
Efficient LCA based Keyword Search in XML Data

Yu Xu
Teradata

San Diego, CA
yu.xu@teradata.com

Yannis Papakonstantinou
University of California, San Diego

San Diego, CA
yannis@cs.ucsd.edu

ABSTRACT
Keyword search in XML documents based on the notion of low-
est common ancestors (LCAs) and modifications of it has recently
gained research interest [2, 3, 4]. In this paper we propose an ef-
ficient algorithm called Indexed Stack to find answers to keyword
queries based on XRank’s semantics to LCA [2]. The complexity
of the Indexed Stack algorithm isO(kd|S1| log |S|) wherek is the
number of keywords in the query,d is the depth of the tree and|S1|
(|S|) is the occurrence of the least (most) frequent keyword in the
query. In comparison, the best worst case complexity of the core
algorithms in [2] isO(kd|S|). We analytically and experimentally
evaluate the Indexed Stack algorithm and the two core algorithms in
[2]. The results show that the Indexed Stack algorithm outperforms
in terms of both CPU and I/O costs other algorithms by orders of
magnitude when the query contains at least one low frequencykey-
word along with high frequency keywords.

Categories and Subject Descriptors:
H.3.3 [Information Systems]:INFORMATION STORAGE AND
RETRIEVAL—Information Search and Retrieval

General Terms: Algorithms

Keywords: LCA, XML, Keyword, Search

1. INTRODUCTION
Keyword search in XML documents based on the notion of low-

est common ancestors in the labeled trees modeled after the XML
documents has recently gained research interest in the database
community [2, 3, 4]. One important feature of keyword searchis
that it enables users to search information without having to know
a complex query language or prior knowledge about the structure
of the underlying data. Consider a keyword queryQ consisting
of k keywordsw1, . . . , wk. According to the LCA-based query
semantics proposed in [2], namedExclusive Lowest Common An-
cestors (ELCA) in the sequel, the result of the keyword queryQ is
the set of nodes that contain at least one occurrence of all ofthe
query keywords either in their labels or in the labels of their de-
scendant nodes, afterexcluding the occurrences of the keywords in
the subtrees that already contain at least one occurrence ofall the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

query keywords. For example, the answers to the keyword query
“XML David” on the data in Figure 1 is the node list [0, 0.2, 0.2.2,
0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2]. The answers show that “David”
is an author of five papers that have “XML” in the titles (rooted at
0.2.2, 0.3.2, 0.3.3, 0.3.4 and0.4.2); and that “David” is the chair
of two sessions that have “XML” in the titles (rooted at0.2 and0.3),
and the chair of the conference (rooted at0) whose name contains
“XML”. Notice that the node session with id0.4 is not anELCA

answer since the only “XML” instance (node0.4.2.1.1) under0.4
is under one of its children (0.4.2) which already contains keyword
instances of both “XML” and “David”. Therefore under theex-
clusion requirement in theELCA definition, the session node0.4
is not anELCA answer. The node Conference rooted at0 is an
ELCA answer since it contains the node0.1.1 and the node0.5.1
which are not under any child of the node0 that contains instances
of both keywords “XML” and “David”.

We propose an efficient algorithm called Indexed Stack to an-
swer keyword queries according to theELCA query semantics
proposed in XRank [2] with complexity ofO(kd|S1| log |S|) where
k is the number of keywords in the query,d is the depth of the tree,
|S1| (|S|) is the occurrence of the least (most) frequent keyword
in the query. In comparison, the complexity of the core algorithms
in [2] is O(kd|S|) andO(k2d|S|p log |S| + k2d|S|2) respectively
wherep is the maximum number of children of any node in the
tree. The algorithm in [2] with complexityO(k2d|S|p log |S| +
k2d|S|2) is tuned to return only the topm answers for certain
queries where it may terminate faster than other algorithms.

In Section 2 we provide theELCA query semantics and defi-
nitions used in the paper. Section 3 describes related work,with
focus on LCA-based keyword search in XML documents based
on the notation of lowest common ancestors [2, 3, 4]. Section4
presents the Indexed Stack algorithm, and also provides thecom-
plexity analysis of the Indexed Stack algorithm and the algorithms
in [2] for both main memory and disk accesses.

2. ELCA QUERY SEMANTICS
The notationv ≺a v′ denotes that nodev is an ancestor of node

v′; v �a v′ denotes thatv ≺a v′ or v = v′.
The functionlca(v1, . . . , vk) computes theLowest Common An-

cestor (LCA) of nodesv1, . . . , vk. TheLCA of setsS1, . . . , Sk is
the set ofLCA’s for each combination of nodes inS1 throughSk.

lca(S1, ..., Sk) = {lca(n1, . . . , nk)|n1 ∈ S1, . . . , nk ∈ Sk}

For example, in Figure 1,lca(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2,
0.3.3, 0.3.4, 0.4, 0.4.2].

A nodev is called anLCA of sets S1, . . . , Sk if v ∈ lca(S1, . . . , Sk).
A nodev is called anExclusive Lowest Common Ancestor (ELCA)

of S1, . . . , Sk if and only if there exist nodesn1 ∈ S1, . . . , nk ∈
Sk such thatv = lca(n1, ..., nk) and for everyni (1 ≤ i ≤ k) the



session
0.2

session
0.3

session
0.4

title
0.2.1

chair
0.2.3

XML
Talks

0.2.1.1

paper
0.2.2

author
0.2.2.2

David
0.2.2.2.1

title
0.2.2.1

XML Query
Rewriting
0.2.2.1.1

Conference
0

David
0.2.3.1

paper
0.3.2

author
0.3.2.2

David
0.3.2.2.1

title
0.3.2.1

XML
XQuery

0.3.2.1.1

title
0.3.5

chair
0.3.1

David
0.3.1.1

XML
Update
0.3.5.1

author
0.4.2.2

David
0.4.2.2.1

title
0.4.2.1

XML XQuery
0.4.2.1.1

title
0.4.3

chair
0.4.1

David
0.4.1.1

paper
0.4.2

name
0.1

XML
2006
0.1.1

paper
0.3.3

author
0.3.3.2

David
0.3.3.2.1

title
0.3.3.1

paper
0.3.4

author
0.3.4.2

David
0.3.4.2.1

title
0.3.4.1

XML
View

0.3.4.1.1

chair
0.5

David
0.5.1

streaming
0.4.3.1

XML
Survey

0.3.3.1.1

S1: XML nodes S2: David nodes elca(S1,S2)

Figure 1: Example XML document

child of v in the path fromv to ni is not anLCA of S1, . . . , Sk

itself nor ancestor of anyLCA of S1, . . . , Sk.
According to theELCA query semantics proposed in XRank

[2], the query result of a keyword queryQ consisting ofk keywords
w1, . . . , wk is defined to be

elca(w1, . . . , wk) = elca(S1, . . . , Sk)

whereelca(S1, . . . , Sk) = {v | ∃n1 ∈ S1, . . . , nk ∈ Sk(v =
lca(n1, ..., nk)∧ ∀i(1 ≤ i ≤ k)∄x(x ∈ lca(S1, . . . , Sk)∧
child(v, ni) �a x)) } , Si denotes theinverted list of wi, i.e.,
the list of nodes sorted by id whose label directly containswi and
child(v, ni) is the child ofv in the path fromv to ni. Notice that
the above definition is based on LCAs and is expressed differently
than but it is equivalent to [2]. In Figure 1elca(“XML”, “David”)=
elca(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2].

TheSmallest Lowest Common Ancestor (SLCA) of k sets S1, . . . , Sk

is defined to be

slca(S1, . . . , Sk) =

{v|v ∈ lca(S1, . . . , Sk) ∧ ∀v
′ ∈ lca(S1, . . . , Sn) v ⊀ v

′}

A nodev is called aSmallest Lowest Common Ancestor (SLCA)
of S1, . . . , Sk if v ∈ slca(S1, . . . , Sk). Note that a node in
slca(S1, . . . , Sn) cannot be an ancestor node of any other node in
slca(S1, . . . , Sn).

In Figure 1, slca(S1, S2)=[0.2.2, 0.3.2, 0.3.3, 0.3.4, 0.4.2].
Clearlyslca(S1, . . . , Sk) ⊆ elca(S1, . . . , Sk) ⊆ lca(S1, . . . , Sk).

Similarly to [2, 4], each node is assigned a Dewey idpre(v)
that is compatible with preorder numbering, in the sense that if
a nodev1 precedes a nodev2 in the preorder left-to-right depth-
first traversal of the tree thenpre(v1) < pre(v2). Dewey num-
bers provide a straightforward solution to locating theLCA of two
nodes. The usual< relationship holds between any two Dewey
numbers. Given two nodesv1, v2 and their Dewey numbersp1, p2,
lca(v1, v2) is the node with the Dewey number that is the longest
common prefix ofp1 andp2. The cost of computinglca(v1, v2)
is O(d) whered is the depth of the tree. For example, in Figure 1
lca(0.2.2.1.1, 0.2.2.2.1)=0.2.2.

3. RELATED WORK
Extensive research has been done on keyword search in both re-

lational and graph databases. We focus on the three most closely
related works: XRank ([2]), Schema-Free XQuery ([3]) and XK-
Search ([4]), all of which base keyword search in XML on the no-
tation of LCAs of the nodes containing keywords.

XRank ([2]) defines the answer to a keyword search query Q
“w1, . . . , wk” to be elca(S1, . . . , Sk) whereSi is the inverted list

of wi. It also extends PageRank’s ranking mechanism to XML by
taking the nested structure of XML into account.

XKSearch ([4]) defines the answers to a keyword queryQ of
”w1, . . . , wk” to be slca(S1, . . . , Sk) whereSi is the inverted list
of the keywordwi. The complexity of the Indexed Lookup Eager
algorithm in [20] isO(kd|S1| log |S|). [4] also extends the algo-
rithm computingslca(S1, . . . , Sk) to compute allLCAs of k sets
(i.e., lca(S1, . . . , Sk)).

Schema-Free XQuery ([3]) uses the idea ofMeaningful LCA
(MLCA), and proposes a stack based sort merge algorithm which
scans to the end of all inverted lists. The complexity of the al-
gorithm in [3] isO(kd|S|). [3] shows that keyword search func-
tionality can be easily integrated into the structured query language
XQuery as built-in functions, enabling users to query XML docu-
ments based on partial knowledge they may have over underlying
data with different and potentially evolving structures. The recall
and precision experiments in [3] shows that it is possible toexpress
a wide variety of queries in a schema-free manner and have them re-
turn correct results over a broad diversity of schemas. The demon-
strated integration ofMLCA based keyword search functionality
into XQuery can also apply to theELCA query semantics.

In this paper we will only focus on the algorithmic aspects ofthe
problem of efficiently finding answers to keyword queries in XML
documents, and we will not attempt a comparison of the quality of
different query semantics.

Intuitively answering a keyword query according to theELCA

query semantics is more computationally challenging than accord-
ing to theSLCA query semantics. In the latter the moment we
know a nodel has a childc which contains all keywords, we can
immediately determine that the nodel is not aSLCA node. How-
ever we cannot determine thatl is not anELCA node becausel
may contain keyword instances that are not underc and are not un-
der any node that contains all keywords. Notice that given the same
query, the size of the answers of theSLCA semantics cannot be
more than that of theELCA semantics becauseslca(S1, . . . , Sk) ⊆
elca(S1, . . . , Sk).

4. INDEXED STACK ALGORITHM
This section presents the Indexed Stack (IS) algorithm thatcom-

puteselca(S1, . . . , Sk). We chooseS1 to be the smallest among
S1, . . . , Sk sinceelca(S1, . . . , Sk) = elca(Sj1 , . . . , Sjk

), where
j1, .., jk is any permutation of1, 2, . . . , k, and there is a benefit
in using the smallest list asS1 as we will see in the complexity
analysis of the algorithm. We assume|S| denotes the size of the
largest inverted list. The Indexed Stack algorithm, leveraging key



tree properties described in this section, starts from the smallest list
S1, visits each node inS1, but does not need to access every node
in other lists.

The algorithm’s efficiency is based on first discovering the nodes
of a setelca_can(S1; S2, . . . , Sk) (short forELCA Candidates)
defined in Section 4.1, which is a superset ofelca(S1, . . . , Sk) but
can be computed efficiently inO(kd|S1| log |S|), as shown in Sec-
tion 4.2. Section 4.3 describes an efficient functionisELCA()
that determines whether a given node ofelca_can(S1; S2, . . . , Sk)
is a member ofelca(S1, . . . , Sk). Section 4.4 presents a stack-
based algorithm that puts together the computation ofelcan_can

andisELCA, avoiding redundant computations. Section 4.4 also
presents the complexity analysis of the algorithm.

4.1 The ELCA candidate set elca_can()

We define next the setelca_can(S1; S2, . . . , Sk), whose mem-
bers are calledELCA_CAN nodes (ofS1 amongS2, . . ., Sk).

elca_can(S1; S2, . . . , Sk) =
⋃

v1∈S1

slca({v1}, S2, . . . , Sk)

For example, in Figure 1elca_can(S1; S2)=[0, 0.2, 0.2.2, 0.3,
0.3.2, 0.3.3, 0.3.4, 0.4.2].

Note thatelca_can(S1; S2, . . . , Sk) may contain nodes that are
ancestors of other nodes ofelca_can(S1; S2, . . . , Sk). The fol-
lowing inclusion relationship betweenelca andelca_can applies.

PROPERTY 1.

∀i ∈ [1, . . . , k],

elca(S1, . . . , Sk) ⊆ elca_can(Si; S1, . . . , Si−1, Si+1, . . . , Sk).

Of particular importance is the instantiation of the above prop-
erty fori = 1 (i.e.,elca(S1, . . . , Sk) ⊆ elca_can(S1; S2, . . . , Sk))
sinceelca_can(S1; S2, . . . , Sk) has the most efficient computa-
tion (recallS1 is the shortest inverted list).

In Figure 1,elca(S1, S2) andelca_can(S1; S2) happen to be
the same. However if we remove the node0.3.1.1 from the tree
of Figure 1, thenelca_can(S1; S2) stays the same but the node
0.3 would not be inelca(S1, S2) anymore. Therefore, it would be
elca(S1, S2) ⊂ elca_can(S1; S2).

For presentation brevity, we defineelca_can(v) for v ∈ S1 to
be the nodel where{l}=elca_can({v}; S2, . . . , Sk)=
slca({v}, S2, . . . , Sk). The nodeelca_can(v) is called theexclu-
sive lowest common ancestor candidate or ELCA_CAN of v (in
sets ofS2, . . . , Sk). Note that each node inlca({v}, S2, . . . , Sk)
is either an ancestor node ofv or v itself andelca_can(v) is the
lowest among all nodes inlca({v}, S2, . . . , Sk). For instance, con-
siderS1 andS2 in Figure 1. The following showselca_can(v)
for eachv in S1. elca_can(0.1.1) = 0, elca_can(0.2.1.1) =
0.2, elca_can(0.2.2.1.1) = 0.2.2, elca_can(0.3.2.1.1) = 0.3.2,
elca_can(0.3.3.1.1) = 0.3.3, elca_can(0.3.4.1.1) = 0.3.4,
elca_can(0.3.5.1) = 0.3 andelca_can(0.4.2.1.1) = 0.4.2.

4.2 Computing elca_can(v)
In this section we briefly describe how prior work ([4]) can be

used to efficiently computeelca_can(v).
The key property of SLCA search in [4] is that, given two key-

wordsk1 andk2 and a nodev that contains keywordk1, one need
not inspect the whole node list of keywordk2 in order to discover
potential solutions. Instead, one only needs to find the leftand
right match of in the list ofk2, where the left (right) match is the
node with the greatest (least) id that is smaller (greater) than or
equal to the id ofv. The property generalizes to more than two
keywords. Sinceelca_can(v) for v ∈ S1 is the nodel where

v 

u1 uc

… …

Fi

ui ui+1

p.c p.(c+1)

y

p 

……

Figure 2: v and its ELCA_CAN children

{l}=elca_can({v}; S2, . . . , Sk)= slca({v}, S2, . . . , Sk), the time
complexity of computingelca_can(v) is O(kd log |S|) by using
the algorithm in [4].

4.3 Determine whether an ELCA_CAN node is
an ELCA node

This section presents the functionisELCA which is used to
determine whether anELCA_CAN nodev is anELCA node or
not. Letchild_elcacan(v) be the set of children ofv that contain
all keyword instances. Equivalentlychild_elcacan(v) is the set of
child nodesu of v such that eitheru or one ofu’s descendant nodes
is anELCA_CAN node, i.e.,

child_elcacan(v) = {u|u ∈ child(v) ∧

∃x (u �a x ∧ x ∈ elca_can(S1; S2, . . . , Sk))}

wherechild(v) is the set of child nodes ofv. We useELCA_CAN

in the above definition ofchild_elcacan(v) because we can ef-
ficiently computeelca_can(S1; S2, . . . , Sk) as discussed in Sec-
tion 4.2. ForS1 andS2 of the running example in Figure 1,
child_elcacan(0)=[0.2, 0.3, 0.4] andchild_elcacan(0.2)=[0.2.2].

Assumechild_elcacan(v) is {u1, . . . , uc} (See Figure 2). By
definition, there must existwitness nodes n1, . . . , nk under anELCA

nodev such thatn1 ∈ S1, . . . , nk ∈ Sk and everyni is not in the
subtrees rooted at the nodes fromchild_elcacan(v).

To determine whetherv is anELCA node, we probe everySi

to see if there is a nodexi ∈ Si such thatxi is either in the forest
underv to the left of the pathvu1, or in the forest underv to the
right of the pathvuc, or in any forestFi that is underv and between
the pathsvui andvui+1, i = 1, . . . , c − 1. The last case can be
checked efficiently by finding the right match of the nodey in Si

wherey is the immediate right sibling ofui among the children of
v. Assumepre(v) = p, pre(ui) = p.c wherec is a single number,
thenpre(y) = p.(c+1), as shown in Figure 2. Let the right match
of y in Si be x. Thenx is a witness node in the forestFi if and
only if pre(x) < pre(ui+1).

Given the listch which is the list of nodes inchild_elcacan(v)
sorted by id, the functionisELCA(v, ch) returns true ifv is an
ELCA node by applying the operations described in the previ-
ous paragraph. As an example, consider the query “XML David”
and the inverted listsS1 andS2 in Figure 1. child_elcacan(0)=
[0.2, 0.3, 0.4]. We will see howisELCA(0, [0.2, 0.3, 0.4]) works
and returns true. In this example, the number of keywords is two.
First the functionisELCA searches and finds the existence of an
ELCA witness node (i.e., the node0.1.1) for 0.2 in the first key-
word list S1 in the subtree rooted under0 to the left of the path
from 0 to 0.2 (0.2 is the first childELCA_CAN node of0). Then
the function searches the existences of anELCA witness node in
the second keyword listS2 for 0 in the forest to the left of the path
from 0 to 0.2; in the forest between the path from0 to 0.2 and the
path from0 to 0.3; in the forest between the path from0 to 0.3 and
the path from0 to 0.4; in the forest to the right of the path from
0 to 0.4. All of the above searches fail except that the last search
successfully finds a witness node (0.5.1) for 0.2 in S2. Therefore,
isELCA(0, [0.2, 0.3, 0.4]) returns true. The time complexity of



isELCA(v, child_elcacan(v)) isO(kd log |S||child_elcacan(v)|).

4.4 Indexed Stack Algorithm
In Section 4.1 we stated thatelca_can(S1; S2, . . . , Sk) is a su-

perset ofelca(S1, . . . , Sk). Section 4.2 described how to effi-
ciently computeelca_can(S1; S2, . . . , Sk) and Section 4.3 described
how to efficiently check whether anELCA_CAN node in
elca_can(S1; S2, . . . , Sk) is anELCA node, when the list of child
nodes ofv that contain all keyword instances are given. Therefore,
the only missing part of efficient computation ofelca(S1, . . . , Sk)
is how to computechild_elcacan(v) for eachELCA_CAN node
v. Since we can easily computechild_elcacan(v) if we know ev-
ery ELCA_CAN nodexi underv 1, we can just first compute
all ELCA_CAN nodes and then computechild_elcacan(v) for
eachELCA_CAN nodev.

A straightforward approach would compute allELCA_CAN

nodes and store them in a tree which keeps the original ancestor-
descendant relationships of allELCA_CAN nodes in the input
document. However, such a straightforward approach has thefol-
lowing disadvantages: 1) the complexity of the approach isO(d|S1|

2+
|S1|kd log |S|) where theO(d|S1|

2) component comes from the
cost of creating and maintaining the tree structure; 2) and all (O(|S1|))
ELCA_CAN nodes have to be computed first and kept in mem-
ory before we can start to recognize anyELCA nodes.

We propose a “one pass” stack-based algorithm named the In-
dexed Stack algorithm. The Indexed Stack algorithm need notkeep
all ELCA_CAN nodes in memory; it uses a stack whose depth is
bounded by the depth of the tree. At any time during the computa-
tion any node in the stack is a child or descendant node of the node
below it (if present) in the stack. Therefore the nodes from the top
to the bottom of the stack at any time are from a single path in the
input tree.

We go through every nodev1 in S1 in order, computeelca_canv1
=

elca_can(v1) and create a stack entrystackEntry consisting of
elca_canv1

. If the stack is empty, we simply pushstackEntry

to the stack to determine later whetherelca_canv1
is anELCA

node or not. If the stack is not empty, what the algorithm doesde-
pends on the relationship betweenstackEntry and the top entry
in the stack. The algorithm either discardsstackEntry or pushes
stackEntry to the stack (with or without first popping out some
stack entries). The algorithm does not need to look at any other non
top entry in the stack at any time and only determines whetheran
ELCA_CAN node is anELCA node at the time when a stack
entry is popped out.

The challenging issue that the Indexed Stack Algorithm has to
deal with is illustrated with the running example “XML David”.
Before we computeelca_can(0.3.5.1)=0.3, we have already com-
puted0.3.2, 0.3.3, 0.3.4 asELCA_CAN nodes which are the
child ELCA_CAN nodes of0.3. We have to store these three
ELCA_CAN nodes in order to determine whether0.3 is anELCA

node or not before we see0.3 in the processing. Note that if the
node0.3.1.1 was not in the tree in Figure 1, we would still see0.3
in the processing as anELCA_CAN node and still see0.3 after
0.3.2, 0.3.3, and0.3.4 in the processing, but then0.3 would not
be anELCA node, which could be determined only if we have
kept the information that0.3.2, 0.3.3 and0.3.4 areELCA_CAN

nodes until we see0.3 and know that0.3 would not have any child
or descendantELCA_CAN nodes in the processing later after we
see0.3. It is possible that we would not see0.3 at all in the process-
ing (i.e., if the node0.3.5.1 was not in the tree,0.3 would not be

1child_elcacan(v) is the set of child nodesui of v on the paths
from v to xi, which can be efficiently computed with Dewey num-
bers without any disk lookup.

number of disk accesses main memory complexity
Indexed Stack O(k|S1|) O(kd|S1| log |S|)
DIL O(B) O(kd|S|)

RDIL O(k2d|S|p log |S| + k2d|S|2) O(k2d|S|p log |S| + k2d|S|2)

Table 1: Main memory and Disk Complexity Analysis of In-
dexed Stack, DIL and RDIL

anELCA_CAN node) in which case we still need to keep0.3.2,
0.3.3 and0.3.4 until the point we are sure that those nodes cannot
be child or descendant of any otherELCA_CAN nodes. Based
on some key tree properties, the Indexed Stack algorithm knows
when anELCA_CAN node needs to be stored in the stack and
when it can be discarded.

The time complexity of the Indexed Stack algorithm is
O(|S1|kd log |S|) wherek is the number of keywords in the query,
d is the depth of the tree and|S1| (|S|) is the occurrence of the least
(most) frequent keyword in the query. The time complexity comes
from two primitive operations:elca_can() andisELCA(). The
total cost of callingelca_can(v) is O(kd|S1| log |S|) as discussed
in Section 4.2. The cost of calling the function
isELCA(v, |child_elcacan(v)|) once is|child_elcacan(v)|kd log |S|
(Section 4.3). The accumulated total cost of callingisELCA is
O(

∑
v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|kd log |S|). LetZ =∑

v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|. Note that
|elca_can(S1; S2, . . . , Sk)| ≤ |S1| and |child_elcacan(v)| ≤
|S1|. Each node inelca_can(S1; S2, . . . , Sk) increases the value
of Z by at most one. Thus
O(

∑
v∈elca_can(S1;S2,...,Sk) |child_elcacan(v)|) = O(|S1|). There-

fore the time complexity of the Indexed Stack algorithm is
O(|S1|kd log |S|).

The number of disk access needed by the Indexed Stack algo-
rithm is O(k|S1|) because for each node inS1 the Indexed Stack
algorithm just needs to find the left and match nodes in each one
of the otherk − 1 keyword lists. Note that the number of disk ac-
cesses of the Indexed Stack algorithm cannot be more than thetotal
number of blocks of all keyword lists on disk because the algorithm
accesses all keyword lists strictly in order and there is no repeated
scan on any keyword list. Since B+ tree implementations usually
buffer non-leaf nodes in memory, we assume the number of disk
accesses of a random search in a keyword search isO(1) as in [2,
4]. The complexity analysis of the Indexed Stack, the two algo-
rithms in [2], DIL and RDIL are summarized in Table 1 for both
main memory and disk accesses for finding all query answers and
only topm query answers where|S1|(|S|) is the occurrence of the
least (most) frequent keyword in the query,B is the total number
of blocks of all inverted lists on disk,d is the maximum depth of
the tree andp is the maximum number of children of any node in
the tree. Algorithm details and experimental results on finding all
query answers and only topm answers are in the full version of the
paper [1].

5. REFERENCES
[1] http://db.ucsd.edu/pubsFileFolder/288.pdf.
[2] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

XRANK: Ranked keyword search over XML documents. In
SIGMOD, 2003.

[3] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
VLDB, 2004.

[4] Y. Xu and Y. Papakonstantinou. Efficient keyword search for
smallest LCAs in XML databases. InSIGMOD, 2005.


