Efficient LCA based Keyword Search in XML Data

Yu Xu
Teradata
San Diego, CA
yu.Xu@teradata.com

ABSTRACT

Keyword search in XML documents based on the notion of low-
est common ancestorsQAs) and modifications of it has recently
gained research interest [2, 3, 4]. In this paper we proposef-a
ficient algorithm called Indexed Stack to find answers to lagv
queries based on XRank’s semantics to LCA [2]. The compfexit
of the Indexed Stack algorithm 3(kd|S1|log |S|) wherek is the
number of keywords in the query,is the depth of the tree and |
(IS]) is the occurrence of the least (most) frequent keyword én th
query. In comparison, the best worst case complexity of tre c
algorithms in [2] isO(kd|S]). We analytically and experimentally
evaluate the Indexed Stack algorithm and the two core dlgosiin

[2]. The results show that the Indexed Stack algorithm atfiopes

in terms of both CPU and 1/O costs other algorithms by ordérs o
magnitude when the query contains at least one low frequengy
word along with high frequency keywords.

Categories and Subject Descriptors:
H.3.3 [Information Systems]:INFORMATION STORAGE AND
RETRIEVAL—Information Search and Retrieval

General Terms. Algorithms
Keywords: LCA, XML, Keyword, Search

1. INTRODUCTION

Keyword search in XML documents based on the notion of low-
est common ancestors in the labeled trees modeled afterhtie X
documents has recently gained research interest in th&atsta
community [2, 3, 4]. One important feature of keyword sedsch
that it enables users to search information without havinigniow
a complex query language or prior knowledge about the sireict
of the underlying data. Consider a keyword qué}yconsisting
of k keywordsw, ..., w,. According to the LCA-based query
semantics proposed in [2], namE&gclusive Lowest Common An-
cestors (ELCA) in the sequel, the result of the keyword quénis
the set of nodes that contain at least one occurrence of #fieof
query keywords either in their labels or in the labels of rthus-
scendant nodes, aftexcluding the occurrences of the keywords in
the subtrees that already contain at least one occurreraiéthe

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM’' 07, November 6-8, 2007, Lisboa, Portugal.

Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

Yannis Papakonstantinou
University of California, San Diego
San Diego, CA
yannis@cs.ucsd.edu

query keywords. For example, the answers to the keywordyquer
“XML David” on the data in Figure 1 is the node li€1,[0.2, 0.2.2,
0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2]. The answers show that “David”
is an author of five papers that have “XML” in the titles (rosbit
0.2.2,0.3.2, 0.3.3, 0.3.4 and0.4.2); and that “David” is the chair
of two sessions that have “XML" in the titles (rootedle? and0.3),
and the chair of the conference (rootedatvhose name contains
“XML". Notice that the node session with idl4 is not anELC A
answer since the only “XML” instance (node4.2.1.1) under0.4

is under one of its childrerd(4.2) which already contains keyword
instances of both “XML” and “David”. Therefore under tles-
clusion requirement in theZ LC' A definition, the session node4

is not anELC A answer. The node Conference rooted a an
ELC A answer since it contains the nodéd.1 and the nod®.5.1
which are not under any child of the no@i¢hat contains instances
of both keywords “XML" and “David”.

We propose an efficient algorithm called Indexed Stack to an-
swer keyword queries according to tie.C'A query semantics
proposed in XRank [2] with complexity @ (kd|S1]|log |S|) where
k is the number of keywords in the quetyis the depth of the tree,
|S1] (]S]) is the occurrence of the least (most) frequent keyword
in the query. In comparison, the complexity of the core athors
in [2] is O(kd|S|) andO(k*d|S|plog |S| + k2d|S|?) respectively
wherep is the maximum number of children of any node in the
tree. The algorithm in [2] with complexit®(k?d|S|plog |S| +
k%d|S|?) is tuned to return only the top answers for certain
queries where it may terminate faster than other algorithms

In Section 2 we provide th& LC A query semantics and defi-
nitions used in the paper. Section 3 describes related wuitk,
focus on LCA-based keyword search in XML documents based
on the notation of lowest common ancestors [2, 3, 4]. Section
presents the Indexed Stack algorithm, and also providesdire
plexity analysis of the Indexed Stack algorithm and the itlyms
in [2] for both main memory and disk accesses.

2. ELCA QUERY SEMANTICS

The notatiorv <, v’ denotes that nodeis an ancestor of node
v'; v <4 v’ denotes that <, v’ orv = v’.

The functionca(v1, . . ., vx) computes th&owest Common An-
cestor (LCA) of nodesuv, ..., v;. The LC'A of setsSy, ..., Sk is
the set of LC A’s for each combination of nodes # throughsSy.

lea(Sh, ..., Sk) = {lca(na,...,nk)|n1 € S1,...,nk € Sk}

For example, in Figure Z¢a(S1, S2)=[0, 0.2, 0.2.2, 0.3, 0.3.2,
0.3.3,0.3.4,0.4,0.4.2].

Anodev is called arLCAof sets St . .., Sk if v € lea(S1,. .., Sk).

A nodevw is called arExclusive Lowest Common Ancestor (ELCA)
of S1,...,Sk if and only if there exist nodes, € Si,...,n; €
Sk such thaw = lca(na, ..., ng) and for everyn; (1 <14 < k) the

S,: XML nodes .

. A % '
S,: David nodes ! 1 CO”f%fence elca(s,,s,)

name session session session chair
O.l 0.2 0.3 0.4 0.5
I — } - —] I |] [|
title paper chair chair paper paper paper title chair paper title » DaV|d
0 2.1 0.2.2 0.2.3 0.3.1 0.3.2 033 0.34 0.35 0.4.1 0.4.2 | 043} 05.1 ,
tile author . -Davrd Tur -I:;awc] N title author title author title author < E)awd v title author streaming
0221 0222 10231 .0311' 0321 0322 0331 0332 0341 0342 '0.4.1.1'04.21 0422 0431

) D‘aVl& T
-02221

......

: -D.aVI(-i)
"0.3.2.2.1 1

,..

DaV|d .D-aw& -'
'03321- -03421

. David
. 04221 |

Figure 1: Example XML document

child of v in the path fromw to n; is not anLC' A of Sy, ...
itself nor ancestor of anfC' A of S1, ..., Sk.

According to theELC A query semantics proposed in XRank
[2], the query result of a keyword que€y consisting ofc keywords

7Sk:

w1, ..., w is defined to be

eleca(ws, . ..,wx) = elca(Sh,. .., Sk)
whereelca(S1,...,S) ={v | 3In1 € Si,...,nk € Sk(v =
lea(ni, ...,ni)A Vi(l < i < k)fx(z € lca(Sh,...,Sk)A

child(v,n;) =4 z))}, S; denotes thenverted list of w;, i.e.,
the list of nodes sorted by id whose label directly containsand
child(v,n;) is the child ofv in the path fromw to n;. Notice that
the above definition is based on LCAs and is expressed ditfigre
than but it is equivalent to [2]. In Figureelca(“XML”, “David”)=
elca(S1, S2)=[0, 0.2,0.2.2, 0.3, 0.3.2, 0.3.3, 0.3.4, 0.4.2].

TheSmallest Lowest Common Ancestor (SLCA) of k sets Sy, . . .
is defined to be

slea(S1,...,Sk) =
{v|v € lea(S1,...,Sk) AVV € lca(S,...,Sn) v A"}

A nodeuw is called aSmallest Lowest Common Ancestor (SLCA)

7Sk

of Si,...,Sk if v € slca(Sh, ..., Sk). Note that a node in
slea(Sh, . .., Sn) cannot be an ancestor node of any other node in
slea(S1,...,Sn).

In Figure 1, slca(S1,S2)=[0.2.2, 0.3.2, 0.3.3, 0.3.4, 0.4.2].
Clearlyslca(Sh,...,Sk) C elca(Si,...,Sk) Clca(S1,...,Sk).

Similarly to [2, 4], each node is assigned a Deweypit(v)
that is compatible with preorder numbering, in the sensé itha
a nodewv; precedes a node; in the preorder left-to-right depth-
first traversal of the tree thepre(vi) < pre(vz). Dewey num-
bers provide a straightforward solution to locating e A of two
nodes. The usuak relationship holds between any two Dewey
numbers. Given two nodes, v and their Dewey numbeys, p2,
lca(v1,v2) is the node with the Dewey number that is the longest
common prefix ofp; andp.. The cost of computindca (v, v2)
is O(d) whered is the depth of the tree. For example, in Figure 1
lca(0.2.2.1.1,0.2.2.2.1)=0.2.2.

3. RELATED WORK

of w;. It also extends PageRank’s ranking mechanism to XML by
taking the nested structure of XML into account.

XKSearch ([4]) defines the answers to a keyword qu@rpf
"wi, ..., wg" 10 be slca(Si, ..., Sk) whereS; is the inverted list
of the keywordw;. The complexity of the Indexed Lookup Eager
algorithm in [20] isO(kd|S1|log |S|). [4] also extends the algo-
rithm computingsica(St, . . ., Sk) to compute allLC As of k sets
(i.e.,lca(Sl, ceey Sk))

Schema-Free XQuery ([3]) uses the ideaMéaningful LCA
(MLCA), and proposes a stack based sort merge algorithmhwhic
scans to the end of all inverted lists. The complexity of the a
gorithm in [3] isO(kd|S|). [3] shows that keyword search func-
tionality can be easily integrated into the structured guemguage
XQuery as built-in functions, enabling users to query XMlcdeo
ments based on partial knowledge they may have over undgrlyi
data with different and potentially evolving structuresheTrecall
and precision experiments in [3] shows that it is possiblexmress
a wide variety of queries in a schema-free manner and hauertne
turn correct results over a broad diversity of schemas. Emech-
strated integration o/ LC A based keyword search functionality
into XQuery can also apply to thBLC A query semantics.

In this paper we will only focus on the algorithmic aspectshef
problem of efficiently finding answers to keyword queries iMIX
documents, and we will not attempt a comparison of the quafit
different query semantics.

Intuitively answering a keyword query according to thé&.C A
query semantics is more computationally challenging traom-
ing to the SLC' A query semantics. In the latter the moment we
know a nodd has a childc which contains all keywords, we can
immediately determine that the notlss not aSLC A node. How-
ever we cannot determine thiais not anELC' A node because
may contain keyword instances that are not urdand are not un-
der any node that contains all keywords. Notice that giverstime
query, the size of the answers of ti&.C' A semantics cannot be
more than that of th& LC A semantics becauséca(S1, . .., Sk) C
elca(S1,...,Sk).

4. INDEXED STACK ALGORITHM

Extensive research has been done on keyword search in both re This section presents the Indexed Stack (IS) algorithmdiwa-

lational and graph databases. We focus on the three mostyclos

related works: XRank ([2]), Schema-Free XQuery ([3]) and-XK Si,...,
Search ([4]), all of which base keyword search in XML onthe no ji, .., jx IS any permutation of, 2,. ..

tation of LCAs of the nodes containing keywords.

puteselca(St, ...,
Sk sinceelca(Sh, .. .,

Sk). We chooseS; to be the smallest among
Sk) = elca(Sjl S 7Sjk)1 where

,k, and there is a benefit
in using the smallest list aS; as we will see in the complexity

XRank ([2]) defines the answer to a keyword search query Q analysis of the algorithm. We assurff# denotes the size of the

“wi, ..., wg" to beelca(Si, ..., Sk) whereS; is the inverted list

largest inverted list. The Indexed Stack algorithm, legerg key

tree properties described in this section, starts fromiediest list
S1, visits each node %7, but does not need to access every node
in other lists.

The algorithm’s efficiency is based on first discovering tbdas
of a setelca_can(S1; Se, ..., Sk) (short for ELC A Candidates)
defined in Section 4.1, which is a supersetfefs (51, . . ., Sk) but
can be computed efficiently i®(kd|S1|log |S]), as shown in Sec-
tion 4.2. Section 4.3 describes an efficient functie®’ LC'A()
that determines whether a given nodebf:_can(S1; S, . .., Sk)
is a member oklca(Si,...,Sk). Section 4.4 presents a stack-
based algorithm that puts together the computatioal@fn_can
andisELC A, avoiding redundant computations. Section 4.4 also
presents the complexity analysis of the algorithm.

4.1 TheELCA candidate set eca can()

We define next the sefca_can(S1; Sa, ..., Sk), whose mem-
bers are calle® LC A_C AN nodes (0fS; amongSs, .. ., Sk).

U slea({v1}, Sa, ..., Sk)

v1 €Sy

elca_can(S1; Sa, . ..

7Sk)

For example, in Figure &lca_can(S1;S2)=[0, 0.2, 0.2.2, 0.3,
0.3.2,0.3.3,0.3.4, 0.4.2].

Note thatelca_can(S1; S, ..., Sk) may contain nodes that are
ancestors of other nodes efca_can(S1; S, ...,Sk). The fol-
lowing inclusion relationship betweerica andelca_can applies.

PROPERTY 1.

Viell,... k]
elca(S1,...,Sk) Celca_can(Si; S1,...,Si—1,Si+1,...,5k).

Of particular importance is the instantiation of the abovepp
erty fori = 1 (i.e.,elca(S1,...,Sk) C elca_can(S1;S2,...,Sk))
sinceelca_can(S1;S2,...,Sk) has the most efficient computa-
tion (recall S is the shortest inverted list).

In Figure 1,elca(S1,S2) andelca_can(S1; S2) happen to be
the same. However if we remove the ndal8.1.1 from the tree
of Figure 1, therelca_can(S1; S2) stays the same but the node
0.3 would not be inelca(S1, S2) anymore. Therefore, it would be
elca(S1,S2) C elca_can(S1;S2).

For presentation brevity, we defiréca_can(v) for v € S; to
be the nodé where{l}=elca_can({v}; Sz, ..., Sk)=
slea({v}, S2,...,Sk). The nodeelca_can(v) is called theexclu-
sive lowest common ancestor candidate or ELC A_C AN of v (in
sets 0fS,, ..., Sk). Note that each node iea({v}, S, ..., Sk)
is either an ancestor node ofor v itself andelca_can(v) is the
lowest among all nodes fiea({v}, Sz, ..., Sk). Forinstance, con-
sider S1 and Sz in Figure 1. The following showslca_can(v)
for eachv in S;. elca_can(0.1.1) = 0, elca_can(0.2.1.1) =
0.2, elca_can(0.2.2.1.1) = 0.2.2, elca_can(0.3.2.1.1) = 0.3.2,
elca_can(0.3.3.1.1) = 0.3.3, elca_can(0.3.4.1.1) = 0.3.4,
elca_can(0.3.5.1) = 0.3 andelca_can(0.4.2.1.1) = 0.4.2.

4.2 Computing elca_can(v)

In this section we briefly describe how prior work ([4]) can be
used to efficiently computeca_can(v).

The key property of SLCA search in [4] is that, given two key-
wordsk; andke. and a node that contains keyword;, one need
not inspect the whole node list of keywokd in order to discover
potential solutions. Instead, one only needs to find thedntt
right match of in the list of2, where the left (right) match is the
node with the greatest (least) id that is smaller (greatea tor
equal to the id ofv. The property generalizes to more than two
keywords. Sincesica_can(v) for v € Si is the nodel where

L
@ @6

Figure2: vandits ELCA_CAN children

{l}=elca_can({v}; Sa,. .., Sk)=slca({v}, S2,..., Sk), the time
complexity of computingeica_can(v) is O(kdlog|S|) by using
the algorithm in [4].

4.3 Determine whether an ELcA_CcAN nodeis
an ELc A node

This section presents the functienE LC' A which is used to
determine whether aB LCA_C AN nodev is anE LC' A node or
not. Letchild_elcacan(v) be the set of children af that contain
all keyword instances. Equivalentyiild_elcacan(v) is the set of
child nodes: of v such that eithex or one ofu’s descendant nodes
isanELCA_CAN node, i.e.,

child_elcacan(v) = {u|u € child(v) A
Jz (u <.z A z € elca_can(S1;Ss,..

S Sk))}

wherechild(v) is the set of child nodes af We useELCA_CAN
in the above definition othild_elcacan(v) because we can ef-
ficiently computeelca_can(Si; S, ..., Sk) as discussed in Sec-
tion 4.2. ForS; and.S; of the running example in Figure 1,
child_elcacan(0)=[0.2, 0.3, 0.4] andchild_elcacan(0.2)=[0.2.2].

Assumechild_elcacan(v) is {u1,...,u.} (See Figure 2). By
definition, there must existitnessnodesn, . . ., ny underan’ LC A
nodev such that, € S1,...,nr € Sk and everyn; is not in the
subtrees rooted at the nodes fromld_elcacan(v).

To determine whethey is an ELC A node, we probe everg;
to see if there is a node; € S; such thatz; is either in the forest
underw to the left of the pathyu,, or in the forest undev to the
right of the pathvu., or in any forest; that is undew and between
the pathsvu; andvuiy1,7 = 1,...,¢c — 1. The last case can be
checked efficiently by finding the right match of the nadan S;
wherey is the immediate right sibling af; among the children of
v. Assumepre(v) = p, pre(u;) = p.c wherec is a single number,
thenpre(y) = p.(c+ 1), as shown in Figure 2. Let the right match
of y in S; bex. Thenx is a witness node in the fores} if and
only if pre(z) < pre(uit1).

Given the listch which is the list of nodes inhild_elcacan(v)
sorted by id, the functiois ELC A(v, ch) returns true ifv is an
ELC A node by applying the operations described in the previ-
ous paragraph. As an example, consider the query “XML David”
and the inverted list$; and S2 in Figure 1. child_elcacan(0)=
[0.2,0.3,0.4]. We will see howisELCA(0, [0.2, 0.3, 0.4]) works
and returns true. In this example, the number of keyworda/ds t
First the functionis ELC A searches and finds the existence of an
ELC A witness node (i.e., the nodel.1) for 0.2 in the first key-
word list S; in the subtree rooted undérto the left of the path
from 010 0.2 (0.2 is the first childE LC A_C AN node of0). Then
the function searches the existences offaiC' A witness node in
the second keyword list; for 0 in the forest to the left of the path
from 0 to 0.2; in the forest between the path frdirto 0.2 and the
path fromo0 to 0.3; in the forest between the path fraio 0.3 and
the path from0 to 0.4; in the forest to the right of the path from
0to 0.4. All of the above searches fail except that the last search
successfully finds a witness node#.1) for 0.2 in S,. Therefore,
isELCA(0,[0.2,0.3,0.4]) returns true. The time complexity of

1sELC A(v, child_elcacan(v)) is O(kdlog |S||child_elcacan(v)|). number of disk accesses main memory complexity

Indexed Stack| O(k[S1]) O(kd[S1[log [ST)
. DIL O(B) O(kd|S])
4.4 |Indexed Stack Algorithm RDIL O d[S[plog S| + K2dIS[%) | O(k2d|S[plog S| + K2dIS[%)

In Section 4.1 we stated thatca_can(S1; Sz, ..., Sk) is a su-))))
perset ofelca(Si, ..., Sx). Section 4.2 described how to effi- Table 1: Main memory and Disk Complexity Analysis of In-
ciently computelca_can(S1; Sz, . . ., Sk) and Section 4.3 described dexed Stack, DIL and RDIL

how to efficiently check whether aliLC'A_C'AN node in _ an ELC'A_C' AN node) in which case we still need to ke@g.2,

elca_can(S1; Sz, ..., Sk) isanELC Anode, whenthe listofchild (3.3 and0.3.4 until the point we are sure that those nodes cannot

nodes ofv that contain all keyword instances are given. Therefore, pe child or descendant of any othBZ.C A_C AN nodes. Based

the only missing part of efficient computation@ta(S1, . . ., Sk) on some key tree properties, the Indexed Stack algorithmv&no

is how to computehild_elcacan(v) for eachE LCA_C' AN node when anELCA_C AN node needs to be stored in the stack and

v. Since we can easily computtild_elcacan(v) if we know ev- when it can be discarded.

ery ELCA_CAN nodexz; underv *, we can just first compute The time complexity of the Indexed Stack algorithm is

all ELCA_CAN nodes and then computéild_elcacan(v) for O(|S1|kdlog |S|) wherek is the number of keywords in the query,

eachELCA_CAN nodev. d is the depth of the tree and | (|5]) is the occurrence of the least
A straightforward approach would compute alLCA_CAN (most) frequent keyword in the query. The time complexitynes

nodes and store them in a tree which keeps the original ameest from two primitive operationselca_can() andisELCA(). The
descendant relationships of @lILCA_CAN nodes in the input total cost of callingzlca_can(v) is O(kd|S:|log |S|) as discussed
document. However, such a straightforward approach hafothe iy Section 4.2. The cost of calling the function
lowing disadvantages: 1) the corr12pleX|ty of the approach(i§ 1 |* + isELC A(v, |child_elcacan(v)|) once i child_elcacan(v)|kdlog | S|
IS1|kdlog |S|) where theO(d|S:|”) component comes from the (section 4.3). The accumulated total cost of calling LC A is
cost of creating and maintaining the tree structure; 2) #r{dd| 51 |)) O(X s cetca_can(Syi5s.....5,) Ichild_elcacan(v)|kdlog | S)). Let Z =
ELCA_CAN nodes have to be computed first and kept in mem-) - 1z |’;:hild elcacan(v)|. Note that

: veelca_can(S1;S2,...,5%) — .
ory before we can start to recognize afiy.C A nodes. \elca._can(S:: 152? - 7’:%)' < |Su| and |child_elcacan(v)| <

We propose a “one pass” stack-based algorithm named the In- . i :
dexed Stack algorithm. The Indexed Stack algorithm neeélest |$1]. Each node irelca_can(S1; 53, .., S¢) increases the value
of Z by at most one. Thus

Il ELCA_CAN nodes i it tack whose depth i .
al CAC nodes in memory; it uses a stack whose depth is O(S sceren contsis...5,, lchild_elcacan(v)]) = O(|S:). There-

bounded by the depth of the tree. At any time during the coazput ¢ . . /
tion any node in the stack is a child or descendant node ofdtle n Bzfsthlz;?;g l(i;)lr;wplexny of the Indexed Stack algorithm is
1 .

?oelt(r)lvev lI:}o(tIIopr;egfe Pﬁzalgt;iiif grli -tl—ileerizefrghrﬁ QZ?relslgbZttt?gnt The number of disk access needed by the Indexed Stack algo-
h Y gep rithm is O(k|S:1|) because for each node H the Indexed Stack
input tree. . N) A
We go through every nods, in S1 in order, computelca, cany, — algorithm just needs to find the left and match nodes in eaeh on
9 9 y 1 ' P = of the otherk — 1 keyword lists. Note that the number of disk ac-

elca_can(vi) and create a stack entsyack Entry consisting of .

; - cesses of the Indexed Stack algorithm cannot be more thaottie
elca_can,, . If the stack is empty, we simply pusttack Entry . . .

; . number of blocks of all keyword lists on disk because theriigm
to the stack to determine later whethéeta_can., isanELC A X T .
accesses all keyword lists strictly in order and there isepeated

node or not. If the stack is not empty, what the algorithm diees
; . scan on any keyword list. Since B+ tree implementations liysua
pends on the relationship betweetack Entry and the top entry - .
buffer non-leaf nodes in memory, we assume the number of disk

in the stack. The algorithm either discardsck Entry or pushes accesses of a random search in a keyword searokiis as in [2,

stack Entry to the stack (with or without first popping out some . :
. . 4]. The complexity analysis of the Indexed Stack, the twamalg
stack entries). The algorithm does not need to look at argr rithms in [2], DIL and RDIL are summarized in Table 1 for both

top entry in the stack at any time and only determines whether . : -
ELCA CAN node is anELC A node at the time when a stack &N memory and disk accesses for finding all query answets an
- only topm query answers wheri&1 |(|S]) is the occurrence of the

entry is popped out. | ! .
T . east (most) frequent keyword in the queR,is the total number
The challenging issue that the Indexed Stack Algorithm bas t of blocks of all inverted lists on diskj is the maximum depth of

deal with is illustrated with the running example “XML David the tree ang is the maximum number of children of any node in

Before we computelca_can(0.3.5.1)=0.3, we have already com- the tree. Algorithm details and experimental results onifigicl|

puted0.3.2, 0.3.3, 0.3.4 as ELCA_C AN nodes which are the donl in the full X fth
child ELCA_CAN nodes 0f0.3. We have to store these three query answers and only top answers are in the full version of the

ELCA_CAN nodes in order to determine whetlie isanELC A paper [1]

node or not before we sde3 in the processing. Note that if the 5. REFERENCES
node0.3.1.1 was not in the tree in Figure 1, we would still &8 .

in the processing as aiLC A_C AN node and still se6.3 after [1] http://db.ucsd.edu/pubsFileFolder/288.pdf.

0.3.2, 0.3.3, and0.3.4 in the processing, but them3 would not [2] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

be anELCA node, which could be determined only if we have XRANK: Ranked keyword search over XML documents. In
kept the information thad.3.2, 0.3.3 and0.3.4 are ELCA_C AN SIGMOD, 2003.

nodes until we se@.3 and know thad.3 would not have any child ~ [3] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
or descendanELC' A_C AN nodes in the processing later after we VLDB, 2004.

see).3. Itis possible that we would not sée3 at all in the process- [4] Y. Xu and Y. Papakonstantinou. Efficient keyword seamh f
ing (i.e., if the noded.3.5.1 was not in the tree).3 would not be smallest LCAs in XML databases. 8iGMOD, 2005.

ehild_elcacan(v) is the set of child nodes; of v on the paths
from v to z;, which can be efficiently computed with Dewey num-
bers without any disk lookup.

