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ABSTRACT
We describe a system that allows the easy specification and
efficient support of queries specified as a set of attribute/
predicate/value triplets over virtual nested objects constructed
from relational databases. For example, the Internet Movie
Database (imdb) provides virtual nested objects such as
”movies” (each one containing a movie tuple, multiple actor
tuples and more) and ”actors” (containing multiple movies).
Queries may contain both boolean and text/fuzzy predicates
and may be directed to one or more virtual nested object
sets. We define ranked query semantics that capture the
common requirements that (1) individual tuples within a
nested object may only satisfy a subset of all the predi-
cates and (2) an object that contains a tuple that satis-
fies more than one predicates should (all other things being
equal) be ranked higher than an object where such pred-
icates are satisfied over multiple tuples. The system fully
utilizes the existing indices in the relational databases and
combines special purpose algorithms with database accesses.
Experiments demonstrate that the obtained performance is
significantly better than the performance obtained by fully
deferring query evaluation to SQL queries.

1. INTRODUCTION
Relational databases usually consist of a set of flatten ta-

bles and a number of joins between them because of the
database normalization. Such joins reflect some semantic
relationships. For example, Figure 1 shows the relational
schema of the Internet Movie Database (IMDB). The join
between the MOVIES table and ACTORS table through ACRIN
represents starring in, an actor plays in a movie. Similarly,
joins between ACTOR TRIVIA and ACTOR represents that a
trivia belongs to an actor. Tuples from different tables that
are connected through these semantic joins can construct
some nested objects. In IMDB, a “movie” object contains
its own information, title and year, and the information of
actors in the cast, i.e. name, trivia. An “actor” object con-
tains his first name and last name, as well as the information
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Figure 1: Relational Schema for IMDB

of the movies which he plays in.
There is a rich class of applications of querying nested

objects in relational databases. Firstly, it is desirable to
let users specify complex predicates nested within the ob-
jects. In IMDB database, when the user search the actor,
he/she may forget actor’s name, but only remember some
trivia, which is nested within the actor. On the other hand,
when the user search the movie, he/she may know not only
the year of the movie, but also the details of the director.
He/she definitely wants to put all the predicates within the
movie object to confine the results. Secondly, users may
need personalized nested objects over the same data set to
satisfy their own searching needs. In DBLP, there is a num-
ber of ways to organize papers. For example, “people” ob-
ject, grouping papers by authors, “topic” object, grouping
papers by the research areas, “conference” object, grouping
papers by the publication places, and “year” object, group-
ing papers by the publication time. For the users who want
to search people and their research work, “people” object
is much better; for the users who concentrate on papers on
some specific areas, “topic” object is more suitable.

We consider the problem of evaluating queries over virtual
nested objects in relational databases. The nested object is
defined manually by specifying flatten tables and relation-
ships (joins) between them. A query over the nested ob-
ject is a set of boolean and keyword/fuzzy predicates on the
atomic attributes within the object. Notice that nested ob-
jects are only conceptual and never fully materialized. We
specifically emphasis virtual because there is usually a num-
ber of ways to organize the same data. Materializing one
or fixed number of nested objects is insufficient to satisfy
various users’ needs, and meanwhile introduces information
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Figure 2: Two instances of the movie object

redundancies and difficulties of maintaining.
At first glance evaluating queries over virtual nested ob-

jects can be solved by the SQL query to reconstruct the
nested objects with predicates. However, single SQL query
fails to capture the ranking semantics shown in the following
example.

Example 1.1. Consider the query that has two predicates:
firstname=“John” and lastname=“Smith”. Figure 2 shows
two instances of the movie object. While mov1 is definitely
the result, mov2 is also an answer to the query because actor
tuples within mov2 also satisfy all the predicates. However,
in mov1, the minimal number of actors to satisfy all the pred-
icates is only one, whereas in mov2 this number increases
to two. Intuitively, the the ranking of mov1 should be better
than mov2, because it is more likely that the user looks for the
movie with an actor whose name is “John Smith” than the
movie with two actors whose names are “John” and “Smith”
respectively.

The above example is due to the many-to-many relation-
ships in the relational database: a movie object may have
multiple actors and predicates may be satisfied over a vari-
able number of actors within it. More generally, ranked
query semantics should capture the following two require-
ments: (1) individual tuples within a nested object may only
satisfy a subset of all the predicates; (2) an object that con-
tains a tuple that satisfies more than one predicates should
(all other things being equal) be ranked higher than an ob-
ject where such predicates are satisfied over multiple tuples.

In this paper, we present a system that allows the easy
specification and efficient support of queries specified as a
set of attribute/predicate/value triplets over virtual nested
objects constructed from relational databases. We formal-
ized the above ranking intuition as Lowest Common Ances-
tor (LCA). The system utilizes the existing indices within
the relational databases and retrieves those tuples satisfy-
ing the predicates. Then join-based algorithm computes the
LCAs for the predicates as well as their ranking scores, and
further constructs satisfied objects. Our system is pipelined
and as long as top K objects are generated, the execution
terminates.

To our best knowledge, this is the first work to address
the problem of evaluating ranked queries over virtual nested
objects in relational databases. Key contributions of this
paper ares summarized as follows:

• We formally define ranked query semantics that cap-
ture the common requirements of ranking nested ob-
jects: (1) individual tuples within a nested object may
only satisfy a subset of all the predicates and (2) an
object that contains a tuple that satisfies more than
one predicates should (all other things being equal) be
ranked higher than an object where such predicates
are satisfied over multiple tuples.

• We propose a novel join-based LCA algorithm to com-
pute LCAs for predicates in tree-structured nested ob-

jects. LCA is used in our system as an important
ranking factor. Unlike the existing LCA algorithms
in XML databases, the new algorithm guarantees that
lowest LCAs for generated first, providing an efficient
support for top K results.

• We propose a Top-K join algorithm specifically for
our query semantics. Traditional SQL join returns
the combinations of joined tuples. Instead, our query
semantics requires the root of a nested object that
can connects tuples satisfying the predicates. This
difference results in a simplification of the algorithm
complexity and more precise estimation of the upper
bound of unseen results.

• We propose a pipelined architecture and implement it
on top of PostgreSQL 8.3. We perform a detailed eval-
uation of the system with different parameters. Re-
sults show that the performance of our system is sig-
nificantly better than fully deferring query evaluation
to SQL queries.

The rest of the paper is organized as follows: Section 2
introduces the data model and query semantics. Section 3
discusses the ranking intuitions and formally defines the
ranking metric with the semantic optimization. Section 4
shows the high level architecture of the system. Section 5
and Section 6 describes two core modules and algorithms of
our system, which is experimentally evaluated in Section 7.
Finally, Section 9 concludes the paper.

2. DATA MODEL AND QUERY SEMANTICS
Nested objects have many analogies to the nested tuples

in nested relations, which is defined over nested relation
schemes (NRSs) represented by the scheme tree[21]. In this
paper, we adapt the scheme tree concept in our scenario to
define the virtual nested objects over flatten tables.

Consider a relational database D that has relations R1, R2, ....
A virtual scheme tree, denoted by T , is a labeled tree (V, E)
such that

1. each leaf node nA is labeled by an (atomic) attribute
A.

2. each non-leaf node nR is labeled by the primary key
attribute(s) of a flatten relation R.

3. For each edge between a non-leaf node nA and a leaf
node nR, A is the attribute of R; for each edge between
two non-leaf nodes nRi and nRj , there is a join between
Ri and Rj , i.e. Ri 1 Rj , which is specified manually.

In the paper, we simply use Ri 1 Rj to denote the join
between Ri and Rj , though there may be other relations
“connecting” these two relations. Note that Ri 1 Rj can
be any joins beyond the primary key and foreign key re-
lationships, as long as users feel there is some semantics
relationship between Ri and Rj .

Figure 3 gives an example of the scheme tree of movie ob-
ject according to the fragment of IMDB relational schema in
Figure 1. In Figure 3, star nodes represents the many-to-one
relationship, e.g. there may be multiple tuples of ACTOR
in a movie object. Later in the paper, we will see that star
nodes play an important role in ranking optimization. We
assume that star node should be identified by users if it
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Figure 4: An instance of nested movie object ac-
cording to T

is a normal join or by the schema graph of the relational
database if the join follows the primary key and foreign key
relationships. Nevertheless, by default we set child to be
the star node for every edge between two non-leaf nodes. It
may only influence the performance, but not feasibility of
our system.

An instance of T is a labeled tree and corresponds to
a nested object. For the representation convenience and
consistency with scheme tree, we also represent a nested
object as the labeled tree, e.g. Figure 4. The label of a node
in T is the value of the corresponding attribute in T .

In the rest of this paper, we use T to denote the scheme
tree and T to denote an instance (a nested object). n de-
notes a node in T . Specifically, nA denotes a leaf node
where A is an (atomic) attribute and nR denotes a non-
leaf node where R is a flatten relation. v denotes a node
in T , λ(v) denotes the label of v in T . parent(·) opera-
tor gives the parent of a node. For a non-leaf node vn, if
λ(vn) ∈ dom(R.PrimaryKey), we say vn is an alias of nR

in T . For a star node nR, there may be multiple aliases of
nR in a T . For example, a movie object can have arbitrary
number of aliases of ACTOR.

A query over a scheme tree T is a set of predicates P =
{p1, p2, ...} each of which is on a single leaf of T . The pred-
icates can be either boolean or keyword ranked. The result
of a query is a set of T ’s that satisfy the predicates.

1. For the boolean predicate pb on the leaf node nA of T ,
an instance T satisfies pb iff there exists a leaf v in T
such that (1) λ(v) ∈ dom(A) and (2) λ(v) satisfies pb.

2. A keyword predicate pk is a set of keywords W =
{w1, w2, ...} on leaf node nA of T . T satisfies pk iff
∀w ∈ W , there exists a leaf node v in T such that (1)
λ(v) ∈ dom(A) and (2) λ(v) contains w.

Note that for the keyword predicate W = {w1, w2, ...}
and a satisfied instance T , there may be more than one
leaves v1, v2, ... in T each of which only contains a subset of
keywords in W . In other words, keyword predicates can be
thought as a set of conjunctive one-word-keyword predicate,
i.e. pk =

V

i pki , pki = {wi}. In the following of this paper,

mov2

actor3actor2

p1 p2 p1 p3

mov3

actor5actor4
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actor6

Figure 5: Different number of aliases satisfying the
same predicates

we assume that each keyword predicate contains only one
word.

3. RANKING
In this section, we show how to rank nested objects for

a given query quantitatively. We first discuss intuitive and
desirable constraints that ranking function is expected to
satisfy. Then we introduce a semantic optimization by the
constraints. Finally, we formally define our ranking metric.

The ranking of nested objects is motivated by the follow-
ing observation: given a set of predicates on the descendants
of nR, if nR is a star node, the minimal number of aliases
of nR that can satisfy all the predicates may be different for
T ’s. Figure 5 shows an example: three predicates may be
satisfied over one, two or three actors in the movie object.
The intuition is that the fewer and deeper the aliases in T
that satisfy all the predicates, the better the ranking score.

We formalize the above observation using LCA (Lowest
Common Ancestor). Specifically, we borrow the concept
of Exclusive Lowest Common Ancestor (ELCA) from [11,
32]. Let v = LCA(v1, . . . , vn) be the LCA for v1, . . . , vn.
For n sets of nodes L1, . . . , Ln, LCA(L1, . . . , Ln) = {v|v1 ∈
L1, . . . , vn ∈ Ln, v = LCA(v1, . . . , vn)}, and vi is called Li’s
occurrence of v. Node v is called an ELCA of L1, . . . , Ln iff
∃vi ∈ Li, i = 1, . . . , n such that (1) v = LCA(v1, . . . , vn) and
(2) vi is NOT a Li’s occurrence of u ∈ LCA(L1, . . . , Ln) and
u is the descendant of v. If nodes in Li satisfy the predicate
pi, v is also called an ELCA of P = {p1, . . . , pn}.

For a set of predicates P = {p1, . . . , pn} and an object in-
stance T , let LT

i denote leaves in T that satisfy pi. LCA(T ; P )
denotes the lowest ELCA(s) of LT

i , i = 1, . . . , n. lev(·) gives
the depth of a node in T , and f(T, P ) gives the ranking score
of T .

Constraint 1 Given two instances of T , T1 and T2, v1 ∈
LCA(T1; P ), v2 ∈ LCA(T2; P ), lev(v1) > lev(v2) then f(T1, P )
> f(T2, P ).

Constraint 2 Given two instances T1, T2, assume v1 ∈
LCA(T1; P ), v2 ∈ LCA(T2; P ), and lev(v1) = lev(v2). If
∀Pi ⊂ P, |P | > 1,

P

i lev(LCA(Tv1 ; Pi)) >
P

i lev(LCA(Tv2 ; Pi))
where Tv1 is the subtree of T1 rooted at v1 and Tv2 is the
subtree of T2 rooted at v2, then f(T1, P ) > f(T2, P ).

The intuition of Constraint 2 is that we hope to keep
ELCA as low as possible, not only for P but also for subsets
of P . ELCAs for the subsets of P give more fine granu-
larity of ranking with respect to the number and depths
of aliases. In Figure 5, there are three predicates on AC-
TOR. For the mov2 and mov3, although ELCAs for the
three predicates are in the same level, intuitively, mov2 is
better than mov3, because actor2 and actor3 in mov2 are
“more qualified”. In other words, while ELCAs for P in
mov2 and mov3 are both roots, there are fewer aliases of
ACTOR in mov2 that satisfy the subsets P1 = {p1, p2} and
P2 = {p1, p3}. Quantitatively, depths of ELCAs for {p1, p2},
{p2, p3}, {p1, p3} in mov2 are 2,2,1 respectively, and in mov3
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are 1,1,1.
P

i lev(LCA(Tmov2; Pi)) = 2+2+1 >
P

i lev(LCA
(Tmov3; Pi)) = 1 + 1 + 1.

3.1 Semantic Optimization
The structure of the scheme tree T provides extra infor-

mation that simplifies the ranking. Consider the query in
Figure 6, P = {p1, p2, p3, p4, p5, p6}. Let P1 = {p1, p2, p3},
P2 = {p4, p5} and P3 = {p6}.

• Since predicates in P1 are under ACTOR and predi-
cates in P2 are under DIRECTOR, ∀Pi ⊆ P (including
P itself) that contains the predicates from both P1 and
P2, for all the satisfied T ’s, LCA(T ; Pi) must be the
root.

• For all the T ’s, the lower bound of LCA(T ; P1) is
the alias of Text, and the upper bound is the alias
of MOVIE.

• For all the T ’s, the lower and upper bounds of LCA(T ; P2)
are both the alias of DIRECTOR, and cannot be higher.
This is because: there is no star node from MOVIE
to DIRECTOR. Thus, for any T , there cannot be two
aliases of DIRECTOR each of which only satisfies a
subset of P2.

The structure of T provides the information of lower and
upper bounds of ELCAs for P and P ’s subsets. For some
subsets of P , their ELCAs are in the fixed level for all the
T ’s. We only need to concentrate on those subsets whose
ELCAs may be different in T ’s for the ranking purpose. To
incorporate this idea, we propose the concept of partition
node. A partition node nP is a star node in T such that
there is no other star node along the path between the root
and nP . P is partitioned into a set of subsets Pi, i = 1, . . . , m
such that

1. Pi, i = 1, . . . , m are non-overlapping partitions of P .

2. For each Pi, there exists a partition node nPi in T such
that ∀pk ∈ Pi, pk is on the descendant of nPi .

Proposition 3.1. Given a set of predicates P over T and
its partitions, if Pi ⊂ P contains predicates from more than
one partitions, ELCAs for Pi are in the fixed level in all T ’s.

For the query in Figure 6, P is partitioned into two subsets
P1 = {p1, p2, p3} and P2 = {p4, p5} by the partition nodes.
For the predicates left after the partition, i.e. p6, they are
treated as filter predicates, because for all the satisfied T ’s,
there is only one alias in T that satisfies p6.

In summary, for the query that consists of more than one
partitions, ELCAs for all the predicates is not an effective
and efficient ranking metric. Instead, ELCAs for each par-
tition should be considered individually. The final ranking

score should be the combination of scores for all the parti-
tions. In this paper, we simply use the summation. That
is: f(T, P ) =

Pm
i=1 f(T, Pi) where Pi, i = 1, . . . , m are par-

titions of P .

3.2 Ranking Score
To incorporate all the above discussions, we define Ranking-

Triple Tuple (lev, slev, score) as the ranking score of T for
Pi. lev = lev(v) where v = LCA(T ; Pi), slev =

P

k wk ×
lev(LCA(Tv; Pik )), Pik ⊂ Pi, |Pik | > 1 where wk is the
weight of subset Pik . wk is used to give preferences to some
subsets, e.g. subsets with larger size. In this paper, we let
wk = 1 for all Pik ’s. score is the accumulative IR rank-
ing score given by the keyword predicates on textual leaves.
Only scores of textual nodes in the subtree Tv is counted.
Intuitively, lev and slev reflect “tightness” of predicates in
T , and score reflects textual relevance.

Using absolute depths for lev and slev unfairly favors
those partitions whose predicates are deeply nested just be-
cause some part of the scheme tree has more nesting than
another. To remedy this problem, we normalize lev and slev
as follows:

lev =
lev(v)

lev(n)
, v = LCA(T ; Pi), n = LCA(T ; Pi)

slev =

P

i lev(LCA(Tv; Pik))
P

i lev(LCA(Tn; Pik ))
, Pik ⊂ Pi, |Pik | > 1

n = LCA(T ; Pi) is the LCA for Pi in the scheme tree, and
is also the lower bound of the ELCAs in all T ’s. Similarly,
slev =

P

i lev(LCA(Tn; Pik)) is the sum of depths of LCAs
for Pik ’s in subtree Tn. (In the following of this paper,
ranking-triple tuples are represented without normalization
for the convenience of algorithm discussions.)

The final ranking score of T for all the predicates is given
by

f(T, P ) = (

m
X

i=1

levi,

m
X

i=1

slevi,

m
X

i=1

scorei)

For any two ranking-triple tuples rt1 = (lev1, slev1, score1)
and rt2 = (lev2, slev2, score2), the order of them is given by
the following: if lev1 > lev2, then rt1 > rt2. If lev1 = lev2,
slev1 > slev2, then rt1 > rt2. Similarly, score’s are only
compared when lev and slev are the same.

3.3 Algorithmic Perspective
In practice, it is hard to compute the ranking-triple tuple

of T for Pi directly. Instead, since we have efficient algo-
rithm (as described later) to compute ELCAs of Pi, each
ELCA in T (no matter if it is lowest) is considered as the
lowest one, and its ranking-triple tuple is computed. If there
are more than one ELCAs in T for Pi, the ranking-triple
tuple of T is the value of the minimal ELCA. For exam-
ple, in Figure 5, if there is another movie mov4 which has
actors actor1, actor2, and actor3 at the same time, then
actor1 and mov4 are both ELCAs for Pi. In such case,
ranking-triple tuple is determined by the actor1 because if it
is the lowest one. More precisely, if T contains two ELCAs
v1(lev1, slev1, score1) and v2(lev2, slev2, score2), then the
ranking-triple tuple of T for Pi is: (1) (lev1, slev1, score1),
if (i) lev1 > lev2 or (ii) lev1 = lev2 and slev1 > slev2; (2)
(lev1, slev1, score1 + score2), if lev1 = lev2, slev1 = slev2.

4. SYSTEM OVERVIEW
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Figure 7: System Architecture

In this section, we give an overview of our system.The
high level picture of system is shown in Figure 7. Since
all T ’s are only conceptual and not materialized, the query
evaluation can be viewed as the process of reconstructing
satisfied T ’s in the descending order by their ranking scores.
T ’s are constructed bottom up: first, leaves that satisfy the
individual predicates are evaluated through the SQL engine.
Then, ELCAs for each partition is computed. Finally, root
aliases that connect to at least one ELCA for each partition
are the roots of satisfied T ’s. In the following of this section,
we walk through all the modules of the system and formally
define their inputs and outputs.

The Query Compiler Module inputs all the predicates P ,
and outputs one or more query trees. A query tree contains
the predicates of one partition and filter predicates on the
corresponding leaves. Figure 6 shows the two query trees
after compilation. Algorithm 1 gives the pseudo code of
partitioning. Given the scheme tree T and a set of predicates
P , the algorithm generates the partition of P .

For each query tree, a LCA Generator (LCAG) is cre-
ated. LCAG takes the query tree as input and outputs a
set of ELCAs with their ranking-triple tuples. LCAG first
sends a SQL query that encapsulates the predicate to the
relational engine and gets a set of leaves of T ’s that sat-
isfy the predicate. Then, LCAG traverses the query tree
bottom-up, performs join-based LCA algorithm to generate
ELCAs, and computes their ranking-triple tuples progres-
sively. Join-based algorithm guarantees that lowest ELCAs
are generated first, an important feature that Top-K Pro-
cessor requires.

ELCAs associated with their ranking-triple tuples are fed
into a buffer between the LCAG and Top-K Processor. Re-
call that T ’s ranking score is the sum of its ranking-triple tu-
ples for all the partitions, satisfying the monotonicity. Thus,
there is a potential to exploit top K algorithm to avoid scan-
ning complete ELCAs for all the partitions. Taking buffers
as input, Top-K Processor outputs roots of T ’s such that
they connect to at least one ELCA from each buffer. We
propose a threshold algorithm to generate top K roots effi-

Algorithm 1 Partition Algorithm

1: Input: Schema tree T
2: Output: Partitions of P
3:
4: i ← 0
5: Push the root of T into queue Q
6: while Q is not empty do
7: v ←Q.pop()
8: if v is a star node then
9: if some predicates are v’s descendants then

10: create a new partition Pi

11: add all the predicates under v to Pi

12: i ← i + 1
13: end if
14: else
15: Push all the child nodes of v into Q
16: end if
17: end while
18: return Pi, i = 1, . . . , m

ciently.
Essentially, LCAGs and Top-K Processor can be thought

as the producer-consumer model, and can execute simulta-
neously. As long as TopK Processor outputs top K results,
all the LCAGs can also stop.

5. LCA GENERATOR MODULE
In this section, we elaborate our join-based algorithm that

generates ELCAs for a partition and show how to compute
their ranking-triple tuples progressively. The problem is de-
fined as follows: given n predicates P = {p1, ..., pn} in a par-
tition, Li denotes a list of leaves of T ’s that satisfy pi. The
problem is to compute ELCA(L1, ..., Ln) and their ranking-
triple tuples.

5.1 Join-based LCA algorithm
Computing ELCA(L1, ..., Ln) has attracted much atten-

tion in XML keyword search[11, 32]. However, two issues
make the existing algorithms infeasible in our scenario. Firstly,
existing algorithms reply on the node encoding in XML tree,
e.g. Dewey Id or pre-order/post-order. Node encoding is not
available until T ’s are materialized. Secondly, generated EL-
CAs follow the XML document order, which does not pro-
vide an efficient support for top-K processing. In the exist-
ing algorithms, nodes containing one keyword are sorted by
their encodings. Then nodes are scanned sequentially and
either stack or index is used to compute ELCAs. Accord-
ing to existing encodings, e.g. Dewey ID or pre-order/post-
order, this sequence follows the document order. Thus, the
sequence of generated ELCAs also follows the document or-
der: in Figure 8, ELCAs in the Subtree 1 are first gener-
ated, and then Subtree 2, and so on. Since ELCAs in the
rightmost subtree can be in any level, we have to wait until
all the ELCAs are generated in order to get lowest ones. In
other words, Top-K Processor has to be blocked until all the
LCAGs finish execution, because Top-K processing requires
the input be ordered.

The key idea of join-based algorithm is that in order to
guarantee lowest ELCAs are generated first, all the nodes
are processed bottom up, level by level, and all the ELCAs
in the same level are generated at one time. Consider two

5



root

Subtree 1 Subtree 2

v1 v2 v3 v4

Figure 8: Subtrees under the root

nodes v1 and v2 in L1 and L2 respectively. If parent(v1),
parent(v2) are aliases of nR, then parent(v1) ∩ parent(v2)
is the common ancestor(s) for v1 and v2. Recall that labels
of two nodes’ parents are the primary keys of R, which are
the identities of parents. Notice that in relational database,
one node may refers to multiple parents, e.g. one actor node
can have multiple movies as its parents.

More precisely, let par(Li) = {parent(v)|v ∈ Li}, and
park(Li) = par(park−1(Li)). If nodes in parxi(Li), i =
1 . . . n are all aliases of nR, then S1 =

Tn
i=1 parxi(Li) is a set

of ELCAs for P at the level k, where k is the depth of nR in
T . In the next level upward, S2 =

Tn
i=i par(parxi(Li)−S1)

is another set of ELCAs for P at the level k − 1. This
process repeats until reaches the upper bound of ELCA for
the partition. And we obtain the all ELCAs in an descending
order of their depths.

Algorithm 2 Join-based LCA Algorithm

1: Input: L{1}, L{2}, L{3} whose nodes are aliases of nR

2: Output: RSk { RSk is a set of LCAs at level k}
3:
4: X = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}}
5: L{1,2} ← ∅, L{1,3} ← ∅, L{2,3} ← ∅
6: Ci denotes the cursor of Li, i ∈ X
7: ū denotes the upper bound of LCA for p1, p2, p3 in T
8: k ← lev(nR)
9: while k >= lev(ū) do

10: L
′
i ← ∅, Ci ← 0, i ∈ X

11: while some Ci has not reached the end do
12: Find the minimal value v of Li(Ci), i ∈ X
13: X0 ← ∅
14: for i ∈ X do
15: if Li(Ci) == v then
16: X0 ← X0 ∪ i
17: Ci ← Ci + 1
18: end if
19: end for
20: if X0 == {1, 2, 3} then
21: RSk ← RSk ∪ {v}
22: else if k > depth(ū) then

23: L
′
X0 ← L

′
X0 ∪ {v}

24: end if
25: end while
26: for i ∈ X do
27: Li ← par(L

′
i)

28: end for
29: k ← k − 1
30: end while
31: return RSk, k = 1, 2, . . . if RSk is not empty

par operator can be evaluated through SQL queries. As-

sume L is a list of nodes which are aliases of nRi and parent(nRi)
= nRj . Then par(L) is given by:

SELECT DISTINCT Rj .id
FROM Ri JOIN Rj

WHERE Ri.id IN L
ORDER BY Rj .id

Starting from the lowest level, multi-list sort-merge join
algorithm computes ELCAs for P level by level. The pseudo
code is shown in Algorithm 2 which only illustrates the
case of 3 predicates, for the sake of easy understanding.
More predicates are similar. Unlike the traditional sort-
merge join algorithm, multi-list join algorithm not only com-
putes the nodes shared by all the lists Li, i = 1, . . . , n, but
also those shared by a subset of lists, Lx1 , . . . , Lxj where
{x1, . . . , xj} ⊂ {1, . . . , n}. These nodes are moved into new
list L{x1...xj} as intermediate results. The reason of main-
taining L{x1...xj} is that ranking-triple tuple not only in-
volves ELCA for P , but also ELCAs for the subsets Pi ⊂
P, |Pi| > 1. Node vx ∈ L{x1...xj} is the ELCA for the sub-
set Pj = {px1 , . . . , pxj}, and records information of ELCAs
for Pj ’s subsets. If vx’s ancestor ux joins other nodes at
higher level and ux is the ELCA for P , then depths of EL-
CAs for Pj and Pj ’s subsets in Tux , i.e. lev(LCA(Tux ; Pj))
and lev(LCA(Tux ; Pjk )), Pjk ⊂ Pj , can be given directly by
vx, which avoids extra computing.

For the partition whose predicates are on different leaves
of T , e.g. query tree 2 in Figure 6, we start from predi-
cates in the lowest level and traverse the query tree bottom
up. If in current level more than one lists have nodes that
are aliases of the same nR, compute ELCAs among corre-
sponding lists and keep them as intermediate results. In the
query tree 2 of Figure 6, we start from lowest predicates
p4 and p5. At TRIVIA level, aliases of TRIVIA may be EL-
CAs for p4 and p5. So join is performed on lists L4 and L5,
and ELCAs for {p4, p5} are moved into L{4,5}. In the next
level upward, aliases of DIRECTOR can be ELCAs for the
three predicates, so the join is performed on the four lists
L4, L5, L6 and L{4,5}. Since DIRECTOR is the upper bound
of this partition, we do not need to keep ELCAs for subsets
of {p4, p5, p5} (line 22 in Algorithm 2).

It must be explained that although join-based algorithm
generates ELCAs in the descending order of their depths,
ELCAs in the same level are not ordered by their ranking-
triple tuples automatically. Rather, they are ordered by the
node labels (i.e. primary keys of a flatten table), because
of the sort-merge join. Here we insert a block point for the
LCAG: ELCAs are not fed into the buffer until all the EL-
CAs in the same level are generated and sorted. The reason
for the block point will become more clear in Section 6.

5.2 Computing Ranking-Triple Tuple Progres-
sively

In implementation, each list is attached a tag and corre-
sponds to a subset Pi ⊂ P . Nodes in the lists are associated
with three variables: (1) levi, depth of the ELCA for Pi,
(2) levSeti, a set of depths of ELCAs for Pi’s subsets, i.e.
Pik ⊂ Pi, |Pik | > 1, and (3) scorei, the accumulative IR
relevance score. For the par operator, three variables of a
node are passed directly to its parent(s).

Consider two lists LPi , Pi ⊂ P and LPj , Pj ⊂ P whose

nodes are aliases of nR in level k. Let Pij = Pi∪Pj . Assume
vi ∈ LPi , vj ∈ LPj , and λ(vi) = λ(vj). Then vi (and vj) is
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the ELCA for Pij . So vi (and vj) is moved from LPi (and
LPj ) to LPij . Its new variables levij , levSetij and scoreij

in LPij should be updated as follows:

1. If Pi ⊂ Pj (or Pj ⊂ Pi), then levij = levj (or levij =
levi), because Pij = Pj (or Pij = Pi) and vj (or vi) is
already the ancestor of the ELCA for Pij ; else, levij =
k.

2. levSet now should contain depths of ELCAs for the

subsets of Pij . ∀P
′
⊂ Pij , |P

′
| > 1, let levSet(P

′
)

denote the depth of ELCA for P
′
. Then

(a) if either P
′
⊂ Pi or P

′
⊂ Pj , but not both,

then levSetij(P
′
) = levSeti(P

′
) or levSetij(P

′
)

= levSetj(P
′
).

(b) if both P
′
⊂ Pi and P

′
⊂ Pj , then levSetij(P

′
)

= min
“

levSeti(P
′
), levSetj(P

′
)
”

.

(c) if P
′

= Pi, (1) if Pi ⊂ Pj , levSetij(P
′
) = min

“

levi, levSetj(P
′
)
”

; (2) else, levSetij(P
′
) = levi.

Similarly, if P
′
= Pj , (1) if Pj ⊂ Pi, levSetij(P

′
) =

min
“

levj , levSeti(P
′
)
”

; (2) else, levSetij(P
′
) =

levj .

(d) if neither P
′
⊂ Pi nor P

′
⊂ Pj , then levSetij(P

′
) =

k.

3. scoreij = scorei + scorej .

When join algorithm is performed level by level, Pij keeps
growing, and finally Pij = P . Then node v ∈ LPij is the
ELCA for P and v’s ranking-triple tuple can be given di-
rectly by its three variables:

lev = levij

slev =
X

P
′

levSet(P
′
) P

′
⊂ P, |P

′
| > 1

score = scoreij

5.3 Execution Example
Now we walk through the algorithm by an example, show-

ing how to compute the ELCAs and their ranking-triple tu-
ples. The sample data is shown in Table 1. Consider the
query that has three keyword predicates, p1 = {“cannes”},
p2 = {“venice”}, p3 = {“2000”}, on the Text of TRIVIA of
ACTOR, as the query tree 1 in Figure 6.

LCAG first sends three SQL queries to the relational en-
gine and gets three lists of satisfied leaves with their IR
ranking scores, as shown in Figure 9(a). Three values in
the parentheses represent lev, levSet and score respectively
(“[]” denotes the empty set).

Since all the nodes in three lists are aliases of Text of AC-
TOR, multi-list join is performed on L{1}, L{2}, L{3}. t2, t3
can be joined between L{1} and L{3}, so they are removed
from these two lists and put into a new list L{13}. Similarly,
t1, t6 are removed from L{2} and L{3} and put into L{23}.
Now there are four lists as shown in Figure 9(b). Notice
that nodes in L{13} and L{23} are ELCAs for {p1, p3} and
{p2, p3} respectively. The first value in the parentheses is the
depth of the ELCA, and the third value is the accumulative
IR score.

t3(0,[],0.15)

t7(0,[],0.04)

t2(0,[],0.2)

t4(0,[],0.05)

t5(0,[],0.1)

t6(0,[],0.06)

t1(0,[],0.15)

t2(0,[],0.2)

t3(0,[],0.15)

t6(0,[],0.08)

t1(0,[],0.15)

L{1} L{2} L{3}

(a)

t7(0,[],0.2)
t5(0,[],0.1)
t4(0,[],0.05)

L{1} L{2}

t3(3,[],0.3)
t2(3,[],0.4)

t6(3,[],0.14)
t1(3,[],0.3)

L{13} L{23}

(b)

a5(0,[],0.2)
a6(0,[],0.1)
a1(0,[],0.05)

par(L{1})

a3(3,[],0.4)
a1(3,[],0.3)

a4(3,[],0.14)
a3(3,[],0.3)

par(L{2}) par(L{13}) par(L{23})

(c)

m4(0,[],0.2) m5(0,[],0.1) m4(3,[],0.14)

par2(L{1}) par
2
(L{2}) par

2
(L{23})

(d)

Figure 9: List Status in Execution Example

Next, par operator is applied on the four lists to get their
parents. lev, levSet and score are passed directly to their
parents. par(L{1}), par(L{2}), par(L{13}) and par(L{23})
are shown in Figure 9(c). Nodes in the four lists are aliases
of ACTOR and join algorithm is performed again. a1 can
be joined between L{2} and L{13} and thus is moved into
L123. Its new lev is the depth of the current level, so
lev = 2. levSet in L123 should contain depths of ELCAs
for subsets {12}, {23}, {13}. ELCAs for {13} can be given
by a1 in par(L{13}). That is: levSet({13}) = lev{13} = 3.
{12} and {23} are subsets contained neither in {13} nor
{2}, so levSet({12}) = 2, levSet({23}) = 2. New score is
the sum of score’s from two joined nodes: score = 0.05 +
0.3 = 0.35. a3 can also be joined between par(L{23}) and
par(L{13}) and thus is moved into L123. Its lev, levSet
is updated in a similar way: lev = 2, levSet({13}) = 3,
levSet({23}) = 3, levSet({12}) = 2, score = 0.3+0.4 = 0.7.
So L{123} = {a1(2, [2, 3, 2], 0.35), a3(2, [2, 3, 3], 0.7)}. Since
nodes in L{123} are ELCAs for all the predicates, a1 and a3

are fed into the buffer between LCAG and Top-K Processor.
The ranking-triple tuples of a1 and a3 can be computed di-
rectly from three variables: leva1 = 2, sleva1 = 2+3+2 = 7,
scorea1 = 0.35; leva3 = 2, sleva3 = 2+3+3 = 8, scorea3 =
0.7. Notice that within this level, a1 is generated first, al-
though its ranking-triple tuple is less than a3.

In the next step, par operator is applied again on the
nodes left in the lists, as shown in Figure 9(d). Now nodes
in the lists are aliases of MOVIE. m4 can be joined be-
tween L{1} and L{23}, and thus is moved into the L{123}
and further to the buffer. Its ranking-triple is: levm1 = 1,
slevm1 = 1 + 3 + 1 = 5, scorem1 = 0.34. Since MOVIE is
the root level of the nested object, the algorithm terminates.
All the ELCAs have been fed into the buffer by the order of
the ELCAs’ depths.

6. TOP-K PROCESSOR MODULE
Top-K Processor takes lists of ELCAs as input, and out-

puts those T ’s whose roots can connect to at least one ELCA
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Table 1: Sample Data
Movid Mid

m1 a1
m1 a2
m2 a3
m3 a3
m4 a4
m4 a5
m5 a6

Tid Text Mid
t1 2000: Received the Career Golden Lion at the Venice Film Festival. a3
t2 Member of the jury at the Cannes Film Festival in 2000. a3
t3 President of the famous film festival in Cannes since 2000. a1
t4 . . . best ”first time” young actor/actress at the Venice Film Festival. a1
t5 Member of the jury at the Venice Film Festival in 1991. a6
t6 . . . Olivier Theatre Award in 2000 for . . . in The Merchant of Venice . . . a4
t7 . . . 6 times as Best Director and received 3 nominations from Cannes . . . a5

a2(3,9,0.2)

a3(2,8,0.5)

a4(2,7,0.4)

a1(3,9,0.5)

r1

c2(3,9,0.4) c3(3,9,0.2) c4(2,6,0.5)c1(3,9,0.5)

b2(2,0,0.35)

b3(2,0,0.32)

b4(2,0,0.2)

b5(2,0,0.2)

b6(2,0,0.1)

b1(2,0,0.4)

L1

L2

L3

(a) Nodes from three lists joined through
r1

a2

a3

a4

a1 r3(3,9,0.2)

r2(3,9,0.2)

r4(2,8,0.5)

r1(3,9,0.5)
b2

b3

b4

b5

b6

b1

c2 c3 c4c1

r1(2,0,0.4)

r4(2,0,0.35)

r6(2,0,0.32)

r7(2,0,0.1)

r3(2,0,0.4)

r3(3,9,0.4) r1(3,9,0.2) r5(3,9,0.5)r2(3,9,0.5)

RT2RT1

RT3

L1

L2

L3

Hash

Bucket

(b) Snapshot of Top-K algorithm execution

Figure 10: Running Example of Top-K Module

from each list. In database, connecting the root to an ELCA
is a join operation. Thus, essentially, finding top K T ’s is
the top K join problem[18, 14]. However, given the seman-
tic difference between SQL join and our query, there is a
big opportunity for improvement. In SQL join, the result
of n-relation join is a set of combinations of tuples from
n relations. Figure 10(a) shows a join among nodes from
L1, L2 and L3. By the SQL join semantics, there are 4
results: (a1, b4, c3), (a1, b5, c3), (a4, b4, c3), (a4, b5, c3). How-
ever, the 4 combinations correspond to one tree rooted at r1

which is our expected result. Traditional join introduces ex-
tra complexity if we concentrate the whole tree rather than
the combinations of its leaves. Those top-K join algorithms
that reply on the SQL join semantics is not optimal for the
tree pattern result.

An important observation is that for the tree pattern join,
all the nodes connect to a central node r, an alias of the root
of T . Thus, we maintain the root aliases as intermediate
results and those roots that join to one ELCA from each
list are the final results. Let Li denote the buffer fed by the
LCAG, RTi denote the list of roots of ELCAs in Li, and ri

denote the root r in RTi. Then join among RTi, . . . , RTm

generates roots of satisfied T ’s.
The requirement of top-K algorithm is that RTi is ordered

by the roots’ scores so that results with highest scores can be

generated first. Roots in RTi inherit ranking-triple tuples
from their descendants in Li. If ri in RTi has more than
one descendants in Li (i.e. T has more than one ELCAs
for partition i), the score of ri is determined only by those
ELCAs whose (lev, slev) is the minimal (see Section 3.3).
In other words, if ri is newly derived by a node in Li, only
nodes in the same level in Li may affect its score and position
in RTi. This is the very reason we insert a block point in
LCAG module: when all the ELCAs in the same level are
fed into the buffer, their corresponding roots are derived,
sorted and put into RTi. Then all the nodes fed after the
Li’s block point cannot change the scores of existing roots
in RTi anymore.

Example 6.1. In Figure 10(a), value in the parentheses
is the ranking-triple tuple of that node and doted lines denote
block points. Although both a1 and a4 connect to r1

1, the score
of r1

1 in RT1 is only determined by a1, i.e. (3, 9, 0.5), because
a1 is in lower level. For the r2

1 in RT2, it is connected by b4

and b5 which have the same (lev, slev). So the score for r2
1

is (2, 0, 0.4). Furthermore, as long as r1
1, r1

3, r1
2 are fed into

the RT1, their positions in RT1 are fixed and cannot change
by a4.

Given a set of ordered RTi, i = 1, . . . , m, the algorithm
works as follows: (1) Maintain a cursor for RTi, i = 1, . . . , m,
and let ti be the score of the root right after the cursor in
RTi. Each time retrieve one root ri

k from RTi. RTi is chosen
in a round-robin way before the number of roots in result
set is less than K. After that, RTi whose ti is minimal is
chosen. (2) Put ri

k into the hash bucket. Let r0 denote
a root in the bucket. If there is a matched root r0

k in the
bucket, add the score of ri

k to the r0
k. If r0

k has been matched
m − 1 times (there is no match when put into the bucket
first time), move it from the bucket to the result set.

The key of threshold top-K algorithm is to estimate the
upper bound of the scores of unseen results so that existing
results whose scores are greater than the upper bound can
be outputted without blocking.

• For roots that have not been seen in any RT , their
upper bound can be estimated as

Pm
i ti.

• Roots in the bucket can be grouped into 2m−2 groups
BS , S ⊂ {1, . . . , m}. All the roots in BS have been
seen in RTj , j ∈ S. Let oS denote the maximum score
of roots in BS . Then the upper bound of roots in BS is
estimated as oS +

P

j /∈S tj . The upper bound of roots

in the bucket is: MAXS⊂{1,...,m}

“

oS +
P

j /∈S tj

”

.

Since oS +
P

j /∈S tj ≥
P

i∈S ti+
P

j /∈S tj =
Pm

i ti, we only
need to consider the roots in the bucket. Therefore, the up-
per bound of unseen results is estimated by MAXS⊂{1,...,m}
“

oS +
P

j /∈S tj

”

.
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Example 6.2. Figure 10(b) shows a snapshot of an ex-
ecution of the top-K algorithm. Scores of nodes in Li are
given in Figure 10(a). Solid arrows denote current posi-
tions of cursors. Two roots in each RT have been seen
and put into the bucket. r3 appears in all the RT ’s and
is put into the result set. Let r∗i denote the ri in the re-
sult set. The score of r∗3 is r1

3.score + r2
3.score + r3

3.score =
(3, 9, 0.2) + (2, 0, 0.4) + (3, 9, 0.4) = (8, 18, 1.0). Within the
bucket, B{12} = {r0

1}, B{3} = {r0
2}. Current score of r0

1

is r1
1.score + r2

1.score = (3, 9, 0.5) + (2, 0, 0.4) = (5, 9, 0.9),
and r0

2 is c1.score = (3, 9, 0.5). t1 = r1
2.score = (3, 9, 0.2),

t2 = r2
4.score = (2, 0, 0.35) and t3 = r3

1.score = (3, 9, 0.2).
So the upper bound of B{12} is estimated as r0

1.score + t3 =
(5, 9, 0.9) + (3, 9, 0.2) = (8, 18, 1.1) and upper bound of B{3}
is r0

2.score + t1 + t2 = (3, 9, 0.5) + (3, 9, 0.2) + (2, 0, 0.35) =
(8, 18, 1.05). Thus, the upper bound of all the unseen re-
sults is (8,18,1.1) which is greater than the score of r∗3 .
So r∗3 has to be blocked. In the next iteration, r1

2, r2
4 and

r3
1 are put into the bucket. r0

1 is now moved into the re-
sult set. Its score is (8, 18, 1.1). Within the bucket, r0

2 is
moved from B{3} to B{13} and its score is added by r1

2.score.

B{12} is empty, and B{2} = {r0
4}. Now t1 = r1

5.score =

(2, 8, 0.5), t2 = r2
6.score = (2, 0, 0.32) and t3 = r3

4.score =
(2, 6, 0.5). So the upper bound of B{13} is estimated as
r2.score + t2 = (8, 18, 1.02) and upper bound of B{2} is es-

timated as r0
4.score + t1 + t3 = (6, 13, 1.62). Thus the upper

bound of unseen results is (8, 18, 1.02), which is greater than
r∗3 but less than r∗1 . Hence r∗1 can be outputted and r∗3 con-
tinues to be blocked. In the next iteration, when the cursor
of RT2 moves to r2

6, t2 = r2
7 = (2, 0, 0.1). The estimation of

r0
2’s upper bound is updated as (8, 18, 0.8). So the r∗3 can be

outputted.

One thing worth to be mentioned is that our algorithm
provides a tighter upper bound estimation. Existing top-K

join algorithms estimate the upper bound as: maxi

“

ti +
P

j 6=i t1j

”

where t1j denotes the score of the maximum root in RTj .

∀S ⊂ {1, . . . , m},
“

os +
P

j /∈S tj

”

≤
“

P

j∈S t1j +
P

j /∈S tj

”

≤
“

tk +
P

j 6=k t1j

”

where k /∈ S. For example, when cur-

sors point to the third positions, the estimated upper bound
would be r1

1+r2
6+r3

2 = (8, 18, 1.32). Both r∗1 and r∗3 needs to
be blocked. The reason for the tighter upper bound estima-
tion is that considering the tree pattern result, we maintain
roots directly. For the roots that partially connect to nodes
in some lists Li’s, only scores from those unconnected lists
are estimated.

7. EXPERIMENTS

7.1 Experiment Setup
In the experiments, we use the IMDB data set1. Origi-

nal data is in text files and is converted into relational ta-
bles. Database schema is similar to Figure 1 except that
we also include QUOTE and BIOGRAPHY of ACTOR, AC-
TRESS and DIRECTOR. The total size of all the relations
is around 450M. All the experiments are performed using
PostgreSQL 8.3 on a Debian 2.40GHz PC with 1G mem-
ory. Algorithms in the paper are implemented in Java, and
connect to the database through JDBC. Indices are created

1http://www.imdb.com/interfaces/
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Figure 11: Possible Patterns of SQL Queries

on all attributes that can be queried. Boolean predicates
are evaluated on the B-trees as normal SQL query. Key-
word predicates are evaluated through the full-text module
of PostgreSQL 8.3. Full-text module of PostgreSQL 8.3 re-
trieves tuples containing the keyword with their IR relevance
scores.

For the join-based LCA algorithm, par operator can be
evaluated through a SQL query, as mentioned in Section 5.
However, in practice, this process is very slow due to the
overhead introduced by JDBC. To overcome this shortcom-
ing, we re-implement the child-parent relationship on B-
trees residing directly on the file system. In other words,
we re-store tables ACRIN, ACSIN and DIRIN outside the
database. So par operator is evaluated directly on those
disk-resident B-trees, avoiding the overhead of database trans-
action and JDBC.

7.2 Baseline
For the purpose of performance comparison, we present

the baseline approach in this section. Given a nested scheme
tree, SQL query is able to reconstruct those satisfied nested
objects from flat tables using join. However, single SQL
query fails to incorporate ranking semantics. As we saw in
Section 3, ranking opportunity comes from the star node in
T : since there can be arbitrary number of aliases in T ’s,
there are a number of possible relationships between pred-
icates in different T ’s. Single SQL query can only reflect
one pattern of predicate relationships. Thus, a straightfor-
ward approach to incorporate the ranking is issuing multi-
ple SQL queries: one SQL query for each possible pattern.
SQL queries corresponding to tighter relationships are issued
first. Figure 11 shows some (but not all) possible patterns
for the query tree 1 in Figure 6 (Text node is skipped).

If the first few queries can generate enough results (top
K), this process can terminate. However, it also faces the
potential danger that there is no result for “tight patterns”,
and outputting is delayed until all the queries are issued.
Furthermore, the number of possible patterns increases very
fast w.r.t the number of predicates. Let’s consider the sim-
plest case where three predicates p1, p2, p3 is on the ACTOR
nested in a MOVIE object, as shown in Figure 5. Since there
is only star node, ACTOR, enumerating all the patterns is
simply the problem of finding minimal covers. A minimal
cover of a set is a cover for which removal of any single mem-
ber destroys the covering property. In Table 2, ai denotes
different actor aliases in a movie object, and ai satisfy the
predicates within the brackets after ai. We can see for this
query, number of patterns is the number of minimal covers,
and the number of the aliases is the number of elements in
a minimal cover.

For a more complex query that has multiple star nodes,
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Table 2: Enumerations of all the patterns of three
predicates on ACTOR

# of elements Cover
1 a1[p1, p2, p3]

a1[p1, p2], a2[p3]
a1[p2, p3], a2[p2]

2 a1[p1, p3], a2[p3]
a1[p1, p2], a2[p2, p3]
a1[p1, p2], a2[p1, p3]
a1[p2, p3], a2[p1, p3]

3 a1[p1], a2[p2], a3[p3]

e.g. query tree 1 in Figure 6, this is a recursive process. In
the query tree of Figure 6, there are two star nodes, ACTOR
and TRIVIA. For the top star node ACTOR that has predi-
cates P nested in it, there are N possible ways for split P
in the ACTOR level where N is the number of the minimal
covers of P . And for each minimal cover, there are k AC-
TOR aliases in the MOVIE object each of which satisfies an
element (which is a subset Pi ⊂ P ) of this cover. Within
each alias of ACTOR, this process repeats to enumerate all
the patterns that satisfy Pi, Pi ⊂ P : there are a number
of minimal covers splitting Pi, and for each minimal cover
there are k TRIVIA aliases to satisfy it. Number of minimal
covers is already exponential[13]. Number of different query
patterns can only be larger for the query with more star
nodes because of the multiplication effect.

7.3 Search Performance
We focus on the query execution time in this paper. In

the experiments, queries are sets of keyword predicates on
TRIVIA. We choose keyword predicates because keyword fre-
quencies reflect the selectivity of predicates directly. Queries
are classified into three groups, namely low, corresponding
to keywords with frequency lower than 100, medium, corre-
sponding to keywords with frequency between 100 and 1000,
and high, corresponding to keywords with frequency greater
than 1000. Within each range, 40 queries are randomly se-
lected. Values of each range in the following figures are
average time over 40 queries, each repeated 10 times.

In Figure 12(a), queries contain two or three keyword
predicates respectively in a single partition. LCA denotes
our algorithms and SQL denotes the native approach. As
we can see, to generate complete results in one partition, the
performance of LCA algorithm is orders of magnitude bet-
ter than that of naive approach, especially for less selective
predicates. Figure 12(b) shows the performance of generat-
ing top 20 results. LCA algorithm is roughly 2-4 times faster
than SQL approach. For single partition, top-K processing
doesn’t take effect. So the speedup in Figure 12(b) justifies
the advantage of join-based LCA algorithm: lowest LCAs
are generated first.

Experiment results for more than 3 predicates are not
shown here. As mentioned above, the number of possible
patterns increases extremely fast. Four predicates will result
hundreds of patterns. Furthermore, Figure 12 already shows
the trend that the speedup of our system for queries with
more predicates is much larger than the queries with fewer
predicates.

To validate the scalability of the LCA algorithm, we per-
form the experiments on varying number of keywords in one
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Figure 12: Predicates in One Partition, varying fre-
quencies
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Figure 13: Top 20 results, varying number of pred-
icates

partition. The result is shown in Figure 13. We can see that
execution time increases nearly linearly w.r.t the number of
predicates. As mentioned earlier, number of different tree
patterns increases exponentially w.r.t number of predicates.
Without prior knowledge of which patterns can generate re-
sults, SQL approach has to try all the patterns one by one
until top K results are generated. This brings two serious
problems: (1) atomic predicates have to be re-evaluated for
each new query. (2) SQL engine wastes a lot of time on
empty-result queries. In the experiments, we observe that
the more predicates the query has, the less likely the tight
patterns can generate top K queries, because of the selectiv-
ity. On the other hand, LCA algorithm computes patterns
progressively (through join-based LCA algorithm) and only
those patterns that are encountered in the data are main-
tained. In other words, the complexity is proportional to
the data set, instead of the number of patterns.

Figure 14 shows the experiments on more than one parti-
tions, evaluating the Top-K algorithm. For two partitions,
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Figure 14: Top 20 results, 2 and 3 partitions

predicates are on TRIVIA’s of ACTOR and ACTRESS, each
of which has two keyword predicates. For three partitions,
predicates are on TRIVIA’s of ACTOR, ACTRESS and DI-
RECTOR, where the first two partitions have two keyword
predicates and the last one has one keyword predicate. Ex-
periment on three partitions is only performed on high and
medium frequency, because a large amount of low frequency
keyword predicates fail to generate any results. As shown
in the figure, the speedup of our algorithms for top K result
is larger than one partition. This is due to (1) the effect
of the Top-K algorithm. Top-K processing does not take
effect on only one partition; (2) expanded SQL query; (3)
multiplication effect on number of patterns for multiple par-
titions. If the first partition has n patterns and the second
partition has m patterns. Then altogether there are m × n
patterns. In other words, it is very likely that more time
is wasted on empty-result queries. A good demonstration
of this is that in Figure 14, execution time for some lower
frequency predicates are even longer than that of higher fre-
quency predicates.

8. RELATED WORK
There has been much work on keyword search over struc-

tured data. DISCOVER[17], DBXplorer[1] and BANKS[6]
are first three systems presented to support keyword search
in relational databases. Their query semantics are similar:
the query is a set of keywords and the results are sets of
tuples that contain all the keywords and can be connected
through the primary and foreign keys. Later work generally
follows this semantics and further focuses on two aspects: ef-
ficiency and effectiveness. [14] incorporates IR-style ranking
and proposes algorithms to return top K results efficiently.
[23, 25] focus on the effectiveness and take into account more
IR heuristics in the ranking function. [25] also proposes a
Top-K algorithm which handles with non-monotonic rank-
ing function. [20] studies the theoretical aspect of the key-
word search problem. Beside relational databases, keyword
search in graph databases has also been studied, e.g. [19, 12,
10]. The semantics of the query in graph is very similar to
the relational databases: results are sets of connected nodes
that contain all the keywords.

Keyword search over structure data exploits the relation-
ship between keywords, and returned results may reflect
some complex objects. However, given the semantics of the
keyword search on structured data, the results can be arbi-
trary patterns. While it takes the advantage of schema-free
search, it loses the control of result patterns and the op-
portunity to specify what those keywords refer to. Instead,
in our system, queries are over nested objects with fixed

formats, and every predicate is on a fixed attribute. For
keyword predicates, although keywords may disperse across
multiple tuples, these tuples are all aliases referring to the
same entity, e.g. ACTOR in the execution example in Sec-
tion 5.3. We believe this is an effective mechanism because
when searching users usually know exactly what object they
are looking for and what entities the predicates refer to. Our
system gives users the opportunity of specifying the searched
object and predicates on it, but not confining the concrete
pattern. Another negative aspect of the keyword search se-
mantics is that there may be redundancy in the result set.
Consider two keywords w1, w2. If there is such a structure
in the data [a1, a2] ← c → [b1, b2] where a1, a2 contains
w1 and b1, b2 contains w2, then there will be four results
a1 ← c → b1, a1 ← c → b2, a2 ← c → b1 and a2 ← c → b2,
which reflect nearly the same semantics.

Keyword search in XML also attracts much attention.
First set of work, e.g. [11, 31, 32, 24, 28, 16, 22], takes
LCA’s variations (e.g. ELCA, MLCA, SLCA) as query se-
mantics and proposes different LCA algorithms. Another
set of work tries to extend the XQuery with keyword search
operators, augmenting IR ranking mechanism in XML, e.g.
[3, 2, 29, 22]. Some recent work addresses the XML key-
word search in new applications, e.g. over virtual views[27].
Although our ranking metric also relies on the LCA compu-
tation, as analyzed in Section 5, our LCA algorithm is fun-
damentally different with all the existing algorithms. These
algorithms sort the matched nodes by the node encoding and
scan the nodes sequentially. According to current encodings,
e.g. Dewey ID or pre-order, this sequence is the same as the
document order, and thus generated LCAs also follow the
document order. There is no mechanism to guarantee that
lowest LCAs are generated first. Instead, join-based algo-
rithm scans the nodes bottom up, and LCAs in the lowest
level are generated first, providing an efficient top-K support
in terms of the ranking semantics.

Top-K query in relational databases has been widely stud-
ied recently. Existing work attacks the problem from differ-
ent dimensions: monotonic ranking functions [9, 7, 5, 26],
non-monotonic ranking functions [30, 25], existence of ma-
terialized views [15, 8, 4]. These work mainly focuses on
the functions that combine multiple values from attributes
of relation(s) and doesn’t involve other operations. More
related work to our scenario is the Top-K join problem[18,
14], which considers the traditional SQL join semantics. Al-
though our ranking function also involves the join operation,
the result semantics is different: it is no longer the combi-
nations of joined tuples, but the central root that connects
joined tuples.

9. CONCLUSION
Data in relational databases may have to be split and

stored in a number of flatten tables because of the database
normalization requirement. Tuples from different tables that
are connected by joins can represent some complex/nested
objects. It is highly desirable to support querying of such
nested objects constructed the the flatten tables. In this
paper, we present a system that allows users to specify their
own virtual nested objects and issue queries over it easily.
Our query semantics capture the fact that while the object
format is fixed, predicates on one entity within the object
can be satisfied over multiple aliases, e.g. ACTOR in the
MOVIE object. According to this semantics, we propose
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a ranking metric for the nested object. The metric satis-
fies the desirable constraints: the fewer and deeper aliases
that satisfy the predicates, the better the ranking score. We
proposes a pipelined architecture and two novel algorithms
to support the query semantics and ranking mechanism ef-
ficiently. Join-based algorithm is “orthogonal” to existing
LCA algorithms in terms of node processing order and pro-
vides guarantee that lowest LCAs are generated first. Top-K
join algorithm is specifically tailored for our query seman-
tics and thus is superior to existing methods for our queries.
Experiments verify that our system outperforms naive SQL
evaluations significantly.
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