
Efficient LCA based Keyword Search in XML Data

Yu Xu
Teradata

yu.xu@teradata.com

Yannis Papakonstantinou
University of California, San Diego

yannis@cs.ucsd.edu

ABSTRACT
Keyword search in XML documents based on the notion of low-
est common ancestors (LCAs) and modifications of it has recently
gained research interest [10, 14, 20]. In this paper we propose an
efficient algorithm called Indexed Stack to find answers to keyword
queries based on XRank’s semantics to LCA [10]. The complex-
ity of the Indexed Stack algorithm isO(kd|S1| log |S|) wherek

is the number of keywords in the query,d is the depth of the tree
and |S1| (|S|) is the occurrence of the least (most) frequent key-
word in the query. In comparison, the best worst case complexity
of the core algorithms in [10] isO(kd|S|). We analytically and
experimentally evaluate the Indexed Stack algorithm and the two
core algorithms in [10]. The results show that the Indexed Stack
algorithm outperforms in terms of both CPU and I/O costs other
algorithms by orders of magnitude when the query contains atleast
one low frequency keyword along with high frequency keywords.

1. INTRODUCTION
Keyword search in XML documents based on the notion of low-

est common ancestors in the labeled trees modeled after the XML
documents has recently gained research interest in the database
community [10, 14, 20]. One important feature of keyword search
is that it enables users to search information without having to know
a complex query language or prior knowledge about the structure
of the underlying data. Consider a keyword queryQ consisting
of k keywordsw1, . . . , wk. According to the LCA-based query
semantics proposed in [10], namedExclusive Lowest Common An-
cestors (ELCA) in the sequel, the result of the keyword queryQ is
the set of nodes that contain at least one occurrence of all ofthe
query keywords either in their labels or in the labels of their de-
scendant nodes, afterexcluding the occurrences of the keywords in
the subtrees that already contain at least one occurrence ofall the
query keywords. For example, the answers to the keyword query
“XML David” on the data in Figure 1 is the node list [0, 0.2, 0.2.2,
0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2]. The answers show that “David”
is an author of five papers that have “XML” in the titles (rooted at
0.2.2, 0.3.2, 0.3.3, 0.3.4 and0.4.2); and that “David” is the chair
of two sessions that have “XML” in the titles (rooted at0.2 and0.3),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and the chair of the conference (rooted at0) whose name contains
“XML”. Notice that the node session with id0.4 is not anELCA

answer since the only “XML” instance (node0.4.2.1.1) under0.4
is under one of its children (0.4.2) which already contains keyword
instances of both “XML” and “David”. Therefore under theex-
clusion requirement in theELCA definition, the session node0.4
is not anELCA answer. The node Conference rooted at0 is an
ELCA answer since it contains the node0.1.1 and the node0.5.1
which are not under any child of the node0 that contains instances
of both keywords “XML” and “David”.

We propose an efficient algorithm called Indexed Stack to an-
swer keyword queries according to theELCA query semantics
proposed in XRank [10] with complexity ofO(kd|S1| log |S|) where
k is the number of keywords in the query,d is the depth of the tree,
|S1| (|S|) is the occurrence of the least (most) frequent keyword in
the query. In comparison, the complexity of the core algorithms in
[10] is O(kd|S|) andO(k2d|S|p log |S| + k2d|S|2) respectively
wherep is the maximum number of children of any node in the
tree. The algorithm in [10] with complexityO(k2d|S|p log |S| +
k2d|S|2) is tuned to return only the topm answers for certain
queries where it may terminate faster than other algorithms. In
particular, our contributions include:

• We propose an efficient algorithm, named Indexed Stack (IS)
for keyword search in XML documents according to the
ELCA semantics proposed in XRank [10]. Our analysis of
the algorithm shows that the complexity of the proposed al-
gorithm isO(kd|S1| log |S|).

• Our experiments evaluate the Indexed Stack algorithm, and
the algorithms in [10] and show that the Indexed Stack al-
gorithm outperforms in terms of both CPU and I/O costs
other algorithms by orders of magnitude when the query con-
tains at least one low frequency keyword along with high fre-
quency keywords.

In Section 2 we provide theELCA query semantics and defi-
nitions used in the paper. Section 3 describes related work,with
focus on LCA-based keyword search in XML documents based on
the notation of lowest common ancestors [10, 14, 20]. Section 4
presents the Indexed Stack algorithm, and also provides thecom-
plexity analysis of the Indexed Stack algorithm and the algorithms
in [10] for both main memory and disk accesses. Our experimen-
tal results comparing the Indexed Stack algorithm and the two core
algorithms in [10] appear in Section 5. We conclude in Section 6.

2. ELCA QUERY SEMANTICS
We model XML documents as trees using the conventional la-

beled ordered tree model. Each nodev of the tree corresponds to
an XML element and is labeled with a tagλ(v).

session
0.2

session
0.3

session
0.4

title
0.2.1

chair
0.2.3

XML
Talks

0.2.1.1

paper
0.2.2

author
0.2.2.2

David
0.2.2.2.1

title
0.2.2.1

XML Query
Rewriting
0.2.2.1.1

Conference
0

David
0.2.3.1

paper
0.3.2

author
0.3.2.2

David
0.3.2.2.1

title
0.3.2.1

XML
XQuery

0.3.2.1.1

title
0.3.5

chair
0.3.1

David
0.3.1.1

XML
Update
0.3.5.1

author
0.4.2.2

David
0.4.2.2.1

title
0.4.2.1

XML XQuery
0.4.2.1.1

title
0.4.3

chair
0.4.1

David
0.4.1.1

paper
0.4.2

name
0.1

XML
2006
0.1.1

paper
0.3.3

author
0.3.3.2

David
0.3.3.2.1

title
0.3.3.1

paper
0.3.4

author
0.3.4.2

David
0.3.4.2.1

title
0.3.4.1

XML
View

0.3.4.1.1

chair
0.5

David
0.5.1

streaming
0.4.3.1

XML
Survey

0.3.3.1.1

S1: XML nodes S2: David nodes elca(S1,S2)

Figure 1: Example XML document

The notationv ≺a v′ denotes that nodev is an ancestor of node
v′; v �a v′ denotes thatv ≺a v′ or v = v′.

We first introduce theLowest Common Ancestor (LCA) of k

nodes (sets) before we formally define theELCA query seman-
tics.

The functionlca(v1, . . . , vk) computes theLowest Common An-
cestor (LCA) of nodesv1, . . . , vk. TheLCA of setsS1, . . . , Sk is
the set ofLCA’s for each combination of nodes inS1 throughSk.

lca(S1, ..., Sk) = {lca(n1, . . . , nk)|n1 ∈ S1, . . . , nk ∈ Sk}

For example, in Figure 1,lca(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2,
0.3.3, 0.3.4, 0.4, 0.4.2].

A nodev is called anLCA of sets S1, . . . , Sk if v ∈ lca(S1, . . . , Sk).
A nodev is called anExclusive Lowest Common Ancestor (ELCA)

of S1, . . . , Sk if and only if there exist nodesn1 ∈ S1, . . . , nk ∈
Sk such thatv = lca(n1, ..., nk) and for everyni (1 ≤ i ≤ k) the
child of v in the path fromv to ni is not anLCA of S1, . . . , Sk

itself nor ancestor of anyLCA of S1, . . . , Sk.
According to theELCA query semantics proposed in XRank

[10], the query result of a keyword queryQ consisting ofk key-
wordsw1, . . . , wk is defined to be

elca(w1, . . . , wk) = elca(S1, . . . , Sk)

whereelca(S1, . . . , Sk) = {v | ∃n1 ∈ S1, . . . , nk ∈ Sk(v =
lca(n1, ..., nk)∧ ∀i(1 ≤ i ≤ k)∄x(x ∈ lca(S1, . . . , Sk)∧
child(v, ni) �a x)) } where Si denotes theinverted list of wi,
i.e., the list of nodes sorted by id whose label directly containswi

andchild(v, ni) is the child ofv in the path fromv to ni. The node
ni is called anELCA witness node of v in Si. Note that a nodev is
anELCA of S1, . . . , Sk if and only if v ∈ elca(S1, . . . , Sk).

Notice that the above definition is based on LCAs and is ex-
pressed differently than but it is equivalent to [10]. In Figure 1
elca(“XML”, “David”)= elca(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2,
0.3.3, 0.3.4, 0.4.2]. The node0.1.1 is anELCA witness node of
the node0 in S1 and the node0.5.1 is anELCA witness node of
the node0 in S2.

TheSmallest Lowest Common Ancestor (SLCA) of k sets S1, . . . , Sk

is defined to be

slca(S1, . . . , Sk) =

{v|v ∈ lca(S1, . . . , Sk) ∧ ∀v
′ ∈ lca(S1, . . . , Sn) v ⊀ v

′}

A nodev is called aSmallest Lowest Common Ancestor (SLCA)
of S1, . . . , Sk if v ∈ slca(S1, . . . , Sk). Note that a node in
slca(S1, . . . , Sn) cannot be an ancestor node of any other node in
slca(S1, . . . , Sn).

In Figure 1, slca(S1, S2)=[0.2.2, 0.3.2, 0.3.3, 0.3.4, 0.4.2].
Clearlyslca(S1, . . . , Sk) ⊆ elca(S1, . . . , Sk) ⊆ lca(S1, . . . , Sk).
For example, considerS1 and S2 in Figure 1. The node0.2 is
not in slca(S1, S2) but in elca(S1, S2) and the node0.4 is not in
elca(S1, S2) but in lca(S1, S2).

Similarly to [10, 20], each node is assigned a Dewey idpre(v)
that is compatible with preorder numbering, in the sense that if
a nodev1 precedes a nodev2 in the preorder left-to-right depth-
first traversal of the tree thenpre(v1) < pre(v2). Dewey num-
bers provide a straightforward solution to locating theLCA of two
nodes. The usual< relationship holds between any two Dewey
numbers. Given two nodesv1, v2 and their Dewey numbersp1, p2,
lca(v1, v2) is the node with the Dewey number that is the longest
common prefix ofp1 andp2. The cost of computinglca(v1, v2)
is O(d) whered is the depth of the tree. For example, in Figure 1
lca(0.2.2.1.1, 0.2.2.2.1)=0.2.2.

3. RELATED WORK
Extensive research has been done on keyword search in both re-

lational and graph databases [9, 1, 11, 12, 3, 13]. There are works
on keyword search on XML databases modeled as trees [10, 14, 20,
4, 17]. This work falls in this category. Finally [15, 6, 7, 17, 18,
19, 14, 2] integrate keyword search into XML query languages.

We focus on the three most closely related works: XRank ([10]),
Schema-Free XQuery ([14]) and XKSearch ([20]), all of which
base keyword search in XML on the notation of lowest common
ancestors of the nodes containing keywords.

XRank ([10]) defines the answer to a keyword search query Q
“w1, . . . , wk” to be elca(S1, . . . , Sk) whereSi is the inverted list
of wi (1 ≤ i ≤ k). It also extends PageRank’s ranking mechanism
to XML by taking the nested structure of XML into account. Each
node in the tree is assigned a precomputed ranking score which is
independent of any keyword query. The ranking score of an an-
swer node (i.e., anELCA node)v to the queryQ is computed by
XRank’s aggregate ranking function which takes into account in-
dividual scores of the witness nodes ofv and the distance between
the witness nodes and the answer nodes— the contribution of awit-
ness nodex’s ranking to the nodev decays by the distance between
v andx. [10] proposes two core algorithms,DIL (Dewey Inverted
List) andRDIL (Ranked Dewey Inverted List), to return the topm

answers fromelca(S1, . . . , Sk). Notice that the ranking functions
and the search algorithms (DIL and RDIL) are independent of each
other, in the sense that the same search algorithms could apply to
other ranking functions1.
1as long as the aggregate ranking functions are monotone withre-

The DIL algorithm in [10] keeps an inverted list sorted by Dewey
id for each keyword. DIL (conceptually) sort merges thek inverted
lists of thek query keywords and reads each nodev in the sorted
merged list in order. Intuitively it is easy to verify the correctness of
the DIL algorithm since it reads all nodes in thek inverted lists in
document order and has enough information to determine whether
a lowest common ancestor ofk nodes from thek inverted list is an
ELCA node or not. Notice that the DIL algorithm has to scan to
the end of all inverted lists. The complexity of the DIL algorithm
is O(kd|S|) where|S| is the size of the largest inverted list among
S1, . . . , Sk andd is the depth of the tree.

The RDIL algorithm in [10] maintains two separate data struc-
tures: inverted lists sorted by the individual nodes’ ranking score
in descending order and B+ trees built on inverted lists sorted by
Dewey id in ascending order. The underlying assumption of RDIL
is that higher ranked results (ELCA nodes) are likely to come from
nodes in the front of inverted lists sorted by ranking score in de-
scending order and query processing may terminate without scan-
ning to the end of all of the inverted lists. RDIL works as follows:

1. it reads a nodev from thek inverted lists sorted by rank, in
round-robin fashion2.

2. then it uses the B+trees built on inverted lists sorted by Dewey
id to find the lowest common ancestorl that containsv and
all other keywords. The key observation is that given a node
v, an inverted listS sorted by document order and the B+
treeBT built on S, it takes only a single range scan ([8])
in BT to find the nodev′ in S whose id is the least that is
greater than the id ofv such that eitherv′ or its immediate
predecessor inS shares the longest common prefix withv

which is the Dewey id ofl.

3. however the nodel produced in the second step may not
be anELCA node. RDIL first determines whether each
child of l contains all keywords or not (O(kdp log |S|) where
p is the maximum number of children of any node in the
tree). Then for each keywordwi, RDIL checks that key-
word witness nodes ofl are not under any of its children that
contain all keyword instances. The complexity of RDIL is
O(k2d|S|p log |S| + k2d|S|2).

Given a nodev in an inverted list, as can be seen from the above
explanation, the RDIL algorithm does not completely scan other
inverted lists in order to find an LCA node that containsv and all
other keywords. However, in order to guarantee correctness(not
losing any answer nodes and not returning non-answer nodes), scan
is repeatedly performed and that is why the complexity of theRDIL
is high in the worst case. Furthermore, it is not guaranteed that
individual nodes with higher ranking scores always lead to answer
nodes with higher overall ranking score because the combination
ranking function takes into account the distance between witness
nodes and answer nodes. Moreover, given a keyword query, there
is no practical way to determine a priori whether the DIL or the
RDIL algorithm will perform better. The experiments in [10]have
demonstrated that the performance of RDIL can be significantly
worse than that of DIL for returning the topm query answers. [10]
proposes a hybrid algorithm which starts using RDIL and switches
to DIL when it finds out that RDIL has spent too much time on
answering the query.

XKSearch ([20]) defines the answers to a keyword queryQ of
”w1, . . . , wk” to be slca(S1, . . . , Sk) whereSi is the inverted list

spect to individual keyword ranks (See Section 2.3 in [10] for more
details).
2e.g., it reads a node from each inverted list in turn.

of the keywordwi. The complexity of the Indexed Lookup Ea-
ger algorithm in [20] isO(kd|S1| log |S|) and hence can be or-
ders of magnitude better than the Stack based algorithm adopted
from [10] or [14] when a query contains keywords of orders of
magnitude of different frequencies. [20] also extends the algorithm
computingslca(S1, . . . , Sk) to compute allLCAs of k sets (i.e.,
lca(S1, . . . , Sk)). The intuition is that we can first compute all
SLCA nodes ofS1, . . . , Sk. Then we visit every nodeu in the
path from everySLCA node to the root and determine whetheru is
aLCA node or not. The complexity of the algorithm in [20] based
on the above intuition to compute allLCAs isO(kd2|S1| log |S|).
We may attempt to computeelca(S1, . . . , Sk) similarly. That is,
in order to computeelca(S1, . . . , Sk), we could do the follow-
ing: (1) first computeslca(S1, . . . , Sk) using the Indexed Lookup
Eager algorithm in [20] whose complexity isO(kd|S1| log |S|).
(2) then for eachSLCA nodev computed in the first step, we
walk up fromv to the root and determine whether each ancestor
nodel of v is anELCA node. However the difficulty is then that
we have to perform the same expensive operations we described
in the third step of the RDIL algorithm in [10] a few paragraphs
before. Therefore the complexity of such an algorithm wouldbe
O(k2d|S|p log |S|+ k2d|S|2) wherep is the maximum number of
children of any node in the tree.

Schema-Free XQuery ([14]) uses the idea ofMeaningful LCA
(MLCA), similar to SLCA, and proposes a stack based sort merge
algorithm which scans to the end of all inverted lists. The complex-
ity of the algorithm in [14] is the same as that of DIL (O(kd|S|)).
[14] shows that keyword search functionality can be easily inte-
grated into the structured query language XQuery as built-in func-
tions, enabling users to query XML documents based on partial
knowledge they may have over underlying data with differentand
potentially evolving structures. The recall and precisionexperi-
ments in [14] shows that it is possible to express a wide variety of
queries in a schema-free manner and have them return correctre-
sults over a broad diversity of schemas. The demonstrated integra-
tion of MLCA based keyword search functionality into XQuery
can also apply to theELCA query semantics.

In this paper we will only focus on the algorithmic aspects ofthe
problem of efficiently finding answers to keyword queries in XML
documents, and we will not attempt a comparison of the quality of
different query semantics.

Intuitively answering a keyword query according to theELCA

query semantics is more computationally challenging than accord-
ing to theSLCA query semantics. In the latter the moment we
know a nodel has a childc which contains all keywords, we can
immediately determine that the nodel is not aSLCA node. How-
ever we cannot determine thatl is not anELCA node becausel
may contain keyword instances that are not underc and are not un-
der any node that contains all keywords. Notice that given the same
query, the size of the answers of theSLCA semantics cannot be
more than that of theELCA semantics becauseslca(S1, . . . , Sk) ⊆
elca(S1, . . . , Sk).

In this paper, we propose an efficient algorithm, Indexed Stack
algorithm (IS), which takes advantage of the benefits of bothstack
based algorithms and indexed lookup based algorithms. The com-
plexity isO(kd|S1| log |S|).

4. INDEXED STACK ALGORITHM (IS)
This section presents the Indexed Stack (IS) algorithm thatcom-

puteselca(S1, . . . , Sk). We chooseS1 to be the smallest among
S1, . . . , Sk sinceelca(S1, . . . , Sk) = elca(Sj1 , . . . , Sjk

), where
j1, .., jk is any permutation of1, 2, . . . , k, and there is a benefit
in using the smallest list asS1 as we will see in the complexity

analysis of the algorithm. We assume|S| denotes the size of the
largest inverted list. The Indexed Stack algorithm, leveraging key
tree properties described in this section, starts from the smallest list
S1, visits each node inS1, but does not need to access every node in
other lists. It achieves high efficiency, especially when the smallest
list is significantly smaller than the largest list.

The algorithm’s efficiency is based on first discovering the nodes
of a setelca_can(S1; S2, . . . , Sk) (short forELCA Candidates)
defined in Section 4.1, which is a superset ofelca(S1, . . . , Sk) but
can be computed efficiently inO(kd|S1| log |S|), as shown in Sec-
tion 4.2. Section 4.3 describes an efficient functionisELCA()
that determines whether a given node ofelca_can(S1; S2, . . . , Sk)
is a member ofelca(S1, . . . , Sk). Section 4.4 presents a stack-
based algorithm that puts together the computation ofelcan_can

andisELCA, avoiding redundant computations. Section 4.4 also
presents the complexity analysis of the algorithm.

4.1 The ELCA candidate setelca_can()

We define next the setelca_can(S1; S2, . . . , Sk), whose mem-
bers are calledELCA_CAN nodes (ofS1 amongS2, . . ., Sk).

elca_can(S1; S2, . . . , Sk) =
⋃

v1∈S1

slca({v1}, S2, . . . , Sk)

Note that a nodev is anELCA_CAN node iff there existn1 ∈
S1, . . ., nk ∈ Sk such thatv = lca(n1, . . . , nk) and there must not
existn′

2 ∈ S2, . . . , n
′

k ∈ Sk such thatv′ = lca(n1, n
′

2, . . . , n
′

k)
andv ≺a v′. Everyni (1 ≤ i ≤ k) is called anELCA_CAN

witness node of v in Si.
For example, in Figure 1elca_can(S1; S2)=[0, 0.2, 0.2.2, 0.3,

0.3.2, 0.3.3, 0.3.4, 0.4.2]. Next, consider theELCA_CAN node
0.2. The nodes0.2.1.1 and0.2.2.2.1 are its witness nodes inS1

andS2 respectively. However the node0.2.2.1.1 is not a witness
node for0.2 in S1. This is because although the node0.2 is the
LCA of the node0.2.2.1.1 from S1 and the node0.2.3.1 from
S2, there exists the node0.2.2.2.1 from S2 such that theLCA of
0.2.2.1.1 and0.2.2.2.1 (i.e.,0.2.2) is a descendant of0.2.

Note thatelca_can(S1; S2, . . . , Sk) may contain nodes that are
ancestors of other nodes ofelca_can(S1; S2, . . . , Sk). The fol-
lowing inclusion relationship betweenelca andelca_can applies.

PROPERTY 1.

∀i ∈ [1, . . . , k],

elca(S1, . . . , Sk) ⊆ elca_can(Si; S1, . . . , Si−1, Si+1, . . . , Sk).

PROOF. If v ∈ elca(S1, . . . , Sk), there must existELCA wit-
ness nodesn1 ∈ S1, . . . , nk ∈ Sk such thatv = lca(n1, . . . , nk)
and there must not existn′

1 ∈ S1, . . . , n
′

i−1 ∈ Si−1, n
′

i+1 ∈
Si+1, . . . , n

′

k ∈ Sk such that
v′ = lca(n′

1, . . . , n
′

i−1, ni, n
′

i+1, . . . , n
′

k) andv ≺a v′ (Other-
wiseni cannot be anELCA witness node ofv). Thus
v ∈ elca_can(Si; S1, . . . , Si−1, Si+1, . . . , Sk) by definition.

Of particular importance is the instantiation of the above prop-
erty fori = 1 (i.e.,elca(S1, . . . , Sk) ⊆ elca_can(S1; S2, . . . , Sk))
sinceelca_can(S1; S2, . . . , Sk) has the most efficient computa-
tion (recallS1 is the shortest inverted list).

In Figure 1,elca(S1, S2) andelca_can(S1; S2) happen to be
the same. However if we remove the node0.3.1.1 from the tree
of Figure 1, thenelca_can(S1; S2) stays the same but the node
0.3 would not be inelca(S1, S2) anymore. Therefore, it would be
elca(S1, S2) ⊂ elca_can(S1; S2).

For presentation brevity, we defineelca_can(v) for v ∈ S1 to
be the nodel where{l}=elca_can({v}; S2, . . . , Sk)=

slca({v}, S2, . . . , Sk). The nodeelca_can(v) is called theexclu-
sive lowest common ancestor candidate or ELCA_CAN of v (in
sets ofS2, . . . , Sk). Note that each node inlca({v}, S2, . . . , Sk)
is either an ancestor node ofv or v itself andelca_can(v) is the
lowest among all nodes inlca({v}, S2, . . . , Sk). For instance, con-
siderS1 andS2 in Figure 1.elca_can(0.1.1) = 0, elca_can(0.2.1.1) =
0.2, elca_can(0.2.2.1.1) = 0.2.2, elca_can(0.3.2.1.1) = 0.3.2,
elca_can(0.3.3.1.1) = 0.3.3, elca_can(0.3.4.1.1) = 0.3.4,
elca_can(0.3.5.1) = 0.3 andelca_can(0.4.2.1.1) = 0.4.2.

4.2 Computing elca_can(v)
In this section we describe how prior work ([20]) can be extended

to efficiently computeelca_can(v) in the interest of completeness
and clarity.

Let us assume that we want to computeslca({v}, S2) where
S2 = {u1, . . . , un}. The key observation in [20] is that the wit-
ness node inS2 for slca(v1, S2) must be one of the two closest
nodes (in document order) tov among all nodes in the setS2.
We can efficiently find the only two nodes of{u1, . . . , un} that
are candidates for witnessing theSLCA, by using two impor-
tant functions: the functionrm(v, S) computes theright match
of v in a setS, that is the node ofS that has the smallest id
that is greater than or equal topre(v); lm(v, S) computes theleft
match of v in a setS, that is the node ofS that has the biggest
id that is less than or equal topre(v). The functionrm(v, S)
(lm(v, S)) returns null when there is no right (left) match node.
For example, consider againS1 andS2 in Figure 1 and the node
v = 0.3.2.1.1 from S1. The right match forv in S2 is the node
0.3.2.2.1, and the left match forv in S2 is the node0.3.1.1. Con-
sequentlyslca({v}, S2) is the lower node fromlca(v, rm(v, S2))
andlca(v, lm(v, S2)). Consider againS1, S2, andv = 0.3.2.1.1
from S1 in Figure 1,elca_can(0.3.2.1.1)=0.3.2. This is because
lca(v, rm(v, S2))=lca(v, 0.3.2.2.1)=0.3.2,
lca(v, lm(v, S2))=lca(v, 0.3.1.1)=0.3, and0.3 ≺a 0.3.2.

The cost of computingrm(v, S) (lm(v, S)) isO(d log |S|) since
it takesO(log |S|) steps (each step being a Dewey number compar-
ison) to find the right (left) match node and the cost of comparing
the Dewey ids of two nodes isO(d).

The key point in [20] applies to the computation of
slca({v}, S2, . . . , Sk). The nodeelca_can(v) (i.e.,
slca({v}; S2, . . . , Sk)) can be efficiently computed as follows: First
we compute the (unique)SLCA v2 of v and of the nodes ofS2. It
continues by iteratively computing the (unique)SLCA vi of vi−1

andSi, until i becomesk. The nodevk is the result.
Notice though that the nodes ofelca_can(S1; S2, . . . , Sk) may

be obtained out of order by applying the above computation on
each node inS1. For example in Figure 1,elca_can(0.3.2.1.1) =
0.3.2 andelca_can(0.3.5.1) = 0.3. Thus theELCA_CAN node
0.3 is computed after theELCA_CAN node0.3.2. The time
complexity of computingelca_can(v) is O(kd log |S|).

4.3 Determine whether anELCA_CAN node is
an ELCA node

This section presents the functionisELCA which is used to
determine whether anELCA_CAN nodev is anELCA node or
not. Letchild_elcacan(v) be the set of children ofv that contain
all keyword instances. Equivalentlychild_elcacan(v) is the set of
child nodesu of v such that eitheru or one ofu’s descendant nodes
is anELCA_CAN node, i.e.,

child_elcacan(v) = {u|u ∈ child(v) ∧

∃x (u �a x ∧ x ∈ elca_can(S1; S2, . . . , Sk))}

wherechild(v) is the set of child nodes ofv. We useELCA_CAN

v

u1 uc

… …

Fi

ui ui+1

p.c p.(c+1)

y

p

……

Figure 2: v and its ELCA_CAN children

in the above definition ofchild_elcacan(v) because we can ef-
ficiently computeelca_can(S1; S2, . . . , Sk) as discussed in Sec-
tion 4.2. ForS1 andS2 of the running example in Figure 1,
child_elcacan(0)=[0.2, 0.3, 0.4] andchild_elcacan(0.2)=[0.2.2].

Assumechild_elcacan(v) is {u1, . . . , uc} (See Figure 2). By
definition, anELCA node v must haveELCA witness nodes
n1, . . . , nk such thatn1 ∈ S1, . . . , nk ∈ Sk and everyni is not in
the subtrees rooted at the nodes fromchild_elcacan(v).

To determine whetherv is anELCA node, we probe everySi

to see if there is a nodexi ∈ Si such thatxi is either in the forest
underv to the left of the pathvu1, or in the forest underv to the
right of the pathvuc, or in any forestFi that is underv and between
the pathsvui and vui+1, i = 1, . . . , c − 1. The last case can
be checked efficiently by finding the right matchrm(y, Si) of the
nodey in Si wherey is the immediate right sibling ofui among
the children ofv. Assumepre(v) = p, pre(ui) = p.c wherec is a
single number, thenpre(y) = p.(c + 1), as shown in Figure 2. Let
the right match ofy in Si bex (i.e.,x = rm(y, Si)). Thenx is a
witness node in the forestFi if and only if pre(x) < pre(ui+1).

Given the listch which is the list of nodes inchild_elcacan(v)
sorted by id, the functionisELCA(v, ch) (Figure 3) returns true
if v is anELCA node by applying the operations described in the
previous paragraph. As an example, consider the query “XML
David” and the inverted listsS1 andS2 in Figure 1.
child_elcacan(0)= [0.2, 0.3, 0.4]. We will see how
isELCA(0, [0.2, 0.3, 0.4]) works and returns true. In this exam-
ple, the number of keywords is two (k = 2) and|ch|=3. First the
function isELCA searches and finds the existence of anELCA

witness node (i.e., the node0.1.1) for 0.2 in S1 in the subtree rooted
under0 to the left of the path from0 to 0.2 (0.2 is the first child
ELCA_CAN node of0). Then the function searches the exis-
tences of anELCA witness node inS2 for 0 in the forest to the
left of the path from0 to 0.2; in the forest between the path from
0 to 0.2 and the path from0 to 0.3; in the forest between the path
from 0 to 0.3 and the path from0 to 0.4; in the forest to the right
of the path from0 to 0.4. All of the above searches fail except that
the last search successfully finds a witness node (0.5.1) for 0.2 in
S2. Therefore,isELCA(0, [0.2, 0.3, 0.4]) returns true.

The time complexity ofisELCA(v, ch) is
O(kd log |S||child_elcacan(v)|) (line 1, 3 and 4).

4.4 Indexed Stack Algorithm
In Section 4.1 we stated thatelca_can(S1; S2, . . . , Sk) is a su-

perset ofelca(S1, . . . , Sk). Section 4.2 described how to effi-
ciently computeelca_can(S1; S2, . . . , Sk) and Section 4.3 described
how to efficiently check whether anELCA_CAN node in
elca_can(S1; S2, . . . , Sk) is anELCA node, when the list of child
nodes ofv that contain all keyword instances are given. Therefore,
the only missing part of efficient computation ofelca(S1, . . . , Sk)
is how to computechild_elcacan(v) for eachELCA_CAN node
v. Since we can easily computechild_elcacan(v) if we know

isELCA(v, ch){
(* return true ifv is anELCA node. ch=child_elcacan(v) *)

1 for 1 ≤ i ≤ k {
2 x=v
3 for 1 ≤ j ≤ |ch| {
4 x = rm(x, Si) (* x is a witness node forv in Si*)
5 if(pre(x) < pre(ch[j])) break;
6 else {
// The functionsibling(u) returns the immediate right
//sibling node ofu among the list of child nodes ofv.
7 x=sibling(ch[j])
8 }
9 }
10 if (j==|ch| + 1) {
11 x = rm(sibling(ch[|ch|]), Si)
12 if(v ⊀a x) return false;
13 }
14 return true;

Figure 3: Determine whether an ELCA_CAN node is an
ELCA node

session
0.2

session
0.3

paper
0.2.2

Conference
0

paper
0.3.2

paper
0.4.2

paper
0.3.3

paper
0.3.4

Figure 4: The tree structure of all ELCA_CAN nodes in Fig-
ure 1

everyELCA_CAN nodexi underv 3, we can just compute all
ELCA_CAN nodes and then computechild_elcacan(v) for each
ELCA_CAN nodev.

A straightforward approach would compute allELCA_CAN

nodes and store them in a tree which keeps only the original ancestor-
descendant relationships of allELCA_CAN nodes in the input
document. As an example, such a tree describing allELCA_CAN

nodes in Figure 1 is shown in Figure 4. Note that though0.4.2 is a
descendant of0 in Figure 1, it is a child of0 in Figure 4.

A straightforward algorithm to computeelca(S1, . . . , Sk) works
as follows whereTS is a tree structure initialized to empty:

1. For each nodev in S1, computel = elca_can(v) based on
Section 4.2 and doTS.insert(l) which insertsl to the appro-
priate place inTS based onl’s ancestor-descendant relation-
ship with nodes already inserted inTS. The tree in Figure 4
shows the result from this step for computingelca(S1, S2)
in Figure 1.

2. For each nodel in TS check whetherl is anELCA_CAN

node or not by callingisELCA(l, child_elcacan(l)) where
child_elcacan(l) can be easily computed from the list of
child nodes ofl in TS.

However the above approach has the following disadvantages:

• the complexity of the approach isO(d|S1|
2+|S1|kd log |S|)

where theO(d|S1|
2) component comes from the cost of cre-

ating and maintaining the tree structure;

• and all (O(|S1|)) ELCA_CAN nodes have to be computed
first and kept in memory before we can start to recognize any
ELCA nodes.

3child_elcacan(v) is the set of child nodesui of v on the paths
from v to xi, which can be efficiently computed with Dewey num-
bers.

elca_canv2=elca_canv1(a)

(b)

potential_elcacan

(c) (d) (e)

top_elcacan

elca_canv2

elca_canv1 elca_canv2

elca_canv1
elca_canv2

elca_canv1

elca_canv1 elca_canv2

Figure 5: Relationships between any two nodesl and s

Instead, a “one pass” stack-based algorithm, whose complexity
is O(|S1|kd log |S|), is presented in Figure 6. The Indexed Stack
algorithm does not have to keep allELCA_CAN nodes in mem-
ory; it uses a stack whose depth is bounded by the depth of the tree
based on some key tree properties. At any time during the com-
putation any node in the stack is a child or descendant node ofthe
node below it (if present) in the stack. Therefore the nodes from
the top to the bottom of the stack at any time are from a single path
in the input tree.

We will first present the Indexed Stack algorithm, illustrated with
a running example, then discuss at the end of this section optimiza-
tion techniques in the implementation of the algorithm.

4.4.1 Algorithm Description
We go through every nodev1 in S1 in order, computeelca_canv1

=
elca_can(v1) and create a stack entrystackEntry consisting of
elca_canv1

. If the stack is empty, we simply pushstackEntry

to the stack to determine later whetherelca_canv1
is anELCA

node or not. If the stack is not empty, what the algorithm doesde-
pends on the relationship betweenstackEntry and the top entry
in the stack. The algorithm either discardsstackEntry or pushes
stackEntry to the stack (with or without first popping out some
stack entries). The algorithm does not need to look at any other non
top entry in the stack at any time and only determines whetheran
ELCA_CAN node is anELCA node at the time when a stack
entry is popped out.

Each stack entrystackEntry created for a nodev1 in S1 has
the following three components.

• stackEntry.elca_can is elca_can(v1);

• stackEntry.CH records the list of child or descendant
ELCA_CAN nodes ofstackEntry.elca_can seen so far,
which will be used byisELCA() to determine whether
stackEntry.elca_can is anELCA node at the time when
this entry is popped out from the stack;

• andstackEntry.SIB (short for siblings) is the list of
ELCA_CAN nodes beforestackEntry.elca_can (in doc-
ument order) such that theLCA node of nodes from the list
andstackEntry.elca_can potentially can be anELCA_CAN

node that has not been seen so far.

Let us illustrate the need for and role ofstackEntry.SIB with
the running example “XML David”. Before we compute
elca_can(0.3.5.1)=0.3, we have already computed0.3.2, 0.3.3,
0.3.4 asELCA_CAN nodes which are the childELCA_CAN

nodes of0.3. We have to store these threeELCA_CAN nodes in
order to determine whether0.3 is anELCA node or not before we
see0.3 in the processing, which is achieved by first storing0.3.2
in theSIB component of the stack entry associated with0.3.3 and
then storing0.3.2 and0.3.3 in the SIB component of the stack
entry associated with0.3.4 (after the stack entry associated with
0.3.3 is popped out) during the processing before we see0.3. Note
that if the node0.3.1.1 was not in the tree in Figure 1, we would
still see0.3 in the processing as anELCA_CAN node and still
see0.3 after0.3.2, 0.3.3, and0.3.4, but then0.3 would not be an

ELCA node, which could be determined only if we have kept the
information that0.3.2, 0.3.3 and0.3.4 areELCA_CAN nodes
until we see0.3 and know that0.3 would not have any child or de-
scendantELCA_CAN nodes in the processing later after we see
0.3. It is possible that we would not see0.3 at all in the processing
(i.e., if the node0.3.5.1 was not in the tree,0.3 would be not be
anELCA_CAN node) in which case we still need to keep0.3.2,
0.3.3 and0.3.4 until the point we are sure that those nodes cannot
be child or descendant of any otherELCA_CAN nodes.

Figure 6, which presents the Indexed Stack pseudo-code, and
Figure 7, which has snapshots of the stack during operation of the
algorithm, also include an entrystackEntry.witNodes, which
we temporarily ignore, as it is used only in the optimizationversion
of the algorithm, described at the end of this section.

For each nodev1 in S1 (line 2), the Indexed Stack algorithm
computeselca_canv1

= elca_can(v1) as discussed in Section 4.2
(line 4). We create a stack entrystackEntry consisting ofelca_canv1

(line 6). If the stack is empty (line 7), we simply pushstackEntry

to the Stack to determine later whetherelca_canv1
is anELCA

node or not. If the stack is not empty, let the node at the top
of the stack beelca_canv2

(line 9-10). Figure 5 shows the only
five relationships the twoELCA_CAN nodeselca_canv2

and
elca_canv1

(in fact any two nodes) can have.

• In the first case whereelca_canv1
andelca_canv2

are the
same (Figure 5(a), line 11),elca_canv1

is discarded.

• In the second case whereelca_canv2
is an ancestor ofelca_canv1

(Figure 5(b)), we pushstackEntry to the stack to determine
later whetherelca_canv1

is anELCA node or not (line 12).

• In the third case (Figure 5(c)) whereelca_canv2
andelca_canv1

have no ancestor-descendant relationship andelca_canv1
ap-

pears afterelca_canv2
in document order (line 13), we pop

the top stack entry repeatedly (line 14) until either the stack
is empty or theELCA_CAN node of the top entry in the
Stack (namedtop_elcacan in Figure 5(c), line 15) is an an-
cestor ofelca_canv1

by calling the functionpopStack().
When a stack entry is popped out, theELCA_CAN node
in the stack entry is checked whether it is anELCA node
or not (by isELCA()). Note that there will not be any
ELCA_CAN node in later processing that can be a child
or descendant node of any popped outELCA_CAN node.
That is why we can pop out those entries and check forELCA

nodes. LetpopEntry be the last popped out entry and
potential_elcacan be the LCA ofpopEntry.elca_can and
elca_canv1

(Figure 5(c), line 16). If the stack is not empty
and the top stack entry’s nodetop_elcacan is an ancestor
of potential_elcacan (Figure 5(c), line 17), then we set the
SIB list associated withelca_canv1

to be the concatenation
of theSIB list in popEntry andpopEntry.elca_can (line
18). We then pushstackEntry to the stack (line 19). The
reason that we need to carry on the nodes stored in theSIB

component ofpopEntry to stackEntry was explained a
few paragraphs before in the example illustrating the need
for and role of theSIB component in a stack entry. Dur-
ing the processing of the example, at one pointelca_canv2

is 0.3.2, elca_canv1
is 0.3.3, potential_elcacan is 0.3,

top_elcacan is0, and after the stack entry for0.3.2 is popped
out,0.3.2 is stored in theSIB component of the stack entry
for 0.3.3. Notice thatpotential_elcacan could be a node
that we have not seen so far in the processing (i.e., it has not
been computed as anELCA_CAN node) and it could be an
ELCA_CAN and anELCA node. Although we have guessed

its existence here, it may or may not appear later in the pro-
cessing. That is why we need to carryelca_canv2

and nodes
in the SIB component ofelca_canv2

to theSIB compo-
nent ofelca_canv1

for potential_elcacan.

• In the fourth case whereelca_canv1
≺a elca_canv2

(line
21, Figure 5(d)), it is certain thatelca_canv2

has no more de-
scendantELCA_CAN nodes. Thus we pop from the stack
repeatedly until either the stack is empty or theELCA_CAN

node in the top entry is an ancestor ofelca_canv1
(line 22).

Again, theELCA_CAN node in each popped out entry is
checked whether it is anELCA node or not. Let the last
popped out entry bepopEntry (line 22). We copy theSIB

list in popEntry andpopEntry.elca_can to theCH field
of elca_canv1

(line 23). ThenstackEntry is pushed to the
top of the stack (line 24). Notice that nodes stored in the
SIB field by the processing in the third case are used in the
fourth case to set the CH field.

• The fifth case, whereelca_canv1
andelca_canv2

have no
ancestor-descendant relationship andelca_canv1

appears be-
foreelca_canv2

, is not possible in the computation whenS1

is sorted in document order.

Now we discuss the details of the functionpopStack(elca_canv1
)

(called in the processing of the third and fourth cases in Figure 5). It
repeatedly pops out the top entry (line 31) until theELCA_CAN

node in the top entry is an ancestor ofelca_canv1
or the stack

becomes empty. Each popped out entry is checked on whether it
contains anELCA node or not by calling the functionisELCA

presented in Section 4.3 (line 33). Notice that the function
toChildELCA_CAN(v, L) inputs a nodev and a listL each
node of which is a child or descendantELCA_CAN node ofv
and returnschild_elcacan(v). Each popped out node is added to
the top entry’sCH field (line 36) because at any time anyELCA_CAN

node in a stack entry is a child or descendant node of theELCA_CAN

node in the stack entry below it (if present).
The time complexity of the Indexed Stack algorithm is

O(|S1|kd log |S|) wherek is the number of keywords in the query,
d is the depth of the tree and|S1| (|S|) is the occurrence of the least
(most) frequent keyword in the query. The time complexity comes
from two primitive operations:elca_can() andisELCA(). The
total cost of callingelca_can(v) is O(kd|S1| log |S|) as discussed
in Section 4.2. The cost of calling the functionisELCA(v,CH)
once isO(|CH |.kd log |S|) or |child_elcacan(v)|kd log |S| (see
Figure 2). The accumulated total cost of callingisELCA is
O(

∑
v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|kd log |S|). LetZ =∑

v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|. Note that
|elca_can(S1; S2, . . . , Sk)| ≤ |S1| and |child_elcacan(v)| ≤
|S1|. Each node inelca_can(S1; S2, . . . , Sk) increases the value
of Z by at most one (see Figure 4). Thus
O(

∑
v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|) = O(|S1|). There-

fore the time complexity of the Indexed Stack algorithm is
O(|S1|kd log |S|).

The number of disk access needed by the Indexed Stack algo-
rithm is O(k|S1|) because for each node inS1 the Indexed Stack
algorithm just needs to find the left and match nodes in each one
of the otherk − 1 keyword lists. Note that the number of disk ac-
cesses of the Indexed Stack algorithm cannot be more than thetotal
number of blocks of all keyword lists on disk because the algorithm
accesses all keyword lists strictly in order and there is no repeated
scan on any keyword list. Since B+ tree implementations usually
buffer non-leaf nodes in memory, we assume the number of disk
accesses of a random search in a keyword search isO(1) as in [10,

1 Stack = empty
2 for each nodev1 in S1 {
3 (* elca_canv1

:theELCA_CAN of v1; *)
4 elca_canv1

= elca_can(v1)
5 (* create a Stack entry stackEntry forelca_canv1

*)
6 stackEntry = [elca_can = elca_canv1

; SIB = []; CH = []]
7 if (Stack.isEmpty()) Stack.push(stackEntry)
8 else {
9 topEntry = Stack.top()
10 elca_canv2

= topEntry.elca_can

11 if(pre(elca_canv2
) == pre(elca_canv1

)) {} (* Figure 5(a) *)
12 else if (elca_canv2

≺a elca_canv1
)

Stack.push(stackEntry)(* Figure 5(b) *)
13 else if (pre(elca_canv2

) < pre(elca_canv1
)){ (* Figure 5(c) *)

14 popEntry = popStack(elca_canv1
)

15 top_elcacan = Stack.top().elca_can

16 potential_elcacan = lca(elca_canv1
, popEntry.elca_can)

17 if(!Stack.isEmpty() &&top_elcacan ≺a potential_elcacan)
18 stackEntry.SIB= [popEntry.SIB,popEntry.elca_can]
19 Stack.push(stackEntry)
20 }
21 else if (elca_canv1

≺a elca_canv2
) { (* Figure 5(d) *)

22 popEntry = popStack(elca_canv1
)

23 stackEntry.CH=[popEntry.SIB, popEntry.elca_can]
24 Stack. push(stackEntry)
25 }
26 }
27 } (* end of for loop *)
28 popStack(0) (* clean up the stack *)

29 popStack(elca_canv1
) : StackEntry

(* pop out all top entries of the stack whose nodes are not ancestors ofelca_canv1
*)

30 popEntry=null;
31 while(Stack.top() !=NULL

&& Stack.top().elca_can ⊀ elca_canv1
) {

32 popEntry=Stack.pop()
33 if(isELCA(popEntry.elca_can,
34 toChildELCA_CAN(popEntry.elca_can, popEntry.CH))
35 outputpopEntry.elca_can as anELCA
36 Stack.top().CH += popEntry.elca_can
37 }
38 return popEntry;

Figure 6: The Indexed Stack Algorithm

number of disk accesses main memory complexity
Indexed Stack O(k|S1|) O(kd|S1| log |S|)
DIL O(B) O(kd|S|)

RDIL O(k2d|S|p log |S| + k2d|S|2) O(k2d|S|p log |S| + k2d|S|2)

Table 1: Main memory and Disk Complexity Analysis of In-
dexed Stack, DIL and RDIL

20]. The complexity analysis of the Indexed Stack, the two algo-
rithms in [10], DIL and RDIL are summarized in Table 1 for both
main memory and disk accesses for finding all query answers and
only topm query answers where|S1|(|S|) is the occurrence of the
least (most) frequent keyword in the query,B is the total number
of blocks of all inverted lists on disk,d is the maximum depth of
the tree andp is the maximum number of children of any node in
the tree.

4.4.2 Running Example
We illustrate the algorithm using the query “XML David” on the

data of Figure 1. Figure 7 shows the states of the stack after the
processing of each node inS1 for computingelca(S1; S2). The
caption under each figure describes which nodev1 in S1 has just
been processed, the id of the nodeelca_canv1

= elca_can(v1),
which of the four cases in Figure 5 has happened, and the pop/push
actions that happened.

Figures 7(a), 7(b), and 7(c) show the processing of the first three
S1 nodes,0.1.1, 0.2.1.1 and0.2.2.1.1. The case of Figure 5(b) is

applied.
Figure 7(d) shows the processing of the node0.3.2.1.1. The case

of Figure 5(c) is applied. The two nodes0.2.2 and0.2 are popped
out from the stack and determined to beELCA nodes; theCH

field associated with the node0 is updated with the addition of the
node0.2; andelca_can(0.3.2.1.1)=0.3.2 is pushed onto the stack.

Figure 7(e) shows the result of processing0.3.3.1.1 from S1.
Note thatelca_canv1

= 0.3.3. The processing for the case of Fig-
ure 5(c) is applied. The node0.3.2 is popped out and reported as
anELCA. Also 0.3.2 is stored in theSIB field of the entry as-
sociated with0.3.3. Figure 7(f) shows the processing of the node
0.3.4.1.1 from S1 which is similar to the processing shown in Fig-
ure 7(e). The node0.3.3 is popped out and reported as anELCA,
and added to the SIB field of the stack entry associated with0.3.4.
Note that theELCA_CAN node0.3 has not been seen yet.

The processing for the node0.3 shown in Figure 7(g) is inter-
esting in that it picks up the nodes previously stored inSIB and
uses it to update theCH field of the stack entry associated with
0.3. Without this action, we cannot determine whether the node
0.3 is anELCA or not because some of its childELCA_CAN

nodes (0.3.2, 0.3.3 and 0.3.4) have been seen and they have to
been stored. The node0.3.4 is popped out and determined to be an
ELCA node.

Figure 7(h) shows the processing of the last node0.4.2.1.1 from
S1 which is similar to the processing shown in Figure 7(d). The
node0.3 is popped out and determined to be anELCA node. The
node0.4.2 is pushed onto the stack. At this stage every node in
S1 has been processed. Figure 7(i) shows that after cleaning upthe
stack, the stack becomes empty and nodes0.4.2 and0 are deter-
mined to beELCA nodes.

4.4.3 Algorithm Optimization
To emphasize the key ideas behind the Indexed Stack algorithm

and for presentation simplicity, we did not present some optimiza-
tion techniques in the implementation of the algorithm shown in
Figure 6.

Incremental isELCA(). Notice that we can do without storing
the child or descendantELCA_CAN nodes of anELCA_CAN

node in the stack. That is, we can remove theCH field in the struc-
ture of a stack entry. The above can be achieved by the following
two changes: i) extending the computation ofelca_can(v) along
with an array ofELCA_CAN witness nodes ofelca_can(v); ii)
changing the functionisELCA’s signature accordingly to
isELCA(l, WN) wherel is anELCA_CAN node andWN is
the list of l’s ELCA_CAN witness nodes. The idea is that some
of the ELCA_CAN witness nodes ofelca_can(v) kept along
the way of computingelca_can(v) may beELCA witness node
for elca_can(v). If an ELCA_CAN witness nodex is also an
ELCA witness node forelca_can(v) in a setSi, then there is
no need inisELCA() to search forELCA witness nodes for
elca_can(v) in Si. For example in the stack state shown in Fig-
ure 7(h), the childELCA_CAN node0.2 of the node0 is stored in
theCH field associated with the node0 at the bottom of the stack.
Instead of carrying the childELCA_CAN 0.2 of the node0 from
the state shown in Figure 7(d) to the state shown in Figure 7(h),
we can at the step shown in Figure 7(d) update the witness node
of 0 from [0.1.1, 0.2.2.2.1] to [0.1.1, 0.3.1.1] after 0.2.2 and0.2
are popped out and before0.3 is pushed onto the stack, and update
at the step shown in Figure 7(e) the witness node array of0 from
[0.1.1, 0.3.1.1] to [0.1.1, 0.4.1.1]. In the last step (Figure 7(i))
after popping out0.4.2, we update the witness node array of0 to
[0.1.1, 0.5.1] and determine that0 is anELCA node. Essentially,
we remove the need of storing childELCA_CAN nodes in the

0 [0.1.1, 0.2.2.2.1] [] []
elca_can witness nodes SIB CH

(a) v1 = 0.1.1; elca_canv1
= 0; Fig-

ure 5(b); push0 to stack.

0.2 [0.2.1.1, 0.2.2.2.1] [] []
0 [0.1.1, 0.2.2.2.1] [] []
elca_can witness nodes SIB CH

(b) v1 = 0.2.1.1: elca_canv1
= 0.2;

Figure 5(b); push0.2 to stack.

0.2.2 [0.2.2.1.1, 0.2.2.2.1] [] []
0.2 [0.2.1.1,0.2.2.2.1] [] []
0 [0.1.1,0.2.2.2.1] [] []
elca_can witness nodes SIB CH

(c) v1 = 0.2.2.1.1: elca_canv1
= 0.2.2;

Figure 5(b); push0.2.2 to stack.

0.3.2 [0.3.2.1.1,0.3.2.2.1] [] []
0 [0.1.1, 0.3.1.1] [] [0.2]
elca_can witness nodes SIB CH

(d) v1 = 0.3.2.1.1: elca_canv1
= 0.3.2;

Figure 5(c); pop out0.2.2 and0.2 and deter-
mine them as ELCAs; add0.2 to top entry’s
CH; push0.3.2 to stack.

0.3.3 [0.3.3.1.1, 0.3.3.2.1] [0.3.2] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2]
elca_can witness nodes SIB CH

(e) v1 = 0.3.3.1.1: elca_canv1
= 0.3.3; Fig-

ure 5(c); pop out0.3.2 and determine it as an ELCA;
add0.3.2 to 0.3.3’s SIB; push0.3.3 to stack.

0.3.4 [0.3.4.1.1, 0.3.4.2.1] [0.3.2,0.3.3] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3]
elca_can witness nodes SIB CH

(f) v1 = 0.3.4.1.1; elca_canv1
= 0.3.4; Figure 5(c); pop out

0.3.3 and determine it as an ELCA; add0.3.3 to 0.3.4’s SIB;
push0.3.4 to stack.

0.3 [0.3.1.1, 0.3.4.2.1] [] [0.3.2, 0.3.3, 0.3.4]
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3,0.3.4]
elca_can witness nodes SIB CH

(g) v1 = 0.3.5.1; elca_canv1
= 0.3; Figure 5(d); pop out

0.3.4 and determine it as an ELCA; add0.3.4 entry’s SIB
list and0.3.4 to 0.3’s CH; push0.3 to stack.

0.4.2 [0.4.2.1.1,0.4.2.2.1] [] []
0 [0.1.1, 0.4.1.1] [] [0.2,0.3.2,0.3.3,0.3.4,0.3]
elca_can witness nodes SIB CH

(h) v1 = 0.4.2.1.1; elca_canv1
= 0.4.2; Figure 5(c); pop out

0.3 and determine it as an ELCA; push0.4.2 to stack.

(i) No more “XML” nodes: clean up the stack; pop out0.4.2 and0
and determine them as ELCAs; Stack becomes empty.

Figure 7: States of stack during evaluation of “XML David”

v
1

…

v
2

u
1

u
2

U
n-1

v
3

v
n

l

r

…

Vn-1

U
n-2

Figure 8: Optimizing the history information of an
ELCA_CAN node

stack’s CH fields and carrying them around by reusing the compu-
tation ofelca_can() in the functionisELCA() and by doing some
of the work inisELCA() (searching forELCA witness nodes) as
early as possible.

Reducing |SIB|. Assume at some point in the processing of
the algorithm, the following list ofELCA_CAN nodes are com-
puted in the exact order as they appear—r, v1, v2, . . ., vn, l (See
Figure 8). The algorithm presented in Figure 6 will at some point
push the noder onto the stack; pushv1 onto the stack; pop outv1,
pushv2, and addv1 to theSIB field associated withv2; pop out
v2, pushv3, and addv1 andv2 to theSIB field associated with
v3. When the algorithm pushesvn onto the stack, theSIB field
associated withvn containsv1, . . . , vn−1. We only describe the
basic idea of the optimization to reduce the number of nodes stored
in theSIB field. The idea is that we only need to storev1 in the
SIB field of v2; u1 in theSIB field of v3; . . .; un−2 in theSIB

field of vn.

5. EXPERIMENTAL EVALUATION
System Implementation and SetupWe have implemented in Java
a prototype called XKeywordSearch to evaluate the proposedIn-
dexed Stack algorithm and the two core algorithms in [10].

We have run XKeywordSearch on both real and synthetic data,
respectively, DBLP [5] and XMark [16] data. The experiments
have been done on a766 MHz computer with 512MB of RAM.
We only report the experimental results on the DBLP data in this
paper; the results on XMark are similar.

The DBLP data was first grouped by journal and conference
names, then by years. The size of the XML file of DBLP data
after grouping is120MB. The depth of the DBLP tree is10; the
number of distinct keywords is180, 126; the number of nodes in
the tree is6, 267, 592.

We evaluated the Indexed Stack algorithm, DIL and RDIL dis-
cussed in Section 1 for theELCA query semantics by varying
the number and frequency of keywords both on hot cache and on
cold cache. We report only results on hot cache in this paper.The
relationships among three evaluated algorithms on cold cache are
similar in the sense that if one algorithm wins another algorithm in
the hot cache it also wins in the corresponding cold cache experi-
ment but the differences are smaller because of dominance ofthe
disk access. For example, in the hot cache experiments shownin
Figure 9(a), the response time of the Indexed Stack algorithm for a
query with two keywords of frequencies of 10 and 10000 is below
10 milliseconds; in the cold cache experiments, the response time
of the Indexed Stack algorithm for the same query is close to 100
milliseconds. But the response time of the DIL algorithm does not
increase significantly from hot cache to cold cache experiments.

One hundred queries were randomly selected for each experi-
ment by a script. Note that when the script fails to choose a suf-
ficient number of keywords of a specified frequency, it chooses
keywords with frequencies close to the specified frequency.Each

query was run three times and the average time was reported.
Search PerformanceFirst, we compare the search performances
of the Indexed Stack (IS) algorithm and the DIL algorithm forfind-
ing all query results. There is no point to run the RDIL algorithm to
find all query results because it is designed for returning top m an-
swers and it has higher complexity than the IS algorithm. Forspace
reason, we do not report experiments where the response timeof
both algorithms are less than 100 milliseconds.

In Figure 9(a) each query contains two keywords. The perfor-
mance of the DIL algorithm degrades linearly when the size ofthe
large inverted list increases, while the response time of the IS algo-
rithm is almost constant, linear in the size of the smaller keyword
list, and its performance is orders of magnitude better thanDIL.

In the experiments shown in Figure 9(b), we vary the number of
keywords from two to five. Each query has a keyword of small fre-
quency shown on the top of Figure 9(b), while the frequency ofall
other keywords in the query is fixed at 100000. We vary the small
frequency from 10 to 10000. As can been seen from Figure 9(b),
when the number of the keywords is fixed, the performance of the
DIL algorithm is essentially independent of|S1| when the small
frequency increases from 10 to 10000, while the performanceof the
IS algorithm degrades linearly when the size of the small frequency
increases. When the small frequency is fixed, the performance of
IS is essentially constant while the performance of DIL degrades
linearly when the number of keywords increases. As demonstrated
in Figure 9(a), Figure 9(b) shows that the performance of theIS
algorithm is orders of magnitude better than DIL.

We also stress tested the Indexed Stack algorithm on queries
where all keywords have the same frequency. The experiments
showed that although DIL often performs better than IS, the dif-
ference is not significantly. It is less than 5% in most experiments
and less than 12% on average.

Next, we compare the search performance of the Indexed Stack
algorithm and the RDIL algorithm for returning only the top ten
query results. The DIL algorithm is not evaluated in this setof
experiments because both the DIL and IS algorithms have to find
all query results to determine the top ten answers and the experi-
ments shown in Figures 9(a) and 9(b) in finding all query results
have showed that IS is a better choice than DIL. As discussed in
Section 3, there is no guarantee that RDIL can always find the top
ten queries without having to compute all query results.

We evaluated the queries in Figure 9(a) and Figure 9(b) and
reported the time on returning the top ten query answers in Fig-
ure 10(a) and Figure 10(b) respectively. We used a ranking module
that is identical to the one used in the experiments of [10]. Both
Figure 10(a) and Figure 10(b) show that the Indexed Stack algo-
rithm performed significantly better than the RDIL algorithm.

There is a space where RDIL can outperform IS (and DIL) and
here is a scenario that exhibits the conditions under which this hap-
pens. Consider a query “w1 w2” on a XML document that contains
a large number of occurrences ofw1 andw2, and only ten pairs of
w1 andw2 have non-root nodes as their lowest common ancestors.
Assume that the ten pairs ofw1 andw2 nodes have higher ranking
than all otherw1 andw2 nodes before them in the document. The
RDIL algorithm outperforms the IS algorithm for the above query
“w1 w2” because the IS algorithm has to scan to the end of one of
the two inverted lists to return the top ten answers while theRDIL
algorithm starts from inverted lists sorted by ranking scores and can
terminate much earlier than IS. As one direction of future work, we
plan to investigate how to return topm answers without having to
completely scan the smallest inverted list, by either adjusting the
ranking mechanism or relaxing the exact topm requirement to ap-
proximate topm query answers.

1

10

100

1000

10000

(10, 10000) (10, 100000) (100, 10000) (100, 100000) (1000, 10000) (1000, 100000)

m
se

c

IS DIL

(a) queries contain two keywords; frequencies
shown on X-axis

1

10

100

1000

10000

100000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
Number of Keywords

ms
ec

IS DIL

`

small frequency=10 small frequency=100 small frequency=1000 small frequency=10000

(b) varying the number of keywords from 2 to 5; large Frequency= 100000

Figure 9: Finding all query answers (evaluating the IndexedStack algorithm and DIL)

1

10

100

1000

(10, 10000) (10, 100000) (100, 10000) (100, 100000) (1000, 10000) (1000, 100000)

m
se

c

IS RDIL

(a) queries contain two keywords; frequencies
shown on X-axis

1

10

100

1000

10000

100000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
Number of Keywords

ms
ec

IS RDIL

`

small frequency=10 small frequency=100 small frequency=1000 small frequency=10000

28

(b) varying the number of keywords; large Frequency= 100000

Figure 10: Finding top 10 query answers (evaluating the Indexed Stack algorithm and RDIL)

6. CONCLUSIONS
We have presented an efficient keyword search algorithm, named

Indexed Stack, that returns nodes that contain all instances of all
keywords in the query, after excluding the keyword instances that
appear under nodes whose children already contain all keyword in-
stances according to the query semantics proposed in [10]. We
demonstrated the superiority of the Indexed Stack algorithm over
DIL and RDIL in [10] both analytically and experimentally. We
showed that the complexity isO(kd|S1| log |S|) wherek is the
number of keywords in the query,d is the depth of the tree and
|S1| (|S|) is the occurrence of the least (most) frequent keyword
in the query. In comparison, the complexity of the best priorwork
algorithm isO(kd|S|).

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system

for keyword-based search over relational databases. InICDE,
2002.

[2] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
TeXQuery: A full-text search extension to XQuery. In
WWW, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. InICDE, 2002.

[4] S. Cohen, J. Namou, Y. Kanza, and Y. Sagiv. XSEarch: A
semantic search engine for XML. InVLDB, 2003.

[5] DBLP. http://www.informatik.uni-trier.de/ ley/db.
[6] D. Florescu, D. Kossmann, and I. Manolescu. Integrating

keyword search into XML query processing. InWWW9,
2000.

[7] N. Fuhr and K. GroSSjohann. XIRQL: A Query Language
for Information Retrieval in XML documents. InSIGIR,
2001.

[8] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice-Hall, 2000.

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in Databases. InVLDB,
1998.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In
SIGMOD, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. InVLDB, 2002.

[12] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on XML graphs. InICDE, 2003.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. InVLDB, 2005.

[14] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
VLDB, 2004.

[15] D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman, and
J. Widom. Querying semistructured heterogeneous
information. InDeductive and Object-Oriented Databases,
pages 319–344, 1995.

[16] R.Busse et al. XMark, the XML benchmark project,
http://monetdb.cwi.nl/xml.

[17] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying
XML documents made easy: Nearest concept queries. In
ICDE, 2001.

[18] A. Theobald and G. Weikum. Adding relevance to XML. In
WebDB, 2000.

[19] A. Theobald and G. Weikum. The index-based XXL search
engine for querying XML data with relevance ranking. In
EDBT, 2002.

[20] Y. Xu and Y. Papakonstantinou. Efficient keyword searchfor
smallest LCAs in XML databases. InSIGMOD, 2005.

