

MailOrder

Pname

X

self

Its argument query is:
Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self

{Process-bill}

Pname

X

Amount

Y

!Invoice

The return guard and query (also given in Example 2.2) are the
following:

aBill

Payment

aBill

Payment

Pname

X

Amount

Y

−→ {Paid}

Pname

X

Amount

Y

Return guard Return query

Invoice is external and non-continuous. Its call guard is true. We
omit (as for the other external functions) the specification of its ar-
gument query. The answer it returns is of the following type (which
can be enforced by the DTD):

Payment

Pname

dom

Amount

dom

Deliver is external and non-continuous. Its call guard is
Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

self

Its result consists of a single node labeled Delivered (this can
be enforced by the DTD).

Rejected is external and non-continuous. Its call guard is the fol-
lowing:

Main

MailOrder

Paid self

∧ ¬ (Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

self

)

Its result consists of a single node labeled Rejected (this can
also be enforced by the DTD).

This completes the specification of the Mail Order GAXML sys-
tem.

Now consider again the Tree-LTL properties in Figure 5. The
first property (every mail order is eventually delivered or rejected)
is satisfied for the above specification. Consider the second prop-
erty (every product for which the correct amount has been paid is
eventually delivered). Surprisingly, this property is false. This is
due to a subtle bug: the specification allows a customer to pay for
a different product than the one ordered. This bug could be fixed
with the addition of the data constraint consisting of the negation
of the following pattern:

aBill

Pname

X

Payment

Pname

Y
X 6= Y

