
A Better Semantics for XQuery with Side-Effects

Giorgio Ghelli1, Nicola Onose2, Kristoffer Rose3, and Jérôme Siméon3

1 Università di Pisa, ghelli@di.unipi.it
2 University of California, San Diego, nicola@cs.ucsd.edu

3 IBM T. J. Watson Research Center, krisrose/simeon@us.ibm.com

Abstract. Formal semantics for XQuery with side-effects have been pro-
posed in [13, 16]. We propose a different semantics which is better suited
for database compilation. We substantiate this claim by formalizing the
compilation of XQuery extended with updates into a database algebra.
We prove the correctness of the proposed compilation by mapping both
the source language and the algebra to a common core language with list
comprehensions and extensible tuples.

1 Introduction

Two semantics of XQuery. The use of list comprehensions to formalize database
languages has been popular since the work of Trinder and Wadler [24], and that
of Buneman et al [23, 3]. More recently, the same approach has been used suc-
cessfully by Fernandez et al. [11] to specify the semantics of XQuery. It notably
relies on a notion of normalization that is now part of the XQuery Formal Se-
mantics [7]. For instance, the following FLWOR expression applied to a variable
$d containing the element <doc><a>1<a>2</doc>

for $x in $d/a
for $y in $d/a
where $x = $y

return ($x+$y)

is defined as being equivalent to the following expression in the target fragment
of XQuery called the XQuery core (we use a different font for the core)

for $x in $d/a return
for $y in $d/a return
if ($x = $y) then ($x+$y) else ()

This approach has the benefit of relying on a small set of simple primitives which
are well understood from functional programming, and support laws useful for
optimization.

Because of the importance of FLWOR expressions as a database primitive,
most compilers do not rely on normalization, but instead compile into tuple-
based algebras that support traditional database optimizations [19, 18, 21]. For
instance, the above query is compiled in the following plan using the algebra
of [21].

2

Map{#x+#y}
(Select{#x = #y}
(MapConcat
{Map{[y:ID]}(TreeJoin[a](#d))}
(Map{[x:ID]}(TreeJoin[a](#d)))))

This plan manipulates streams of tuples whose fields correspond to the variables
in the source code. It first builds a stream of tuples [x:v], by applying tuple
construction [x:ID] to each node resulting from the navigation TreeJoin[a](#d)
(i.e, $d/a). It then concatenates each [x:v] tuple which each of the [y:v] tuples
built by the Map{[y:ID]}(TreeJoin[a](#d)) subplan, selects the tuples that satisfy
#x = #y, and computes #x+#y once for each tuple. Algebraic equivalences can
be applied to that plan to introduce a more efficient join operator.

Several extensions to XQuery involving side-effects have recently been pro-
posed [6, 13, 4] by the research community, and are being considered by the
W3C [5]. While the first proposals for side-effects relied on whole-program snap-
shot semantics [6], meaning that a piece of code could not observe its own effect,
some consensus is emerging that allowing side-effects to be visible is a key feature
for new XML applications [13, 4, 16, 5]. Normalization and algebraic compilation
coincide for a “pure” language such as XQuery 1.0. Unfortunately, in presence
of visible side-effects, tuple based compilation and nested-for semantics diverge.
Consider the following query, where insert exemplifies any visible side-effect.

for $x in $d/a
for $y in $d/a
where $x = $y

return (do insert <a>{$x+$y} into $d)

The normalization approach, as used in [16, 13], defines the query to be equiva-
lent to the following core expression.

for $x in $d/a return
for $y in $d/a return
if ($x = $y) then (do insert <a>{$x+$y} into $d) else ()

Hence, it first executes the internal for $y... with $x bound to the first a element,
and then executes the same expression with $x bound to the second a element.
The first iteration inserts a new element a into $d. Hence, in the second iteration
$y is bound to a different set of nodes. Instead, the tuple-building phase is
protected from the effects of the return clause when the algebraic compilation
is applied, as follows.

Map{Insert(<a>{#x+#y},#d)}
(Select{#x = #y}
(MapConcat
{Map{[x:ID]}(TreeJoin[a](#d))}
(Map{[y:ID]}(TreeJoin[a](#d)))))

3

One may argue which of the two semantics is better for the programmer. We ob-
serve that the informal, but normative, semantics for XQuery is actually defined
in terms of a tuple stream, and mandates that the return clause is executed after
the tuple-stream has been built and filtered [2]. We believe that the tuple-stream
semantics is at least as natural as the nested-for semantics, and is better suited
for optimization: in this example, the nested-for semantics requires the internal
loop to be run on two different sequences, hence makes it impossible to use a
join, while the tuple-stream semantics enables join optimization, which would
produce the following plan.

Map{Insert(<a>{#x+#y},#d)}
(Join{#x = #y}
(Map{[x:ID]}(TreeJoin[a](#d)),
Map{[y:ID]}(TreeJoin[a](#d))))

Scope of the paper. Our goal is to provide a list-comprehension based semantics
for XQuery which enables the use of traditional tuple-based algebras for compi-
lation and optimization. To this aim, we first formalize the tuple-stream seman-
tics, by translating XQuery with updates into a target language with records
which we call the XQueryU core with tuples. The result is still a nesting of for-
expressions, which, in this case, are used to first build the tuple-stream, and to
finally apply the return clause. For example, the code above is translated as fol-
lows, where $environment is a tuple-stream that only contains one context-tuple,
[d:<doc><a>1<a>2</doc>].

for $t5 in
for $t4 in

for $t2 in
(for $t0 in $environment
return for $t1 in $d/a return [x:$t1]++ $t0)

return for $t3 in $d/a return [y:$t3]++ $t2
return if ($t4.x = $t4.y) then $t4 else ()

return (do insert element ’a’ {$t5.x+$t5.y} into $t5.d)

The translation transforms variables into tuple fields, moves the outermost it-
eration in the innermost position and, most importantly, moves the filtering,
reordering, and return phases at the end of the whole process, as required by
the tuple-stream semantics. This formalization is not only a first step to our
main theorem about the soundness of a database-like interpretation of tuple-
stream semantics, but it also shows that the tuple-stream semantics admits, in
a measure, the same advantages of the nested-for semantics, namely:

1. it admits a simple PL-style implementation, based on in-memory nested
loops, with no need of going through algebraic compilation, for applications
where a PL-style implementation may be useful.

2. it can be mapped down to a simple core language which is best suited for
studies about semantics and types, as we will do in this paper.

4

We then formally define a database algebra for this language and a compilation
function from XQuery with side-effects to the algebra, and we prove that the
compilation implements the tuple-stream semantics. The target language and
the algebra are typed, by a type system that keeps track of record access and
concatenation. These type systems involve record concatenation and subtyping,
which means that we have to address the well-known problem that these two
mechanisms are incompatible for simple record types [14]. We have chosen an
original solution for this old problem, based on linearity conditions which identify
a sub-language where concatenation and simple subtyping safely coexist, and we
show that this sub-language is indeed sufficient to interpret XQuery.

Related work. Design and semantics for database query languages based on
comprehension were first introduced by [3, 23, 22]. This work notably led to the
development of the Kleisli system which is probably the most advanced query
language compiler based on functional techniques [25, 8]. However, join optimiza-
tion in Kleisli is not handled at the comprehension level, but remains internal to
the compiler. So far, functional optimizations did not catch on as most database
management system optimizers to this day rely on tuple-based algebras [1, 20,
19]. The recent emergence of languages which blend database and programming
languages features [17, 12, 4, 15] has created renewed interest in list comprehen-
sions. We believe our work is the first to provide a list comprehension treatment
of a tuple-based database algebra. The reconciliation of record subtyping with
record concatenation has been the subject of a huge body of work [14]. The
proposed approaches were mostly based on the addition of information about
missing fields, or on the substitution of subtyping with parametric polymor-
phism. We instead use the simplest form of record types, but impose a linearity
constraint on the code. Finally, the topic of optimization in the presence of side
effects have received almost no attention so far. On notably exception is the
work by Fegaras [9] which also relies on a monadic approach.

We first introduce the XQuery core with tuples (Section 2). We then intro-
duce the source language XQueryU (Section 3) and its semantics, through a
translation to the core. We finally define the typed second-order algebra (Sec-
tion 4), the compilation of XQueryU into the algebra, and prove its correctness.

2 XQueryU core with tuples

In this section we define a core language with support for tuples, which we use
to specify the semantics of both XQuery with updates and the corresponding
algebra. This core language is based on the W3C XQuery core defined in [7].

Definition 2.1 (core syntax). Our core language has the following syntax,
using e for core expressions, and s for XPath steps:

e ::= for $x in e1 return e2 | order $x in e1 by e2

| let $x := e1 return e2 | $x | if (e1) then e2 else e3

5

| ` | () | e1,e2 | element q {e} | $x/s | f(e1, . . . , en)
| [a1 : e1; . . . ; an : en] | $x.a | e1++ e2 | do insert e1 into e2 | do delete e

s ::= child::q | descendant::q | . . .

$x (and other $-names) denotes variables, q denotes XML “qualified” element
names, f denotes function names, a denotes field names, and ` denotes literals
including numbers and strings; finally we have left the exact list of steps un-
specified as our analysis does not depend on the specific steps. We allow the
usual XPath/XQuery shorthands, in particular the child:: axis can be omitted,
// abbreviates the descendant:: axis, and we will write certain built-in functions
with traditional infix notation (such as e1 = e2 for equal(e1, e2)).

Our core differs from the W3C core [7] in three important ways: (1) it adds
side-effects, in the form of two operations to update XML data in-place, which
are executed immediately (2) it adds an explicit order by expression for sorting (a
construction the W3C semantics does not specify), and (3) it adds tuples (a.k.a.
records) which are finite mappings of field names to values: [a1 : e1; . . . ; an : en]
constructs a new tuple that maps each distinct field name ai to the value of
the corresponding ei, $x.a, extracts the value of the a field from the tuple value
of $x, and e1++ e2, constructs a new tuple with the combined fields from two
existing tuples.

Since we use the core also as a target language for the algebra’s semantics,
we adopt record subtyping, i.e., every tuple type specifies some fields that are
guaranteed present, but more fields may be found in the typed value. This is
notoriously incompatible with record concatenation: from e1 : [a : t] and e2 : []
one cannot deduce that e1++ e2 : [a : t], since e2 may actually include an a field
with an incompatible type. To solve the problem, we first adopt the following
definition for the semantics of tuple concatenation for the case when the same
field appears in both v1 and v2.

1. if v1.a = xv1 and v2.a = xv2 and xv1 is different from xv2, then v1++ v2

raises an error (informally “concatenation failure,”);
2. if v1.a = xv = v2.a, then v1++ v2 associates a with xv.

We prove below that the translation of XQuery only generates well-typed linear
core expressions (to be defined later), which never raise a concatenation failure.
However, case (2) above must be allowed since it actually happens in the linear
expressions that derive from XQuery translation.

Definition 2.2 (core semantics). The dynamic semantics of the core is de-
fined by the judgment

Σ;σ ` e ⇒ v′;σ′

Σ is the dynamic environment mapping free variables of e to values (defined
below). σ is a store mapping XML nodes ids to their value, and is used to
support features such as node creation, node identity, backward navigation, and
tree update. e is a core expression, v′ the computed value, and σ′ the resulting

6

store. (The actual definition is standard, apart from tuple concatenation which
we commented on above, and can be found in the Appendix.)

Values are partitioned into two classes, XML values xv and table values tv.
XML values are sequences of XML items iv, while table values are sequences of
tuples. In both cases we identify a single item, or tuple, with the corresponding
sequence of one element.

Definition 2.3 (values). The values, relative to a store σ, are given by

v ::= xv | tv (value)
xv ::= xv1, xv2 | () | iv (XML value)
tv ::= tv1, tv2 | () | [a1 : xv1; . . . ; an : xvn] (table value)
iv ::= ` | id with id ∈ σ (item value)

where ` denotes literals. The fields of a tuple value are distinct and unordered.

The type system for the core should play two roles: (a) checking that prede-
fined functions and operators are applied to arguments of the correct type, as it
happens with the XQuery type system; (b) checking that tuple deconstruction
and concatenation are correctly applied. Such a type system can be defined by
enriching the XQuery type system with tuple types. To simplify the presentation,
we follow here a much leaner approach, where all the types for the instances of
the XQuery Data Model [10] are merged into Item, i.e. we focus on the (b) role
only, since nothing is new, with respect to XQuery, on the (a) role. Similarly to
values, types are partitioned into XML types xt and table types tt.

Definition 2.4 (types).

t ::= xt | tt (type)
xt ::= {xt} | Item (XML type)
tt ::= {tt} | [r] (table type)
r ::= a : xt | r1; r2 | ε (fields)
ft ::= (t1, . . . , tn) → t (function type)

Tuple types are understood as follows:

– [ε] is the type of tuples with no fields, which we write [].
– [a : xt] is the type of tuples that map the field a to an XML value of type

xt, and may be either defined or undefined on the other fields.
– [r1; r2] is undefined if r1 and r2 map the same field name to two different

types; otherwise, it is the intersection of types [r1] and [r2].

Hence, record fields are subject to the equalities (r1; r2); r3 = r1; (r2; r3), r1; r2 =
r2; r1, a : xt; a : xt = a : xt, and r; ε = r, where r1 = r2 means that we identify
them in every context (type equality, type rules, type semantics). Finally, since
value sequences are flat, for any type t, {{t}} = {t}.

7

Definition 2.5 (core type semantics). The semantics of a type in a store,
T JtKσ, is defined as follows:

– T JItemKσ contains all node ids that are bound in σ, and all literal values;
– T J{t}Kσ is the set of all finite sequences of elements of T JtKσ; a single element

of T JtKσ belongs to this set, and is equivalent to a singleton sequence;
– T J[a1 : t1; . . . ; an : tn]Kσ is the set of all functions that, for i in 1 . . . n, map

ai to an element of T JtiKσ; an element of T J[a1 : t1; . . . ; an : tn]Kσ may also
be defined on any field name that is not specified in the type.

– T J(t1, . . . , tn) → tKσ is the set of all functions that, applied to n arguments
in T Jt1Kσ . . . T JtnKσ, return a value in T JtKσ.

The fact that a tuple type does not give information about the fields that
are not explicitly specified, and the fact that a single element is identified with
a singleton sequence, lead to the following subtyping relation.

Definition 2.6 (subtyping). The subtyping relation ≤: is the transitive ho-
momorphic closure over types of the relation defined by

[r1; r2] ≤: [r1] t ≤: {t}

Definition 2.7 (core typing). The judgment Γ ` e : t holds iff it can be
proved by the rules of Fig. 1, where:

1. Γ is a type environment which associates each free variable $x of e with a
type Γ ($x), and each predefined function f with its function type Γ (f).

2. (Γ, $x7Kt) denotes a new type environment where $x is assigned the type t
instead of what it was in Γ ; the empty type environment is written ().

We generalize the notions of typing to whole type environments: Σ : Γ means
that every variable bound by Σ is typed as specified by Γ , and T J$x1 : t1; . . . ; $xn : tnKσ

is the set of all functions that, for i in 1 . . . n, map $xi to an element of T JtiKσ.
Unfortunately, this type-system is not sound in general; for example, record

concatenation fails in the two well-typed expressions below:

(1) [a:1] ++ [a:2]
(2) let $x := (for $w in (1,2) return [a:$w]) return

for $y1 in $x return for $y2 in $x return ($y1++ $y2)

However, the type-system is sound when we restrict the attention to a linear
subset of the language. Informally, a closed core expression is linear if none of
the following non-linearity conditions apply.

1. double construction: the presence of two distinct constructors for a field
a is “non-linear” (case (1) above); double construction is only allowed in
independent subexpressions, as in if ([a:1]) then [a:2] else [a:3].

2. non-linear let-variables: two distinct uses of a let variable are “non-linear”
(like the occurrences of $x in case (2) above); as in the double construction
case, double use is allowed in independent code branches.

8

Γ ` e : t1 t1 ≤: t2
(sub)

Γ ` e : t2

Γ ($x) = t
(var)

Γ ` $x : t

Γ ` e1 : {t1} Γ ` e2 : t2 Γ ` e3 : t2
(if)

Γ ` if (e1) then e2 else e3 : t2

Γ ` e1 : {t1} (Γ, $x 7K t1) ` e2 : t2
(for)

Γ ` for $x in e1 return e2 : {t2}
Γ ` e1 : {t1} (Γ, $x 7K t1) ` e2 : {Item}

(order)
Γ ` order $x in e1 by e2 : {t1}

Γ ` e1 : t1 (Γ, $x 7K t1) ` e2 : t2
(let)

Γ ` let $x := e1 return e2 : t2
(literal)

Γ ` ` : Item
(empty)

Γ ` () : {t}

Γ ` e1 : {t} Γ ` e2 : {t}
(comma)

Γ ` e1, e2 : {t}
Γ ` e : {Item}

(element)
Γ ` element q {e} : Item

Γ ` $x : Item
(step)

Γ ` $x/s : {Item}

Γ (f) = ({xt1}, . . . , {xtn}) → xt ∀i ∈ 1..n : Γ ` ei : {xti}
(fun)

Γ ` f(e1, . . . , en) : xt

Γ ` $x : [a : xt]
(field)

Γ ` $x.a : xt

∀i ∈ 1..n : Γ ` ei : xti
(tuple)

Γ ` [a1 : e1; . . . ; an : en] : [a1 : xt1; . . . ; an : xtn]

Γ ` e1 : [r1] Γ ` e2 : [r2]
(concat)

Γ ` e1++ e2 : [r1; r2]

Γ ` e : {Item}
(delete)

Γ ` do delete e : {Item}
Γ ` e1 : {Item} Γ ` e2 : {Item}

(insert)
Γ ` do insert e1 into e2 : {Item}

Fig. 1. Type rules for the core.

The above definition is extended to pairs (Σ, e) formed by an expression and a
dynamic environment that defines the free variables of e, so that the evaluation
of a linear expression only involves linear (Σ, e) pairs. With these tools, we can
prove the following theorem, which will allow us to prove that the semantics of
any well-typed XQueryU or algebraic expression is always well-defined, despite
the combined use of subtyping and record concatenation in the core.

Theorem 2.8 (soundness of typing). For any expression e linear for Σ : Γ ,
type t such that Γ ` e : t, and store σ such that Σ ∈ T JΓ Kσ, there exist v′;σ′

such that Σ;σ ` e ⇒ v′;σ′ and v′ ∈ T JtKσ′ .

3 XQuery

We define here XQueryU, a minimal subset of XQuery with immediate updates.

Definition 3.1 (XQueryU syntax). XQueryU syntax consists of expressions
E, where F denotes FLWOR expressions, and s denotes XPath steps.

E ::= F | () | E1,E2 | $x | if (E1) then E2 else E3 | f(E1, . . . ,En)

| element q {E} | E/s | ` | do insert E1 into E2 | do delete E

F ::= for $x inE F | let $x :=E F | whereE F | order byE F | returnE

with the standard constraints that each FLWOR-expression must have at least
one for or let clause, where clauses cannot be followed by for or let clauses,
and order by clauses can only be followed by a return clause.

9

Definition 3.2 (XQuery semantics). The semantics of an XQueryU expres-
sion E is given by the translation X JEK%

$t defined in the following table, provided
$t is a core variable of tuple type and % is a mapping from XQueryU variables to
core field names, which must map all free variables of E to fields defined by $t.

Most of the XQueryU operators are mapped to the core by homomorphism.
We use do insert as an example, and give the non-homomorphic cases:

X Jdo insertE1 intoE2K
%
$t = do insert X JE1K

%
$t into X JE2K

%
$t

X J$xK%
$t = $t.a where a = %($x)

X JE/sK%
$t = for $dot in (X JEK%

$t) return $dot/s

X JF K%
$t = X ∗JF K%

$t where X ∗ is defined below

X ∗Jfor $x inE F K%
e = X ∗JF K(%,$x7Ka)

e1
where a is a fresh field name, and

e1 = for $t in e return for $v in (X JEK%
$t) return $t++ [a: $v]

X ∗Jlet $x :=E F K%
e = X ∗JF K(%,$x7Ka)

e1
where a is a fresh field name, and

e1 = for $t in e return $t++ [a: X JEK%
$t]

X ∗Jorder byE F K%
e = X ∗JF K%

order $t in e by (XJEK%
$t

)

X ∗JwhereE F K%
e = X ∗JF K%

for $t in e return if (XJEK%
$t

) then $t else ()

X ∗JreturnEK%
e = for $t in e return (X JEK%

$t)

The most notable aspect of those rules is how the result of compilation for
prior clauses in a FLWOR is passed as a parameter (as subscript) to the auxiliary
X ∗ translation judgment.

X JEK%
$t is always well-defined, but it is only guaranteed to be well-typed

in a specific static context, specified by Theorem 3.3 below. Informally, $t col-
lects values for the free variables of E which is why % must map these variables
to field names of $t. Similarly, in the helper translation X ∗JF K%

e , e is an ex-
pression producing the tuple stream used to evaluate F , and % maps the free
variables of F to the field names of this tuple stream. To formalize these re-
quirements we equip XQueryU with a type judgement, Γ ` E : xt, similar to
the core typing of Def. 2.7, which we do not specify here for space reasons. We
map type environments to tuple types by defining %($x1:xt1; . . . ; $xn:xtn) =
[%($x1):{xt1}; . . . ; %($xn):{xtn}], where each xti is mapped to {xti} (i.e., to
{Item}) because we map let into for, hence the core type system sometimes
infers sequence types in places where XQueryU typing was more precise. This
is also reflected in the statement of the type preservation theorem. It would be
easy to have exact type preservation, using a finer type system for the core, but
this paper is focused on the use of tuple types to map static environments, and
the other typing aspects are kept minimal by design.

We can finally show that the translation of well-typed terms is well-typed
and linear, hence, thanks to Theorem 2.8, it is always well defined.

Theorem 3.3 (type preservation). If %(Γ) is well defined, then:

Γ ` E : xt ⇒ ($t : %(Γ)) ` X JEK%
$t : {xt}

($t : tt) ` e : {%(Γ)} ∧ Γ ` F : xt ⇒ ($t : tt) ` X ∗JF K%
e : {xt}

10

Theorem 3.4 (linearity). For any E, %, tv, where % is defined on all free vari-
ables of E, and tv = [%($x1) : xv1; . . . ; %($xn) : xvn] is defined on the whole
image of %, the term X JEK%

$t is linear with ($t 7K tv).

Corollary 3.5 (XQueryU semantics). For any Γ,E, xt, %, σ, tv, if Γ ` E :
xt, %(Γ) is defined, tv = [%($x1) : xv1; . . . ; %($xn) : xvn] with xvi ∈ T JΓ (xi)Kσ,
then there exist v′;σ′ such that ($t 7K tv);σ ` X JEK%

$t ⇒ v′;σ′ and v′ ∈ T JtKσ′ .

4 Algebra

We formally specify the semantics and type system for an existing nested-
relational algebra for XQuery [18, 21]. Most other database algebras are quite
similar, so most of the treatment proposed here should apply quite directly to
other relational or nested-relational algebras. From a functional programming
perspective, database algebras are first order languages, where efforts are taken
in order to avoid any manipulation of functions. For example, the projection
operator from relational algebra, usually written πφR, is similar to a map and
applies φ to every element of R. However, traditional database algebras usu-
ally do not allow φ to be a function from tuples to tuples, but always use a
variable-free syntax [20], which significantly simplifies the analysis and rewriting
of algebraic terms. Algebras for object databases sometimes depart from this,
since methods have to be formalized, and we have seen a drift towards higher-
order algebras, where functions and lambda-binders play a role. XQuery seems
to call for that approach, since the language is functional, and also because every
expression is always evaluated with respect to an implicit context item, which
means that every expressions denotes a function.

We propose a different approach that merges the advantages of binder-free
syntax and the expressivity of higher-order. In our algebra, every term (or plan)
denotes a first-order function, that yields a result when applied to a context
tuple. Every n-ary algebra operator (with n > 0), such as Map or Select, denotes
a second-order function, which yields a first-order plan when applied to first-
order subplans. We will show how this approach gives all the expressive power
we need, while avoiding the need for higher-order syntax and rewriting.

Example 4.1. Consider the following XQuery expression:

for $x in $doc//a where $x/empno≥1 return $x

Database compilers compile this into a query plan similar to the following, de-
noting a function to be applied to a context tuple where the #doc field is defined.

Map{#x}(Select{TreeJoin[empno](#x) ≥1}
(MapConcat{Map{[x:ID]}(TreeJoin[//a](#doc))}

(ID)))

To illustrate the first order nature of each operator, the same plan with explicit
binders would look as follows.

11

(ID)
ID : t → t

(Literal)
` : t → Item

p : t → xt
(Tuple)

[a : p] : t → [a : xt]
(Field)

#a : [a : xt] → xt

p2 : t → {[r]} p1 : [r] → {Item}
(Select)

Select{p1}(p2) : t → {[r]}
p2 : t → {[r]} p1 : [r] → {Item}

(OrderBy)
OrderBy{p1}(p2) : t → {[r]}

p2 : t → {[r2]} p1 : [r2] → {[r1]}
(MapConcat)

MapConcat{p1}(p2) : t → {[r1; r2]}
p2 : t → {t′} p1 : t′ → t′′

(Map)

Map{p1}(p2) : t → {t′′}

(Empty)
Empty() : t → {Item}

p1 : t → {Item} p2 : t → {Item}
(Seq)

Sequence(p1, p2) : t → {Item}

p : t → {Item}
(TreeJoin)

TreeJoin[s](p) : t → {Item}
p1 : t → {Item} p2 : t → u p3 : t → u

(If)
Conditional(p1, p2, p3) : t → u

Γ (f) = (t′1, . . . , t
′
n) → t′ p1 : t → t′1 . . . pn : t → t′n

(Call)

Call[f](p1, . . . , pn) : t → t′

p1 : t → {Item} p2 : t → {Item}
(Insert)

Insert(p1, p2) : t → {Item}
p : t → {Item}

(Delete)
Delete(p) : t → {Item}

p : t → u p : t−≤: t p : u ≤: u+

(Sub)

p : t−→ u+

Fig. 2. Type rules for the base algebra.

λt0K Map (λt1K t1.x)
(Select (λt2K t2.x/empno ≥1)

(MapConcat (λt3K Map (λt4K [x : t4]) (t3.doc//a))
(t0)))

Due to lack of space, we focus on a base algebra which contains only the
algebraic operators that are needed for compilation, and we ignore the additional
operators needed for optimization purposes.

Definition 4.2 (base algebra syntax). For unoptimized query plans we use
the following basic syntax:

p ::= ID | Empty() | Sequence(p1, p2) | ` | Element[q](p)
| Select{p1}(p2) | OrderBy{p1}(p2) | Map{p1}(p2) | MapConcat{p1}(p2)
| TreeJoin[s](p) | Conditional(p1, p2, p3) | Call[f](p1, . . . , pn)
| [a:p] | #a | Insert(p1, p2) | Delete(p)

The semantics of the basic query plans is given in the following table, through
a translation to the core. Every plan p denotes a core expression AJpK$t with
one free variable $t for the input tuple stream. Every algebraic plan receives an
input value, and, with the only exception of the leaf operators #a, ID, ` and
Empty, does not operate on it, but passes it to the subplans enclosed in round

12

brackets. Select, OrderBy, MapConcat and Map also apply their curly-brackets
subplan to each value in the list returned by the round-brackets. Finally, the
values returned by the subplans are acted upon.

AJIDK$t = $t
AJSequence(p1, p2)K$t = (AJp1K$t ,AJp2K$t)
AJEmpty()K$t = ()
AJScalar[`]()K$t = `
AJElement[q](p)K$t = element q {AJpK$t}
AJSelect{p1}(p2)K$t = for $t1 in AJp2K$treturn if (AJp1K$t1

) then $t1 else ()
AJTreeJoin[s](p)K$t = for $t1 in AJpK$treturn $t1/s
AJMap{p1}(p2)K$t = for $t1 in AJp2K$treturnAJp1K$t1
AJMapConcat{p1}(p2)K$t = for $t1 in AJp2K$treturn

for $t2 in AJp1K$t1
return $t1 ++ $t2

AJOrderBy{p1}(p2)K$t = order $t1 in AJp2K$tbyAJp1K$t1
AJConditional(p1, p2, p3)K$t = if (AJp1K$t) then AJp2K$telse AJp3K$t

AJCall[f](p1, . . . , pn)K$t = f(AJp1K$t , . . . ,AJpnK$t)
AJ[a : p]K$t = [a : AJpK$t]
AJ#aK$t = $t.a
AJInsert(p1, p2)K$t = do insertAJp1K$t into AJp2K$t

AJDelete(p)K$t = do delete AJpK$t

Definition 4.3 (application of a plan). The notation AJpKσ
v denotes the

value-store pair v′;σ′ such $t 7K v;σ ` AJpK$t ⇒ v′;σ′. We will also use the
same notation to denote just the value component v′, when this is clear from
the context.

Every plan has a first order type t → t′, where t and t′ are defined exactly
as in Definition 2.4; the two type languages coincide since the semantics of the
algebra is given through a translation to the core.

Definition 4.4 (algebra typing). The algebra type system is defined by the
rules in Figure 2; subtyping is defined as in the core.

Notice that Γ is treated as a constant here (with just the built-in function
signatures) hence is not propagated within the rules. Tuple concatenation plays
a key role here as in the core (whereas the distinction between {t} and t is only
relevant for optimizations purposes that we do not consider here). Once more,
we are able to combine record concatenation with record subtyping by adopting
a linearity constraint. We say that the query plan p builds a field a if it contains
a tuple constructor for a, i.e., a subplan [a : p′]. Linearity then means that,
informally, every tuple field is only built in one specific point of the code.

Definition 4.5 (linearity). A plan p is linear if no field is built by two distinct
tuple constructors inside p.

A plan p is linear with a tuple type [a1 : t1; ...; an : tn] or with a tuple sequence
type {[a1 : t1; ...; an : tn]}, if it is linear and no field among a1, . . . , an is built by
p. A piece of code p is linear with an XML type iff p is linear.

13

Definition 4.6 (πt(v)). The projection πt(v) of a value v over a type t such
that v ∈ T JtKσ is defined by cases on t, as follows. π[a1:t1,...,an:tn](v) is a tuple
that coincides with v on the fields a1, . . . , an, and is undefined on the others.
π{tt}(v1, . . . , vn) is equal to π{tt}(v1), . . . , π{tt}(vn). Finally, πxt(v) = v.

We can now state the type soundness of the algebra. The theorem is not
trivial, because it requires that the extra fields in the input tuple are removed
by projection (πt(tv)), but the thesis v′ ∈ T Jt′Kσ′ does not exclude the presence
of extra fields in the result. This means that the theorem cannot be proved
directly by induction, but we need to resort on linearity to prove that the extra
fields are actually harmless. In a sense, this theorem specifies that any optimizer
that preserves types and linearity never needs to insert extra projections.

Theorem 4.7 (type soundness). If p : t → t′ and p is linear with t, then,
for any σ and any tuple tv ∈ T JtKσ, then AJpKσ

πt(tv) is well defined, and, if
(v′, σ′) = AJpKσ

πt(tv), then v′ ∈ T Jt′Kσ′ .

4.1 Compilation

We give now a formal definition of the algebraic compilation CJEK% of an XQueryU
expression E, in the table below. % is a mapping from free variables in E to core
field names, and a is a fresh field name in cases for and let.

CJF K% = C∗JF K%
ID where C∗ is defined below

CJ()K% = Empty()
CJE1,E2K

% = Sequence(CJE1K
%
, CJE2K

%)
CJ$xK% = #a with a = %($x)
CJif (E1) thenE2 elseE3K

% = Conditional(CJE1K
%
, CJE2K

%
, CJE3K

%)
CJf(E1, . . . , En)K

% = Call[f](CJE1K
%
, . . . , CJEnK%)

CJelement q {E}K% = Element[q](CJEK%)
CJE/sK% = TreeJoin[s](CJEK%)
CJ`K%

$t = `
CJdo insertE1 intoE2K

% = Insert(CJE1K
%)CJE2K

%

CJdo deleteEK% = Delete(CJEK%)

C∗Jfor $x inE F K%
p = C∗JF K(%,$x7Ka)

p1
p1 = MapConcat{Map{[a : ID]}(CJEK%)}(p)

C∗Jorder byE F K%
p = C∗JF K%

p1
p1 = OrderBy{CJEK% }(p)

C∗Jlet $x :=E F K%
p = C∗JF K(%,$x7Ka)

p1
p1 = MapConcat{[a : CJEK%]}(p)

C∗JwhereE F K%
p = C∗JF K%

p1
p1 = Select{CJEK% }(p)

C∗JreturnEK%
p = Map{CJEK% }(p)

The compilation rules correspond strictly to those of [21] (except for some
minor syntactic variations and the use of % for explicit field naming). As in
the rules that describe the semantics of XQueryU, the most interesting rules
are those we have described with the helper function C∗JF K%

p, which compiles
the “tail clauses” F of a FLWOR expression. Those rules are specified in the
context of an operator p that generates the stream of tuples that are generated
by the “head clauses” of the same FLWOR.

14

Example 4.8 (algebraic compilation). The example XQueryU from the “two
semantics” part of the introduction compiles with the translation scheme to the
algebraic expression in the “database algebra” part of the introduction. The
following table shows how the application of C∗ constructs the plan backwards:

i Fi pi = C∗JFiK
...
...

1 for $a in . . . F2 Map{[a:ID]}(. . .)
2 for $b in . . . F3 MapConcat{Map{[b:ID]}(. . .)}(p1)
3 where $a=$bF4 Select{#a=#b}(p2)
4 return $a Map{#a}(p3)

The following theorem expresses the correctness of this compilation scheme, with
respect to our semantics. Interestingly, the proof is done by merely applying a
simple variant of the semantics provided in Section 4 to the result of compilation,
and showing that it is syntactically equivalent to the semantics of the same query
in the core. The variant is defined in the Appendix.

Theorem 4.9 (correctness). For any environment Σ, stores σ, σ′, XQueryU
expression E, variable $t, field name assignment % defined for all free variables
in E, and value v′,

Σ, σ ` AJCJEK%K$t ⇒ v, σ′ iff Σ, σ ` X JEK%
$t ⇒ v, σ′

5 Conclusion

In this paper, we showed how the nested-for and the tuple-stream semantics
for FLWOR expressions diverge in presence of side-effects. We have formalized
the compilation process for XQuery extended with side effects into a database
algebra, and we have shown that this compilation scheme is sound for the tuple-
stream semantics. This formalization shows that the tuple-stream semantics ad-
mits a simple implementation, based on normalization and list comprehensions,
along the lines of the traditional implementation of main-memory programming
language iterators. We are currently investigating optimization of database lan-
guages with side-effects based on that framework.

Acknowledgements. We would like to thank Limsoon Wong for clarifying some
details about optimization in Kleisli, and Mary Fernández for feedback on earlier
drafts of this paper.

References

1. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. Gray, P. P.
Griffiths, W. F. K. III, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L.
Traiger, B. W. Wade, and V. Watson. System R: Relational approach to database
management. ACM Transactions on Database Systems, 1(2):97–137, 1976.

2. S. Boag, D. Chamberlain, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML query language, W3C recommendation, 2007.

15

3. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax.
SIGMOD Record, 23(1):87–96, 1994.

4. D. Chamberlain, M. Carey, D. Florescu, D. Kossmann, and J. Robie. XQueryP:
Programming with XQuery. In XIME-P, 2006.

5. D. Chamberlain, D. Florescu, and J. Robie. XQuery scripting extension 1.0 require-
ments, W3C working draft 23 march 2007. http://www.w3.org/TR/2007/WD-
xquery-sx-10-requirements-20070323/, 2007.

6. D. Chamberlain, D. Florescu, and J. Robie. XQuery Update Facility, W3C working
draft 11 july 2006, 2007.

7. D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C
recommendation 24 january 2007, 2007.

8. L. Fegaras. Query unnesting in object-oriented databases. In SIGMOD Conference,
pages 49–60, 1998.

9. L. Fegaras. Optimizing queries with object updates. J. Intell. Inf. Syst., 12(2-
3):219–242, 1999.

10. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 data model (xdm). W3C Recommendation, Jan. 2007.

11. M. F. Fernández, J. Siméon, and P. Wadler. A semi-monad for semi-structured
data. In ICDT, pages 263–300, 2001.

12. D. Florescu, A. Grünhagen, and D. Kossmann. XL: An XML programming lan-
guage for Web service specification and composition. In International conference
on World Wide Web, pages 65–76, May 2002.

13. G. Ghelli, C. Re, and J. Siméon. XQuery!: An XML query language with side
effects. In EDBT Workshops, pages 178–191, 2006.

14. C. A. Gunter and J. C. Mitchell. Theoretical Aspects of Object-Oriented Program-
ming. The MIT Press, 1994.

15. M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bordawekar,
I. Pechtchanski, and V. Sarkar. Xj: facilitating xml processing in java. In In-
ternational conference on World Wide Web, pages 278–287, 2005.

16. J. Hidders, J. Paredaens, and R. Vercammen. On the expressive power of xquery-
based update languages. In XSym, pages 92–106, 2006.

17. The linq project. msdn.microsoft.com/XML/linqproject.
18. N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in an ordered

context. In ICDE, pages 239–250, 2004.
19. G. Moerkotte. Building query compilers, draft manuscript.

http://db.informatik.uni-mannheim.de/ moer, December 2005.
20. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,

2000.
21. C. Re, J. Siméon, and M. F. Fernández. A complete and efficient algebraic compiler

for XQuery. In ICDE, page 14, 2006.
22. V. Tannen. Tutorial: Languages for collection types. In PODS, pages 150–154,

1994.
23. V. Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In

ICDT, pages 140–154, 1992.
24. P. Trinder and P. Wadler. Improving list comprehension database queries. In

Fourth IEEE Region 10 Conference (TENCON), pages 186–192, Nov. 1989.
25. L. Wong. Kleisli, a functional query system. Journal of Functional Programming,

10(1):19–56, 2000.

