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ABSTRACT
The standard approach for optimization of XPath queries by rewrit-
ing using views techniques consists in navigating inside a view’s
output, thus allowing the usage of only one view in the rewritten
query. Algorithms for richer classes of XPath rewritings, using
intersection or joins on node identifiers, have been proposed, but
they either lack completeness guarantees, or require additional in-
formation about the data. We identify the tightest restrictions under
which an XPath can be rewritten in polynomial time using an in-
tersection of views and propose an algorithm that works for any
documents or type of identifiers. As an additional contribution,
we analyze the complexity of the related problem of deciding if an
XPath with intersection can be equivalently rewritten as one with-
out intersection or union.

1. INTRODUCTION
The problem of equivalently rewriting queries using views is

fundamental to several classical data management tasks. While
the rewriting problem has been well studied for the relational data
model, its XML counterpart is not yet equally well understood,
even for basic XML query languages such as XPath, due to the
novel challenges raised by the features of the XML data model.

XPath [12] is the standard for navigational queries over XML
data and it is widely used, either directly, or as part of more com-
plex languages (such as XQuery [7]). Early research [24, 18, 21,
25] studied the problem of equivalently rewriting an XPath by nav-
igating inside a single materialized XPath view. This is the only
kind of rewritings supported when the query cache can only store
or can only obtain copies of the XML elements in the query answer,
and so the original node identities are lost.

We have recently witnessed an industrial trend towards enhanc-
ing XPath queries with the ability to expose node identifiers and ex-
ploit them using intersection of node sets (via identity-based equal-
ity). This trend is supported by such systems as [3] and has culmi-
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nated in the new XPath 2.0 standard [6], which adds intersection as
a first-class primitive. This development enables for the first time
multiple-view rewritings obtained by intersecting several material-
ized view results. The single-view rewritings considered in early
XPath research have only limited benefit, as many queries with no
single-view rewriting can be rewritten using multiple views.

Our work is the first to characterize the complexity of the in-
tersection-aware rewriting problem. We identify tight restrictions
under which sound and complete rewriting can be performed ef-
ficiently, i.e. in polynomial time, and beyond which the problem
becomes intractable (coNP hard). These restrictions are practically
interesting as they permit expressive queries and views with de-
scendant navigation and path filter predicates.

As a side-effect of our study of rewriting, we analyze the com-
plexity of the problem of deciding if an XPath with intersection can
be equivalently rewritten as one without intersection or union, case
in which we say it is union-free. We also study the effect of inter-
section on the complexity of containment of XPath 2.0 queries.

Prior work on XPath containment derived coNP lower bounds in
the presence of wildcard child navigation, yet showed PTIME for
tree patterns without wildcard [19]. In contrast, we show that ex-
tending wildcard-free tree patterns with intersection already leads
to intractability.

Running Example. Throughout the paper we will consider an
example based on XPath queries over a digital library, which con-
sists in a large number of publications, including scientific papers.
A paper is organized into a hierarchy of sections, which may in-
clude, among other things, figures and images, usually related to
the theorems and other results stated in the papers.

Let us assume that there has already been a query v1, that re-
trieved all images appearing in sections with theorem statements:

v1 : doc(“L”)//paper//section[theorem]//image
The result of v1 is stored in the cache as a materialized view, rooted
at an element named v1. Later, the query processor had to answer
another XPath v2 looking for images inside (floating) figures that
can be referenced:

v2 : doc(“L”)/lib/paper//section//figure[caption//label]/image
The result of v2 is not contained in that of v1, so it was also exe-
cuted and its answer cached.

Let us first look at an incoming query q1, asking for all postscript
images that appear in sections with theorems:

q1 : doc(“L”)//paper//section[theorem]//image[ps]
q1 can be easily answered by navigating inside the view v1, using
the following XPath query:

r1 : doc(“v1”)/v1/image[ps]
Now, consider a query q2 looking for the files corresponding to
images inside labeled figures from sections stating theorems:
q2 : doc(“L”)/lib/paper//section[theorem]//figure[caption//label]/image/file



It is easy to see that q2 cannot be answered in isolation using only
v1 or only v2, because, for instance, there is no way to enforce
that an image is both in a section having theorems and inside a
labeled figure. However, by intersecting the results of the two views
(assuming they both preserve the identities of the original image
elements), one can build a rewriting equivalent to q2:

r2 : (doc(“v1”)/v1/image ∩ doc(“v2”)/v2/image)/file

Outline. The rest of the paper is organized as follows. We dis-
cuss related work in Section 2. Section 3 introduces general notions
and the rewriting problem. Section 4 presents our solution and we
conclude in Section 5. The proofs are in [10], Appendix E.

2. RELATED WORK
XPath rewriting using only one view (no intersection) was the

target of several studies [24, 18, 21, 25]. Previously proposed join-
based rewriting methods either give no completeness guarantees [3,
22] or can do so only if the query engine has extra knowledge
about the structure and nesting depth of the XML document [2].
Others [22] can only be used if the node ids are in a special en-
coding, containing structural information. Our algorithm works for
any documents and type of identifiers, including application level
ids, such as the id attributes defined in the XML standard [8].

In [17] and [14], the authors look at a different problem, that
of finding maximally contained rewritings of XPath queries using
views. Rewriting more expressive XML queries using views was
studied in [11, 13, 20], but without considering intersection.

Containment and satisfiability for several extensions of XPath
with intersection have been previously investigated, but all consid-
ered problems were at least NP-hard or coNP-hard. For our lan-
guage, containment is also intractable, but the equivalence test used
in the rewriting algorithm is in PTIME for practically relevant re-
strictions. Satisfiability of XPath in the presence of the intersect
operator and of wildcards was analyzed in [16], which proved its
NP-completeness. As noticed in [4], there is a tight relationship be-
tween satisfiability and containment for languages that can express
unsatisfiable queries. If containment is in the class K, satisfiability
is in coK and if satisfiability is K-hard, containment is coK-hard.
We give even stronger coNP completeness results for the contain-
ment of an XPath p1 into an XPath p2, by allowing intersection only
in p1 and disallowing wildcards. Satisfiability is analyzed in [4]
for various fragments of XPath, including negation and disjunction,
which could together simulate intersection, but lead to coPSPACE-
hardness for checking containment. Richer sublanguages of XPath
2.0, including path intersection and equality, are considered in [23],
where complexity of checking containment goes up to EXPTIME
or higher. None of these studies tries to identify an efficient test for
using intersection in query rewriting. A different approach, taken
by [15] is to replace intersection by using a rich set of language
features, and then try to simplify the expression using heuristics.

Finally, closure under intersection was analyzed in [5] for var-
ious XPath fragments, all of which use wildcard. We study the
case without wildcard and prove that union-freedom (equivalence
between an intersection of XPaths and an XPath without intersec-
tion or union) is coNP-hard. However, under restrictions similar
to those for the rewriting problem, union-freedom can be solved in
polynomial time. Thus, we also answer a question we previously
raised in [9] regarding whether an intersection of XPath queries
without wildcard can be reduced in PTIME to only one XPath.

3. PRELIMINARIES
We consider an XML document as an unranked, unordered rooted

tree tmodeled by a set of edges EDGES(t), a set of nodes NODES(t),

a distinguished root node ROOT(t) and a labeling function λt, as-
signing to each node a label from an infinite alphabet Σ.

We consider XPath queries with child / and descendant // navi-
gation, without wildcards. We call the resulting language XP , and
define its grammar as:

apath ::= doc(“name”)/rpath | doc(“name”)//rpath
rpath ::= step | rpath/rpath | rpath//rpath
step ::= label pred
pred ::= ε | [rpath] | [.//rpath]| pred pred

The sub-expressions inside brackets are called predicates. As we
show in [10], all definitions and results extend naturally when al-
lowing equality with constants in the predicates.

In the following, we will prefer an alternative representation widely
used in literature, the unary tree patterns [19]:

DEFINITION 3.1. A tree pattern p is a non empty rooted tree,
with a set of nodes NODES(p) labeled with symbols from Σ, a dis-
tinguished node called the output node OUT(p), and two types of
edges: child edges, labeled by / and descendant edges, labeled by
//. The root of p is denoted ROOT(p.)

Any XP expression can be translated into a tree pattern query
and vice versa (see, for instance [19]). For a given XP expression
q, by pattern(q) we denote the associated tree pattern p and by
xpath(p) ≡ q the reverse transformation.

The semantics of a tree pattern can be given using embeddings:

DEFINITION 3.2. An embedding of a tree pattern p into a tree
t over Σ is a function e from NODES(p) to NODES(t) that has
the following properties: (1) e(ROOT(p)) = ROOT(t); (2) for any
n ∈ NODES(p), LABEL(e(n)) = LABEL(n); (3) for any /-edge
(n1, n2) in p, (e(n1), e(n2)) is an edge in t; (4) for any //-edge
(n1, n2) in p, there is a path from e(n1) to e(n2) in t.

The result of applying a tree pattern p to an XML tree t is the set:

{(ROOT(t), e(OUT(p))) | e is an embedding of p into t }
We will consider in this paper the extension XP∩ of XP with

respect to intersection, having a straightforward semantics. The
grammar of XP∩ is obtained from that of XP by adding the rules:

ipath ::= cpath | (cpath)| (cpath)/rpath | (cpath)//rpath
cpath ::= apath | apath ∩ cpath

By XP∩ expressions over a set of documents D we denote those
that use only apath expressions that navigate inside the documents
D. For a fragment L ⊆ XP , by L∩ ⊆ XP∩ we denote the
XP∩ expressions that use only apath expressions from L.

Similar to the XP - tree pattern duality, we can represent XP∩ ex-
pressions using the more general DAG patterns:

DEFINITION 3.3. A DAG pattern d is a directed acyclic graph,
with a set of nodes NODES(d) labeled with symbols from Σ, a dis-
tinguished node called the output node OUT(d), and two types of
edges: child edges, labeled by / and descendant edges, labeled by
//. d has to satisfy the property that any n ∈ NODES(d) is acces-
sible via a path starting from a special node ROOT(d). In addition,
all the nodes that are not on a path from ROOT(d) to OUT(d) (de-
noted predicate nodes) have only one incoming edge.

Figure 1(a) gives an example of a DAG pattern. ROOT(d) is the
doc(L) node and OUT(d) is the image node indicated by a square.

Representing XP∩ by DAG patterns. For a query q in XP∩ ,
we construct the associated pattern dag(q) as follows:

1. for every apath (XP path with no ∩), dag(apath) is the tree
pattern corresponding to the apath .
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Figure 1: Running the rules on the example of Section 1

2. dag(p1 ∩ p2) is obtained from dag(p1) and dag(p2) as fol-
lows: (i) provided there are no labeling conflicts and both p1

and p2 are not empty, by coalescing ROOT(dag(p1)) with
ROOT(dag(p2)) and OUT(dag(p1)) with OUT(dag(p2))
respectively, (ii) otherwise, as the empty pattern.

3. dag(x/rpath ) and dag(x//rpath ) are obtained as follows:
(i) for non-empty x, by appending the pattern corresponding
to rpath to OUT(dag(x)) with a /- and a //-edge respectively,
(ii) as x, if x is the empty pattern.

By a pattern from language L we denote any pattern built as
dag(q), for q ∈ L. Note that a tree pattern is a DAG pattern as
well. The notion of embedding and the semantics of a pattern can
be extended in straightforward manner from trees to DAGs. In the
following, unless stated otherwise, all patterns are DAG patterns.

By the main branch nodes of a pattern d, MBN(d), we denote
the set of nodes found on paths starting with ROOT(d) and ending
with OUT(d). We refer to main branch paths between ROOT(d)
and OUT(d) as main branches of d. The (unique) main branch of
a tree pattern p is denoted MB(p). A /-pattern is a tree pattern that
has only /-edges in the main branch. We call predicate subtree of a
pattern p any subtree of p rooted at a non-main branch node.

A prefix p of a tree pattern q is any tree pattern with ROOT(p) =
ROOT(q), m = MB(p) a subpath of MB(q) and having all the
predicates attached to the nodes ofm in q. For instance, the pattern
shown in Figure 1(c) is a prefix of the pattern of q2, since it has all
the nodes of q2, except for the output one.

DEFINITION 3.4. A pattern d1 is contained in another pattern
d2 iff for any input tree t, d1(t) ⊆ d2(t). We write this shortly as
d1 v d2. We say that d1 is equivalent to d2, and write d1 ≡ d2, iff
d1(t) = d2(t) for any input tree t.

We say that a pattern p is minimal [1] if there is no other pattern
p′ ≡ p having less nodes than p.

DEFINITION 3.5. A mapping between two patterns d1 and d2 is
a function h : NODES(d1) → NODES(d2) that satisfies the prop-
erties (2),(4) of an embedding (allowing the target to be a pattern)
plus three others: (5) for any n ∈ MBN(d1), h(n) ∈ MBN(d2);
(6) for any /-edge (n1, n2) in d1, (e(n1), e(n2)) is a /-edge in d2.

A root-mapping is a mapping that satisfies (1). A containment
mapping is a root-mapping h such that h(OUT(d1)) = OUT(d2).

LEMMA 3.1. If there is a containment mapping from d1 into d2

then d2 v d1.

We next prove that one can always reformulate a DAG pattern
as a (possibly empty) union of tree patterns. As in [5], a code is a
string of symbols from Σ, alternating with either / or //.

DEFINITION 3.6 (INTERLEAVING). By the interleavings of a
pattern d we denote any tree pattern pi produced as follows:

1. choose a code i and a total onto function fi that maps MBN(d)
into Σ-positions of i such that:

(a) for any n ∈ MBN(d), LABEL(fi(n)) = LABEL(n)
(b) for any /-edge (n1, n2) in d, the code i is of the form

. . . fi(n1)/fi(n2) . . . ,

(c) for any //-edge (n1, n2) in d, the code i is of the form
. . . fi(n1) . . . fi(n2) . . . .

2. build the smallest pattern pi such that:
(a) i is a code for the main branch MB(pi),
(b) for any n ∈ MBN(d) and its image n′ in pi (via fi), if

a predicate subtree st appears below n then a copy of
st appears below n′, connected by same kind of edge.

Two nodes n1, n2 from MBN(d) are said to be collapsed if fi(n1) =
fi(n2), with fi as above. The tree patterns pi thus obtained are
called interleavings of d and we denote their set by interleave(d).
We say that a pattern d is satisfiable if it is non-empty and the set
interleave(d) is non-empty. By definition, there is always a con-
tainment mapping from a satisfiable pattern into each of its inter-
leavings. Then, by Lemma 3.1, a pattern will always contain its
interleavings. Similar to a result from [5], it also holds that:

LEMMA 3.2. Any DAG pattern is equivalent to the union of its
interleavings.

For instance, one of the seven interleavings of d in Figure 1(a) is
the pattern in Figure 1(c) and another one corresponds to the XPath
doc(L)/lib/paper//paper//section[theorem]//figure[caption[.//label]]/image
The following also holds:

LEMMA 3.3. If a tree pattern is equivalent to a union of tree
patterns, then it is equivalent to a member of the union.

Note that the set of interleavings pi of a DAG pattern p can be ex-
ponentially larger than p. Indeed, it was shown that the XP∩ fragment
is not included in XP (i.e, the union of its interleavings cannot al-
ways be reduced to one XP query by eliminating interleavings con-
tained in others) and that a DAG pattern may only be translatable
into a union of exponentially many tree patterns (see [5]).

DEFINITION 3.7. We say that a DAG pattern is union-free iff it
is equivalent to a single tree pattern.

By Lemmas 3.2 and 3.3, a satisfiable pattern is union-free iff it
has an interleaving that contains all other possible interleavings.

The rewriting problem. Given a set of views V , defined by
XP queries over a document D, by DV we denote the set of view
documents {doc(“V ”)|V ∈ V}, in which the topmost element is
labeled with the view name. Given a query r ∈ XP∩ over the view
documents DV , we define unfold(r) as the XP∩ query obtained by
replacing in r each doc(“V ”)/V with the definition of V .

We are now ready to describe the view-based rewriting problem.
Given a query q and a finite set of views V over D in a language
L ⊆ XP , we look for an alternative plan r, called a rewriting, that
can be used to answer q. We define rewritings as follows:

DEFINITION 3.8. For a given document D, an XP query q and
XP views V overD, a rewrite plan of q using V is a query r ∈ XP∩

over DV . If unfold(r) ≡ q, then we also say r is a rewriting.
According to the definition above and the definition of XP∩ , a

rewriting r is of the form I = (
T

i,j uij), I/rpath or I//rpath,
with uij of the form doc(“Vj”)/Vj/pi or doc(“Vj”)/Vj//pi. We
say a rewriting r is minimal if all pi and all rpath ’s are minimal.

LEMMA 3.4. A rewrite plan can be evaluated over a set of view
documents DV in polynomial time in the size of DV .

Completeness. In the following, by saying that an algorithm is
complete for rewriting L ⊆ XP , we mean that it solves the rewrit-
ing problem for queries and views in L.



4. REWRITING ALGORITHM
Our approach for testing the existence of a rewriting (algorithm

REWRITE) is the following: for each rewrite plan r using views
that satisfies certain conditions w.r.t the query q, we test whether
its unfolding is equivalent to q. We show that the number of plans
to be considered depends only on the size of (the main branch) of
q, and is thus linear. Testing equivalence between the tree pattern q
and a DAG pattern d corresponding to the unfolding of r will be the
central task in our algorithm. As the plans/DAGs to be considered
will always contain q, testing equivalence will amount to testing
the opposite containment, of d into q.

However, Lemmas 3.2 and 3.3 imply that equivalence holds iff d
has an interleaving pi such that d ≡ pi ≡ q. From this observation,
a naïve approach for the rewrite test would be to simply compute
the interleavings of unfold(r) (a union of interleavings), check that
this union reduces by containments to one interleaving pi (union-
freedom), and that pi is equivalent to q. We devise an algorithm for
computing the interleavings and testing union-freedom that avoids
the naïve approach. It is based on a set of rewrite rules R1-R8
that simulate transformation steps of d (algorithm APPLY-RULES).
Each rule application will produce an equivalent pattern that is one
step closer to an interleaving that contains all others, if such a one
exists. This rule-based algorithm is sound and becomes a decision
procedure for union-freedom under practically relevant restrictions.

APPLY-RULES is then used in the REWRITE algorithm. While
the soundness of REWRITE will follow from the soundness of APPLY-
RULES, we show that it is also a decision procedure.

We next detail the algorithm that rewrites q using views V:

REWRITE(q,V)

1 Prefs ← {(p, {(vi, bi)}) | vi ∈ V, p a prefix of q, bi ∈ MB(p),
∃ a mapping h from ui =pattern(vi) into q, h(OUT(ui)) = bi}

2 for (p,W ) ∈ Prefs
3 do let V ′ ← {compensate(v, p, b) | (v, b) ∈W}
4 let r be the XP∩ query

“T
vj∈V′ vj

”
5 let d be the DAG corresponding to unfold(r)
6 APPLY-RULES(d)
7 if d v p
8 then return compensate(r, q, OUT(p))
9 return fail
APPLY-RULES(d)

1 repeat
2 repeat apply R1 to d
3 until no change
4 repeat apply R2-R8 to d, in arbitrary order
5 until no change
6 until no change
For a pattern d and node n ∈ MBN(d), by SPd(n) we denote the
subpattern rooted at n in d. The compensate function generalizes
the concatenation operation from [24], by copying extra navigation
from the query into the rewrite plan. For r ∈ XP∩ and a tree pat-
tern p, compensate(r, p, n) returns the query obtained by deleting
the first symbol from x = xpath(SPp(n)) and concatenating the
rest to r. For instance, the result of compensating r = a/b with x
= b[c][d]/e is the concatenation of a/b and [c][d]/e, i.e. a/b[c][d]/e.
At line 8, if p is q itself, compensate returns just r, because all
needed navigation had already been added at 3.

We also consider two modified versions of REWRITE :
ALL-REWRITES – same code as REWRITE with the modifica-

tions: (i) replace line 2 with: (2′) for (p, U) ∈ Prefs for W ⊆ U
(ii) remove line 9 and (iii) continue to run even when the return at
line 8 is reached.

EFFICIENT-RW – same code as REWRITE , except line 7, which
becomes: (7′) if d is a tree then if d v p.

We mention that at line 3 in the code, some elements of V ′ may
be redundant and can be discarded. For space reasons, we do not
discuss such optimizations.

4.1 The Rewrite Rules.
We present the rules R1-R8 as pairs formed by a test condition,

which checks if the rule is applicable, and a graphical description,
which shows how the rule transforms the DAG. The left-hand side
of the rule description will match main branch nodes and paths in
the DAG. If the matching nodes and paths verify the test condi-
tions, then the consequent transformation is applied on them. Each
transformation either (i) collapses two main branch nodes n1, n2

into a new node n1,2 (which inherits the predicate subtrees, incom-
ing and outgoing main branch edges), (ii) removes some redundant
main branch nodes and edges, or (iii) appends a new predicate sub-
tree below an existing main branch node.

Notation. We use the following notation in the graphical illus-
tration of our rewrite rules: linear paths corresponding to part of a
main branch are designated in italic by the letter p, nodes are des-
ignated by the letter n, the result of collapsing two nodes ni, nj

will be denoted ni,j , simple lines represent /-edges, double lines
represent //-edges, simple dotted lines represent /-paths, and dou-
ble dotted lines represent arbitrary paths (may have both / and //).
We only represent main branch nodes or paths in the graphical de-
scription of rules (predicates are omitted). An exception is rule R5,
where we refer to a subtree predicate by its XP expression [Q]. We
refer to the tree pattern containing just a main branch path p simply
by p, and to the tree pattern having p as main branch by TPd(p).
We represent by a rhombus main branch paths that are not followed
by any / (main branch) edge. Paths include their end points.

Test Conditions. In the test conditions, we say that a pattern d is
immediately unsatisfiable if by applying to saturation Rule R1 on it
we reach a pattern in which either there are two /-paths of different
lengths but with the same start and end node, or there is a node
with two incoming /-edges λ1/λ and λ2/λ, such that λ1 6= λ2.
Note that the test of immediate unsatisfiability is just a sufficient
condition for the unsatisfiability of the entire DAG.

For a main branch path p in d, given by a sequence of nodes
(n1, . . . , nk), we define TPd(p) as the tree pattern having p as main
branch, n1 as root and nk as output, plus all the predicate subtrees
(from d) of the nodes of p.

DEFINITION 4.1. We say that two /-patterns p1, p2 are similar
if (a) their main branches have the same code, and (b) both have
root mappings into any /-pattern p12 built from p1, p2 as follows:

1. choose a code i12 and a total onto function f12 that maps the
nodes of m12 = MBN(p1) ∪ MBN(p2) into i12 such that:

(a) for any node n in m12, LABEL(f12(n)) = LABEL(n)
(b) for any /-edge (n1, n2) in the main branch of p1 or p2,

the code i12 contains f12(n1)/f12(n2)
2. build the minimal pattern p12 such that:

(a) i12 is a code for the main branch MB(p12),
(b) for each node n in MBN(p1) ∪ MBN(p2) and its im-

age n′ in MB(p12) (via f12), if a predicate subtree st
appears below n then a copy of st appears below n′,
connected by the same kind of edge.

For two nodes n1, n2 ∈ MBN(d), such that λd(n1) = λd(n2) =
λ, by collapsed(n1, n2) we denote the DAG obtained from d by
replacing n1 and n2 with a λ-labeled node n1,2 that inherits the
incoming and outgoing edges of both n1 and n2. We say that two
nodes n1, n2 are collapsible iff they have the same label and the
DAG pattern collapsed(n1, n2) is not immediately unsatisfiable.



We have now all the ingredients to present the rewrite rules:
R1 This rule triggers when λd(n1) = λd(n2).

n1,2

(R1.ii)

n1,2

(R1.i)

n1
n2

n1 n2

R2 This rule triggers if n1 and n2 are not collapsible and n2 is
not reachable from n1 (resp. n1 is not reachable from n2, in
the case of R2.ii).

n1

n1

n2n2

n1
n1

n2

n2

(R2.ii)

(R2.i)

R3 i) This rule triggers if the following conditions hold:
• p1 ≡ p2,
• p2’s nodes have only one incoming main branch edge,
• TPd(p2) root-maps into TPd(p1).

p2p
1

n1 n2 n1,2

p
1

p2

R3 ii) It is the symmetrical of R3.i) (see [10] Appendix C).
R4 i) The rule triggers if the following holds for all nodes n4:

• n3 has one incoming main branch edge, all other nodes
of p2 have one incoming and one outgoing main branch
edge,
• there exists a mapping from TPd(p2) into SPd(n1), map-

ping all the nodes of p2 into nodes of p1.
• the path p2//n4 does not map into p1.

p2p
1

{n4}

p
1

{n4}

n1

n3

n1 n2

R4 ii) It is the symmetrical of R4.i) (see [10] Appendix C).
R5 This rule triggers if the following conditions hold:

• n2 and n3 are collapsible and p1 ≡ p3,
• pattern(λd(n2)[Q]) has no root-mapping into SPd(n2),
• for any node n4 in p2 such that d′ = collapsed(n4, n3)

is not immediately unsatisfiable, pattern(λd(n2)[Q])
has a root-mapping into SPd′(n2),
• if there is no path from n3 to a node of p2, there has

to be a root-mapping from pattern(λd(n2)[Q]) into the
pattern obtained from TPd(p2) by appending [Q]’s pat-
tern, via a //-edge, below the node OUT(TPd(p2)).
(Special case: p1 and p3 empty.)

n2 n3[Q]

p2

p1
p3

n2 [Q] n3[Q]

p2

p1 p3

R6 This rule triggers if the following conditions hold:
• n3, n4 have only one incoming main branch edge, all

other nodes of p1 and p2 have one incoming and one
outgoing main branch edge,
• TPd(p1) and TPd(p2) are similar.

p2p1

n1 n2 n1,2

p1 p2

n3 n4
n3

n4

R7 This rule triggers if the following holds:
• the nodes of p2 have only one incoming and one outgo-

ing main branch edge,
• there exists a mapping from TPd(p2) into TPd(p1), such

that the nodes of p2 are mapped into nodes of p1.
(Special case: p2 is a //-edge in parallel with p1.)

p2p1 p1

R8 This rule triggers if in any possible mapping of p2 into p1 the
image of n2 is n1.

p2n1p1 n2 n1,2

Note that some of the rules (R3 and R6) could safely collapse
more than one node, but this is done by rule R1 in any case. We
opted for the current version for ease of presentation.

We illustrate in Figure 1 how we take the unfolding of the inter-
section of the views v1 and v2 from the example in Section 1 and
rewrite it into a prefix of q2 (see Figure 1.(c)). Then, line 8 in algo-
rithm REWRITE adds the navigation /file and the rewriting r2 that
we intuitively discovered is computed.

4.2 Formal Guarantees
Using Lemma 4.1, we first show that algorithm REWRITE (and

EFFICIENT-RW and ALL-REWRITES ) is sound, i.e. it gives no
false positives.

THEOREM 4.1. If algorithm REWRITE (or EFFICIENT-RW or
ALL-REWRITES ) returns a DAG pattern r, then unfold(r) ≡ q.

LEMMA 4.1. The application of any of the rules from the set
R1-R8 on a DAG d produces another DAG d′ ≡ d.
Moreover, it is also complete, in the sense described in Section 3.

THEOREM 4.2. (1) Algorithm REWRITE is complete for rewrit-
ing XP . (2) If the input query q is minimal, ALL-REWRITES finds
all minimal rewritings.

REWRITE runs in worst-case exponential time as it uses a con-
tainment check (line 7) that is inherently hard:

THEOREM 4.3. Containment of a query d ∈ XP∩ into a query
p ∈ XP is coNP-complete in |d| and |p|.

One might hope there is an alternative polynomial time solution.
We prove this is not the case.

THEOREM 4.4. Deciding the rewriting problem of a query q
using a set of views V is coNP-complete.
However, our rule rewriting procedure is polynomial:

LEMMA 4.2. The rewriting of a DAG d using APPLY-RULES
always terminates, in O(|NODES(d)|2) steps.



COROLLARY 4.1. EFFICIENT-RW always runs in PTIME.

PTIME Completeness. We consider next restrictions by which
EFFICIENT-RW becomes also complete, thus turning into a com-
plete and efficient rewriting algorithm. Note that one may impose
restrictions on either the XP fragment used by the query and views,
or on the rewrite plans that REWRITE deals with. We consider both
cases, charting a tight tractability frontier for this problem.

Case 1: XP fragment for PTIME. By a //-subpredicate st we
denote a predicate subtree whose root is connected by a //-edge to
a /-path p that comes from the main branch node n to which st is
associated (as in n[. . . [.//st]]). p is called the incoming /-path of
st and can be empty.

By extended skeletons (XPes) we denote patterns having the fol-
lowing property: for any main branch node n and //-subpredicate
st of n, there is no mapping (in either direction) between the code
of the incoming /-path of st and the one of the /-path following n in
the main branch (where the empty code is assumed to map in any
other code). Note that all the paths given in the running example
are from this fragment. We can prove the following:

THEOREM 4.5. For any pattern d in XP∩es, d is union-free iff
the algorithm APPLY-RULES rewrites d into a tree.

COROLLARY 4.2 (XPes). Algorithm EFFICIENT-RW is com-
plete for rewriting XPes.

Case 2: Rewrite-plans for PTIME. We also identify a large
class of rewrite plans that lead to PTIME completeness. Let us
first introduce the notion of /-tokens of a tree pattern. More specif-
ically, the main branch of a tree pattern p can be partitioned by its
sub-sequences separated by //-edges, and each /-pattern from this
partitioning is called a token. We can thus see a pattern p as a se-
quence of tokens (/-patterns) p = t1//t2// . . . //tk. We call t1,
the token starting with ROOT(p), the root token of p. The token tk,
which ends by OUT(p), is called the result token of p.

We say that two (or several) tree patterns are akin if their root
tokens have the same main branch codes. For instance, while the
views v1 and v2 from our example are not akin, v1 is akin to:

v′2 : doc(“L”)//figure[.//caption//label]//subfigure/image[ps].
In this setting, we can relax the syntactic restrictions and accept the
class of patterns XP//, obtained from extended skeletons by freely
allowing //-edges in the predicates that are connected by a //-edge
to the main branch (such as in v′2). We can prove the following:

THEOREM 4.6. For DAGs of the form d =
T

j pj , where all
pj are in XP// and akin, d is union-free iff the algorithm APPLY-
RULES rewrites d into a tree.

COROLLARY 4.3 (XP//). EFFICIENT-RW always finds a rewrit-
ing for XP//, provided there is at least a rewriting r such that the
patterns intersected in unfold(r) are akin.

Tractability Frontier. We show next that relaxing any of these
restrictions leads to hardness for rewriting and union-freedom:

THEOREM 4.7. (1) For a pattern d in XP∩//, deciding if d is
union-free is coNP-complete. (2) For a pattern d =

T
j pj , where

all pj are in XP and akin, deciding if d is union-free is coNP-hard.

Please note that the rewriting problem can be solved using an
oracle for union-freedom, but this does not provide any easy map
reduction. This is why we prove the following result independently:

THEOREM 4.8. (1) Deciding the existence of a rewriting for a
query and views from XP// is coNP-complete. (2) For a query and
views from XP, deciding the existence of a rewriting r such that the
patterns intersected in unfold(r) are akin is coNP-complete.

Discussion. We mention that all the results in this paper also
apply when we add equalities with constants into the language. The
extension is presented in the long version [10] (see Appendix B for
definitions and Appendix C for the extended rewriting rules).

5. CONCLUSION
Our work identifies the tightest restrictions under which an XPath

query can be rewritten in PTIME using an intersection of views. A
side effect of this research is to establish a similar tractability fron-
tier for the problem of deciding if an intersection of XPaths can be
equivalently rewritten as an XPath without intersection or union.
As future work, we plan to extend our techniques to XPath rewrit-
ings with multiple levels of intersection and union.
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