Privacy in GLAV Information Integration

Alan Nash!* and Alin Deutsch?**

L IBM Almaden Research Lab
anash@us.ibm.com
2 University of California San Diego
deutsch@cs.ucsd.edu

Abstract. We define and study formal privacy guarantees for information inte-
gration systems, where sources are related to a public schema by mappings given
by source-to-target dependencies which express inclusion of unions of conjunc-
tive queries with equality. This generalizes previous privacy work in the global-
as-view publishing scenario and covers local-as-view as well as combinations of
the two.

We concentrate on logical security, where malicious users have the same level
of access as legitimate users: they can issue queries against the global schema
which are answered under “certain answers” semantics and then use unlimited
computational power and external knowledge on the results of the queries to
guess the result of a secret query (“the secret”) on one or more of the sources,
which are not directly accessible. We do not address issues of physical security,
which include how to prevent users from gaining unauthorized access to the data.

We define both absolute guarantees: how safe is the secret? and relative guar-
antees: how much of the secret is additionally disclosed when the mapping is
extended, for example to allow new data sources or new relationships between
an existing data source and the global schema? We provide algorithms for check-
ing whether these guarantees hold and undecidability results for related, stronger
guarantees.

1 Introduction

We define and analyze formal privacy guarantees for information integration systems.
Such guarantees have been recently studied for the case of database publishing where
views of the underlying sources are exposed to users (see Related Work). This cor-
responds to the global-as-view closed-world scenario. Here we extend this study to
include the case of database integration.

We study the case where sources are related to a public schema by mappings given
by source-to-target dependencies which express inclusion of unions of conjunctive que-
ries with equality. Such framework is also known as global-local-as-view (GLAV) and
was introduced in [12] and studied in [445/15/11]] as a generalization of global-as-view
(GAV) and local-as-view (LAV) integration [22114/16]]. Users may issue queries against
the public schema for which the information integration system returns the certain
answers [2214416].

* Work performed while the author was at the University of California, San Diego.
** Funded by an Alfred P. Sloan fellowship and by NSF CAREER award I1S-0347968.

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 89-103] 2007.
(© Springer-Verlag Berlin Heidelberg 2007



90 A. Nash and A. Deutsch

We consider the case where the attacker is a malicious user who has no further access
to the sources than any other user. All the attacker can do is issue queries against the
integration system and apply arbitrary computational power on the answers to these
queries together with external knowledge to obtain some information (“the secret”)
which the defender wishes to conceal. We do not address such security issues as how to
prevent unauthorized access to the data sources.

The goal of the defender is to determine to what extent the information system is
vulnerable to attacks of this kind. The defender specifies the secret as a query against
one or several data sources. The objective of the attacker is to obtain the answer to or
at least partial information on the answer to the secret on the data sources which the
defender wants to conceal.

Database Publishing versus Data Integration. Prior work on privacy in databases has
not addressed the data integration setting, but has focused on database publishing, in
which materialized views of the underlying source are exposed, thus corresponding to
a global-as-view, closed-world integration scenario [14]]. In database publishing, the at-
tacker can access the full extent of any view V' by simply issuing the identity query
SELECT * FROM V. Therefore every attack strategy considered in the literature as-
sumes the availability of all view extents. This assumption no longer holds in a data in-
tegration setting, where there is no materialized view instance and queries posed by the
attacker are answered under so-called certain answers semantics [16]]. Consequently,
the intuitive attack based on the identity query is in general ineffective.

Example 1. Assume there is one source S in the system over a private schema consist-
ing of the single binary relation PA(patient, ailment), recording what ailment each pa-
tient is treated for. The information integration system exports the public schema which
consists of two binary relations PD(patient, doctor) and DA(doctor, ailment), con-
necting patients to doctors they see and doctors to ailments they treat. The source S is
registered via the single source-to-target constraint ¢: Vp, a PA(p, a) — 3d PD(p, d)A
DA(d,a). This registration is a standard source-to-target embedded dependency [11],
and it is an equivalent way to capture the local-as-view registration [14] using the con-
junctive query view PA(p, a) :— PD(p, d), DA(d, a). The registration basically means
that the private database owner cannot provide doctor information, but states that each
patient is treated by some doctor for the ailment.

Now consider an attack modeled after the classic privacy breach strategy in data-
base publishing. It would start by issuing the queries Qpp(p,d) :— PD(p,d) and
®pa(d,a) :— DA(d,a), in an attempt to find the patient-doctor and doctor-ailment
associations in order to subsequently join them and to thus reduce the possible patient-
ailment combinations to guess among [18/8].

However, the certain answers to () pp—which are the tuples in Qpp(T) for ev-
ery target instance 7' satisfying constraint ¢—give precisely the empty set, regard-
less of the extent of source instance S. To see why, notice that the doctor name
is not specified, so for each particular name constant, there is at least one possible
T which does not contain it. A similar argument shows that () p 4 has no certain answers
either.



Privacy in GLAV Information Integration 91

Therefore our first task in studying the defense strategies in data integration is to iden-
tify what queries the attacker should pose to gain the most insight into the secret. For
Example[Tlabove, it turns out that one well-chosen query suffices.

Example 2. In the setting of Example[T] all the attacker needs to do to reveal the source
completely is to issue the query Q4(p,a) :— PD(p,d), DA(d, a). Under certain an-
swer semantics, the result is precisely the extent of source table PA. Therefore, the
query ), is optimal for the attacker, since after obtaining the extent of PA she may
compute any secret query on P A.

In general however, determining the “optimal” queries to start the attack with is chal-
lenging. It is a priori not even clear that there exists one single set of queries leading
to the highest privacy breach. Even if this were the case, it is not clear that such a set
would be finite; an infinite series of queries (each possibly depending on the answer to
its predecessors) could potentially outperform any finite series of queries.

Contributions. We study privacy in the context of information integration systems,
which introduces substantial new aspects over data publishing. To the best of our knowl-
edge, this is the first such study. Our specific contributions include the following.

(a) We identify optimal attack (and therefore defense) strategies. In particular, we
show that there is a finite set of unions of conjunctive queries which the attacker can
issue that are optimal in the sense that no further information is gained by issuing ad-
ditional queries. The required queries are very different in LAV and GAV integration
scenarios, but our approach unifies the attack strategy extending it to a GLAV setting.

(b) We define absolute and relative privacy guarantees, dependent on the source Sy,
and provide corresponding algorithms to check them against the optimal attack strategy.
The absolute guarantees depend only on the current state of the information integration
system, while the relative ones relate the state of the information integration system be-
fore and after a change in the mapping between the data sources and the public schema.
Such a change may arise for example as a result of introducing new data sources, or if a
source owner decides to publish additional proprietary data. The guarantees (formalized
in Section M) are:

1. The source is not completely exposed (i.e. the attacker cannot infer its exact extent
without resorting to external knowledge).

2. The secret is not completely exposed.

3. The secret has not been further exposed (i.e. nothing new can be learned about it)
by extending the source-target mapping to export further information.

4. The source has not been further exposed by extending the source-target mapping.

Note that Guarantee 1 does not depend on the secret; if the source is completely ex-
posed, the attacker may compute the result of any query whatsoever against it. Further-
more, we identify Guarantee 4 as the natural adaptation to data integration of the notion
of perfect privacy introduced in data publishing [[18].

(c) While in general the complexity of our algorithms ranges from NP to II¥ in the
size of the source instance, we identify a practically relevant PTIME case.

(d) We define additional guarantees corresponding to the ones above, but defined in
terms of all possible sources. These guarantee flavors are of significant interest as they
do not require re-checking after each update on the sources. We show however that all



92 A. Nash and A. Deutsch

but one of them are undecidable (we do not know whether the latter is decidable or not).
These results establish the source-dependent guarantees as the best we can hope for in
the trade-off between strength of guarantees and their decidability.

Paper Outline. The remainder of this paper is organized as follows. In Section 2] we
introduce the required notation. In Section[3] we model the general strategy the attacker
follows and in Section [4] we present the guarantees that the defender can provide. In
Section [3] we provide algorithms to check the guarantees and our theoretical results,
which include correctness and complexity of the algorithms. We discuss related work
in Section [l and conclude in Section[Zl The proofs are shown in the extended version
of this paper [19].

2 Preliminaries

Queries. Unless otherwise specified, all our queries are UCQ™ queries; that is, unions
of conjunctive queries with equalities (we also allow constants). We only consider safe
queries (i.e. with all head variables appearing in their body). Given a query @) and a
database D, Q(D) is the answer to Q on D.

Constraints. A constraint is a boolean query. We denote sets of constraints with cap-
ital Greek letters and individual constraints with lowercase Greek letters. We consider
constraints of the form Vz(P(z) — Q(%y)), where {g} C {z}, where {Z} is the set of
free variables in the premise P, where {j} is the set of free variables in the conclusion
@, and where P and @@ are UCQ~ queries. In constraints, we allow () to be unsafe;
intuitively, the safety of the constraint comes from the safety of P. Such constraints
are similar to and generalize embedded dependencies [1] by allowing disjunctions; we
call them IC(UCQ7) constraints because they express containment of UCQ™ queries.
Unless otherwise specified, all our constraints are of this kind. We write D |= X if the
database D satisfies the set of constraints .

Information Integration Systems. As in [16]], we define an information integration
system to consist of four parts (og, o7, X, S): 0g is the source or private schema, o is
the rarget or public schema, X is a finite set of constraints over the joint schema og Uor
specifying how the sources relate to the targets, and S is the source. We assume that og
and o are disjoint. We say that T is a possible target of S under X if (S,T) = X.
That is, if the database obtained from putting S and 7" together satisfies 2. We define
the certain answers to a query () over o under the constraints X' on source S to be
cert%(S) = Ns,mex Q(T). That s, cert%(S) is the set of tuples which appear in
Q(T) for every possible target 7" of S. This corresponds to what is known as the open
world assumption. We say that X' is source-to-target if every constraint in X' contains
only relation symbols from og in the premise and relation symbols from o7 in the
conclusion. All our information systems are given by source-to-target mappings, in the
spirit of the Clio system [[11]].

GAYV, LAV and GLAV Integration. This setting generalizes two very important par-
ticular cases occurring frequently in practice and in the literature [[14/16]. In Global-
As-View (GAV) integration systems, the conclusion of each constraint in X' is a single
relational atom, with all variables appearing in the premise (see Example [ below). In



Privacy in GLAV Information Integration 93

Local-As-View (LAV) integration, the premise is a single relational atom, with all vari-
ables appearing in the conclusion (as seen in Example[T). The general case is therefore
also known as Global-Local-As-View (GLAV).

3 Modeling Attacks Against the Integration System

Recall that we consider the scenario where each of the user’s queries () is processed
by the information integration system Z := (og,or, X, Sp) and the certain answers
cert% (So) are returned to the user. The user has no other access to the source Sp.

The attacker is a malicious user whose objective is to obtain the answer to or at least
partial information on secret, specified as the answer to a query () z against the source
So. The attacker has no further access to the sources than ordinary users.

However, we consider that all users know the source schema and how it relates to
the target schema using source-to-target constraints. It has been argued before even
in the context of database publishing [18] that assuming otherwise would be naive.
After all, the only way of communicating to users the meaning of data contributed by
a source is via a source schema (be it the real one, or an abstract, conceptual one)
and its relationship to the target schema. For instance, even if users do not know the
names of the hospital database tables and their attributes, they understand enough about
the application domain to assume that these include patients, doctors, ailments, and
they can easily observe whether patient names and ailments are hidden or not. It is
therefore prudent to assume that in most applications, attackers can reverse-engineer a
source schema, or an abstraction thereof which is equivalent with respect to information
capacity. The attack against privacy can then be conducted using the real or the reverse-
engineered schema.

Since the attacker understands the semantics of the source schema, she will have no
trouble formulating the query () z which specifies the secret[] The only obstacle in her
way is the integration system’s rejection of queries which are not formulated against
its target schema. Instead, the attacker may issue several queries against the integration
system, then apply arbitrary computational power on the answers in order to obtain
information about the secret @z (Sp).

Possible sources and secrets. Note that the attacker cannot distinguish among sources
that lead to the same answers for the queries she issued. She thus reduces the set of
possible sources/secrets to those which are indistinguishable w.r.t. the issued queries,
applying external knowledge to distinguish among the reduced set. Clearly, the optimal
outcome for the attacker is to reduce the set of sources/secrets to guess from as much
as possible by posing the “right” queries. To state our guarantees, we formalize the
notions of “possible sources” and “possible secrets.” Intuitively, possible sources and
possible secrets are those which cannot be distinguished, respectively, from the source
So and the secret Qz(Sy) exclusively by issuing queries to Z; discriminating among
them requires the attacker to use external knowledge.

We say that S is a possible source if the certain answers to any query Q for (g, o,
X, S) are exactly the same as the certain answers to @ for (og,or, X, Sy). That is,

! For brevity, we refer to Qz as the “secret query”, though we assume that only its answer is
secret, not its definition.



94 A. Nash and A. Deutsch

for all queries Q, cert%(S) = certg(So). We say that Z is a possible secret if it is
the result Qz(S) of the secret query )z on some possible source S. In particular, the
source .Sy is a possible source and the secret Q) z(.Sp) is a possible secret. Clearly, any
source which has the same possible targets as S is a possible source.

The attacker wishes to obtain a set of secrets/sources which approximates as best as
possible the set of possible secrets/sources. She will then distinguish among these using
external knowledge and, if necessary, randomly guess among the secrets/sources which
remain indistinguishable even by external knowledge.

Attacker’s external knowledge. The attacker’s external knowledge has been modeled
in the literature as additional constraints on the secrets or on the sources, or as a proba-
bility distribution on them [18l8]]. Here, we abstract away from the particular representa-
tion, modeling it with two “black box” oracles PICKSOURCE and PICKSECRET. These
represent any means of reducing the input possibilities based on external knowledge,
followed by a random pick from the reduced set (if it is not a singleton).

PICKSECRET accepts as input a finite description of a set Z which is an approxima-
tion of the set of possible answers to the query @ z, and picks one secret from Z. The
following is a general strategy for the attacker in case PICKSECRET is available:

Procedure ATTACKSECRET

1. Tssue several queries @1, . .., Qx against Z to obtain A1, ..., Ay where A; := certgi (So).

2. Using Ay, ..., Ak, compute a finite description X'z which approximates as well as possible
the set Z of possible secrets (that is, the set of answers to @z (.5) for those sources S which
satisfy A; = certgi (S)).

3. Return PICKSECRET(X =)

Similarly, PICKSOURCE accepts as input a finite description X's of a set which ap-
proximates the possible sources and picks one of them. The following is a general strat-
egy for the attacker in case only PICKSECRET is available:

Procedure ATTACKSOURCE

1. Issue several queries Q1, .. ., Qk against Z to obtain A1, ..., Ay where A, := certgi (So).

2. Using A1, ..., Ak, compute a finite description X's which approximates as well as possible
the set S of possible sources S (that is, those which satisty A; = cert%‘ (S).

3. Set S := PICKSOURCE(Xs)

4. Return Qz(S).

The attacker’s access to PICKSECRET, but not to PICKSOURCE models the case
when she has no external knowledge about the possible sources, but may have sufficient
independent knowledge to form an opinion about the possible secrets. We assume that
PICKSOURCE may use PICKSECRET as a subroutine whenever both are available and
that the attacker chooses to use PICKSOURCE whenever it is available.

4 Privacy Guarantees

The goal of the defender is to determine to what extent the information system Z =
(os,07, X,S0) is vulnerable to attacks of the kind outlined in Section 3 The de-
fender specifies the secret as a query () z over og. We analyze what kinds of guarantees
the defender can provide and how he can verify whether they hold. We consider both



Privacy in GLAV Information Integration 95

absolute guarantees, pertaining to how private the secret is for Z and relative guaran-
tees, pertaining to whether the secret has been exposed further in going from Z to a new
system Z”.

Our privacy guarantees focus on the crucial steps 1 and 2 in the general attack strate-
gies. In these, the attacker attempts to facilitate the task of the oracle as much as possible
by restricting the set of options to guess from. The fewer options are obtained, the less
external knowledge is needed to guess the secret.

In Section [5l we investigate how good an approximation of possible secrets and
sources the attacker can obtain. We obtain there the following surprising result:

Corollary 1 (of Theorem [Ilin Section [B). There exists a finite set of queries whose
certain answers can be used to construct a finite axiomatization of the sets of possible
sources and secrets.

A conservative defender must therefore assume that any attacker is able, by posing a
carefully chosen set of queries, to obtain a precise description of the sets of possible
sources and secrets. This is why we focus our guarantees on these sets.

Absolute Guarantees. We now introduce two minimal guarantees guarding against
full disclosure of the source, respectively secret. The worst case for the defender is
when the certain answers to some finite set of queries Q are sufficient to determine the
source Sy exactly. In this case, the attacker may obtain not only the secret Q z(Sp), but
any information she wishes of the source under our assumptions.

Guarantee 1. The source Sy is not completely exposed by the information system 1.
That is, there are at least two possible sources.

Even if the source is not completely exposed, the secret might be. That is, there is more
than one possible source, but the result of the secret query on all of them is the same
(in short, there is only one possible secret). In this case the attacker may not know the
source Sg, but she may learn the secret Q) z(.So).

Guarantee 2. The secret QQz(Sy) is not completely exposed by the information system
TI. That is, there are at least two possible secrets.

Relative Guarantees. Guarantees [Tl and 2] only avoid a complete privacy breach in
which source, respectively secret are fully exposed. This is of course the weakest guar-
antee one could provide. Ideally, we would like the guarantee that nothing can be
“learned” about the secret given the information system. The following example how-
ever shows that such a guarantee is unreasonably strong and is violated by most systems,
which is why we need to set our sights on more relaxed guarantees.

Example 3. Consider an information system whose only source relation contains tu-
ples associating the patient with the ailment he suffered from and the doctor who
treated him: P D A(patient,doctor,ailment). The secret, as in Example [] is the asso-
ciation between patients and their ailment: Qz(p,a) :— PDA(p,d,a). The source
registration only exports the projection of this source relation on its doctor attribute:
Vp,d,a PDA(p,d,a) — D(d) (where D is the target schema). Since neither patients
nor ailments are registered, this registration is seemingly safe. However, an attacker can



96 A. Nash and A. Deutsch

still learn from it some (small amount of) information about the secret. Indeed, if the
registered list of doctors is empty, then the source relation must be empty as well, so
no patient can suffer from any ailment. If however there is even one doctor in the reg-
istered list, then there is a non-zero probability of a certain patient suffering from some
disease. Clearly, the attacker has “learned” something about the secret upon observing
the list of doctors, and the idealized guarantee is violated. At the same time, ruling out
this registration boils down to asking the source owner to not register any data, even if
it avoids the attributes involved in the secret query.

Since the absolute Guarantees 1 and 2 are too weak and the idealized guarantee con-
sidered above is too strong, we consider a more pragmatic class of relative guarantees.
These assume that the data owner is willing to live with the current exposure of the se-
cret or source, but wants to make sure that changing the constraints of the information
system will not lead to further exposure.

There are two strong relative guarantees the defender can provide. The first applies
in case the defender knows that the attacker has no external knowledge about possible
sources (but may have external knowledge about possible secrets):

Guarantee 3. If the attacker has no external knowledge about the possible sources,
then secret QQz(So) has not been further exposed in going from the information system
T :=(os,07,%,S0) to the information system I' := (cg,07, X", So). That is, the set
of possible secrets under X is the same as the set of possible secrets under X'

The second guarantee applies when the defender cannot safely assume that the attacker
will not distinguish among sources.

Guarantee 4. The secret Q z(So) has not been further exposed in going from the infor-
mation system I := (og, 07, X, So) to the information system T' := (5,01, X", Sp).
That is, the set of possible sources under X is the same as the set of possible sources
under X',

Example 2] in the introduction illustrates a case when Guarantee 1 fails, as there is a
client query which fully reveals the source. Therefore, for any secret query () z, Guar-
antee 2 fails as well, since the attacker can retrieve the full secret by running )z on
the exposed source. There are cases when the underlying source is not fully exposed
(Guarantee 1 holds), but the secret is (Guarantee 2 fails). For lack of space, we illus-
trate such a scenario in the extended version [[19], where we also show a scenario where
Guarantee 3 holds but Guarantee 4 fails.

Source-independent guarantees. Guarantees(IL 213l and [ are all given in terms of a
specific source Sy. For each such Guarantee i, we can define a corresponding Guarantee
" which has the same statement, but instead of referring to some source Sy, is quantified
over all sources. These source-independent guarantee flavors are of significant interest
as they do not require re-checking after each update on the sources.

5 Algorithms

In this section we outline algorithms for checking Guarantees 1 through 4. These algo-
rithms are based on reduction to the problem of checking implication of constraints.



Privacy in GLAV Information Integration 97

The implication problem for constraints is to determine whether, given a set of con-
straints X' and a constraint ¢, X implies ¢, written X | ¢. X = ¢ holds if every
database that satisfies X also satisfies ¢. In general, checking implication of IC(UCQ7)
constraints is undecidable, as this class includes functional and inclusion dependencies,
for which the implication problem is undecidable [[1]. However, our reduction yields
constraints which we call convergent for which checking implication and equivalence of
two sets of constraints is in TI5 (Theorem[2). Checking whether X |= ¢ holds for con-
vergent constraints can be done by a well-known procedure known as the chase [1]. We
do not describe this procedure here; instead we assume we have a procedure IMPLIES
to check whether ' |= ¢ holds. We say that X' and X’ are equivalent (which we write
Y = X')in case X implies every constraint in X’ and conversely.

We now reduce the problem of checking guarantees to the implication problem. For
instance, to check Guarantee [I] and Guarantee [2], the idea is to find a set of constraints
A; which axiomatize the possible sources (respectively, possible secrets) and a set of
constraints Ay which axiomatize the actual source (respectively, the actual secret) and
to check whether Ay implies A,. Guarantee [T] (respectively, Guarantee2)) holds if and
only iff A; [~ As. Since as it turns out A; and Ay are convergent sets, the latter
implication is decidable.

The constraints are obtained by the following procedures: AXINSTANCE(D) returns
constraints which axiomatize the database D. Thatis, D’ = AXINSTANCE(D) iff D =
D’. AXSOURCES yields constraints which axiomatize the possible sources. AXSE-
CRETS returns constraints which axiomatize the possible secrets. Before detailing the
procedures, we show how they yield an algorithm for checking the various guarantees.
The algorithm is inspired by the following corollary of Theorem[Ilbelow.

Corollary 2 (of Theorem/[T)

1. Guarantee[ll holds iff AXSOURCES(Z) = AXINSTANCE(Sp).

2. Guarantee2l holds iff AXSECRETS(Z, Qz) = AXINSTANCE(Qz(So)).
3. Guarantee[3 holds iff AXSECRETS(Z, Qz) = AXSECRETS(Z',Qz).

4. Guarantee[d holds iff AXSOURCES(Z) = AXSOURCES(Z").

For instance by Corollary [2| we can use the procedures IMPLIES, AXINSTANCE and
AXSOURCES to check Guarantee 1 as follows (Guarantees 2 through 4 are checked
similarly):

Procedure GUARANTEEONEHOLDS(Z)
Set A1 := AXSOURCES(Z). Set Az := AXINSTANCE(Sy). Return not IMPLIES(A1, Asz).

We define our procedures next.

In Algorithm [ RP denotes the extent of relation R in database D, and ¢ € RP
ranges over all tuples in R, In Algorithm 2] given a constraint ¢ € IC(UCQ™) we
define () to be the UCQ™ query whose body is the conclusion of ¢ and whose head is
Q4 (%) where T are the free variables in the conclusion of ¢. We define P, similarly as
the query obtained from the premise of ¢.

Notice that the procedure which issues queries against the integration system is AX-
SOURCES, and that these queries are precisely those corresponding to the conclusions
of the source-to-target constraints. The auxiliary procedure AXONE used within AX-
SOURCES gives constraints which are satisfied precisely by the sources that agree with



98 A. Nash and A. Deutsch

Algorithm 1. AXINSTANCE(D)

returns constraints which are satisfied precisely by database D.
That is, D’ = AXINSTANCE(D) iff D = D'.
: for every relation R in the signature o(D) of D do
Set 6, := R(Z) — \/sepp T="C.
Set 6% 1= R(Z) < \/oepp T =C.
end for
return {6%: R € o(D),i € {1,2}}.

B

Algorithm 2. AXSOURCES(Z)
returns constraints axiomatizing the possible sources.
That is, S = AXSOURCES(Z) iff S is a possible source.
: for every ¢ € X' do
Issue the query () against 7 to obtain Aq,, 1= certg"’ (So).
: end for
: return (J 5 AXONE(Y, Q¢, Ag,, )

Algorithm 3. AXONE(X, Q4, Ag, )

returns constraints which are satisfied precisely by the sources which agree with So on the
result Ag, of query Q (which is the conclusion of constraint ¢).
1: Set Ry := REWRITE(X, Q¢)
Il Set X3 to the set of constraints over schema o5 U {Q ¢} which capture Ry:
2: let Ry be the UCQ™ query Ry (Z) :— V/, Bi(Z)
Set Xy = {Vz \/, Bi(Z) = Q¢(Z),VT Qp(T) — \, Bi(T)}

3: Set Xg := AXINSTANCE(Aq,)
4: Set Xy = XH U XS,
5: return Y.

Algorithm 4. AXSECRETS(Z,Qz)
returns constraints which axiomatize the possible secrets.
1: Set $; := AXSOURCES(Z).
/I Set @4 to the set of constraints over schema os U {Q z } which capture Q z:
2: Let Qz be the UCQ™ query Qz(Z) :— \/, Bi(Z)
Set @2 := {Vz \/, Bi(7) — Qz(%),Vz Qz(Z) — V, Bi(7)}
3: return 91 U .

Sp on the query ()4 (the conclusion of constraint ¢). AXONE employs the auxiliary
procedure REWRITE(X, Q) which produces a rewriting R of ) in terms og satisfying
R(S) = certg (S) for any S. Such an algorithm was provided in [9] for the case where
@ is a Datalog program and ¥ C IC(UCQT) gives a local-as-view mapping. The
extension to source-to-target constraints X' C IC(UCQT) is straightforward (see e.g.,
[23]). For the purposes of procedure AXSOURCES defined below, it is sufficient to have
R axiomatizable by IC(UCQ™). However, to ensure decidability of implication on the
result of AXSOURCES, we need R to be a UCQ™ query. It is known from [9] that when
2 is source-to-target R is a UCQ™ query.



Privacy in GLAV Information Integration 99

Due to space limitations, we leave a detailed illustration of the algorithm for the
extended version [19]. Here we only remark that in Example [l the identity queries
against the target schema turned out to be useless to the attacker, in contrast to the case
of database publishing where the identity queries are the first step required to reveal
the extent of the views. This is now explainable by our results: the identity queries are
not the conclusions of the source-target constraints. On the other hand, query @4 in
Example [2] constitutes the optimal attack. Our results also imply that when the inte-
gration system conforms to a global-as-view case, identity queries against the relations
in the target schema lead to optimal attack strategies. We illustrate such an attack in
Example[d below (more examples can be found in [19]).

Example 4. Source S now conforms to schema { H (ssn, patient, doctor, ailment)}
where H is a history relation listing the social security number and name of patients,
as well as the doctor who treated them for an ailment. The registration is given by
constraint ¢ = Vs,p,d,a H(s,p,d,a) — PD(p,d) which exports the projection
of H on patient and doctor into PD. Note that this specification corresponds to the
standard global-as-view registration given by view PD(p,d) :— H(s,p,d,a). Since
the projection of H is all that the source exports, the best an attacker can hope for is to
retrieve its exact extent. But how should she query the system to this end? It is easy to
show that the projection of H on patients and doctors coincides with the certain answers
certgle (S) to the identity query Qg, on table PD (Q4,(p,d) :— PD(p,d)). This is
precisely the conclusion of ¢;.

5.1 Correctness

In this section we show (in Theorem/[I]) that AXSOURCES(Z) axiomatizes precisely the
set of possible sources (indistinguishable modulo all queries) and that AXSECRETS(Z)
axiomatizes precisely the set of possible secrets for an information integration system
T :=(os,07,%,S0). In particular, the finite set @y of UCQ™ queries issued by proce-
dure AXSOURCES and consisting of the conclusions of all constraints in X' suffices to
obtain as much information about the source and about the secret as is possible to obtain
by querying Z. Therefore, among the attacks following the general strategy outlined in
Section 3] the optimal algorithms OPTATTACKSOURCE and OPTATTACKSECRET are
obtained from ATTACKSOURCE and ATTACKSECRET by replacing lines 1 and 2 with
calls to respectively, AXSOURCES and AXSECRETS.

We define the equivalence class of S under the mapping given by X to be [S]x :=
{8 : VT (5,T) = X iff (S',T) = X}. That is, [S]x is the set of all sources
which have the same possible targets as S. Clearly, given Z := (og,0r, X, S)), the
members of [Sp]sx cannot be distinguished from the actual source Sy or from each
other by querying Z. Indeed, for any query ) and any S € [So]s, certg (S) =
Nesres Q) =Nisyryes Q) = cert%(SO). The following theorem shows that
AXSOURCES(7) axiomatizes [Sp] > which is hence precisely the set of possible sources.
It also shows that {Qz(S) : S € [Sp]x)} is the set of possible secrets, axiomatized by
AXSECRETS(Z, Q7).



100 A. Nash and A. Deutsch

Theorem 1. Given an information systemZ := (og,0p, X, S0):

1. The equivalence class [So|s is axiomatized by AXSOURCES (Z)
and AXSOURCES(Z) C IC(UCQ™).

2. For any secret query Q z, the set {Qz(S) : S € [So]x)} is axiomatized by
AXSECRETS(Z, Qz) and AXSECRETS(Z,Qz) C IC(UCQT).

This fundamental theorem allows us to (a) state the guarantees independently of the
class of queries which the attacker is allowed to issue (we assume that the attacker can
issue at least conjunctive queries), (b) outline an optimal attack strategy, and (c) provide
algorithms for checking the guarantees.

As an immediate implication of Theorem [Il we obtain some interesting results for
pure LAV and pure GAV integration, prefigurated by the discussion preceding Sec-
tion[5.1t The source is always completely exposed in LAV information integration sys-
tems, since the optimal query is the view definition itself, for which the certain answers
are exactly the tuples in the source. That is, Guarantee [[] always fails. Moreover, in this
case the identity queries are useless, since they always return the empty set if the view
registration contains at least one existential variable. The only queries required by an
optimal attack against a GAV information integration system are the identity queries.

5.2 Complexity

We call a finite set of constraints X' convergent if there exists a polynomial p such that
for every Q € UCQ™, the result Q* of chasing ) with X is the union of conjunctive

queries Q1, . . ., Qr € CQ~ satisfying |Q;| < p(|Q|) fori € {1,...,k}.

Theorem 2. If X, 3 C IC(UCQ7) are finite sets of convergent constraints and ¢ €
IC(UCQ™), then checking whether X [= ¢ is decidable in TIS in the combined size of
X and ¢ and checking whether X = 5" or X = X' is decidable in T1¥ in the combined
size of X and X'. Furthermore, if ¢ or X' have a single model, then the complexity is
coNP.

Theorem 3. AXSOURCES(Z) and AXSECRETS(Z, Q) z) each yield a set of convergent
constraints, in time polynomial in the combined size of Sy and of REWRITE(X, Q) for
every ¢ € X.

Corollary 3. Checking whether Guarantees [l and 2 hold is in NP in the combined
size of So, REWRITE(X, Q) for every ¢ € X, and in the case of Guarantee[2] Q z.

Corollary 4. Checking whether Guarantees[3 andH hold is TIS in the combined size
of So, REWRITE(X, Q) for every ¢ € X, REWRITE(X', Q) for every ¢ € X', and
in the case of Guarantee[3] Qz.

5.3 An Important Tractable Case

Our algorithms for checking guarantees are in general prohibitively expensive, as the
NP and HE upper bounds (in Corollaries 3land ) include the size of the instance Sg.
In this section we show that a practically relevant integration setting, which we call
tagged-union integration, admits polynomial-time guarantee checking.



Privacy in GLAV Information Integration 101

Definition 1. An integration is said to have tagged-unions if each target relation R has
some attribute a such for each constraint ¢ € X' and each R-atom occurring in the
conclusion ()¢, a constant ¢, occurs in the attribute a such that c,, # ¢, for all distinct
¢, ¢ € X. No constant is needed if R appears in only one constraint.

All of our examples have tagged-union, since relation names are not shared across con-
clusions. The tagged-union restriction is quite realistic. While in a car dealership portal
there will be many local dealers exporting their car ads into the same target ad relation,
each dealer would likely tag the ad with the dealership name, address or phone number.
Similarly for scenarios integrating any large community of vendors. Even for our medi-
cal example, one would expect various wards or hospitals to tag the published patient or
doctor names with their affiliation. For example, consider a Honda and a Toyota dealer
who integrate their private data into a brokerage portal (of target schema deals), using
the tagged-union constraints ¢, respectively ¢r:

(¢u)VZ myhondas(T) — deals(“Honda”, ) (¢1)VZ mytoyotas(T) — deals(“Toyota”, T).

Theorem 4. In tagged-union integration systems, Guarantees I through 4 are decid-
able in polynomial time in the size of the source instance Sy.

The N'P and IT} upper bounds of Corollaries[3]and @ are now confined to the combined
size of the constraints in 2’ and the size of each REWRITE result, but these are data-
independent.

5.4 Undecidability of Source-Independent Guarantees

We use the following undecidability results in our proofs below. A view V' determines
a query @ iff for all databases D1, Do, if V/(D1) = V(D3), then Q(D1) = Q(D3).
Checking whether V' determines ) when V, Q € UCQ is undecidable ([21]]).

Theorem 5. Checking Guaranteel2] is undecidable.
Theorem 6. Checking Guaranteed is undecidable.

Since Guarantee [ is a particular case of Guarantee 3] (for Q)7 the identity query over
0g), we obtain the following corollary:

Corollary 5. Checking Guarantee[3| is undecidable.

The decidability of Guarantee[I] remains an open problem.

6 Related Work

One line of prior research focused on implementing access control in data publishing,
i.e. allowing clients to see only those published views which they are authorized to. The
techniques are based on cryptographically encoding the data (see [17]] and references
within). Our work is orthogonal to work on access control, as it helps data owners design
the views (and more generally, mappings) such that attackers cannot breach privacy
using only authorized accesses.

[2] introduces c-tables, a compact formalism for finitely representing large (and po-
tentially infinite) sets of possible worlds, and shows IT% -complete data complexity for



102 A. Nash and A. Deutsch

checking that the sets of possible sources represented by two c-tables are the same.
c-tables are not sufficiently expressive to model the set of possible sources correspond-
ing to a materialized view instance. [13|] introduces database templates to this end and
shows how to compute them using the chase, but does not address the comparison of the
sets of possible sources. We describe possible sources by a different formalism, namely
a finite axiomatization.

[LO] focuses on limiting privacy breaches in a scenario in which the aggregation of
a set of private client data items is computed at the server. [3] takes aggregation into
account and shows that exposing the result of counting queries allows the retrieval of
an isomorphic copy of the structure of the database.

[20] takes a dual approach to ours (though in a closed world). While we use queries
to specify the secret, [20] uses conjunctive query views to specify what may be seen
by outsiders. In this setting, conjunctive client queries asked against the proprietary
database are answered only if they have a rewriting using the allowable views.

Perfect Privacy. [[18] addresses privacy in database publishing, i.e. in a closed-world,
GAV scenario. The work pioneers the idea of specifying the secret as a conjunctive
query over the base schema and checking the so-called perfect privacy guarantee. This
consists in checking that a newly exported view does not modify the attacker’s a priori
belief about the secret. The attacker’s belief is modeled as a probability distribution on
the set of possible sources, with the simplifying assumption that the tuples in the secret
answer are independent events. [8]] adopts the notion of perfect privacy from [18]] (still
in a publishing, not integration scenario), but provides a more general formalization
of attacker’s beliefs by lifting the independence assumption on secret tuples. With this
formalization, perfect privacy is shown in [8] to reduce to the preservation of the set of
possible sources. Consequently, Guarantee 4 in this paper is the natural adaptation of
perfect privacy from data publishing (in the flavor of [8]) to a data integration scenario.

Probabilistic Databases. One could envision quantitative privacy guarantees, e.g. by
requiring a particular secret tuple to appear in no more than a fraction of the possible
sources. Such approaches face the challenge of the set of possible sources being po-
tentially infinite, in which case “counting” it must be defined carefully (see [6/7] for
pioneering work in this direction, though in a database publishing setting).

7 Discussion

Privacy-preserving Updates. We can express guarantees corresponding to Guaran-
tees 3l and[4] in which the mapping does not change (that is, X' = X), but the extent
of the source does (Sy is replaced by Sj). The new guarantees would check that the
possible sources, respectively secrets, do not change when S is updated.
Conceptually, we can straightforwardly adapt our algorithms for checking Guaran-
tees[3land @ to this new situation. All we need to do is call AXSOURCES (AXSECRETS)
on the information system before and after the update (in the case of AXSECRETS,
using the same (7). Then we check that the obtained source (secret) axiomatizations
imply each other. However, as such a test would have to be performed at run time,
further work on efficient run-time algorithms is required towards a practical tool.



Privacy in GLAV Information Integration 103

Target Constraints. We have modularized our privacy algorithms to work in the pres-
ence of arbitrary constraints on the target schema, provided that (i) the integration
system can return the certain answers in this case, and (ii) there exists an algorithm
REWRITE(Y, ) which produces a rewriting of @) in terms of og returning the certain
answers of () on any source, and (iii) REWRITE(X, Q) returns a UCQ= query. It is
known from [9] that when there are no target constraints, REWRITE(X, @) returns a
UCQ™ query, but returns a recursive Datalog program when the target constraints are
full dependencies. In this case, Theorem[dIstill holds but the obtained constraints are not
convergent and therefore Theorem [3 does not apply so we can not make any claims on
the complexity of checking these guarantees. [9]] provides no rewriting for more general
target constraints.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets of
possible worlds. Theoretical Computer Science, 78:159-187, 1991.
3. M. Bielecki and J. V. den Bussche. Database interrogation using conjunctive queries. In
ICDT, pages 259-269, 2003.
4. A. Cali, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Data integration under integrity
constraints. In CAiSE, 2002.
5. A. Cali, G. D. Giacomo, and M. Lenzerini. Models of information integration: Turning
local-as-view into global-as-view. In FMII, 2001.
6. N. N. Dalvi, G. Miklau, and D. Suciu. Asymptotic conditional probabilities for conjunctive
queries. In /CDT, 2005.
7. N. Dalvi, D. Suciu. Answering queries from statistics and probabilistic views. VLDB, 2005.
. A. Deutsch and Y. Papakonstantinou. Privacy in database publishing. In /CDT, 2005.
9. O.Duschka, M. Genesereth, and A. Levy. Recursive query plans for data integration. Journal
of Logic Programming, 43(1):49-73, 2000.
10. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving
data mining. In PODS, 2003.
11. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query answering.
In ICDT, 2003.
12. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. In 16"
National Conference on Artificial Intelligence (AAAI),, 1999.
13. G. Grahne and A. O. Mendelzon. Tableau techniques for querying information sources
through global schemas. In /CDT, 1999.
14. A.Halevy. Logic-based techniques in data integration. In Logic Based Artificial Intelligence,
2000.
15. C. Koch. Query rewriting with symmetric constraints. In FolKS, 2002.
16. M. Lenzerini. Data integration: A theoretical perspective. In PODS, 2002.
17. G. Miklau, D. Suciu. Controlling access to published data using cryptography. VLDB, 2003.
18. G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In
SIGMOD Conference, 2004.
19. A. Nash and A. Deutsch. Privacy in GLAV information integration. Technical Report
CS2006-0869, University of California San Diego, 2006. http://db.ucsd.edu/people/alin.
20. S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques
for fine-grained access control. In SIGMOD Conference, 2004.
21. L. Segoufin and V. Vianu. Views and queries: Determinacy and rewriting. In PODS, 2005.
22. J. D. Ullman. Information integration using logical views. In /CDT, 1997.
23. C. Yu, L. Popa. Constraint-based XML query rewriting for data integration. SIGMOD, 2004.

oo



	Introduction
	Preliminaries
	Modeling Attacks Against the Integration System
	Privacy Guarantees
	Algorithms
	Correctness
	Complexity
	An Important Tractable Case
	Undecidability of Source-Independent Guarantees

	Related Work
	Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


