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Summary. We present a unifying perspective of privacy guarantees in view-based
and generalization-based publishing. This perspective uses a generic Bayesian pri-
vacy model which generalizes both types of publishing scenarios and allows us to
relate seemingly disparate privacy guarantees found in the literature.

1 Introduction

Database publishing systems export parts of a proprietary database for con-
sumption by client applications. The design of a publishing system is subject
to two conflicting requirements. On one hand, the data owner needs to publish
appropriate parts of the proprietary data to support various interactions with
her clients. On the other hand she must protect certain sensitive data from
being disclosed to clients.

In this chapter, we discuss data privacy which pertains to defense against
attackers who access the data legally. These attackers are regular clients who
inspect the published data and potentially combine it with external knowledge
to infer information about the secret data. Note that privacy is orthogonal
to data security, whose goal is defense against unauthorized access to the
database using access control mechanisms.

We focus on two classes of publishing systems. In view-based publishing,
the owner specifies the data to be released by means of views defined in
some standard query language. In generalization-based publishing, the released
data is specified using a formalism of incomparable expressive power, namely
anonymization using generalization functions. Examples of anonymization via
generalization include replacing a person’s actual age by an age range, remov-
ing the least significant digits of the zip code, etc.
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0347968.
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The two corresponding lines of privacy research have evolved indepen-
dently, yielding different formalisms for stating privacy guarantees. In this
chapter, we show that privacy guarantees in view-based and generalization-
based publishing are related, being both particular cases of guarantees in
a general privacy model. We call this model the Generic Bayesian Privacy
(GBP) model as it offers guarantees based on the revision of the attacker’s
belief about the secret between the state before and after seeing the published
data.

We start by developing in Section 2 a generic model for attacks attempt-
ing to glean knowledge about the sensitive part of the database starting from
the published part thereof, also exploiting external knowledge. In Section 3,
we show how privacy guarantees developed for view-based publishing systems
can be cast as particular cases in the GBP model. Then in Section 4 we
connect generalization-based publishing to the GBP model. Exploiting the
uniform formalization using the GBP model, Section 5 compares various pri-
vacy guarantees from both view-based and generalization-based publishing.
Finally, Section 6 shows how the GBP model can be applied to formulate
and check meaningful privacy guarantees for publishing in open-world infor-
mation integration systems.

2 GBP: A Generic Bayesian Privacy Model

The published data. The data owner publishes part of the database D,
possibly after some processing such as filtering, aggregation, anonymization,
etc. For the purpose of our discussion, this processing can be modeled as a
function V, whose result V(D) is being released.

The secret. The owner wishes to keep sensitive data secret. Since sen-
sitivity depends on the application and is best judged by the data owner,
she must be provided with the possibility to declare which data is to be kept
secret. The secret may be a subset of the database, possibly altered by pro-
cessing, which we shall model as another function S, whose result S(D) is the
secret.

We note that in the generic model, V and § are arbitrary functions from
databases to databases. However, in the running example of this section, we
shall express such functions by queries. We shall see in Section 4 examples of
functions expressed differently, as anonymization functions.

Ezample 1. Consider a database whose only relation contains tuples associat-
ing the patient with the ailment he suffered from and the doctor who treated
him:

PD A(patient,doctor,ailment).

The secret S is the association between patients and their ailment, specifiable
by the owner for instance using query S(p,a) :— PDA(p,d, a).
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2.1 Attacks

In this model we only consider attackers who access the data legally by in-
specting the published data V(D), using it together with external knowledge
to infer information about the secret S(D). The defense against unauthorized
access to the database is beyond the scope of this model.

Possible databases. Ideally, the attacker would like to reverse-engineer
D starting from the observed published data V(D). This would immediately
lead to the full disclosure of the secret: the attacker could compute the secret
by directly running S over D. Of course, V is likely to be a lossy data transfor-
mation, thus precluding the unequivocal identification of its arguments from
its output. In general there may be (potentially infinitely) many databases
which have the same image as D under V. The attacker cannot distinguish
among them solely by observing the published data V(D), regardless of the
computational resources at his disposal. Therefore, in the absence of exter-
nal knowledge about D, all databases with the same image are possible from
the attacker’s point of view (we will shortly introduce the attacker’s external
knowledge into the model). We therefore refer to the set [D]y of databases as
the possible databases given V(D):

[Dly :={D" [ V(D) =V(D)}.

Ezample 2. Continuing Example 1, assume that the owner publishes a view
listing all the patients V,(p) :— PDA(p,d,a) and one listing all ailments
treated by the hospital: V,(a) :— PDA(p,d,a). Assume that on the actual
database D, V,(D) yields {John, Jane} and V, (D) yields {flu, pneumonia}.
Then some of the possible databases corresponding to the observed views are
Dy = { (John, docy, flu), (Jane, docs, pneumonia) }, D» = { (John, docs, flu),
(John, docs, pneumonia), (Jane, docy, flu) }, etc., where doc; are unknown
doctor names.

Clearly the set of possible databases may be very large. For example, con-
sider the case when the published data is a projection of a table. By observing
the published table (and using no external knowledge about the data), an at-
tacker must assume any possible completion for the missing columns. This is
the case in Example 2 if the attacker does not know the set of all possible
doctors.

It is therefore not a priori given that the attacker is even able to enumerate
all possible databases. In the following, we assume the worst-case scenario for
the owner, namely that the attacker comes up with some finite representation
of the set of possible databases which he uses for reasoning about the secret.
Note that the more advantage we assume for the attacker, the stronger any
privacy guarantees based on these assumptions.

Possible secrets. Since the owner cares about guarding only the secret
(rather than the non-sensitive parts of the database), the privacy model fo-
cuses on possible secrets. From a reasonable attacker’s point of view, a secret
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s is possible only if it is witnessed by some possible database i.e. if there exists
D' € [D]y such that s = S(D'). Without worrying yet whether the attacker
can even compute all possible secrets, note that they provide an upper bound
on the set of candidates for the secret which an attacker needs to consider.
Let us denote the set of possible secrets with S([D]y):

S([Dly) :=={S(D") | D" € [D]y}-
In particular, the actual secret S(D) is a possible secret: S(D) € S([D]y).

Ezample 3. Continuing Example 2, the possible secrets are obtained by run-
ning the S over each possible database. We obtain s; = S(D;) = {(John, flu),
(Jane, pneumonia)}, s2 = S(D3) = { (John, flu), (John, pneumonia), (Jane,
flu) }, etc.

The optimal attack: compute possible secrets and use external
knowledge. In the absence of external knowledge, possible secrets are indis-
tinguishable with respect to the published data V(D) and even with unlim-
ited computational resources the best an attacker can hope for is to reverse-
engineer S([D]y). Towards a conservative privacy guarantee, let’s assume that
the attacker is successful at this task, handling the case of infinitely many pos-
sible secrets by coming up with a finite representation thereof.? If there is only
one possible secret, then the actual secret is exposed and the attacker’s task
accomplished. In the (likely) case of several possible secrets, a sophisticated
attacker improves his chances of singling out the actual secret by whittling
down S([D]y) using external knowledge. If several possible secrets remain
even now, the attacker is forced to guess the actual secret among them. How-
ever, the guess does not have to be uneducated: while the attacker’s external
knowledge may be insufficient to further rule out any possible secrets, it could
still influence the attacker’s beliefs about the relative likelihood of the possible
secrets. This would enable the attacker to pick the secret he believes likeli-
est. Finally, if the attacker deemed several possible secrets equally likely but
likelier than all others, he would be forced to guess at random among them.

Modeling attacker’s belief. The attacker’s external knowledge can per-
tain to the possible databases or exclusively to the possible secrets. Note that
any attacker who forms an opinion on how to rank possible databases can infer
the ranking of the corresponding secrets and is therefore at least as knowl-
edgeable (and dangerous) as an attacker who does not understand or care
about the underlying database, focusing solely on the secret.

To defend against the more dangerous class of attackers, we model the
attacker’s a priori belief (i.e. before observing V(D)) as a probability distri-
bution ¢ on all databases. This induces a belief (probability distribution) Ps
on all secrets as follows: given candidate secret s, the probability Ps[s] that s
is the actual secret is the sum of probabilities of all databases witnessing s:

2 We know such representations exist: (an admittedly crude) one is given by the
definition of V together with V(D).
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Ps[s]:= > &(D"). (1)

s=S(D'")

d also induces the probability Ps[V(D)] that the published data is V(D):

P;[V(D)]:= > (D).

D'e[D]y

The actual release of the published data causes a revision of the attacker’s
belief about the probability of s being the actual secret. We call this the a
posteriori probability, and it is the conditional probability Ps[s|V(D)]:

_Ps[sAV(D)]  Xpeplysw)=s D)
Ps[s|V(D)] = BVD] Yo, 00 (2)

Classes of attackers. For all privacy guarantees we consider next, we
conservatively assume that the attacker is able to reverse-engineer the pos-
sible databases and secrets from the published data. Attackers are therefore
distinguished from each other exclusively by their belief about the likelihood of
databases, as induced by the external knowledge they possess. Consequently,
in the following we characterize an attacker by the probability distribution ¢
he associates on all databases. A class of attackers we wish to defend against
is then described by a family P of probability distributions.

2.2 Privacy Guarantees

Privacy guarantees rule out privacy breaches. We list below several alternative
guarantees that generalize guarantees considered in the literature. Each one
is determined by the definition of what constitutes a “breach”.

Extent-Dependent Guarantees. We start with a class of guarantees
which depend on the extent of actual database D. Each of them take as
argument a publishing function V and hold if and only if publishing V(D)
does not breach privacy.

No complete database exposure (NDED). The worst case of breach
consists in complete exposure of the actual database D. That is, the breach is
defined as the case when the only possible database is D: [D]y = {D}. In this
case, an attacker who successfully reverse-engineers the possible databases
retrieves the actual database and can then compute any secret function S on
it. The guarantee of no database exposure, denoted NDE? (V), requires at
least two possible databases:

NDEP(V) = [[Dy] > 2.

Ezxample 4. Assume that in the setting of Example 1, the hospital publishes
a view revealing which doctors every patient sees: Vpp(p,d) :— PDA(p,d, a).
An additional view is published as well, listing which ailments every doctor is
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treating: Vpa :(— PDA(p,d, a). If for some database D the view extents are
Vpp(D) = { (John, Dr. MacDonald) } and Vpa(D) = { (Dr. MacDonald,
pneumonia) }, then D is exposed since [D]y,, vy, is the PDA table with the
single tuple { (John, Dr. MacDonald, pneumonia) }. If on the other hand the
attacker observes Vpp (D) = { (John, Dr. MacDonald), (Jane, Dr. MacDon-
ald) } and Vpa(D) = { (Dr. MacDonald, flu), (Dr. MacDonald, pneumonia)
}, then D is not exposed since there are several possible databases. One in
which John has flu and Jane pneumonia, on in which John has both diseases
and Jane has flu, etc.

No complete secret exposure (NSE?). Even if the actual database
is not exposed, it may be that all possible databases have the same image
under S, thus completely exposing the secret. To guard against this case,
we define the breach as having a single possible secret: S([D]y) = {S(D)}.
Non-exposure of the secret requires at least two possible secrets:

NSEgZ (V) = [S([D]y)] > 2.

Ezample 5. For the schema of Example 1, assume that the hospital publishes
the view Vp from Example 1 and view Vpy4 from Example 4. If the attacker
observes Vp(D) = { (John), (Jane) } and Vpa(D) = { (Dr. MacDonald,
pneumonia), (Dr. Zhivago, pneumonia) }, then D is not exposed since there
are several possible databases: one in which John sees Dr. MacDonald and
Jane Dr. Zhivago, one in which they swap doctors, one in which John sees
both doctors and Jane only one of them, etc. And yet, the secret is exposed,
since both doctors treat the same disease so no matter whom they see, both
John and Jane must suffer from pneumonia.

No belief revision (NBRg s)- The non-exposure guarantees fulfill only
the very basic owner expectations. They do not suffice to put her mind at
ease since attackers can “learn” something about some candidate secret, thus
improving their odds of guessing the actual secret.

For a given attacker described by probability distribution §, we define
“learning something about candidate secret s” in the strongest, information-
theoretic sense, as revision of attacker’s belief about the secret. The belief
revision is the change between the d-induced a priori and a posteriori be-
liefs that s is the secret. Formally, a belief revision occurs precisely when
P;[s|V(D)] # Ps[s]. The guarantee that no attacker from a class P revises
his belief amounts to

NBRZ s(V) :=Vs V(6 € P) Ps[s|V(D)] = Pj[s].

This guarantee is preferred by the owner because it makes no assumptions
on the attacker’s computational resources. When the guarantee holds, the
owner can rest assured that nothing can be learned about the secret. The
following example however shows that such a guarantee is often unreasonably
strong and is violated by most publishing functions, which is why we need to
set our sights on more relaxed guarantees.
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Ezample 6. Consider the database from Example 1. Suppose that the owner
exports the projection of the PD A relation on its doctor attribute:

V(d) :— PDA(p,d,a). Since neither patients nor ailments are exported, this
publishing is seemingly safe. However, an attacker can still learn from it some
(small amount of) information about the secret. Indeed, if the published list
of doctors is empty, then the actual database relation must be empty as well,
80 no patient can suffer from any ailment. An attacker whose belief assigns
non-zero probability to a possible secret containing at least one ailing patient
will therefore revise this belief a posteriori. If however there is even one doctor
in the published list, then there is a non-zero probability of a certain patient
suffering from some disease. An attacker who is a priori certain that there
are no ailing patients must revise his belief as well. Clearly, at least these two
attackers have learned something about the secret upon observing the list of
doctors, and the idealized guarantee NBR% s is violated. At the same time,
ruling out this publishing amounts to asking the owner to release no data
whatsoever, even if she avoids the attributes involved in the secret.

No further belief revision (NFBR%S). Since the guarantees NDE
and NSEgs are too weak, and the ideal guarantee NBRp s is too strong, we
consider a more pragmatic guarantee: it assumes that the owner is willing
to live with the current level in attacker’s belief as induced by the already
published data V(D), but wants to make sure that publishing any further
data will not lead to further belief revision. Formally, denoting with A/ the
new publishing function which the owner contemplates, a breach occurs when
P;[s|V(D)] # Ps[s|V(D) A N(D)]. Here, Ps[s|V(D) A N(D)] is the belief of
the attacker described by distribution ¢ that s is the secret, provided that
both V(D) and N (D) are published:

_ Ps[s AVID)AN(D)] _ Lwremopyniplysw—s 0P
P;[s|V(D) AN (D)] = Spé[v(D) AN (D)] - ) é(D’)

-(3)

ZD’G[D]VW[D]N
The associated guarantee is the following:
NFBRZ s(NV,V) := VsV(5 € P) Ps[s|V(D)] = P;[s|V(D) AN (D)].

Ezxample 7. Assume that on the schema from Example 1, the owner has
already published V = (V,,V,) where V,,V, are the views from Exam-
ple 2. The owner is currently contemplating the publishing of the two
new views N = (Vpp,Vpa) from Example 4. Suppose that V,(D) =
{(John),(Jane),(Jack)}, and V, (D) ={(pneumonia),(flu),(cold)}. From this
observation, any attacker can reverse-engineer the set of possible databases.
This includes, among others, the database D; = {(John,doc;,pneumonia),
(Jane,docs,flu), (Jack,docs,cold)}, yielding the secret s; = S(Dy) = {(John,
pneumonia), (Jane,flu), (Jack,cold)}. Given an attacker described by some
distribution 8, assume that his a priori belief that s; is the secret is non-zero
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P;[s1|V(D)] > 0. Now assume that the attacker were to observe the extents
of the new views, which are Vpp = { (John, Dr. MacDonald), (Jane,Dr.
Zhivago), (Jack,Dr. Zhivago) } and Vpa = { (Dr. MacDonald, flu), (Dr.
Zhivago, pneumonia), (Dr. Zhivago, cold) } The attacker must now revise
to 0 his a posteriori belief that s; is the secret. Indeed, only Dr. Zhivago
treats pneumonia, but John sees Dr. MacDonald, therefore John cannot have
pneumonia: Ps[s1|V(D) AN(D)] = 0.

An alternative intuition for the no-further-belief-revision guarantee is the
following. After observing V(D), the attacker reverse-engineers the possible
databases [D]y and uses his background knowledge to assign a likelihood to
each of them. After subsequently observing N(D), the attacker rules out all
databases which are possible for V(D) but not for N'(D), being left with only
those in [D]yN[D]x . Ruling out even one database results in re-distributing its
probability over the remaining ones, thus potentially modifying the attacker’s
a posteriori belief about the secret. For instance, in an extreme case, the
possible databases in [D]y may witness two secrets s1 and s». If [D]y N [D]y
rules out all witnesses of sy (and maybe also some but not all witnesses of
s1), then by (3) the attacker’s belief about the secret being s2 drops to 0 and
the belief of s; becomes 1, i.e. certainty.

This intuition is formalized by the following result.

Theorem 1 ([8]). Let P contain all possible distributions, thus modeling all
attackers. Then for every database D and secret S no attacker’s belief is re-
vised upon observing N'(D) if and only if the possible databases do not change:

VD VS NFBRP (N, V) & [D]y = [D]y N [D]x

Note that despite being defined in probabilistic fashion, the no-further-belief-
revision guarantee remarkably reduces by Theorem 1 to a purely model-
theoretic problem involving reasoning solely about possible databases.
Bounded belief revision (BBR%Z’ s)- It is often useful to consider relax-
ing privacy guarantees to allow desirable publishing functions. We next con-
sider a natural relaxation of the NBRg s guarantee of no belief revision, which
offers the owner more control over the trade-off between privacy and utility
of publishing functions. The idea is to allow revision, but only if bounded
by an owner-defined threshold. In this case, a breach is formally defined as
|Ps[s|V(D)] — Psls]| > €, where € € [0,1] is the threshold. This definition of
breach induces a family of privacy guarantees, parameterized by the threshold:

BBRZ 5(V,€) :=VsV¥(5 € P) [Ps[s|V(D)] — Ps[s]| < e.
Bounded further belief revision (BFBRgs). The same idea of allow-

ing bounded belief revision yields a natural relaxation of guarantee NFBR% S

BFBRE 5(\,V, €) := VsV(3 € P) [Ps[s|V(D)] — Ps[s|V(D) AN(D)]| < e.



Privacy in Database Publishing: A Bayesian Perspective 9

Extent-Independent Guarantees. The privacy guarantees we’ve con-
sidered so far depend on the extent of the actual database D. The owner is thus
faced with the following dilemma. Checking the guarantee on a given extent D
avoids being overly conservative and rejecting those publishing functions that
preserve privacy on the actual database but breach it on some other database
extent D’. On the other hand, this means re-checking the privacy guarantees
upon each update to D. Alternatively, we consider strengthening the above
guarantees to hold over all database extents. We obtain the following list of
extent-independent privacy guarantees:

NDE(V) :=
NSEs(V) :=
NBRp s(V) := VD NBRR 5(V)
NFBRp,s(N,V) =
BBRyp s(V,€) =
BFBRp s(N,V,¢) := VD BFBRP 5(N,V,¢)

As before, it makes sense to carefully consider the trade-off between
strength of the guarantee and utility of the publishing functions it allows.
In many situations, the proprietary database is known to satisfy a set of in-
tegrity constraints C. By imposing the unrestricted extent-independent guar-
antees above, the owner risks excluding a perfectly safe publishing function
because it breaks the guarantees on some database that will never occur in
practice since it violates the constraints. Clearly, the owner does not need the
privacy guarantees to hold on all imaginable databases, but only on a subclass
thereof: all databases D satisfying the constraints in C (denoted D |= C). This
natural relaxation yields guarantees that are extent-independent as long as
the extents satisfy the constraints:

NDE®(V) := V(D k= C) NDEP (V)
NSES(V) := V(D |= C) NSEZ (V)

NBR} s(V) := V(D = C) NBRj s(V)
NFBR% (N, V) := V(D k= C) NFBR3 5(NV,V)
BBR§, s(V,€) := V(D | C) BBRR 5(V,¢)
BFBR$ s(N,V,€) := V(D [ C) BFBRP (N, V,¢)

A Similar Privacy Model. [5, 6] propose a similar privacy model for re-
lational databases, based on Bayesian belief revision. However the authors do
not address the equivalent of the NFBRp s, BBRp s, and BFBRp s guaran-
tees, nor do they consider guarantees parameterized by classes of probability
distributions, or integrity constraints.
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3 View-Based Publishing

3.1 Independent-Tuple Attackers

The application of the privacy model from [5] to view-based publishing was
pioneered in seminal work by Miklau and Suciu [19, 20].

In the setting of [19, 20], the publishing function V is given by a list
of views. Both V and the secret S are specified by conjunctive queries with
inequalities.

As in Section 2, an attacker is described by a probability distribution § on
the set of all databases. However, only attackers described by independent-
tuple distributions are considered. These distributions treat the occurrences
of any two tuples 1, t2 in a given database as independent events. Formally,
given a domain Dom, denote the set of all tuples over Dom by tuples(Dom).
Any D C tuples(Dom) is a database over domain Dom. ¢ is an independent-
tuple distribution on the databases over Dom if it is induced by a distribution
p on tuples(Dom). That is, for any database D over Dom we have (by the
independent-tuple assumption)

§(D) = [T »(t) x II (1 —p(2)).

teD tetuples(Dom)—D

The attacker’s a priori and a posteriori beliefs about the secret S(R) are then
induced by p via 0 as in (1), respectively (2).

Perfect privacy. Given secret S(D), the views V are considered to pre-
serve privacy against an attacker described by distribution ¢ if there is no
change between the attacker’s a posteriori belief (after seeing V(R)) and his a
priori belief (before seeing V(R)) about secret s = S(D): P;[s] = P;[s|V(D)].

Given a domain Dom, denote with Ppom the set of all independent-
tuple distributions on databases over Dom induced by distributions over
tuples(Dom ).

Then V is said to maintain perfect privacy for secret S, denoted PerfP s())
if for every domain Dom, every database D over Dom, every secret value s
and every distribution 0 € Ppom, upon observing V(D) the attacker does not
revise his belief that s is the secret:

PerfPs(V) := VDom V(D C tuples(Dom)) Vs V(§ € Pbom)
Ps[s] = Ps[s[V(D)],

or, equivalently in the notation of the GBP model (Section 2.2),
PerfPs(V) := VDom V(D C tuples(Dom)) NBR‘/QDO.,,,S(V)- (4)

Note that perfect privacy is an extent-independent guarantee. Therefore it
need not be re-checked upon every update to the database.
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[19] shows that perfect privacy is decidable in II} in the combined size of
the queries defining V,S. The result follows from a key lemma showing that
privacy holds for all domains if it holds for some domain of size polynomial
in the number of variables and constants appearing in the view and secret
queries. Essentially, to check the guarantee on such a domain Dom, one simply
needs to enumerate the databases over Dom. There are only finitely many of
them (though their number is exponential in the domain size). In a follow-up
paper, Machanavajjhala et al. [15] provide an alternative decision procedure
which reduces perfect privacy to checking a number of containments between
queries constructed from the views and secret definitions. This allows them
to leverage well-known results on the complexity of query containment to
identify restrictions leading to a PTIME-checkability of the perfect privacy
guarantee.

In addition to a decision procedure for perfect privacy, [19] introduce also
a notion equivalent to the bounded belief revision guarantee BBRp s from
Section 2.2 (again considering only independent-tuple distributions). Further-
more, Miklau and Suciu consider a limited flavor of the “no further belief
revision” guarantee NFBRp s, in which the already published views are de-
fined by boolean queries.

As recognized in [19, 20], the fact that perfect privacy only defends against
attackers described by independent-tuple distributions is a limitation because
it ignores attackers whose background knowledge gives them correlations be-
tween tuples. For instance, the attacker’s background knowledge that review-
ers r; and r, have similar research expertize and taste can be modeled by a
distribution in which the probability that r; bids for a paper is similar to the
probability that r» does. In an additional example, the attacker may know
that if a patient has a highly contagious disease, then her spouse likely has it,
too. Such background information cannot be modeled by independent-tuple
distributions.

However, limiting attackers to those characterized by independent-tuple
distributions strikes a good balance in the trade-off between guarantee strength
and feasibility of checking the guarantee. This conclusion is reinforced by a
study (discussed next) of what happens if the limitation is removed.

3.2 More General Classes of Attackers

[8] explores an alternate way to balance the tension between the strength of
the guarantee and the feasibility of checking it.

The study starts from the thesis that data owners cannot presume that at-
tacker’s beliefs are induced exclusively by the independent-tuple distributions
of [19, 20]. However, strengthening the guarantees to consider more general
classes of attackers carries the potential danger of rendering them too rigid,
i.e. violated by too many desirable publishing scenarios. Therefore, [8] simul-
taneously considers a relaxation along a different dimension: data owners are
assumed willing to accept the privacy breach caused by an already published
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set of views V, but want to ensure that a new view N will cause no further
breach. “Breach” is defined as a revision of belief from the a priori of having
observed V(D) to the a posteriori of having also observed N (D).

In the terminology of Section 2.2, [8] introduces and studies precisely the
various flavors of the NFBRp s guarantee: extent-dependent (NFBRg s), and
also extent-independent. Moreover, [8] argues that a privacy guarantee that
holds for given D, V, S, and N may be violated if it is also known that D
satisfies a set C of integrity constraints.

Example 8. Assume a hospital database consisting of four tables:

PW associates patients with the ward they are in;

WD associates doctors with the wards they are responsible for (several
doctors may share responsibility for the same ward, and the same doctor
may share responsibility for several wards);

DA associates doctors with the ailments they treat;

PA associates patients with the ailments they suffer from.

Assume that PW, WD, DA are published and PA is the secret. If the owner
also discloses (or common sense leads the attacker to assume) the following
integrity constraints, the attacker’s belief can be affected.

e Patients can be treated only by doctors responsible for their ward.
e If a patient p suffers from an ailment a then some doctor treats p for a.

If these constraints do not hold, an attacker may consider a possible database
associating a patient p with a doctor d who does not cover p’s ward and hold a
non-zero belief that p suffers from some ailment a treated only by d. However,
under the constraints the secret patient-ailment association PA is a subset of
IIpa(PW > WD > DA), to which (p,a) does not belong. This forces the
attacker to revise to 0 his belief about any possible database witnessing (p, a).

[8] takes into account such semantic and integrity constraints when checking
privacy.

Maybe the most interesting dimension of the study in [8] stems from
proposing a natural way to classify attackers, yielding two groups.

First, we have the class of all attackers, described by set P, of unrestricted
distributions. Ideally, this is whom the owner wishes to defend against. P, cap-
tures attackers who exploit correlations between tuples, and strictly includes
attackers who don’t (the ones described by the independent-tuple distribu-
tions of [19, 20]).

Second, [8] observes that the attacker is often unaware of (or uninterested
in) the details of the possible database D witnessing a secret S(D), as D may
also involve data that are tangential or irrelevant to the secret. For example,
the attacker trying to link patients to their ailment does not care about the
patient’s insurance provider or the hospital’s parking facilities, all of which
could be also stored in the database.
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[8] therefore considers attackers whose background knowledge enables
them to form an opinion that discriminates among possible secrets, but who
cannot (or do not care to) distinguish among the possible databases witness-
ing any given secret. In this survey we call such attackers secret-focused, and,
given a secret S, we denote with Pgs the set of distributions describing secret-
focused attackers with respect to S.

Ps is defined as follows. Given a distribution ds on possible secrets, we
say that ds induces a distribution § on possible databases if ¢ satisfies both
of the following conditions:

e for every s and every D such that s = S(D), we have
Zs:S(D’) 6(D') = ds(s);

e all witnesses of the secret are equi-probable according to §:
VDl,D2 S(Dl) = S(DQ) = (5(D1) = 5(D2)

Observing that ¢ is uniquely determined by ds, we have that Pg is the set of
distributions on databases induced by all unrestricted distributions on secrets.
Note that Pgs still allows for attackers with arbitrary capacity to discriminate
among the secrets, as we start from arbitrary distributions on secrets.

[8] studies the setting in which the already published views V), the secret
S, and the new view N are specified by unions of conjunctive queries with
inequalities UCQ;ﬁ. The constraints in C are equivalent to containment state-
ments between UCQ” queries. Such constraints extend classical embedded
dependencies [1] with disjunction and inequalities, and can express such com-
mon integrity constraints as keys and foreign keys, functional, inclusion and
join dependencies [1], cardinality constraints, and beyond.

For the extent-dependent guarantees, [8] shows that NFBR%MS(V,N)
is II§-complete in the combined size of the queries and database, while
NFBRg&S(V,N) is in PSPACE. These results hold even when the attacker
knows that D satisfies a set C of constraints, as long as C is weakly acyclic [9,
10]. In addition, both extent-independent guarantees NFBRp, s(V,N) and
NFBRpg,s(V,N) are undecidable [8], even in the absence of constraints
Cc=0).

These results should be viewed in light of the fact that in generalization-
based publishing (discussed in Section 4), deciding whether an anonymization
is optimal is NP-complete in the size of the database.

While the above results render the proposed privacy guarantees impracti-
cal in the current form, the study in [8] is a first step toward identifying restric-
tions leading to tractability on the views, secret and constraints. Moreover, the
study proves that changing the class of attacker distributions yields a novel
privacy guarantee, which is qualitatively different from the version in [19, 20],
as witnessed by the different complexity and decidability bounds. Finally, the
contrast between the various classes of attackers considered in [19, 20] and [8]
shows the difficulty of striking the right balance between the strength of the
guarantee and the feasibility of checking it.
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4 Generalization-Based Publishing

The concept of anonymization by generalization [23, 24] was introduced to
enable the publishing of data about individuals for the purpose of studies
(e.g. computing statistics and data mining), while making it hard to pinpoint
the exact individual associated with each data value. A canonical example
pertains to a hospital that publishes seemingly anonymized data by releasing
the age, gender and zip code of its patients together with the disease, in the
hope that by leaving out the name and social security number attackers cannot
infer who suffers from what disease.

Sweeney shows that this hope is unfounded [24], as over 85% of the US
population is identified by the combination of age, gender and zip. This data
is accessible to attackers either because they know the person, or simply from
publicly available databases such as voter registration lists. In a notorious
illustration of her point, Sweeney uncovered the medical history of a former
governor of Massachusetts by combining the medical data with the registration
list.

The attacks based on combining the anonymized data with external public
databases are called linking attacks. Sweeney argues that in order to defend
against linking attacks, the data owner must conservatively assume that the
attacker has access to the public database, and that the information in this
database uniquely identifies the individual. The upshot of this assumption is
that the attacker has access to the identity of each individual, as if the owner
had published it. Therefore, the best a defense against linking attacks can
accomplish is to hide the association between the individual’s identity and
the sensitive data (such as her disease, salary, etc.).

In detail, work on anonymization by generalization considers a database
containing a single relation R(ID,QI,S), where

e the list of attributes I D comprises the person’s identifier
(e.g. (ssn) or (first name, middle name, last name)),

e the list of attributes QI gives the person’s quasi-identifier
(e.g. (age,gender,zip)) which can be used to look up the actual identifier
in some public database of schema ID,QI, and

e S is the list of sensitive attributes (e.g. disease, salary, etc.).

Association between identity and sensitive attributes. We say that
identity id is associated in R to sensitive attribute value s if there exists some
tuple r € R with r[ID] =id and r[S] = s.

Generalization function. To keep associations private, the owner anon-
ymizes the Q1 attributes using a generalization function g. g hides the actual
values of the QI attributes, replacing them with more general values. For
instance, an age value is replaced by an age interval, a zip code changed by
dropping some of its least significant digits. In the extreme, the generalization
function can hide the attribute value completely by replacing it with the wild
card “*”. This is called attribute suppression.
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Proprietary data Anonymized data
|Name|Age|Gender| Zip | Ailment | | Age |Gender| Zip | Ailment |
John | 20 M (92122 flu 20-25) * 9212%* flu
Jane | 22 F  |92121|pneumonia 20-25) *9212* | pneumonia
Jack | 26 M |92093 cold 25-30)| *  |9209* cold
Jill | 29 F (92094 bronchitis 25-30)| *  |9209*| bronchitis

Fig. 1. Anonymization in Example 9

Anonymization. The generalization function ¢ defines an anonymizing
function A, on R, which drops the ID attributes of each R-tuple, keeps the
sensitive attributes unchanged, and substitutes the QI attributes with the
result of g. If duplicates are created in this process, then they are all preserved.
We have

Ag(R) == {{t: QL S| r € R, t[QI] = g(r[QI]) A t[S] = r[S]}},

where t[X] denotes the projection of tuple ¢ on attribute list X, and where
{{}} denote multi-set comprehensions (which preserve duplicates, as opposed
to the set comprehensions denoted with {}).

Ezxample 9. In Figure 1, the proprietary table R on the left has ID attribute
Name, QI attributes Age, Gender, Zip, and S attribute Ailment. The table
on the right is its anonymization A, (R) where g replaces age with the 5-year
interval it falls in, suppresses gender and hides the least significant digit of
the zip code.

Given a tuple r € R, the owner wishes to preserve the privacy of the
association between the identifier r[ID] and the sensitive attribute values
r[S]. Since the sensitive attributes are published in clear, the attacker needs
to guess only r[ID]. Intuitively, the anonymization A, “hides the identity
r[ID] in a crowd” of possible identities, forcing the attacker to guess among
them. The larger the crowd, the lower the chance of guessing right.

Equivalence under generalization. This crowd comprises the identities
of all tuples whose projection on the quasi-identifiers generalizes under g to
the same value. It is easy to see that the property of two tuples having the
same image of their QI projection under g is an equivalence relation. Denoting
with [r]% the equivalence class of r, we have

[rlg = {r' € R | g(r'[QI]) = g(r[QI])}.

In Example 9, the tuples of table R are partitioned by ¢ into two equiv-
alence classes, one comprising the tuples for John and Jane, the other the
tuples for Jack and Jill.

Now consider a tuple t € A,(R) which is the image under A, of some
tuple r € R. When the attacker observes the occurrence of sensitive attribute
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value s in t (t[S] = s), the identities which could be associated with ¢[S]
in the actual database R are those of the tuples in r’s equivalence class:
{c:ID | re[r]f,¢[ID] =r[ID]}. In Example 9, the attacker concludes that
either Jack or Jill can have bronchitis.

Assumptions on the attacker’s knowledge. As introduced in [23, 24],
the defense against linking attacks relies on a few implicit assumptions, also
adopted by follow-up work. We explicitly list them below:

A1l For every r € R, the attacker knows that r[I.D] occurs in the database (e.g.
because r[I D] identifies an acquaintance or celebrity whose hospitalization
the attacker is aware of).

A2 For every r € R, the attacker knows the value of the quasi-identifier
attributes r[QI] (e.g. due to access to some external public database).
A3 The attacker has no additional external knowledge to discriminate among

the possible identities, thus treating them as equi-probable.

Util The owner is willing to live with the privacy breach caused by publish-
ing the projection of R on S in the clear, since this is a minimal utility
requirement for statistical and data mining computations performed by
consumers of the released data.

Note that assumptions A1l and A2 are conservative, and any guaran-
tee holding under them also defends against less informed attackers. In con-
trast, assumption A3 is optimistic and weakens any guarantee, as it ig-
nores attackers who improve their guessing odds by exploiting background
knowledge to discriminate among alternatives. We address below versions of
anonymity which relax this assumption. Finally, regarding assumption Util,
note that [23] and most of its follow-up work concerns itself with choosing
generalizations of the quasi-identifier attributes so as to minimize information
loss, with the understanding that the sensitive data is released in the clear.

Relationship to GBP Model. We show the connection between the
GBP model and the privacy guarantees offered by an arbitrary anonymization
of a table via generalization. This will enable a comparison to the privacy
guarantees described in Section 3. Moreover, it will allow us to contrast various
anonymization guarantees found in the literature using a uniform framework.

e In typical studies of generalization, the proprietary database D consists of
a single relation R of schema (ID,QI,S).

e Assumptions A1l and A2 can be modeled by just as well assuming that
the owner (or some other authority) has already published the projection
of Ron ID,QI:

Via(R) := II1p Q1 (R).

e In our modeling, we separate the owner’s concerns on releasing the sen-
sitive data (none according to assumption Util) and the quasi-identifier
data (serious concerns, calling for generalization). To this end, we consider
the projection of R on the sensitive attributes S as good as published, by
a view
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Vs(R) :={{t: S| r € R,t[S]=r[S]}}.

Note that V; is defined under multi-set semantics (it preserves duplicates),
thus revealing the distribution of sensitive values in the underlying popu-
lation for the benefit of statistical studies.

In addition, the owner contemplates a new data release: the table R
anonymized using publishing function A, which associates anonymized
quasi-identifiers with clear sensitive values. 3

Under assumption Util, the owner is not concerned about the attacker’s
belief revision caused by seeing the sensitive values. The only revision she
wishes to bound is caused by considering Ay (R) on top of Vi(R). To this
end, we adopt the following convention: a priori every attacker has access
to views Vij4(R) and Vi(R). We denote with V the publishing function
given by the pair of views Viq, Vs. A posteriori refers to having released
Ay (R) on top of V(R).

e For each proprietary tuple r € R, both the identity value r[ID] and the
sensitive value r[S] are known a priori to the attacker via views Vg4, re-
spectively V. The attacker is uncertain only about whether the two are
associated in R. To hide this association from the attacker, the owner de-
clares as secret the boolean query that checks the existence of some tuple
r’ € R which witnesses the association:

S, :=3(r' € R) r'[ID] = r[ID] Ar'[S] = r[S].

Note that the secret does not include the quasi-identifier attributes, as by
assumption A2, these are known for every identifier anyway (via V;g4).

e Under assumption A3, the owner guards only against a single type of at-
tackers, namely those who for lack of additional external knowledge deem
all possible databases equally likely. We model these attackers by the uni-
form probability distribution u on possible databases.

Denote the multiplicity of sensitive value s in table X with mult(s, X).
Then it is easy to verify that, under assumptions A1,A2, and A3, the prob-
ability that id = r[ID] is associated to s = r[S] in R (i.e. that secret S,

holds) is a priori (i.e. after seeing V(R)) given by %. The a posteriori

R
probability (after seeing A, (R)) equals % It follows that g offers the

following guarantee of bounded belief revision for secret S,:

mult(r[S], [r] ) _ mult(r[S], R)
|5 |B|

BFBRI{QU},ST (Va Ag, | |)
This immediately yields that the anonymization of R via g satisfies the fol-
lowing privacy guarantee:

3 In practice, view V;(R) is released simultaneously with anonymized table A, (R)
(as its projection on S), not prior to it. Our modeling is merely a means to capture
assumption Util.
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mult(r[S], [r]%)  mult(r
/\ BFBR{,; 5, (V, A, | lti[iii]g][ ) ltﬁéf]’R) ). (5)
reR g

Note that the frequency of a sensitive value s in the entire table R can diverge
widely from the frequency of s in the equivalence class of some r € R. In a
worst-case scenario when s is predominant in R (its frequency in R is close
to 1) but very infrequent in 7’s equivalence class, the belief revision for secret
S, is considerably close to 1, which is the maximum possible.

4.1 K-Anonymity

In this section, we expose the connection between the original work on k-
anonymity and the attacker’s Bayesian belief revision. Casting the terminology
of [23, 24] in terms of the GBP model, we find that [23, 24] bounds the
attacker’s belief revision by requiring the generalization function g to induce
only equivalence classes of cardinality at least k. In that case, g is called
k-anonymous, which we shall denote anonf(g):

anont(g) :==V(r € R) |[r]f| > k.

For instance, function ¢ in Example 9 is 2-anonymous.

By the above discussion, k-anonymity immediately implies that for a given
occurrence of sensitive attribute value s in some tuple ¢ of the anonymized
data, there are at least k distinct identities which could be associated with s
in the actual database R. Under assumptions A1,A2, and A3, the attacker’s
odds of guessing that indeed r[ID] is the correct identity are at most 1/k.

Previous work has interpreted this fact as implying that the probability
of correctly guessing that identity id is associated in R to sensitive data value
s is at most 1/k. As pointed out in [16] and detailed below, this conclusion
is unjustified: it is caused by the confusion between the value of the sensitive
attributes and their occurrence. Specifically, if sensitive value s occurs [ times
in s equivalence class, then the probability that r[ID] is associated with
value s is the sum over all occurrences of s of the probability that r[ID] is as-
sociated with that occurrence, yielding I[TZW This quantity can be arbitrarily

larger than %, reaching 1 in the extreme case when all tuples in 7’s equiva-

lence class have the same sensitive value. This observation gives an alternative
explanation why k-anonymity provides no meaningful privacy guarantees in
general.

Before discussing in the following sections refinements of k-anonymity
which address this problem, we first articulate an implicit assumption un-
der which k-anonymity does bound by % the probability of guessing secret
Sr.

A4 For every r € R, sensitive value r[S] occurs only once in [r]}.
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We are now ready to relate the definition of k-anonymity with the GBP

model. Under additional assumption A4, if ¢g yields a k-anonymization of R

then the a priori probability of S, is ﬁ and the a posteriori probability is

1 1.
T < &
11
(anonf(g) A Ad) & /\ BFBR?@L},ST v, A, z = ﬁ) (6)
reR
1
= A BFBR?U}@(V,AQ,E). (7)
reR

(7) states that under assumption A4 the amount of belief revision for each
secret S, is bounded by a constant rather than the size of the database.

We discuss next a widely applicable guarantee that lifts restriction A4,
relaxes restriction A3, and still bounds the amount of belief revision by an
owner-defined constant.

4.2 L-Diversity

Machanavajjhala et al. [16] point out two key deficiencies of the k-anonymity
guarantee: it does not withstand so-called homogeneity and background at-
tacks.

In the general case when sensitive attribute values may occur more than
once in R, vulnerability to homogeneity attacks arises whenever few sensitive
values occur with high multiplicity in an equivalence class. In particular, when
all tuples in r’s equivalence class share the same sensitive value s, any attacker
can infer with certainty that r[ID] is associated with s. In this case, the
attacker learns the maximum possible amount of information about the secret
S, since its a posteriori probability is 1.

In background attacks, the attacker exploits external background informa-
tion to rule out a number of sensitive values as being definitely not associated
to r[ID]. The remaining alternatives are considered equi-probable. This class
of attackers is not covered by k-anonymity, which considers the single attacker
who a priori deems all associations equi-probable.

[16] proposes the concept of I-diversity to remedy these deficiencies of k-
anonymity. The intuition behind this concept is to defend against attackers
who are able to rule out at most [ — 1 sensitive values from the equivalence
class of each r € R, by ensuring that the frequency of each sensitive value in
the remaining set of tuples is upper bounded by an owner-defined threshold.
[16] introduces the notion of recursive (c,l)-diversity as a sufficient condition
for 1-diversity.

For every r € R, let o be the number of distinct sensitive values occurring in
r’s equivalence class. Let their list be sq,...,s,, and let m; be the multiplicity
of s; in r’s equivalence class. Assuming w.l.o.g. that m; > mo > ... > m,, we
say that the equivalence class of r satisfies recursive (¢, [)-diversity if
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my < c(mg+mpp1+ ...+ my,)

for some constant c. We say that ¢ satisfies recursive (c,[)-diversity for R,
denoted r-div¢ (g, R), if for every r € R, r’s equivalence class satisfies recursive
(¢, I)-diversity.

Ezample 10. The anonymized table in Figure 1 satisfies recursive (1,2)-diversity.

Recursive (¢, l)-diversity has two immediate implications.

First, it enables owners to drop assumption A4, thus extending applica-
bility of the guarantee to tables with duplicate sensitive values. Indeed, it is
easy to check that under assumptions A1, A2 and A3, (c,[)-diversity im-
poses an upper bound of I—T—c on the attacker’s a posteriori and a priori belief,
and hence on the belief revision that S, holds. Recursive (c,[)-diversity thus
provides defense even when assumption A4 is violated.

Second, recursive (c,[)-diversity allows to relax assumption A3 to accom-
modate defense against background attacks. [16] shows that this guarantee
implies that regardless of which (at most) [ — 1 sensitive values are pruned
from r’s equivalence class as being unassociated to r[ID] (according to back-
ground information), the frequency of each remaining sensitive value in the
pruned equivalence class is at most 1—frc This is the upper bound on the a
posteriori belief about secret S,.

[17] discusses additional refinements of (c,[)-diversity, relaxing the defini-
tion to allow for the disclosure of attributes for certain individuals with less
stringent privacy concerns. The authors also show that l-diversity is a prac-
tical notion, not only because it defends against more realistic attacks than
k-anonymity, but also because finding an optimal l-diverse generalization of a
table can be done no less efficiently than finding an optimal k-anonymization.
Machanavajjhala et al. show how to exploit the structural similarity of the two
privacy notions to easily adapt to l-diversity the state-of-the-art techniques
developed for k-anonymity, such as the Incognito algorithm [12].

In the remainder of this section, we connect l-diversity to the GBP model.
Relationship to the GBP Model. The insight that when assumption A4
does not hold K-anonymity provides no guarantees, is also reflected in the
GBP model. Specifically, in the pathological case when all tuples in r’s equiv-
alence class share the same sensitive value, the posterior probability of S, is
given by

mult(r[S], r|k
P,[S:|[V(R) A Ay(R)] = W _q

so from (5) we obtain that the only guarantee possible for S, is

mult(r[S], R)

BFBR{,, 5. (V, Ag,1 - i

).

This is a trivial guarantee, satisfied by any anonymization, including those in
which the secret S, is completely exposed.
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In contrast, it is easily verified that, even after dropping assumption A4,
recursive (¢, [)-diversity guarantees that

mult(r[S], R) _ mult(r[S], [T]f) c
B S R S 1te

C

which implies that the further belief revision is bounded by 1 st

bound into (5), we obtain

Plugging this

c

r—divf:l(g) = /\ BFBR{Ru},ST (V,.Ag, ]_——|—C

reR

).

A remarkable fact about recursive (c,!)-diversity is that it represents the
first anonymity flavor that looks beyond the uninformed attacker described
by the uniform probability distribution. The class of attackers it considers can
be described by the following family of probability distributions. We say that
a probability distribution § is I-pruning if it satisfies both conditions below:

R

g > such

e for every r € R, there is a set V,. of sensitive values occurring in [r]
that
- |Vi| <land
— for every database R', 0(R') = 0 if and only if there are ' € R and
v € V,» such that R’ contains the association of r/[ID] with v;

e all databases with non-zero probability are equi-probable.

Intuitively, V. is the set of alternatives which the attacker rules out as unas-
sociated to r[ID]. Denoting with £P all l-pruning distributions given by R
and g, we have

c

r-divi(9) = /\ BFBREp,s, (V, Ay, 1

reR

).

Since LP is generated by all possible choices of V,., the guarantee defends
against all attackers able to rule out at most /—1 alternatives, no matter which
these alternatives are, as dictated by the various attackers’ backgrounds.

We conclude this section with a few remarks.

4.3 Additional Remarks on Anonymization Techniques

Complexity of Finding Optimal Anonymizations. Clearly one extreme
way to ensure k-anonymity is to generalize tuples into a single equivalence
class. This would of course minimize the utility of the released data. [18]
studies the problem of finding the k-anonymization which incurs the least
amount of data loss due to generalization (for various metric for data loss),
showing that the problem of optimal k-anonymization is NP-complete. Sev-
eral follow-up papers propose practical k-anonymization algorithms based on
approximations and heuristics [12, 3, 7, 4]. While Machanavajjhala et al. do
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not provide a lower bound for finding optimal 1-diverse anonymizations, they
conjecture NP-hardness as well, and show how to adapt the Incognito Algo-
rithm [12].

Sensitive Data Generalization. There are slight exceptions from as-
sumption Util: an example occurs in [22]. In this work, sensitive data is not
published in the clear, but generalized itself using a function f. The gener-
alization function f exploits a hierarchy among concepts in the sensitive do-
main, treating ancestor concepts as more general than descendant concepts.
For instance, instead of displaying “pneumonia”, the owner may release a
more general concept such as “respiratory tract problems” which in turn is
generalized by “antibiotic-curable ailment”. Evidently the objective in [22] is
to minimize the information loss resulting from generalization of both quasi-
identifiers and sensitive attributes. We can capture this scenario as well in the
GBP model, by simply adjusting assumption Util to state that the owner is
willing to live with the attacker’s belief after seeing the generalized sensitive
values described by view Vi(R) := f(IIs(R)).

T-Closeness. One paper that explicitly states and exploits assumption
Util is [14]. It considers the probability distribution p on the secrets {S,}rcr
after seeing the entire anonymized table A,(R), and the probability distri-
bution ¢ of the sensitive values in R, i.e. in Vi(R). The authors introduce
the privacy guarantee of t-closeness, which holds if the distribution distance
between p and ¢ is smaller than a parameter threshold ¢. The authors show
shortcomings of standard metrics for comparing distributions and propose
their own. They also show that the search for a t-close anonymization that
maximizes utility (under a standard measure) can be performed by adapt-
ing efficient algorithms developed for k-anonymity. However, t-closeness does
not subsume k-anonymity and the authors suggest combining the two before
releasing an anonymized table.

An Alternative Bayesian Modeling. [17] compares the notion of -
diversity to a model called Bayesian Optimal Privacy (BOP) model. Just like
the GBP model, the BOP model is based on belief revision. However, the
authors conclude a mismatch between l-diversity and the BOP model. As
demonstrated in this section, the reason is not due to any fundamental mis-
match between Bayesian privacy models and 1-diversity. Rather, it stems from
the particular modeling choice in [17] which ignores assumption Util: [17] con-
siders that a priori the attacker sees Viq(R) but not V,(R). The difficulty with
this modeling (identified in [17] as well) is that to estimate the attacker’s a
priori belief revision about &, we require knowledge of the attacker’s proba-
bility distribution on the domain of all sensitive values, which is an unrealistic
expectation. The modeling we describe in this section surmounts this obstacle,
as under assumption Util, it needn’t care about this distribution; it only con-
siders belief revision starting from the attacker’s adjusted belief after seeing
Vs(R). We can estimate this belief (as in (5)), regardless of the belief before
seeing Vi (R).
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| work |attacker classes considered |

8] |all Po;
secret-focused Ps Ps
P, CLP C C Pa
19, 20]|independent-tuple P;¢ Pit

16, 17]|l-pruning LP
23, 24]|uniform distribution P, = {u}

Fig. 2. Classes of attackers considered by privacy guarantees in various works

k-Anonymous Views. An intriguing idea introduced by Jajodia et al
in [25] is to apply the notion of k-anonymity to view-based publishing. The
setting is similar to generalization-based publishing: we have a single table R
with identity attributes I'D and sensitive attributes S. The owner publishes
data from R via views expressed as conjunctive queries. It is assumed that re-
leasing all identifiers I1;p(R) and all sensitive attributes IIs(R) is acceptable
to the owner, but releasing the association between them is not.

A view V is said to satisfy k-anonymity if for every identifier id € II;p(R),
there are k distinct possible databases {Ry, ..., Rr} C [R]v, each associating
1d with a distinct sensitive value s1,..., sg.

This guarantee can be connected to the GBP model as follows. Say that
an attacker is wuniform secret-focused if he is described by a distribution on
databases which is generated by a uniform distribution on secrets. Given secret
S, there is only one such uniform secret-focused distribution, ds. Then view
V'’s k-anonymity implies

1
/\ BEBRE, 1.5.(V,V, =)
reR

where V are the views (considered a priori known to the attacker) II7p(R) and
IIs(R), and S, is the secret association for tuple 7, as defined in Section 4.1.

5 View-Based Versus Generalization-Based Publishing

The formalization of various privacy guarantees in terms of the GBP model
allows us to qualitatively compare view-based and generalization-based pri-
vacy guarantees.

Abstracting from the different expressive powers of the publishing func-
tions V and N (views versus generalizations), the fundamental difference be-
tween these guarantees remains the class of probability distributions used to
model attackers.

The guarantee in [8] is the most conservative one, considering all types
of attackers (with the drawback of high complexity for deciding the extent-
dependent guarantees, and undecidability in the extent-independent case).
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Miklau and Suciu’s guarantee of perfect privacy considers a subclass of at-
tackers described by independent-tuple distributions, with the benefit of fea-
turing better decision complexity. Recursive (¢, [)-diversity requires l-pruning
distributions, which are a subclass of the distributions of [8]. L-pruning distri-
butions are also particular cases of independent-tuple distributions. Finally,
the uniform distribution v implicitly used to model attackers in k-anonymity
is a particular case of l-pruning distributions (for [ = 1). Figure 2 summarizes
the relationship between the various classes of attackers.

Note that the classes P,,Ps, Py were introduced for view-based privacy,
while £P and P, for generalization-based privacy. There is no reason why the
various classes of attackers should not be considered uniformly, across both
publishing paradigms.

6 Privacy in Open-World Integration

So far we have only considered publishing settings in which V is a function.
However, this modeling leaves out an important publishing paradigm, namely
open-world integration [11, 13].

In open-world integration, a collection L of data sources (also known as
local databases) is registered into an integrated database G (also known as
the global database). Each data source is registered by stating the inclusion of
a publishable data subset into G. The publishable subset is typically specified
by a query against the local database, and the global dataset containing it is
specified by a query against the global database. This allows for instance a
Toyota car dealer to register the classified deals in her database as a subset of
the Toyota deals from the global database of a portal covering many dealer-
ships. If the portal offers several brands, specifying its Toyota deals requires
a selection query.

Such inclusion statements do not uniquely determine the global database,
since whenever a global database G satisfies them, so does any other database
strictly containing the tuples in G. Consequently, the relation V between local
(proprietary) and global (public) database is not functional: V associates any
extent of local databases L to an infinite family of global databases. Towards
a well-defined semantics of answering application queries ) against the global
schema, the notion of certain answers was introduced [11, 13]. Given a set L
of local databases, the certain answer of () against the global schema is the
set of all tuples appearing in the answer of @) on all global databases G related
to L: certq(L) = Nz,a)ev@(G).

Clients (and therefore attackers) can interact with the integration system
only by posing queries against the global schema and receiving their certain
answer. In such a setting, it still makes sense to allow the owner of an indi-
vidual local database to specify the sensitive data using a query S against
the local database. Privacy of the secret can still be defined in terms of no
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(or bounded) belief revision, which depends on the possible local databases,
analogous to the GBP model.

However, the possible local databases now represent precisely those which
are indistinguishable from the actual local database by an arbitrary interaction
with the integration system. That is, they cannot be distinguished by posing
arbitrary-length sequences of arbitrary queries against the global schema and
observing their certain answer.

The problem is that the space of possible interactions between attacker
and integration system is infinite, so this definition does not immediately lead
to an algorithm for identifying the set of possible local databases, which in
turn hinders the development of an algorithm for checking privacy guarantees.

[21] solves the problem in a setting where V is given by containment
statements between a union of conjunctive queries with inequalities (UCQ7)
against the local data and a UCQ7 query against the global data (such state-
ments are also known as GLAV [11, 13] or source-target constraints [10]). The
secret S is also given by a UCQ7 query against the local database. [21] shows
that, instead of considering the infinitely many possible interactions of an at-
tacker with the integration system, it suffices to focus on a single, canonically
built interaction. This canonical interaction is optimal in the sense that it
poses a finite set of queries against the integration system, such that no fur-
ther queries an attacker could conceive give additional information. More pre-
cisely, the certain answers of the canonical queries suffice to reverse-engineer
precisely the set of possible local databases. This in turn enables formulating
and checking all extent-dependent GBP privacy guarantees (Section 2).

7 Conclusions

In this chapter, we reduced various instantiations of the view-based and
generalization-based publishing to the GBP model, also showing how to ap-
ply it to publishing in open-world integration. This reduction offers a unifying
perspective on various seemingly disparate privacy guarantees developed in-
dependently for the various publishing paradigms.

We have applied the GBP model to settings in which the publishing trans-
formation is deterministically defined as either a function or a relation. This
assumption leaves out the mature line of research on preserving privacy by
randomizing the data (see for instance [2] and references within).
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