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ABSTRACT

Keyword search in XML documents based on the notion of low-
est common ancestorsQAs) and modifications of it has recently
gained research interest [10, 14, 20]. In this paper we F®EOm
efficient algorithm called Indexed Stack to find answers yoad
queries based on XRank’s semantics to LCA [10]. The complex-
ity of the Indexed Stack algorithm ©(kd|S1|log |S|) wherek

is the number of keywords in the query,s the depth of the tree
and|S.] (|S]) is the occurrence of the least (most) frequent key-
word in the query. In comparison, the best worst case coritplex
of the core algorithms in [10] i®©(kd|S|). We analytically and
experimentally evaluate the Indexed Stack algorithm aediwo
core algorithms in [10]. The results show that the IndexeatiSt
algorithm outperforms in terms of both CPU and I/O costs othe
algorithms by orders of magnitude when the query contaifeaat
one low frequency keyword along with high frequency keyvgord

1. INTRODUCTION

Keyword search in XML documents based on the notion of low-
est common ancestors in the labeled trees modeled afteritie X
documents has recently gained research interest in thbadata
community [10, 14, 20]. One important feature of keywordreka
is that it enables users to search information without lgigrknow
a complex query language or prior knowledge about the strect
of the underlying data. Consider a keyword qué}yconsisting
of k keywordsw, ..., w,. According to the LCA-based query
semantics proposed in [10], namexclusive Lowest Common An-
cestors (ELCA) in the sequel, the result of the keyword quéhis
the set of nodes that contain at least one occurrence of #fieof
query keywords either in their labels or in the labels of rthus-
scendant nodes, aftexcluding the occurrences of the keywords in
the subtrees that already contain at least one occurreraiéthg
query keywords. For example, the answers to the keywordyquer
“XML David” on the data in Figure 1 is the node 1i€1,[0.2, 0.2.2,

0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2]. The answers show that “David”
is an author of five papers that have “XML” in the titles (rosbit
0.2.2, 0.3.2, 0.3.3, 0.3.4 and0.4.2); and that “David” is the chair
of two sessions that have “XML” in the titles (rootedda? and0.3),
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and the chair of the conference (rootedptvhose name contains
“XML". Notice that the node session with idl4 is not anELC A
answer since the only “XML" instance (node4.2.1.1) under0.4

is under one of its childrerd(4.2) which already contains keyword
instances of both “XML” and “David”. Therefore under tlez-
clusion requirement in theZ LC' A definition, the session node4

is not anELC A answer. The node Conference rooted a an
ELC A answer since it contains the no@lé .1 and the nod®.5.1
which are not under any child of the no@i¢hat contains instances
of both keywords “XML" and “David”.

We propose an efficient algorithm called Indexed Stack to an-
swer keyword queries according to tiel.C'A query semantics
proposed in XRank [10] with complexity @¥(kd|S1 | log |S|) where
k is the number of keywords in the quetyis the depth of the tree,
|S1] (|S]) is the occurrence of the least (most) frequent keyword in
the query. In comparison, the complexity of the core algong in
[10] is O(kd|S|) andO(k*d|S|plog |S| + k3d|S|?) respectively
wherep is the maximum number of children of any node in the
tree. The algorithm in [10] with complexit@(k*d|S|plog |S| +
k%d|S|?) is tuned to return only the topr answers for certain
queries where it may terminate faster than other algorithins
particular, our contributions include:

e We propose an efficient algorithm, named Indexed Stack (IS)
for keyword search in XML documents according to the
ELC A semantics proposed in XRank [10]. Our analysis of
the algorithm shows that the complexity of the proposed al-
gorithm isO(kd|S1|log |S]).

e Our experiments evaluate the Indexed Stack algorithm, and
the algorithms in [10] and show that the Indexed Stack al-
gorithm outperforms in terms of both CPU and 1/O costs
other algorithms by orders of magnitude when the query con-
tains at least one low frequency keyword along with high fre-
guency keywords.

In Section 2 we provide th& LC'A query semantics and defi-
nitions used in the paper. Section 3 describes related wuitk,
focus on LCA-based keyword search in XML documents based on
the notation of lowest common ancestors [10, 14, 20]. Seectio
presents the Indexed Stack algorithm, and also providesdime
plexity analysis of the Indexed Stack algorithm and the i@tlyms
in [10] for both main memory and disk accesses. Our expermen
tal results comparing the Indexed Stack algorithm and tleciove
algorithms in [10] appear in Section 5. We conclude in Sectio

2. ELCA QUERY SEMANTICS

We model XML documents as trees using the conventional la-
beled ordered tree model. Each nadef the tree corresponds to
an XML element and is labeled with a tagv).
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Figure 1: Example XML document

The notatiorw <, v" denotes that node is an ancestor of node
v'; v <, v’ denotes that <, v’ orv =v’.

We first introduce the.owest Common Ancestor (LCA) of &
nodes (sets) before we formally define thé.C' A query seman-
tics.

The functionica(v1, . . ., vx ) computes th&owest Common An-
cestor (LCA) of nodesuvy, ..., vx. The LC'A of setsS, ..., Sk is
the set of LC' A’s for each combination of nodes 81 throughsSj..

lca(Sh cery Sk) =

For example, in Figure I¢a(S1, S2)=[0, 0.2,0.2.2, 0.3, 0.3.2,
0.3.3,0.3.4,0.4,0.4.2].

Anodev is called arLCAof sets St ..., Sk if v € lea(S1,. .., Sk).

A nodeuw is called arExclusive Lowest Common Ancestor (ELCA)

{lca(nly‘ .. ,nk)|n1 € 517 Lo, NnEg € Sk}

of S1,...,Sk if and only if there exist nodes, € Si,...,ni €
Sk such that = lca(na, ..., ng) and for everyn; (1 <14 < k) the
child of v in the path fromw to n; is not anLC' A of S, ..., Sk

itself nor ancestor of anC' A of S1,. .., Sk.
According to theELC A query semantics proposed in XRank
[10], the query result of a keyword quety consisting ofk key-

wordswy, . . ., wy is defined to be

elca(ws,...,wg) = elca(S1, ..., Sk)
whereelca(S1,...,S) ={v | 3In1 € S1,...,nk € Sk(v =
lea(ni,...,ni)A  Vi(l < i < k)Pz(z € lea(Si, ..., Sk)A

child(v,n;) =<q z)) } where S; denotes thenverted list of wj,

i.e., the list of nodes sorted by id whose label directly aorgw;

andchild(v, n;) is the child ofv in the path fromv to n;. The node
n; is called arELCA witness node of v in S;. Note that a node is

anELCAof Sy,...,Skifand only ifv € elca(Sh, ..., Sk).

Notice that the above definition is based on LCAs and is ex-
pressed differently than but it is equivalent to [10]. In tig 1
elca(*XML”, “David”)= elca(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2,
0.3.3, 0.3.4, 0.4.2]. The node0.1.1 is an ELC A witness node of
the noded in S; and the nod®.5.1 is an ELC A witness node of
the noded in Ss.

TheSmallest Lowest Common Ancestor (SLCA) of k sets Sy, . . .
is defined to be

slea(S1,...,Sk) =
{v|v € lea(S,. ..

7Sk

,Sk) AYY € lca(S,...,S) v AV}

A nodeuw is called aSmallest Lowest Common Ancestor (SLCA)
of S1,...,Skif v € slca(Sh, ..., Sk). Note that a node in
slea(Sh, . .., Sn) cannot be an ancestor node of any other node in
slea(S1,...,Sn).

In Figure 1, slca(S1, S2)=[0.2.2, 0.3.2, 0.3.3, 0.3.4, 0.4.2].
Clearlyslca(Sh,...,Sk) Celca(Si,...,Sk) Clca(St,...,Sk).
For example, considef; and Ss in Figure 1. The nodé.2 is
not in slca(S1, S2) but inelca(S1, S2) and the nodd.4 is not in
elca(S1, S2) butinlca(S1, S2).

Similarly to [10, 20], each node is assigned a Deweyrid(v)
that is compatible with preorder numbering, in the sense itha
a nodev; precedes a node; in the preorder left-to-right depth-
first traversal of the tree thepre(vi) < pre(vz). Dewey num-
bers provide a straightforward solution to locating fié A of two
nodes. The usuak relationship holds between any two Dewey
numbers. Given two nodes, v and their Dewey numbeys, p2,
lca(v1,v2) is the node with the Dewey number that is the longest
common prefix ofp; andp2. The cost of computindca (v, v2)
is O(d) whered is the depth of the tree. For example, in Figure 1
lca(0.2.2.1.1,0.2.2.2.1)=0.2.2.

3. RELATED WORK

Extensive research has been done on keyword search in both re
lational and graph databases [9, 1, 11, 12, 3, 13]. There arkesw
on keyword search on XML databases modeled as trees [10014, 2
4, 17]. This work falls in this category. Finally [15, 6, 7,,118,

19, 14, 2] integrate keyword search into XML query languages

We focus on the three most closely related works: XRank J[10]
Schema-Free XQuery ([14]) and XKSearch ([20]), all of which
base keyword search in XML on the notation of lowest common
ancestors of the nodes containing keywords.

XRank ([10]) defines the answer to a keyword search query Q
“wi, ..., wg" 1o beelca(Si, ..., Sk) whereS; is the inverted list
of w; (1 <1 < k). It also extends PageRank’s ranking mechanism
to XML by taking the nested structure of XML into account. Bac
node in the tree is assigned a precomputed ranking scordigic
independent of any keyword query. The ranking score of an an-
swer node (i.e., ait LC'A node)v to the query® is computed by
XRank’s aggregate ranking function which takes into actaomn
dividual scores of the witness nodeswoénd the distance between
the witness nodes and the answer nodes— the contributiowiof a
ness node’'s ranking to the node decays by the distance between
v andz. [10] proposes two core algorithmB]L (Dewey Inverted
List) andRDIL (Ranked Dewey Inverted List), to return the top
answers fromelca(S1, . .., Sk). Notice that the ranking functions
and the search algorithms (DIL and RDIL) are independenaohe
other, in the sense that the same search algorithms couly tpp
other ranking functions.

'as long as the aggregate ranking functions are monotoneravith



The DIL algorithm in [10] keeps an inverted list sorted by sw
id for each keyword. DIL (conceptually) sort merges khieverted
lists of thek query keywords and reads each nada the sorted
merged listin order. Intuitively it is easy to verify the cectness of
the DIL algorithm since it reads all nodes in thenverted lists in
document order and has enough information to determinehghet
a lowest common ancestor bfnodes from thé: inverted list is an
ELCA node or not. Notice that the DIL algorithm has to scan to
the end of all inverted lists. The complexity of the DIL algbm
is O(kd|S|) where|S]| is the size of the largest inverted list among
S1,..., Sk andd is the depth of the tree.

The RDIL algorithm in [10] maintains two separate data struc
tures: inverted lists sorted by the individual nodes’ ragkscore
in descending order and B+ trees built on inverted listsesbity
Dewey id in ascending order. The underlying assumption oftlRD
is that higher ranked result&(.C' A nodes) are likely to come from
nodes in the front of inverted lists sorted by ranking scorele-
scending order and query processing may terminate wittoaut-s
ning to the end of all of the inverted lists. RDIL works as folls:

1. itreads a node from thek inverted lists sorted by rank, in
round-robin fashior.

2. thenituses the B+trees built on inverted lists sorted &w&y
id to find the lowest common ancestbthat contains and
all other keywords. The key observation is that given a node
v, an inverted listS sorted by document order and the B+
tree BT built on S, it takes only a single range scan ([8])
in BT to find the nodey’ in S whose id is the least that is
greater than the id of such that either’ or its immediate
predecessor ir¥ shares the longest common prefix with
which is the Dewey id of.

3. however the nodé produced in the second step may not
be anELCA node. RDIL first determines whether each
child of I contains all keywords or no{(kdp log |S|) where
p is the maximum number of children of any node in the
tree). Then for each keyword;, RDIL checks that key-
word witness nodes dfare not under any of its children that
contain all keyword instances. The complexity of RDIL is
O(K*d|S|plog |S| + k2d|S|?).

Given a node in an inverted list, as can be seen from the above
explanation, the RDIL algorithm does not completely scdrept
inverted lists in order to find an LCA node that containand all
other keywords. However, in order to guarantee correct(rass
losing any answer nodes and not returning non-answer nasies)
is repeatedly performed and that is why the complexity oRBdL
is high in the worst case. Furthermore, it is not guarantéed t
individual nodes with higher ranking scores always leadnnser
nodes with higher overall ranking score because the coribima
ranking function takes into account the distance betwedness
nodes and answer nodes. Moreover, given a keyword querg the
is no practical way to determine a priori whether the DIL oe th
RDIL algorithm will perform better. The experiments in [1(gve
demonstrated that the performance of RDIL can be significant
worse than that of DIL for returning the tap query answers. [10]
proposes a hybrid algorithm which starts using RDIL and clvés
to DIL when it finds out that RDIL has spent too much time on
answering the query.

XKSearch ([20]) defines the answers to a keyword quergf
"wi, ..., wg" to beslca(St, ..., Sk) whereS; is the inverted list
spect to individual keyword ranks (See Section 2.3 in [10pfiore
details).
2e.g., it reads a node from each inverted list in turn.

of the keywordw;. The complexity of the Indexed Lookup Ea-
ger algorithm in [20] isO(kd|S1|log|S|) and hence can be or-
ders of magnitude better than the Stack based algorithmtediop
from [10] or [14] when a query contains keywords of orders of
magnitude of different frequencies. [20] also extends tgeridhm
computingslica(S1, . .., Sk) to compute allLC As of k sets (i.e.,
lea(St,...,Sk)). The intuition is that we can first compute all
SLCA nodes ofSy,...,Sk. Then we visit every node in the
path from everyS LC' A node to the root and determine whethes

a LC A node or not. The complexity of the algorithm in [20] based
on the above intuition to compute dlIC' As isO(kd?|S1|log|S]).

We may attempt to computdca(Si, ..., Sk) similarly. That is,

in order to computeslca(Si,...,Sk), we could do the follow-
ing: (1) first computesica(S1, . .., Sk) using the Indexed Lookup
Eager algorithm in [20] whose complexity @(kd|S1]|log |S]).

(2) then for eachSLC' A nodewv computed in the first step, we
walk up fromwv to the root and determine whether each ancestor
nodel of v is an ELC A node. However the difficulty is then that
we have to perform the same expensive operations we dedcribe
in the third step of the RDIL algorithm in [10] a few paragraph
before. Therefore the complexity of such an algorithm wdudd
O(k?d|S|plog | S| + k2d|S|*) wherep is the maximum number of
children of any node in the tree.

Schema-Free XQuery ([14]) uses the ideavidganingful LCA
(MLCA), similar to SL.CA, and proposes a stack based sort merge
algorithm which scans to the end of all inverted lists. Thepltex-
ity of the algorithm in [14] is the same as that of DID(kd|S])).
[14] shows that keyword search functionality can be easitg-i
grated into the structured query language XQuery as bufitiic-
tions, enabling users to query XML documents based on partia
knowledge they may have over underlying data with diffesard
potentially evolving structures. The recall and precis@peri-
ments in [14] shows that it is possible to express a wide tyade
queries in a schema-free manner and have them return coerect
sults over a broad diversity of schemas. The demonstrategrax
tion of M LC' A based keyword search functionality into XQuery
can also apply to th& LC' A query semantics.

In this paper we will only focus on the algorithmic aspectshef
problem of efficiently finding answers to keyword queries iMIX
documents, and we will not attempt a comparison of the quafit
different query semantics.

Intuitively answering a keyword query according to th&C' A
query semantics is more computationally challenging tieaoml-
ing to the SLC' A query semantics. In the latter the moment we
know a nodd has a childc which contains all keywords, we can
immediately determine that the notlss not aSLC A node. How-
ever we cannot determine thiais not anELC A node becausé
may contain keyword instances that are not urdamd are not un-
der any node that contains all keywords. Notice that giversdme
query, the size of the answers of tid.C'A semantics cannot be
more than that of th& LC' A semantics becauséca (S, . .., Sk) C
elca(S1,...,Sk).

In this paper, we propose an efficient algorithm, IndexediSta
algorithm (1S), which takes advantage of the benefits of lstalbk
based algorithms and indexed lookup based algorithms. @ime c
plexity is O(kd|S1|log |S]).

INDEXED STACK ALGORITHM (IS)
This section presents the Indexed Stack (IS) algorithmdbiat-

4.

puteselca(Si, ..., Sk). We chooseS; to be the smallest among
Si,...,Sk sinceelca(S1, ..., k) = elca(S;,,...,S; ), where
Ji, - Jk IS any permutation of, 2, ... k, and there is a benefit

in using the smallest list aS; as we will see in the complexity



analysis of the algorithm. We assurjfe denotes the size of the
largest inverted list. The Indexed Stack algorithm, legarg key
tree properties described in this section, starts fromrhedlsst list
S1, visits each node i1, but does not need to access every node in
other lists. It achieves high efficiency, especially whemgmallest
listis significantly smaller than the largest list.

The algorithm’s efficiency is based on first discovering tbdes
of a setelca_can(S1; Se, ..., Sk) (short for ELC A Candidates)
defined in Section 4.1, which is a supersetfefs (51, . . ., Sk) but
can be computed efficiently i@(kd|S1|log | S]), as shown in Sec-
tion 4.2. Section 4.3 describes an efficient functie®’ LC' A()
that determines whether a given nodekf:_can(S1; S, . .., Sk)
is a member oklca(S,...,Sk). Section 4.4 presents a stack-
based algorithm that puts together the computatioal@fn_can
andisELC A, avoiding redundant computations. Section 4.4 also
presents the complexity analysis of the algorithm.

4.1 The ELCA candidate setdca can()

We define next the sefca_can(S1; Se, ..., Sk), whose mem-
bers are called® LC'A_C' AN nodes (0fS; amongSa, .. ., Sk).

U slea({v1}, S2,..., Sk)

v1 €Sy

Note that a node is anELC A_C AN node iff there exist, €
S1,...,ng € Sy suchthav = lca(na, . ..,nx) and there must not
existny € Sa,...,n; € Sk suchthaw’ = lca(ni,ns, ..., n})
andv <, v'. Everyn; (1 < i < k) is called anELCA_CAN
witness node of v in S;.

For example, in Figure &lca_can(S1;S2)=[0, 0.2, 0.2.2, 0.3,
0.3.2,0.3.3, 0.3.4, 0.4.2]. Next, consider th&& LC A_C AN node
0.2. The node®.2.1.1 and0.2.2.2.1 are its witness nodes ifi;
and S> respectively. However the node2.2.1.1 is not a witness
node for0.2 in S;. This is because although the nod@e is the
LCA of the node0.2.2.1.1 from S; and the node.2.3.1 from
Sa, there exists the nod&2.2.2.1 from S> such that the.C' A of
0.2.2.1.1 and0.2.2.2.1 (i.e.,0.2.2) is a descendant @f2.

Note thatelca_can(S1; S, ..., Sk) may contain nodes that are
ancestors of other nodes efca_can(Si; S, ..., Sk). The fol-
lowing inclusion relationship betweefica andelca_can applies.

elca_can(S1; Se, ...

s Sk)

PROPERTY 1.

Vie[l,... k]
elca(S1,...,Sk) Celca_can(Si; S1,...,Si—1,Si+1,..,5k).

PrRoOOF If v € elca(Sh,...,Sk), there must exisE LC' A wit-
ness nodes; € Si,...,n, € Sk such tha = lca(ni, ..., nk)
and there must not exist) € Si,...,nj_; € Si—1,nj4; €
Sit1,.-.,ny € Sk such that
v = lea(nt,...,ni_1,mi,niyq,...,n,) andv <, v' (Other-
wisen; cannot be arZ LC' A witness node of). Thus
v € elca_can(Si; S1,...,Si—1,Si+1,-..,S%) by definition. [

Of particular importance is the instantiation of the abovepp
erty fori = 1 (i.e.,elca(S1,...,Sk) C elca_can(S1;S2,. .., Sk))
sinceelca_can(S1; S2,...,Sk) has the most efficient computa-
tion (recallS; is the shortest inverted list).

In Figure 1,elca(S1,S2) andelca_can(S1; S2) happen to be
the same. However if we remove the naw8.1.1 from the tree
of Figure 1, therelca_can(S1; S2) stays the same but the node
0.3 would not be inelca(S1, S2) anymore. Therefore, it would be
elca(S1, S2) C elca_can(S1;S2).

For presentation brevity, we defiréca_can(v) for v € S; to
be the nodé where{l}=clca_can({v}; Sz, ..., Sk)=

slea({v}, S2,...,Sk). The nodeelca_can(v) is called theexclu-
sive lowest common ancestor candidate or ELCA_CAN of v (in
sets ofSs, ..., Sk). Note that each node ifea({v}, S, ..., Sk)

is either an ancestor node ofor v itself andelca_can(v) is the
lowest among all nodes fiza({v}, Sz, . .., Sk). Forinstance, con-
siderS: andsS; in Figure 1.elca_can(0.1.1) = 0, elca_can(0.2.1.1)
0.2, elca_can(0.2.2.1.1) = 0.2.2, elca_can(0.3.2.1.1) = 0.3.2,
elca_can(0.3.3.1.1) = 0.3.3, elca_can(0.3.4.1.1) = 0.3.4,
elca_can(0.3.5.1) = 0.3 andelca_can(0.4.2.1.1) = 0.4.2.

4.2 Computing elca_can(v)

In this section we describe how prior work ([20]) can be egtsh
to efficiently computelca_can(v) in the interest of completeness
and clarity.

Let us assume that we want to computea({v}, S2) where
S2 = {u1,...,un}. The key observation in [20] is that the wit-
ness node i for sica(vi, S2) must be one of the two closest
nodes (in document order) @ among all nodes in the s&f,.
We can efficiently find the only two nodes i1, ..., u,} that
are candidates for witnessing tie.C' A, by using two impor-
tant functions: the functiomm (v, S) computes theight match
of v in a setS, that is the node of5 that has the smallest id
that is greater than or equal pee(v); Im(v,.S) computes théeft
match of v in a setsS, that is the node of that has the biggest
id that is less than or equal tare(v). The functionrm(v,.S)
(Im(v, S)) returns null when there is no right (left) match node.
For example, consider agafy andS: in Figure 1 and the node
v = 0.3.2.1.1 from S;. The right match fow in S> is the node
0.3.2.2.1, and the left match foo in S; is the node).3.1.1. Con-
sequentlysica({v}, S2) is the lower node fronica(v, rm(v, S2))
andlca(v,lm(v, S2)). Consider agairb;, Sz, andv = 0.3.2.1.1
from Sy in Figure 1,elca_can(0.3.2.1.1)=0.3.2. This is because
lea(v, rm(v, S2))=lca(v,0.3.2.2.1)=0.3.2,
lea(v,Im(v, S2))=lca(v,0.3.1.1)=0.3, and0.3 <, 0.3.2.

The cost of computingm (v, S) (Im(v, S)) is O(dlog |S|) since
it takesO(log | S|) steps (each step being a Dewey number compar-
ison) to find the right (left) match node and the cost of cornmgar
the Dewey ids of two nodes 3(d).

The key point in [20] applies to the computation of
slea({v}, S2,...,Sk). The nodeelca_can(v) (i.e.,
slea({v}; S, . .., Sk)) can be efficiently computed as follows: First
we compute the (uniqueyLC A v of v and of the nodes afs. It
continues by iteratively computing the (uniqueL.C A v; of v;—1
andS;, until  becomes:. The nodeyy, is the result.

Notice though that the nodes efca_can(S1; Sz, ..., Sk) may
be obtained out of order by applying the above computation on
each node irb;. For example in Figure klca_can(0.3.2.1.1) =
0.3.2andelca_can(0.3.5.1) = 0.3. ThustheE LCA_C' AN node
0.3 is computed after th&¢ LCA_C AN node0.3.2. The time
complexity of computing:lca_can(v) is O(kd log|S|).

4.3 Determine whether aneLcA_cAN node is
an ELCA node
This section presents the functienE LC' A which is used to
determine whether aB LCA_C AN nodev is anE LC A node or
not. Letchild_elcacan(v) be the set of children af that contain
all keyword instances. Equivaleniyiild_elcacan(v) is the set of
child nodes of v such that eithet or one ofu’s descendant nodes
isanELCA_CAN node, i.e.,
child_elcacan(v) = {u|u € child(v) A
Jz (u=<sx A z € elca_can(S1;Ss,..

- 5k))}
wherechild(v) is the set of child nodes ef We useELCA_CAN



Figure 2: v andits ELCA_CAN children

in the above definition othild_elcacan(v) because we can ef-
ficiently computeelca_can(S1; S, ..., Sk) as discussed in Sec-
tion 4.2. ForS; and.S; of the running example in Figure 1,
child_elcacan(0)=[0.2, 0.3, 0.4] andchild_elcacan(0.2)=[0.2.2].

Assumechild_elcacan(v) is {u1,...,uc.} (See Figure 2). By
definition, anELC'A nodev must haveELC A witness nodes
ni,...,ng suchthat, € Si,...,nx € Sk and everyn; is not in
the subtrees rooted at the nodes framild_elcacan(v).

To determine whether is an ELC A node, we probe everg;
to see if there is a node; € S; such thatz; is either in the forest
underwv to the left of the pathyu,, or in the forest undev to the
right of the pathvu., or in any forest; that is undew and between
the pathsvu; andvuiy1, ¢ = 1,...,¢ — 1. The last case can
be checked efficiently by finding the right matem(y, S;) of the
nodey in S; wherey is the immediate right sibling ofi; among
the children ofv. Assumepre(v) = p, pre(u;) = p.c wherecis a
single number, thepre(y) = p.(c+ 1), as shown in Figure 2. Let
the right match ofy in S; bez (i.e.,x = rm(y,S;)). Thenz is a
witness node in the forest; if and only if pre(z) < pre(uit1).

Given the listch which is the list of nodes inhild_elcacan(v)
sorted by id, the functiois ELC A(v, ch) (Figure 3) returns true
if vis anELC A node by applying the operations described in the
previous paragraph. As an example, consider the query “XML
David” and the inverted list§; and.S2 in Figure 1.
child_elcacan(0)=10.2, 0.3, 0.4]. We will see how
isELCA(0,[0.2,0.3,0.4]) works and returns true. In this exam-
ple, the number of keywords is twé (= 2) and|ch|=3. First the
functionisELC A searches and finds the existence offabC A
witness node (i.e., the no@el.1) for 0.2 in S, in the subtree rooted
under0 to the left of the path fron to 0.2 (0.2 is the first child
ELCA_CAN node of0). Then the function searches the exis-
tences of anE LC' A witness node irS; for 0 in the forest to the
left of the path from0 to 0.2; in the forest between the path from
0 to 0.2 and the path frond to 0.3; in the forest between the path
from 0 to 0.3 and the path fron to 0.4; in the forest to the right
of the path fronD to 0.4. All of the above searches fail except that
the last search successfully finds a withess nodg 1) for 0.2 in
Ss. ThereforejsELC A(0,[0.2,0.3, 0.4]) returns true.

The time complexity ofsELC A(v, ch) is
O(kdlog |S||child_elcacan(v)]) (line 1, 3 and 4).

4.4 Indexed Stack Algorithm

In Section 4.1 we stated thatca_can(S1; Sz, ..., Sk) is a su-
perset ofelca(Si,...,Sk). Section 4.2 described how to effi-
ciently computexlca_can(S1; Se, ..., Sk) and Section 4.3 described
how to efficiently check whether aiLC A_C AN node in
elca_can(S1; Se, ..., Sk)isanELC A node, when the list of child
nodes ofv that contain all keyword instances are given. Therefore,
the only missing part of efficient computation@ta(S1, ..., Sk)
is how to computehild_elcacan(v) foreachE LC A_C AN node
v. Since we can easily computéild_elcacan(v) if we know

isELCA(v, ch){
(* return true ifv is an ELC A node. chzhild_elcacan(v) *)

1 forl <i<k{

2 X=V

3 forl < j < |ch|{

4 z = rm(z,S;) (* = is awitness node fov in S;*)

5 if( pre(xz) < pre(chl[j]) ) break;

6 else {

/I The functionsibling(u) returns the immediate right

/Isibling node ofu among the list of child nodes of.
x=sibling(ch[j])

0 if(==|ch| + 1){

11 z = rm(sibling(ch[|ch|]), S;)
12 if(v Ao x)return false;

13 }

14 return true;

Figure 3. Determine whether an ELCA_CAN node is an
ELCA node

Conference
o
I } |
session session paper
0.2 0.3 0.4.2
paper paper paper paper
0.2.2 0.3.2 0.3.3 0.3.4

Figure 4: The tree structure of all ELCA_C AN nodes in Fig-
urel

every ELCA_CAN nodez; underv 3, we can just compute all
ELCA_CAN nodes and then computgild_elcacan(v) for each
ELCA_CAN nodew.

A straightforward approach would compute AILCA_CAN
nodes and store them in a tree which keeps only the origitaisior-
descendant relationships of &lILCA_C AN nodes in the input
document. As an example, such atree describing Al A_CAN
nodes in Figure 1 is shown in Figure 4. Note that thoQgh2 is a
descendant dj in Figure 1, it is a child o in Figure 4.

A straightforward algorithm to computéca(Si, . . . , Si) works
as follows wherdl’S is a tree structure initialized to empty:

1. For each node in S1, computel = elca_can(v) based on
Section 4.2 and d@'S.insert(l) which insertd to the appro-
priate place irf’S based ori's ancestor-descendant relation-
ship with nodes already insertedTi5. The tree in Figure 4
shows the result from this step for computielga(S1, S2)
in Figure 1.

2. For each nodéin T'S check whethetisan ELCA_CAN
node or not by callings ELC A(l, child_elcacan(l)) where
child_elcacan(l) can be easily computed from the list of
child nodes of in T'S.

However the above approach has the following disadvantages

e the complexity of the approachd(d| S |* +S1|kd log | S))
where theO(d|S1|?) component comes from the cost of cre-
ating and maintaining the tree structure;

e and all O(|S1])) ELCA_CAN nodes have to be computed
first and kept in memory before we can start to recognize any
ELC A nodes.

8child_elcacan(v) is the set of child nodes; of v on the paths
from v to z;, which can be efficiently computed with Dewey num-
bers.
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Figure 5: Relationships between any two nodekand s

Instead, a “one pass” stack-based algorithm, whose coritylex
is O(|S1|kdlog |S]), is presented in Figure 6. The Indexed Stack
algorithm does not have to keep aAlILC' A_C AN nodes in mem-
ory; it uses a stack whose depth is bounded by the depth ofdbe t

ELC A node, which could be determined only if we have kept the
information that0.3.2, 0.3.3 and0.3.4 are ELCA_C AN nodes
until we see).3 and know tha0.3 would not have any child or de-
scendant? LCA_C AN nodes in the processing later after we see
0.3. Itis possible that we would not s@e3 at all in the processing
(i.e., if the node0.3.5.1 was not in the tree).3 would be not be
an ELC'A_C AN node) in which case we still need to keep.2,
0.3.3 and0.3.4 until the point we are sure that those nodes cannot
be child or descendant of any othB.C A_C' AN nodes.

Figure 6, which presents the Indexed Stack pseudo-code, and
Figure 7, which has snapshots of the stack during operafitimeo
algorithm, also include an entrtack Entry.witNodes, which

based on some key tree properties. At any time during the com- we temporarily ignore, as it is used only in the optimizatiension

putation any node in the stack is a child or descendant nottesof
node below it (if present) in the stack. Therefore the nodes f
the top to the bottom of the stack at any time are from a singfle p
in the input tree.

We will first present the Indexed Stack algorithm, illuséditvith
a running example, then discuss at the end of this sectiomizpt
tion techniques in the implementation of the algorithm.

4.4.1 Algorithm Description

We go through every nods in Sy in order, computelca_can,, =
elca_can(vi) and create a stack entsyack Entry consisting of
elca_can.,, . If the stack is empty, we simply pusttack Entry
to the stack to determine later whethéta_can., is anELCA
node or not. If the stack is not empty, what the algorithm diees
pends on the relationship betweetuck Entry and the top entry
in the stack. The algorithm either discards.ck Entry or pushes
stack Entry to the stack (with or without first popping out some
stack entries). The algorithm does not need to look at arsratbn
top entry in the stack at any time and only determines whether
ELCA_CAN node is anELC A node at the time when a stack
entry is popped out.

Each stack entrgtack Entry created for a node; in S; has
the following three components.

o stackEntry.elca_can is elca_can(v1);

e stackEntry.C H records the list of child or descendant
ELCA_CAN nodes ofstack Entry.elca_can seen so far,
which will be used byisELC A() to determine whether
stackEntry.elca_can is an ELC A node at the time when
this entry is popped out from the stack;

e andstackEntry.SIB (short for siblings) is the list of
ELCA_CAN nodes beforetack Entry.elca_can (in doc-
ument order) such that theC'A node of nodes from the list
andstack Entry.elca_can potentially can be abW LCA_CAN
node that has not been seen so far.

Let us illustrate the need for and role gizck Entry.SIB with
the running example “XML David”. Before we compute
elca_can(0.3.5.1)=0.3, we have already computei3.2, 0.3.3,
0.3.4 asELCA_CAN nodes which are the chil# LCA_CAN
nodes 0f0.3. We have to store these thred. C A_C AN nodes in
order to determine whethér3 is an E LC' A node or not before we
see0.3 in the processing, which is achieved by first storing.2
in the ST B component of the stack entry associated with3 and
then storing0.3.2 and0.3.3 in the SIB component of the stack
entry associated with.3.4 (after the stack entry associated with
0.3.3 is popped out) during the processing before we(sg@eNote
that if the node).3.1.1 was not in the tree in Figure 1, we would
still see0.3 in the processing as aiLC'A_C AN node and still
see0.3 after(0.3.2, 0.3.3, and0.3.4, but then0.3 would not be an

of the algorithm, described at the end of this section.

For each node; in S: (line 2), the Indexed Stack algorithm
computeslica_can,, = elca_can(vy) as discussed in Section 4.2
(line 4). We create a stack entsyuck Entry consisting oklca_can.,,
(line 6). If the stack is empty (line 7), we simply pustuck Entry
to the Stack to determine later wheth@ea_can,, is anELCA
node or not. If the stack is not empty, let the node at the top
of the stack beelca_can., (line 9-10). Figure 5 shows the only
five relationships the tw@& LC A_C AN nodeselca_can,, and
elca_can,, (in fact any two nodes) can have.

e In the first case wherelca_can., andelca_can., are the
same (Figure 5(a), line 119{ca_can., is discarded.

¢ Inthe second case whetka_can., is an ancestor aflca_can.,
(Figure 5(b)), we pusktack Entry to the stack to determine
later whetheelca_can.,, is anELC A node or not (line 12).

¢ Inthe third case (Figure 5(c)) whet&a_can., andelca_can,,
have no ancestor-descendant relationshipedad can.,, ap-
pears afteelca_can,, in document order (line 13), we pop
the top stack entry repeatedly (line 14) until either thelsta
is empty or theE LCA_C AN node of the top entry in the
Stack (hamedop_elcacan in Figure 5(c), line 15) is an an-
cestor ofelca_can,, by calling the functionpopStack().
When a stack entry is popped out, tR.C A_C AN node
in the stack entry is checked whether it is BLC' A node
or not (byisELCA()). Note that there will not be any
ELCA_CAN node in later processing that can be a child
or descendant node of any popped &litC A_CAN node.
That is why we can pop out those entries and checEfb' A
nodes. LepopEntry be the last popped out entry and
potential_elcacan be the LCA ofpop Entry.elca_can and
elca_can,, (Figure 5(c), line 16). If the stack is not empty
and the top stack entry’s nodep_elcacan is an ancestor
of potential_elcacan (Figure 5(c), line 17), then we set the
SIB list associated witllca_can., to be the concatenation
of the SIB listin pop Entry andpopEntry.elca_can (line
18). We then pusktack Entry to the stack (line 19). The
reason that we need to carry on the nodes stored i§ fiig
component ofpop Entry to stack Entry was explained a
few paragraphs before in the example illustrating the need
for and role of theS7B component in a stack entry. Dur-
ing the processing of the example, at one peilat_can.,
is 0.3.2, elca_cany, is 0.3.3, potential_elcacan is 0.3,
top_elcacan is 0, and after the stack entry for3.2 is popped
out,0.3.2 is stored in theST B component of the stack entry
for 0.3.3. Notice thatpotential_elcacan could be a node
that we have not seen so far in the processing (i.e., it has not
been computed as dnL.C A_C AN node) and it could be an
ELCA_CAN and anE LC A node. Although we have guessed



its existence here, it may or may not appear later in the pro-
cessing. That is why we need to caefya_can., and nodes

in the ST B component oklca_can., to the SIB compo-
nent ofelca_can,, for potential_elcacan.

e In the fourth case wherelca_can,, <. elca_can,, (line
21, Figure 5(d)), itis certain thatca_can., has no more de-
scendantt LC A_C AN nodes. Thus we pop from the stack
repeatedly until either the stack is empty or EC A_C AN
node in the top entry is an ancestoredéa_can., (line 22).
Again, theELC A_C AN node in each popped out entry is
checked whether it is alv LC'A node or not. Let the last
popped out entry bgop Entry (line 22). We copy theS1B
list in pop Entry andpopEntry.elca_can to the CH field
of elca_can.,, (line 23). Thenstack Entry is pushed to the
top of the stack (line 24). Notice that nodes stored in the
S1B field by the processing in the third case are used in the
fourth case to set the CH field.

e The fifth case, wherelca_can,, andelca_can., have no
ancestor-descendant relationship afwd_can., appears be-
foreelca_can.,, is not possible in the computation wh&n
is sorted in document order.

Now we discuss the details of the functipopStack(elca_can,, )
(called in the processing of the third and fourth cases infeéi§). It
repeatedly pops out the top entry (line 31) until BECA_CAN
node in the top entry is an ancestor @ta_can,, or the stack

becomes empty. Each popped out entry is checked on whether it 55

contains anELC A node or not by calling the functiois ELC' A
presented in Section 4.3 (line 33). Notice that the function
toChildELCA_CAN (v, L) inputs a nodev and a listL each
node of which is a child or descendahRt.C A_C AN node ofv

and returnshild_elcacan(v). Each popped out node is added to
the top entry’'sC' H field (line 36) because atany time aBy.C A_CAN
node in a stack entry is a child or descendant node ofth€' A_C AN

1 Stack =empty
2 for each node; in Sy {
3 (*elca_cany,the ELCA_CAN ofvy;*)
4 elca_can,, = elca_can(vi)
5 (* create a Stack entry stackEntry fefca_can.,, *)
6 stackEntry = [elca_can = elca_can,,; SIB = [|; CH = []]
7 if (Stack.isEmpty()) Stack.push(stackEntry)
8 else {
9 topEntry = Stack.top()
10 elca_can,, = topEntry.elca_can
11 if(pre(elca_can,,) == pre(elca_can.,)) {} (* Figure 5(a) *)
12 elseif elca_can,, <4 elca_can,,)
Stack.push(stackEntry)(* Figure 5(b) *)
13 elseif pre(elca_can,,) < pre(elca_can,, )X (* Figure 5(c) *)
14 popEntry = popStack(elca_can,, )
15 top_elcacan = Stack.top().elca_can
16 potential_elcacan = lca(elca_can,, , popEntry.elca_can)
17 if(IStack.isEmpty() &&top_elcacan <, potential_elcacan)
18 stackEntry.SIB= [popEntry.SIB,popEntry.elca_can]
19 Stack.push(stackEntry)
20
21 elseif elca_can,, <q elca_can,,){ (* Figure 5(d) *)
22 popEntry = popStack(elca_can,, )
23 stackEntry.CH=[popEntry.SIB, popEntry.elca_can]
24 Stack. push(stackEntry)
25 }
26}
27 } (* end of for loop *)
28 popStack(0) (* clean up the stack *)
29 popStackflca_can.,, ) : StackEntry
(* pop out all top entries of the stack whose nodes are notstoofelca_can.,; *)
30 popEntry=null;
31 while(Stack.top() '=NULL
&& Stack.top().elca_can A elca_cany; ){

32  popEntry=Stack.pop()

ifisELCA(popEntry.elca_can,
34 toChildELCA_CAN (popEntry.elca_can, popEntry.CH))
35 outputpop Entry.elca_can as anELC A
36  Stack.top().CH += popEntry.elca_can
37}
38 return popEntry;

Figure 6: The Indexed Stack Algorithm

node in the stack entry below it (if present).

The time complexity of the Indexed Stack algorithm is

O(|S1|kdlog |S|) wherek is the number of keywords in the query,

d is the depth of the tree and: | (|S|) is the occurrence of the least
(most) frequent keyword in the query. The time complexitynes
from two primitive operationselca_can() andisELC'A(). The
total cost of callingzlca_can(v) is O(kd|S1|log |S]) as discussed
in Section 4.2. The cost of calling the functionE LC A(v, CH)
once isO(|C'H|.kdlog |S]) or |child_elcacan(v)|kdlog |S| (see
Figure 2). The accumulated total cost of callisg/ LC A is
O(Xvceica_can(1:5s,....5,) |child_elcacan(v)|kdlog |S]). LetZ =
veelca_can(S1;5s,....5,) |Child_elcacan(v)|. Note that
lelca_can(Sy; Sa, ..., Sk)| < |Si] and |child_elcacan(v)| <

|S1|. Each node irelca_can(S1; Se, ..., Sk) increases the value
of Z by at most one (see Figure 4). Thus
O(Zveelca _can(S1;52,...,5 |Chlld elcacan(v)D (|Sl|) There-

fore the time complexity of the Indexed Stack algorithm is

O(|S1|kd log |S]).

The number of disk access needed by the Indexed Stack algo-
rithm is O(k|S1|) because for each node H the Indexed Stack
algorithm just needs to find the left and match nodes in eaeh on
of the otherk — 1 keyword lists. Note that the number of disk ac-
cesses of the Indexed Stack algorithm cannot be more thaottie
number of blocks of all keyword lists on disk because theritigm

number of disk accesses main memory complexity
Indexed Stack| O(k|S1]) O(kd|S1]1og|S])
DIL O(B) O(kd[S])
RDIL O(k?d|S|plog S| + k2d|S|?) | O(K%d|S|plog|S]| + k%d|S|?)

Table 1: Main memory and Disk Complexity Analysis of In-
dexed Stack, DIL and RDIL

20]. The complexity analysis of the Indexed Stack, the tvwgmal
rithms in [10], DIL and RDIL are summarized in Table 1 for both
main memory and disk accesses for finding all query answets an
only topm query answers whet&1|(].S]) is the occurrence of the
least (most) frequent keyword in the quef,is the total number

of blocks of all inverted lists on diskj is the maximum depth of
the tree ang is the maximum number of children of any node in
the tree.

4.4.2 Running Example

We illustrate the algorithm using the query “XML David” oneth
data of Figure 1. Figure 7 shows the states of the stack difter t
processing of each node i for computingelca(S1;S2). The
caption under each figure describes which nedén S, has just
been processed, the id of the nadea_can.,, = elca_can(v1),

accesses all keyword lists strictly in order and there isepeated which of the four cases in Figure 5 has happened, and the y&ip/p

scan on any keyword list. Since B+ tree implementations llysua
buffer non-leaf nodes in memory, we assume the number of disk
accesses of a random search in a keyword sea@lilisas in [10,

actions that happened.
Figures 7(a), 7(b), and 7(c) show the processing of the Fireet
S1 nodes,0.1.1, 0.2.1.1 and0.2.2.1.1. The case of Figure 5(b) is



applied.

Figure 7(d) shows the processing of the n6de2.1.1. The case
of Figure 5(c) is applied. The two nod8<.2 and0.2 are popped
out from the stack and determined to BE.C' A nodes; theC'H
field associated with the nodeis updated with the addition of the
node0.2; andelca_can(0.3.2.1.1)=0.3.2 is pushed onto the stack.

Figure 7(e) shows the result of processing.3.1.1 from S;.
Note thatelca_can,, = 0.3.3. The processing for the case of Fig-
ure 5(c) is applied. The node3.2 is popped out and reported as
an ELCA. Also 0.3.2 is stored in theSIB field of the entry as-
sociated with0.3.3. Figure 7(f) shows the processing of the node
0.3.4.1.1 from S which is similar to the processing shown in Fig-
ure 7(e). The node.3.3 is popped out and reported as BL.C A,
and added to the SIB field of the stack entry associated WiH.
Note that the’? LC A_C' AN node0.3 has not been seen yet.

The processing for the node3 shown in Figure 7(g) is inter-
esting in that it picks up the nodes previously stored'#B and
uses it to update th€'H field of the stack entry associated with
0.3. Without this action, we cannot determine whether the node
0.3 isan ELC A or not because some of its chidLCA_CAN
nodes (.3.2, 0.3.3 and0.3.4) have been seen and they have to
been stored. The node3.4 is popped out and determined to be an
ELCA node.

Figure 7(h) shows the processing of the last ndéde2.1.1 from
S1 which is similar to the processing shown in Figure 7(d). The
node0.3 is popped out and determined to befahC A node. The
node0.4.2 is pushed onto the stack. At this stage every node in
S1 has been processed. Figure 7(i) shows that after cleanitigeup
stack, the stack becomes empty and nd@ld®2 and0 are deter-
mined to beE LC A nodes.

4.4.3 Algorithm Optimization

To emphasize the key ideas behind the Indexed Stack algorith
and for presentation simplicity, we did not present sométpa-
tion techniques in the implementation of the algorithm shaw
Figure 6.

Incremental isELC A(). Notice that we can do without storing
the child or descendaif LC'A_C AN nodes of al# LCA_CAN
node in the stack. That is, we can removedh# field in the struc-
ture of a stack entry. The above can be achieved by the failpwi
two changes: i) extending the computationedfa_can(v) along
with an array of ELC A_C AN witness nodes ofica_can(v); i)
changing the functioms E LC A’s signature accordingly to
1sELCA(l, WN) wherel isanELCA_CAN node and¥V N is
the list ofi's ELC'A_C AN witness nodes. The idea is that some
of the ELCA_C AN witness nodes oélca_can(v) kept along
the way of computinglca_can(v) may beELC A witness node
for elca_can(v). If an ELCA_C AN witness noder is also an
ELCA witness node foelca_can(v) in a setS;, then there is
no need inisELCA() to search forELC'A witness nodes for
elca_can(v) in S;. For example in the stack state shown in Fig-
ure 7(h), the childb LC A_C' AN node0.2 of the nodé) is stored in
the C'H field associated with the nodeat the bottom of the stack.
Instead of carrying the chil@ LC A_C AN 0.2 of the noded from
the state shown in Figure 7(d) to the state shown in Figurg 7(h

we can at the step shown in Figure 7(d) update the witness node

of 0 from [0.1.1,0.2.2.2.1] to [0.1.1, 0.3.1.1] after0.2.2 and 0.2
are popped out and befode3 is pushed onto the stack, and update
at the step shown in Figure 7(e) the witness node arrayfodm
[0.1.1, 0.3.1.1] to [0.1.1, 0.4.1.1]. In the last step (Figure 7(i))
after popping oub.4.2, we update the witness node arrayooto
[0.1.1, 0.5.1] and determine thal is an ELC A node. Essentially,
we remove the need of storing chilLC A_C AN nodes in the

0 [0.1.1,02221 [0 1
elca_can witness nodes SIB CH
(@) v1 = 0.1.1; elca_can,, = 0; Fig-
ure 5(b); puslo to stack.

0.2 [0.2.11,02221] [
0 [0.1.1,02221 [0 1
elca_can witness nodes SIB CH

(b) vi = 0.2.1.1: elca_can,, = 0.2;
Figure 5(b); pusit.2 to stack.

0.2.2 [0.2.2.1.1,0.2.2.21] ] 1]
0.2 [0.2.1.1,0.2.2.21] 1 I
0 [0.1.1,0.2.2.2.1] 1]
elca_can witness nodes SIB CH

() vi = 0.2.2.1.1: elca_can,, = 0.2.2;
Figure 5(b); pust®.2.2 to stack.

0.3.2 [0.3.2.1.1,03.221] | 1
0 [0.1.1,0.3.1.1] g 0.2
elca_can witness nodes SIB CH

(d) v1 = 0.3.2.1.1: elca_can,, = 0.3.2;
Figure 5(c); pop ou6.2.2 and0.2 and deter-
mine them as ELCAs; add.2 to top entry’s
CH; push0.3.2 to stack.

0.3.3 [0.3.3.1.1,0.3.3.2.1] [0.3.2] 0

0 [0.1.1,0.4.1.1] 1] [0.2,0.3.4]

elca_can witness nodes SIB CH
(e) vi = 0.3.3.1.1: elca_can,, = 0.3.3; Fig-

ure 5(c); pop oub.3.2 and determine it as an ELCA;
add0.3.2 t0 0.3.3's SIB; push0.3.3 to stack.

0.3.4 [0.3.4.1.1,0.3.4.2.1] [0.3.2,0.3.3] 1]
0 [0.1.1,0.4.1.1] 1] [0.2,0.3.2,0.3.8]
elca_can witness nodes SIB CH

(f) vi = 0.3.4.1.1; elca_can,, = 0.3.4; Figure 5(c); pop out
0.3.3 and determine it as an ELCA; add3.3 to 0.3.4’s SIB;
push0.3.4 to stack.

0.3 [031.1,03421 [ [0.3.2,0.3.3,0.4.4]
0 [0.1.1,0.4.1.1] [ [0.2,0.3.2,0.3.3,0.3}4]
elca_can witness nodes SIB CH

(9) v1 = 0.3.5.1; elca_can,, = 0.3; Figure 5(d); pop out
0.3.4 and determine it as an ELCA; add3.4 entry’'s SIB
list and0.3.4 t0 0.3's CH; push0.3 to stack.

0.4.2 [0.4211,04221 [ 1
0 [0.1.1,04.1.1] 0 [0.2,03.2,0.3.3,0.3.4,0.3]

elca_can witness nodes SIB CH
(h) v1 = 0.4.2.1.1; elca_can,, = 0.4.2; Figure 5(c); pop out
0.3 and determine it as an ELCA; pusht.2 to stack.

(i) No more “XML” nodes: clean up the stack; pop dut.2 and0
and determine them as ELCAs; Stack becomes empty.

Figure 7: States of stack during evaluation of “XML David”



Figure 8: information of an

Optimizing the history
ELCA_CAN node

stack’s CH fields and carrying them around by reusing the eemp

tation ofelca_can() in the functionis ELC A() and by doing some

of the work inis ELC A() (searching foiz LC' A witness nodes) as

early as possible.

Reducing |SIB]|. Assume at some point in the processing of

the algorithm, the following list o LC A_C AN nodes are com-
puted in the exact order as they appear+1, ve, ..., v, | (See
Figure 8). The algorithm presented in Figure 6 will at somiipo
push the node onto the stack; pusty onto the stack; pop out;,
pushwvz, and addv; to the SIB field associated with.; pop out
ve, pushwvz, and addv; andwv, to the S1B field associated with
vs. When the algorithm pushes, onto the stack, th&7B field
associated with, containsvs,...,v,—1. We only describe the
basic idea of the optimization to reduce the number of notbesd
in the SIB field. The idea is that we only need to stoarein the
SIB field of v2; w1 inthe STB field of vs; .. .; un—_2 inthe SIB
field of vy, .

5. EXPERIMENTAL EVALUATION

System Implementation and SetupNe have implemented in Java

a prototype called XKeywordSearch to evaluate the propased
dexed Stack algorithm and the two core algorithms in [10].

We have run XKeywordSearch on both real and synthetic data,
respectively, DBLP [5] and XMark [16] data. The experiments

have been done on'&6 MHz computer with 512MB of RAM.

We only report the experimental results on the DBLP datais th

paper; the results on XMark are similar.

The DBLP data was first grouped by journal and conference
names, then by years. The size of the XML file of DBLP data

after grouping isl20MB. The depth of the DBLP tree i$0; the
number of distinct keywords i$80, 126; the number of nodes in
the tree i, 267, 592.

We evaluated the Indexed Stack algorithm, DIL and RDIL dis-

cussed in Section 1 for th€ LC' A query semantics by varying

the number and frequency of keywords both on hot cache and on

cold cache. We report only results on hot cache in this papies.
relationships among three evaluated algorithms on coltdecace
similar in the sense that if one algorithm wins another athor in

the hot cache it also wins in the corresponding cold cacherexp
ment but the differences are smaller because of dominantteeof
disk access. For example, in the hot cache experiments stmown

Figure 9(a), the response time of the Indexed Stack algorith a

query with two keywords of frequencies of 10 and 10000 is\welo

10 milliseconds; in the cold cache experiments, the resptine

of the Indexed Stack algorithm for the same query is closedfb 1

milliseconds. But the response time of the DIL algorithmslnet
increase significantly from hot cache to cold cache experime

One hundred queries were randomly selected for each experi-
ment by a script. Note that when the script fails to choosefa su
ficient number of keywords of a specified frequency, it cheose

keywords with frequencies close to the specified frequeBach

query was run three times and the average time was reported.
Search PerformanceFirst, we compare the search performances
of the Indexed Stack (IS) algorithm and the DIL algorithmfiad-

ing all query results. There is no point to run the RDIL algfum to
find all query results because it is designed for returnipgitoan-
swers and it has higher complexity than the IS algorithm.space
reason, we do not report experiments where the responseofime
both algorithms are less than 100 milliseconds.

In Figure 9(a) each query contains two keywords. The perfor-
mance of the DIL algorithm degrades linearly when the sizinef
large inverted list increases, while the response timeef$talgo-
rithm is almost constant, linear in the size of the smallgmiad
list, and its performance is orders of magnitude better fiin

In the experiments shown in Figure 9(b), we vary the number of
keywords from two to five. Each query has a keyword of smail fre
guency shown on the top of Figure 9(b), while the frequencailof
other keywords in the query is fixed at 100000. We vary the kmal
frequency from 10 to 10000. As can been seen from Figure 9(b),
when the number of the keywords is fixed, the performanceef th
DIL algorithm is essentially independent (8| when the small
frequency increases from 10 to 10000, while the performahte
IS algorithm degrades linearly when the size of the smadjfemncy
increases. When the small frequency is fixed, the performafc
IS is essentially constant while the performance of DIL delgs
linearly when the number of keywords increases. As dematestr
in Figure 9(a), Figure 9(b) shows that the performance oflghe
algorithm is orders of magnitude better than DIL.

We also stress tested the Indexed Stack algorithm on queries
where all keywords have the same frequency. The experiments
showed that although DIL often performs better than IS, tiie d
ference is not significantly. It is less than 5% in most expernits
and less than 12% on average.

Next, we compare the search performance of the Indexed Stack
algorithm and the RDIL algorithm for returning only the togmt
query results. The DIL algorithm is not evaluated in this alet
experiments because both the DIL and IS algorithms have do fin
all query results to determine the top ten answers and theriexp
ments shown in Figures 9(a) and 9(b) in finding all query tssul
have showed that IS is a better choice than DIL. As discussed i
Section 3, there is no guarantee that RDIL can always findape t
ten queries without having to compute all query results.

We evaluated the queries in Figure 9(a) and Figure 9(b) and
reported the time on returning the top ten query answersgn Fi
ure 10(a) and Figure 10(b) respectively. We used a rankirduieo
that is identical to the one used in the experiments of [10jthB
Figure 10(a) and Figure 10(b) show that the Indexed Staab-alg
rithm performed significantly better than the RDIL algonith

There is a space where RDIL can outperform IS (and DIL) and
here is a scenario that exhibits the conditions under wihiishhap-
pens. Consider a queryi w2" on a XML document that contains
a large number of occurrenceswf andw., and only ten pairs of
wi andws have non-root nodes as their lowest common ancestors.
Assume that the ten pairs of, andw2 nodes have higher ranking
than all othenv: andws nodes before them in the document. The
RDIL algorithm outperforms the IS algorithm for the aboveegu
“w1 wsy” because the IS algorithm has to scan to the end of one of
the two inverted lists to return the top ten answers whileRBsL
algorithm starts from inverted lists sorted by ranking ssand can
terminate much earlier than IS. As one direction of futurekyawe
plan to investigate how to return top answers without having to
completely scan the smallest inverted list, by either dijgsthe
ranking mechanism or relaxing the exact teprequirement to ap-
proximate topm query answers.
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Figure 9: Finding all query answers (evaluating the IndexedStack algorithm and DIL)
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Figure 10: Finding top 10 query answers (evaluating the Indred Stack algorithm and RDIL)

6. CONCLUSIONS

We have presented an efficient keyword search algorithmedam

Indexed Stack, that returns nodes that contain all instantall
keywords in the query, after excluding the keyword instartet
appear under nodes whose children already contain all keliwe

[8] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice-Hall, 2000.

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in DatabasesVUDB,
1998.

stances according to the query semantics proposed in [1@. W [10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

demonstrated the superiority of the Indexed Stack algoritier

DIL and RDIL in [10] both analytically and experimentally. Vv

showed that the complexity i©(kd|S:1]|log|S|) wherek is the

number of keywords in the query, is the depth of the tree and

XRANK: Ranked keyword search over XML documents. In
S GMOD, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyaio
search in relational databasesMinDB, 2002.

[S1] (IS]) is the occurrence of the least (most) frequent keyword [12] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyd

in the query. In comparison, the complexity of the best pniork
algorithm isO(kd|S|).
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