
A Restful Workflow Implementation
on Top of Distributed XQuery

Nicola Onose
UCSD

Rania Khalaf
IBM Research

Kristoffer Rose
IBM Research

Jérôme Siméon
IBM Research

ABSTRACT
Workflow languages are the norm when it comes to representing
and implementing business processes. With the emergence of Web-
enabled workflow languages, such as BPEL, there is an increasing
need to support XML processing along with those languages. In
this paper we extend the REST-based workflow language Bite with
XQuery processing capabilities. We show how the resulting lan-
guage can be implemented on top of a stand-alone XQuery pro-
cessor by compiling its core constructs into DXQ, a distributed ex-
tension of XQuery. From an XQuery perspective, this approach
demonstrates the expressiveness of the DXQ framework. From a
workflow perspective, it opens interesting opportunities for light-
weight implementations of Web workflows, cross-activity optimiza-
tion, and experimentation with distributed workflows.

1. INTRODUCTION
Workflows are used extensively to model and implement busi-

ness processes that involve both computational and human activi-
ties. Traditional applications of workflow technology include sup-
ply chain management, scientific analysis, procurement, etc. In the
context of Web applications, Workflow activities typically involve
XML data manipulation and rely on Web services infrastructure as
a messaging layer. BPEL [24], which relies on WSDL [9], is proba-
bly the most commonly used in the context of large enterprise-wide
applications and central to a number of commercial products [30].
However, the growing interest in Web 2.0 technology has led to the
development of new approaches, notably based on REST-ful Web
services [12]. The main motivation for this trend is to alleviate the
perceived complexity in developing and deploying Web-based ap-
plications that involve Web services access, data processing, and
human interaction. Bite [10] is a recent proposal for a light-weight,
REST-based alternative to BPEL, capturing BPEL’s core function-
ality. In this paper, we present an extension of Bite with XQuery
processing activities, and show that the resulting language can be
implemented directly by using Distributed XQuery [11], with mi-
nor extensions. Integration between database and workflow tech-
nology has been investigated in a number of contexts [6, 7, 15, 5,
2, 28]. Our approach is original, as it leverages the concurrent and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

distributed features of the DXQ extension for XQuery [11] and it
is the first one to implement workflows using an XML query plat-
form. We believe it to be interesting to the XQuery community
because it steps into a new application area and it demonstrates the
power and flexibility of the language.

Salsa Workflow. Bite is able to express simple to complex pro-
cesses in which activities involve computation or Web interactions
specified through HTTP requests. As an example, consider the
sample workflow in Figures 1 and 2, which implements (part of)
a simple application allowing users to look for and enroll in classes
of Latin dances in the New York area. The graph representation is
quite standard, and similar to that used for BPEL or other workflow
languages.

In our extension of Bite, most activities are either HTTP inter-
actions or XQuery expressions (complemented by loops, assign-
ments etc.). The first part of the flow, depicted in Figure 1, contains
just the first exchange of HTTP messages: the user opens a Web
browser and types the URL of the application, issuing an HTTP re-
quest. The server receives the message (the receiveGET activity),
does some data processing (in the xquery) activity, and sends back
a response (built in the replyGET) containing an HTML form that
can be used to select dance types.

Figure 1: First part of the flow: HTTP request/response

The second part of the flow, depicted in Figure 2, consists of a
structured activity: a while loop that contains other activities inside
it. The loop is activated once the activities in Figure 1 are com-
pleted and continues as long as the value of the $enrolled variable
stays false.

An iteration inside the while activity starts by enabling a receive-
POST that waits for the dance types sent by the user. Once the form
data are received, the flow engine starts in parallel two xquery ac-
tivities that call remote services (GoogleBase and Craigslist) to re-
trieve information regarding relevant dance classes in the New York
area. The information is aggregated in a subsequent xquery activity
that joins the control flow. Its output is then used in a replyPOST

Figure 2: Second part of the flow: while loop

that sends to the user a form for class enrollment and enables a new
receivePOST. The latter retrieves the answer, mapped into an XML
message. If the count of chosen classes is zero, (the right branch in
the figure) the server sends a reply saying that no class was selected
and, since all other activities either have completed or are disabled,
another loop iteration is started. If there are any chosen classes (the
left branch in the figure), the engine constructs and sends a reply
displaying them and calls an assign activity that sets the $enrolled
variable to true, leading to the termination of the loop.

Besides support for sequential and parallel activities, as well as
while loops which were illustrated here, Bite supports a number
of other control flow expressions (e.g., the ability to pick between
several choices). We will cover the rest of the language in Sec-
tions 2 and 3. As we will see, all of Bite’s control flow capabilities
can be implemented using a combination of imperative features and
parallelism that are available as part of the Distributed XQuery lan-
guage [11].

Challenges and Approach. Creating the infrastructure to sup-
port such applications raises a number of challenges. First, the data
sources are RSS feeds, so we must provide XML processing ca-
pabilities. Not surprisingly, we use XQuery for that purpose. The
choice of XQuery 1.0 ensures that the programmer can rely on a
well-established language, and provides more than enough expres-
siveness for potentially data intensive applications. The design of
Bite facilitates this integration by providing a specific script activ-
ity that allows to inline processing in a language supported by the
runtime engine. Still, a number of specific semantic issues must
be addressed, notably the relationship between Bite and XQuery
variables, as well as scoping rules.

The second challenge has a less clear approach, and it concerns
the choice of an implementation strategy. In many cases, workflow
engines delegate the task of data processing to a DBMS, which
leverages the powerful infrastructure it provides, but often requires
heavy system integration and makes deployment complex. In ad-
dition, this often makes optimization of the data processing across

multiple activities difficult. In the XML area, the availability of
libraries for XPath or XQuery processing somewhat facilitates in-
tegration and deployment, however it leaves open most of the opti-
mization issues. A variety of more integrated approaches have been
used, such as implementing the workflow semantics using database
triggers [5], or the nested relational calculus [14], or building full-
fledged data processing within the workflow engine itself [15]. Our
solution relies on a compilation and runtime infrastructure that is
itself XQuery–based. More concretely, we exploit XQuery’s ex-
pressiveness and recently developed imperative [8] and distributed
features [11] to execute Bite’s workflow language. Interestingly,
since Bite’s syntax is XML based, the compiler is also written as
an XQuery 1.0 program that transforms Bite specifications into a
DXQ program.

Contributions. The paper makes the following contributions.

• We present an extension to the Bite workflow language with
XQuery activities.

• We describe the compile-time and runtime architectures and
show how the workflow language can be compiled into a Dis-
tributed XQuery (DXQ) program.

• The approach has been implemented on top of the Galax
XQuery processor, and tested on workflows that are small,
but cover typical usage scenarios, such as the one serving as
an illustration in this paper.

We would like to point out that the proposed approach yields
promising additional benefits. First, both data manipulation and
workflow control/data flow semantics are handled seamlessly. Sec-
ond, the compiler can serve to provide an executable formal opera-
tional semantics. It also opens interesting avenues for future work,
such as optimization by analyzing the queries and control structures
and distributed flow execution, or making use of the distributed ex-
ecution capabilities of DXQ to deploy distributed workflows.

Organization. The rest of the paper is organized as follows.
Section 2 describes the XQuery extension of Bite. Section 3 ex-
plains how to compile Bite workflows into DXQ. Section 4 de-
scribes the implementation and the architecture of our system. We
discuss related work in Section 5 and conclude in Section 6.

2. BITE WITH XQUERY
This section presents the Bite language, focusing on its control

and data flow features, and describes our proposed XQuery exten-
sion. A more detailed presentation of Bite can be found in [17].

The basic Bite process model consists of an acyclic graph con-
taining activities connected by conditional links. The graph allows
a restricted type of nesting: only one type of activities (while) can be
nested and links are not allowed to cross the boundaries of a nested
activity. The execution semantics of links and activities is the same
as the BPEL flow activity with suppressJoinFailure set to yes. Once
the activity that is the source of a link completes, the condition is
evaluated, and the status of the link is set to the boolean value ob-
tained, or to true, if no condition was specified. An activity which
is in the default (initial) state and has incoming control links, must
wait that all activities it depends on terminate or are disabled, and
then evaluates a predicate over the values of the links, called the
join condition. If the result is true, then it enters the enabled state,
meaning it can be scheduled to run, provided it receives all its in-
puts (which can also be external messages). If the result is false,

then it becomes disabled, and its outgoing links are set to false. Er-
ror handling is provided by special error links to error handling ac-
tivities. The semantics also includes Dead-Path Elimination (DPE)
[19]. DPE is a technique of propagating the disablement of an ac-
tivity via its outgoing links so that downstream activities do not
hang waiting for it.

A Bite flow exposes itself as an HTTP-accessible service, re-
sponding to GET, PUT, POST, DELETE requests targeted at the
different URLs of the flow’s entry points. It composes interactions
with other services over HTTP and with people over email. Unlike
BPEL, no typing for the flow services is required (i.e. no WSDL,
Schema, etc) and service endpoints (URL, email address, etc) are
encoded directly into the calling activities.

Bite itself has only a small set of basic activities; however, this
set is extensible by design, enabling users and developers to define
new extension activities. The basic activities consist of (1) com-
munication primitives for receiving and replying to HTTP requests
(receiveGET/PUT, replyGET/PUT) and making HTTP requests to
external services (GET, POST, PUT, DELETE), (2) utility activities
for waiting, calling local code, or terminating the flow, (3) control
helpers such as structured loops (while) and external choice, which
enables reacting to an exclusive choice from a set of possible exter-
nal inputs (pick). The state of the flow is stored into variables, de-
scribed in detail later in this section. Bite adapts the pick construct
of BPEL, by turning it into a flat activity whose output variable
contains which choice was taken (using an index of the choice’s
name if given), and the received message data. The process may
use the variable like any other, especially in transition conditions
to go down a different branch based on the selected choice. while
activities resemble loops in classical programming, however they
must take into account parallelism. Thus, the loop control must
wait for all activities nested inside the while to be completed or dis-
abled before it reevaluates the condition. Explicit side effects are
modeled as assign activities that copy data resulting from the eval-
uation of an expression to a variable or a location inside a variable.

A Bite flow can be executed on several different runtimes cater-
ing to different platforms: a servlet container, an HTTP server em-
bedded in the Java platform, the IBM Project Zero [16] where Bite
is provided as “the Assemble Flow language” and others.

Bite extension activities created by the user/developer commu-
nity can be plugged into a Bite runtime. The activity implementa-
tions may be defined in any language that is supported, for exten-
sion activities, by the chosen runtime (in Project Zero, either Java
or Groovy). We exploit that built-in extensibility by allowing users
to use XQuery extension activities. An example of an XQuery ex-
tension activity is shown below. The input element has the body of
the query that reads a variable named salsaClassRcv_Output, con-
taining the output of the activity salsaClassRcv, and constructs a
sequence of RequestSummary elements. The control element de-
fines a control link, which here states that the xquery activity cannot
run until the activity named salsaClassRcv has completed. The in-
put and control XML elements are part of the Bite language and are
available for every activity type.
<xquery name="transform">
<input>
<![CDATA[’for $x in $salsaClassRcv_Output return
<RequestSummary>

Dance {$x/dance_type/text()},
Location {$x/location/text()}

</RequestSummary>’]]>
</input>
<control source="startSalsaRcv"/>

</xquery>

Data in Bite is stored in variables that are visible to all activities
and expressions in the flow. These global variables can either be

declared explicitly, at the beginning of the flow specification, or im-
plicitly, as the target of an assign. In addition, the convention is that
the output of an activity is contained within an implicitly defined
variable, as salsaClassRcv_Output above. The standard semantics
of Bite is more permissive, allowing variables to be directly used in
any expression, as in Javascript. However, in order to be able to use
XQuery, which has stricter scoping rules, we allow only the types
of flow variables described above.

The use of shared variables makes data flow implicit, but explicit
data dependencies can be specified using some syntactic sugar.

Our XQuery extension has also support for XQuery prolog state-
ments, which can be inserted inside the initialization element of a
reserved Bite variable. All declarations from that prolog are visible
to the XQuery expressions inside the flow. However the XQuery
variables are not visible at the flow level and should be distin-
guished from Bite variables.

3. COMPILATION INTO DXQ

3.1 DXQ Overview
DXQ is composed of several layers of extensions over XQuery

1.0, namely: XQueryP [8] which extends XQuery 1.0 with proce-
dural features and immediate update application, DXQ [11] which
extends XQueryP with closures and distributed computation. We
briefly review the main features of DXQ, notably those relevant to
our workflow compiler. At the language level, DXQ distinguishes
the interface of a module from its implementation. Module inter-
faces include declarations of functions and variables that are ex-
ported. A client query may remotely call functions in a module
exported by a DXQ server, to which it can refer by using an import
interface statement. DXQ also adds a let server implement expres-
sion, which dynamically asserts that a DXQ server at a particular
URI implements an imported interface. The expression language
is further enriched with two remote evaluation expressions, from
Server return { Expr } and at Server do { Expr }, which redirect eval-
uation of an expression to a DXQ server synchronously or asyn-
chronously. In the context of implementing Bite, we merely need
to observe that DXQ asynchronous remote calls result in parallel
evaluation. The idea is that each remote call creates a thread and
we can create local threads by declaring a DXQ server Self bound
to the current module, as illustrated on the following code snippet1.

import interface namespace Workflow = "URI"
at "interface-file";

declare server Self implements Workflow;
...
at Self do { E } (: creates a thread and evaluates E :)
...

In order to provide control between those threads, we add two
new DXQ library functions for thread synchronization: dxq:wait, to
wait idly for a thread to complete, and dxq:signal, to signal thread
completion.

Architecturally, DXQ is used by deploying one or more XQuery
that can communicate through HTTP. DXQ’s native support for
HTTP makes it fairly natural to implement the REST-based ap-
proach of Bite. In Section 4 we describe specific tweaks needed in
the run-time architecture of DXQ to precisely handle Bite’s HTTP
interface. Finally, we also added one function for explicit HTTP
calls, glx:http-request, which is used to implement http requests
from within Bite activities. It takes as input the HTTP method,
the URL and the request content, which must be XML.
1The top-level server declaration is a straightforward extension
from [11] that is available in the implementation.

3.2 Compilation Approach
We adopt the XQuery datamodel for any data manipulated by the

flows and use XQuery 1.0 as our expression language.
Shared resources and environment. The state visible to expres-

sions and activities in the flow is the state residing in the variables
of the flow, by definition of the flow language itself. Our mapping
maintains the semantics and makes the state accessible via XQuery
variables. We are also compliant with Bite with respect to which
assignments to global variables are persistent. Assignments can be
explicitly made persistent either by specifying them in an assign
activity or in the initialization part of a flow variable. In addition,
there are implicit assignments to an Output variable, as a result
of running the activity to which that variable corresponds (as in
the semantics of Bite). At implementation level, the entire state of
each process, including process variables, state (disabled, enabled,
default, completed), condition variables is stored in the global en-
vironment, and updated inside critical sections.

Activities. The main principle of compilation is to create one
DXQ function for each activity, based on the intuition that a func-
tion can be called asynchronously to reflect the triggering of an ac-
tivity. Each function is started in a new thread using the approach
explained earlier and it is passed as argument a process id, desig-
nating the logical instance to which it belongs.

Messaging. An important aspect of this approach is to isolate
the interpretation of incoming messages into a dispatch function
that forwards the content of the HTTP requests to the appropriate
process and activity.

Control flow. As XQuery is also our chosen expression language,
transition, join and loop conditions are mere XQuery expressions.
They are boolean predicates testing variable values (stored in the
global environment) or data (retrieved through queries). In the cur-
rent implementation, the join condition is the conjunction of the
(boolean) values of all incoming links, but it can easily be extended
to allow for generic predicates. The conjunction was chosen be-
cause it facilitates the implementation of an aggregation scenario,
as the one used several times in Section 1.

Calling queries. The choice of XQuery as expression language
provides a seamless integration of data management into work-
flows. XQuery queries can be used in any expression, either in
xquery activities or in other constructs that contain expressions
(assign, variable initialization, conditions used in control flow). A
query can reference global variables and external XML instances,
as in a regular XQuery module.

3.3 Flow Compilation
In the following, we show on some examples how each essential

Bite flow construct is compiled into DXQ.

branching control flow A typical branching example is given in
the top part of Figure 2: the termination of danceTypeRcv,
a receivePOST activity, enables two xquery activities: getG-
BaseClasses and getCraigslistClasses. The generated code
contains two asynchronous calls that spawn the threads cor-
responding to the two new activities:

...
at Self do {Self:getGBaseClasses($pid)};
at Self do {Self:getCraigslistClasses($pid)};
...

joining control flow paths Consider, in Figure 2, the getGBase-
Classes and getCraigslistClasses activities that together en-
able aggregClasses. The functions implementing getGBase-
Classes and getCraigslistClasses end by calling a helper func-
tion that decrements a counter (initially set to 2), and, upon

reaching zero, launches aggregClasses. Here are the corre-
sponding portions of the body of that helper function:

... (: enter critical section :)
let $new_cnt := $aggreg_cnt - 1 return
replace value of node
$env/entry[@pid=$p]/aggreg_cnt with $new_cnt;

...
if ($new_cnt eq 0) then
at Self do {Self:aggregClasses($pid)

...

dead path elimination If all incoming control links are set to false,
an activity is disabled and its output control links set to false.
Following the dead path elimination rule, the workflow en-
gine has to disable recursively other activities whose incom-
ing links become false, according to the join condition. (Re-
member that in the current implementation the join condi-
tion is a conjunction.) The implementation is straightfor-
ward: generate one special DPE-function for each activity
and call the DPE-functions of the activities that depend on it.
Here is the most significant part of the of the body of aggreg-
Classes_dpe, the DPE-function generated for aggregClasses
from Figure 2:

if ($status_getGBaseClasses eq ‘‘disabled’’ and
$status_getCraigslistClasses eq ‘‘disabled’’)

then {
replace value of node
$z:env/entry[@pid = $z:pid]/
activity[name = ‘‘aggregClasses’’]/status

with ‘‘disabled’’;
local:danceTypeReply_dpe($z:pid) }

else ()

transition conditions The flow language allows for refining the
control links by adding predicates called transition condi-
tions. When the activity that is the target of the link is a
receive or pick activity, if the transition condition is false and
its state is set to disabled (i.e. the dispatch will not forward
messages to it), otherwise, if all incoming links have true
values, the state is set to enabled. If it is not a receive or a
pick activity, then, if the condition is true, it is started asyn-
chronously, otherwise, only its DPE-function is called.
For instance, in Figure 2, the listClasses and noClassSelected
activities both depend on the second receivePOST enrollRcv.
But they are in fact mutually exclusive, because the tran-
sitions are annotated with the conditions checking that the
number of chosen classes is strictly positive and that it is
zero, respectively. We show below the fragment of code gen-
erated to implement the first of the two transition conditions:

if (count($enrollRcv_Output/class_choice) > 0)
then at Self do {Self:listClasses($z:pid)}
else local:listClasses_dpe($z:pid)

receive/reply While activity threads run asynchronously, the exter-
nal HTTP interface is synchronous: for a given HTTP re-
quest, the web server must return an HTTP reply. Therefore
the thread of a receive has to wait for the reply to complete
and produce its result. In practice, we use synchronization
primitives (condition variables and mutexes) to block the re-
ceive, make the reply function store its Output at a special
environment location and signal the waiting thread. The lat-
ter can then retrieve the result and return it to the client.
For instance, for the activities in Figure 1,2 the blocking re-
ceive thread runs the code:

2One may notice that this example could be optimized into only
one function that does all the work of the three activities. We plan
to exploit these kinds of rewritings in the future.

at Self do {Self:danceType($z:pid)};
dxq:wait($cv1, $mx1);
$env/entry[...]/startSalsaReply_Output/node() }};

and the reply thread wakes the receive thread after it finishes
its computation:

...
replace value of node
$env/entry[...]/startSalsaReply_Output with ...
...
dxq:signal($cv1)}};

[choice = 0]

pick

disksorno

xquery

getGBaseMusic

xquery

getCraigslistMusic

xquery

aggregMusic
replyGET

nodisksReply

[choice = 1]

……
……

Figure 3: Sample pick activity

pick Our implementation of pick supports only choice based on in-
coming messages, hence it is conceptually similar to group-
ing several receives (which we call choices) together, such
that when one of them is started, all others are disabled. In
DXQ this is fairly easy, as it is enough to generate one func-
tion that processes all requests for a pick activity because the
URL to which the message was sent to uniquely identifies a
particular choice. All these steps can be implemented based
on conditional statements.

We will examplify by looking at the pick in Figure 3 that
allows choosing either a flow path for buying music or to skip
that step, continuing the flow described in Section 1. For the
link that is activated on the second choice (choice = 1) and
triggers a replyGET (corresponding to the case in which the
user does not want to buy any disks), the code will be:

if ($disksorno_Choice = 1)
then at Self do {Self:nodisksReply($z:pid)}
else local:nodisksReply_dpe($z:pid)

The code corresponding to the first choice is similar, but it
will have two asynchronous calls, for the two xquery activi-
ties.

while Each time an activity inside the while completes, or is dis-
abled, it decrements a counter, initialized at the beginning of
each iteration. When the counter reaches zero, it reads the
values of the variables from the context and it tests the loop
condition. If it is true, then it re-initializes the state of the ac-
tivities in the while. For the loop in Figure 2, this translates
to a while loop within the function of the while activity:

while (not $enrolled) return {
... (: enable activities within the loop

and init. counter :)
dxq:wait($cv_loop, $mx_loop);
... (: re-read vars. from the environment :)

}

The compiler also creates a helper function that decrements
the counter, similar to the one for joining flow paths, which,
upon reaching a zero counter, will signal the main while ac-
tivity: dxq:signal($cv_loop) .

Thus, we were able to implement most of the Bite language, just
by taking DXQ and adding a few function calls. We have not im-
plemented data dependencies (the input element in Bite), but it does
not seem to pose any big challenges. There are other missing fea-
tures such as error links and timeouts, for which DXQ has no sup-
port yet. Also, since we are focusing on XML processing, we lim-
ited the expression language to XQuery and we do not support any
other extensions, while Bite allows for arbitrary extensions.

4. IMPLEMENTATION
Figure 4 gives an overview of the architecture of our workflow

compiler and of the runtime engine.

XML flow
description

compiler
(XQuery 1.0)

DXQ script

DXQ server

user

HTTP/DXQ
adaptor

DXQ
request

DXQ
result

HTTP
request

HTTP
response

Figure 4: Compilation and Runtime Architecture

Our compiler implementation consists in 915 lines of standard
XQuery 1.0, that we tested with two distinct open source XQuery
processors: Galax [13] and Saxon [26]. The compiler takes as in-
put a description of the flow, in XML format, and produces a DXQ
module that implements it. It starts by generating the part of the
prolog common to all applications, containing the declarations of
the global environment and of the associated mutex. The next step
is to generate a special dispatch function (henceforth called dis-
patcher) that accepts requests and forwards them to the appropriate
instance or creates a new instance. Multiple workflow instances
are simulated by using threads that carry logical process ids and by
partitioning the global environment based on those ids. For a new
instance, the dispatcher needs to create environment locations for
variables used in synchronization, as well as for global variables
of that process, shared by all its threads. The rest of the compiler
is dedicated to implementing the compilation principle “one func-
tion per activity”, where each flow constructs is implemented as
described in Section 3.

The target platform of our compiler is the DXQ runtime. After
compiling a workflow specification, the resulting DXQ module and
interface are run as any DXQ server. In order to provide an external
interface compatible to the protocol used by Bite (pure REST), we
add an adaptor which acts as a proxy between the HTTP clients and
the DXQ runtime. The adaptor is also used to translate non-XML
input, such as the one coming from an HTML form, into an XML
encoding. When a request is received, the adaptor extracts the URL
and out of the URL (standard Bite convention) the process id, if
specified. The id, together with the content and the HTTP method
of the request are sent as arguments in a call to the dispatcher of the

DXQ server identified by that URL. If the process id is mentioned
in the URL, then the dispatcher forwards the request to an enabled
activity of that process. Otherwise, a new instance, with a new
process id, is created and a new entry in the global environment is
allocated.

5. RELATED WORK
A number of projects have studied the interaction of Database

technology and Workflows. VorteX [15], GridDB [21], DFL [14]
propose models specifically adapted for data-centric workflows.
The BPQ project [4] focuses on querying business processes ex-
pressed in BPEL. The emergence of Web-enabled workflow lan-
guages has resulted in a renewed interest in the integration of data
manipulation features with workflow technology. In [28], Vrhovnik
et al extend a BPEL engine with SQL capabilities. Most exist-
ing commercial BPEL implementations support data queries using
SQL [25, 23], XPath [25], or XQuery [7, 30]. Our work follows
a similar idea, but focuses on a more light-weight workflow lan-
guage designed for Web 2.0 applications. In addition, we rely on an
original implementation approach that enables a tighter integration
between the data processing and workflow components (through
compilation of workflows into a database language) instead of re-
lying on a more complex system integration. Several other recent
work focus on Web data manipulation and data flow such as Yahoo
Pipes [31], DAMIA [3], XProc [29] or AXML [1]. Each of those
efforts include support for XML as the data format and are opti-
mized towards data manipulation, but do not have full workflow
capabilities.

From an implementation point of view, several techniques have
been proposed to support workflow processing directly on top of a
database system, e.g., using triggers [5], or mapping into an Object-
Oriented Database [2]. A system [20] supporting the FDL lan-
guage, a precursor of BPEL and therefore having a closely re-
lated semantics, stores a representation of navigational state in a
database. Navigation is then performed by executing appropriate
SQL calls on top of the database system. Srivastava et al. [27]
study optimization of relational queries over web services, consid-
ering precedence constraints, which can encode only a small part
of BPEL’s semantics. Even though we implement the workflow
semantics using a “query language”, our use of DXQ’s support for
concurrency relates our approach to using languages for concurrent
and distributed programming e.g., the pi-calculus [22] or Orc [18],
to implement workflows.

6. CONCLUSION
In this paper we have described the integration between XQuery

and the REST-based workflow language Bite, and shown how the
resulting language can be implemented on top of DXQ, a distributed
extension of XQuery. The proposed compiler supports all the con-
trol flow features of Bite, and is well suited for the deployment and
execution of light-weight Web applications that require data pro-
cessing and human interactions. We believe this work opens an
interesting new avenue for the XQuery language. It also provides
some opportunities for future work on query optimization in the
context of workflow processes, as well as on distributed workflows
by exploiting the features existing in DXQ.

7. REFERENCES
[1] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project:

an overview. VLDB J., 2008.
[2] A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific workflow

management by database management. In SSDBM 1998, pages
190–199, 1998.

[3] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl,
L. Mau, Y.-H. Ng, D. Simmen, and A. Singh. Damia: a data mashup
fabric for intranet applications. In VLDB, pages 1370–1373, 2007.

[4] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring business
processes with queries. In VLDB, pages 603–614, 2007.

[5] C. Blecken. Media360 workflow-implementing a workflow engine
inside a database. In VLDB, page 692, 2000.

[6] What to look for when BPEL 2.0 becomes available for public
review. http://www.jpasley.com/2006/07/what-to-look-for-when-
bpel-20-becomes.html.

[7] BEA WebLogic integration 8.1 documentation. Using the BPEL
export tool. http://edocs.bea.com/wli/docs81/bpel/export.html.

[8] D. Chamberlain, M. Carey, D. Florescu, D. Kossmann, and J. Robie.
XQueryP: Programming with XQuery. In XIME-P, 2006.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
services description language (WSDL) 1.1, W3C note, 2001.

[10] F. Curbera, M. J. Duftler, R. Khalaf, and D. Lovell. Bite: Workflow
composition for the web. In ICSOC, pages 94–106, 2007.

[11] M. F. Fernández, T. Jim, K. Morton, N. Onose, and J. Siméon. DXQ:
A distributed XQuery scripting language. In XIME-P, 2007.

[12] R. T. Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, UC Irvine, 2000.

[13] Galax: An implementation of XQuery. http://www.galaxquery.org.
[14] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V. den

Bussche. DFL: A dataflow language based on petri nets and nested
relational calculus. Inf. Syst., 33(3):261–284, 2008.

[15] R. Hull, F. Llirbat, E. Siman, J. Su, G. Dong, B. Kumar, and G. Zhou.
Declarative workflows that support easy modification and dynamic
browsing. In WACC ’99, pages 69–78, 1999.

[16] IBM. Project Zero, 2007. http://www.projectzero.org/.
[17] R. Khalaf, N. Mukhi, and S. Weerawarana. Service-oriented

composition in BPEL4WS. In WWW2003, May 2003.
[18] D. Kitchin, W. R. Cook, and J. Misra. A language for task

orchestration and its semantic properties. In CONCUR, pages
477–491, 2006.

[19] F. Leymann and A. Altenhuber. Managing business processes as
information resources. IBM Systems Journal, 33(2), 1994.

[20] F. Leymann and D. Roller. Production Workflow, chapter 10. Prentice
Hall, 2000.

[21] D. T. Liu and M. J. Franklin. The design of GridDB: A data-centric
overlay for the scientific grid. In VLDB, pages 600–611, 2004.

[22] R. Lucchi and M. Mazzara. A pi-calculus based semantics for
WS-BPEL. Journal of Logic and Algebraic Programming,
70(1):96–118, January 2007.

[23] Windows workflow foundation.
http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx.

[24] OASIS. Web Services Business Process Execution Language Version
2.0, 11 April 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[25] Oracle BPEL process manager.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[26] Saxon: The XSLT and XQuery processor.
http://saxon.sourceforge.net.

[27] U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query
optimization over web services. In VLDB ’06, pages 355–366, 2006.

[28] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl,
A. Maier, and T. Kraft. An approach to optimize data processing in
business processes. In VLDB, pages 615–626, 2007.

[29] N. Walsh, A. Milowski, and H. S. Thompson. XProc: An XML
pipeline language, W3C working draft, 2008.

[30] Websphere process server.
http://www-306.ibm.com/software/integration/wps/features/.

[31] Pipes: Rewire the web. http://pipes.yahoo.com.

