
Rewriting Queries Using Views with Access

Patterns Under Integrity Constraints

Alin Deutsch

Department of Computer Science and Engineering,
University of California San Diego

9500 Gilman Drive, La Jolla, CA 92093, U.S.A.
deutsch@cs.ucsd.edu

Bertram Ludäscher

Department of Computer Science
University of California Davis

One Shields Avenue, Davis, CA 95616, U.S.A.
ludaesch@ucdavis.edu

Alan Nash

Department of Computer Science and Engineering,
University of California San Diego

9500 Gilman Drive, La Jolla, CA 92093, U.S.A.
anash@san.rr.com

Abstract

We study the problem of rewriting queries using views in the presence of access pat-
terns, integrity constraints, disjunction, and negation. We provide asymptotically
optimal algorithms for (1) finding minimally containing and (2) maximally con-
tained rewritings respecting the access patterns (which we call executable) and for
(3) deciding whether an exact executable rewriting exists. We show that rewriting
queries using views in this case reduces (a) to rewriting queries with access patterns
and constraints without views and also (b) to rewriting queries using views under
constraints without access patterns. We show how to solve (a) directly and how
to reduce (b) to rewriting queries under constraints only (semantic optimization).
These reductions provide two separate routes to a unified solution for problems
1, 2, and 3 based on an extension of the relational chase theory to queries and
constraints with disjunction and negation. We also handle equality and arithmetic
comparisons. We also show that in an information integration setting, maximally
contained rewritings are given by the certain answers (under the usual semantics) for
a set of constraints derived from the binding patterns. That is, except for defining

Preprint submitted to Elsevier Science 21 February 2006

the appropriate constraints, binding patterns do not need special treatment. Fi-
nally, we show that if there is an exact executable rewriting, there is an executable
rewriting which is a union of conjunctive queries with negation.

1 Introduction

We study the problem of rewriting a query Q in terms of a given set of views
V with limited access patterns P, under a set Σ of integrity constraints. More
precisely, we are interested in determining whether there exists a query plan
Q′, expressed in terms of the views V only, that is executable (i.e., observes P)
and equivalent to Q for all databases satisfying Σ. If there is no such Q′, then
we seek the minimally containing and maximally contained executable queries,
which provide the “best possible” executable query plans for approximating
the answer to Q from above and below. Our results unify and extend a number
of previous results in data integration (see related work). In particular, they
apply to queries, views, and constraints over unions of conjunctive queries
with negation (UCQ¬), equality and arithmetic comparisons.

The following example shows the common case of a query that has no equiv-
alent executable rewriting (i.e., is not feasible) in the absence of constraints,
but that can yield such a rewriting when constraints are given.

Example 1 Consider the following set of relations with access patterns: con-
ference C io(a, t), journal J io(a, t), magazineM oo(a, t), PC-magazine P ioo(a, t, p),
the set of listed publishers Li(p), repository Roo(a, t), ACM anthology Aiii(a, t, o),
and DBLP conference article Dooo(a, t, c). The relation symbols are annotated
with access patterns, indicating which arguments must be given as inputs
(marked ‘i’) and which ones can be retrieved as outputs (marked ‘o’) when
accessing the relation. For example C io(a, t) means that an author a has to be
given as input before one can retrieve the titles t of a’s conference publications
from C(a, t).

Let Q be the query which asks for pairs of authors and titles of conference pub-
lications, journal publications, and magazines which are not PC-magazines:

Q(a, t) :−C(a, t) (1)

Q(a, t) :− J(a, t) (2)

Q(a, t) :−M(a, t),¬P (a, t, p), L(p) (3)

1 A preliminary version of this paper appeared in [3].

2

(We restrict the publishers to those in L to make the query safe.) Q cannot
be executed since no underlined literal is answerable: e.g., the access patterns
require a to be bound before invoking C(a, t) but no such binding is available.
Worse yet, Q is not even feasible, i.e., there is no executable query Q′ equiva-
lent to Q. However, if the following set Σ of integrity constraints is given, an
executable Q′ can be found that is equivalent under Σ:

∀a∀t C(a, t)→∃c D(a, t, c) (4)

∀a∀t J(a, t)→∃p R(a, t) ∧ ¬P (a, t, p) ∧ L(p)

∨ ∃o∃c A(a, t, o) ∧D(a, t, c) (5)

∀a∀t M(a, t)→∃p ¬P (a, t, p) ∧ L(p) (6)

Constraint (4) states that every conference publication is a DBLP confer-
ence publication; (5) states that every journal publication is available from
a repository, is not a PC magazine, but comes from a listed publisher, or is
available from the ACM anthology and from DBLP; and (6) states that maga-
zine articles are not PC-magazine articles. We are only interested in databases
which satisfy these constraints Σ. On those databases, Q is equivalent to QΣ,
obtained by “chasing” Q with Σ:

QΣ(a, t) :−C(a, t), D(a, t, c)

QΣ(a, t) :− J(a, t), R(a, t),¬P (a, t, p), L(p)

QΣ(a, t) :− J(a, t), A(a, t, o), D(a, t, c)

QΣ(a, t) :−M(a, t),¬P (a, t, p), L(p)

Again, unanswerable literals are underlined. The answerable part ans(QΣ) is
obtained (roughly) by removing unanswerable parts (see Definition 8 for de-
tails):

ans(QΣ)(a, t) :−Dooo(a, t, c), C io(a, t) (7)

ans(QΣ)(a, t) :−Roo(a, t), J io(a, t) (8)

ans(QΣ)(a, t) :−Dooo(a, t, c), J io(a, t) (9)

ans(QΣ)(a, t) :−Moo(a, t) (10)

In general, the answerable part is not equivalent to Q: e.g., the subquery (10)
is not contained in (3) and thus ans(QΣ) might produce more answers than
Q. However the equivalence may still hold under Σ, i.e., for all databases
satisfying Σ. This can be checked (cf. Corollary 4) and is indeed the case here.
Then ans(QΣ) is the desired executable plan, equivalent to Q for all databases
satisfying the constraints Σ. 2

As we will show, if there is an equivalent query Q′ under Σ, our algorithm

3

will find it, and if no such Q′ exists, we can find the minimally containing
and the maximally contained plans, providing least overestimate and greatest
underestimate queries for Q under Σ, respectively.

Example 2 This example illustrates that our techniques can also rewrite
queries in terms of views with access patterns. For example, the rules

V oo
1 (a, t) :−C(a, t), R(a, t)

V io
2 (a, t) :−C(a, t),¬R(a, t)

state that the view V1 has conference articles that are also in the repository
R, while V2 has those that are not in R. The access patterns indicate that at
least a must be given when accessing V2(a, t), while no inputs are required for
accessing V1. We will show that if we want to rewrite a query in terms of the
views only, this can be achieved by considering constraints and access patterns
only. To this end, we model views as constraints and also include “negation
constraints” of the form ∀a∀t (true → (R(a, t)∨¬R(a, t))). Chasing the query
Q(a, t) :− C(a, t) with the latter yields

Q′(a, t) :−C(a, t), R(a, t)

Q′(a, t) :−C(a, t),¬R(a, t)

which then rewrites in terms of V1 and V2 to

Q′′(a, t) :− V oo
1 (a, t)

Q′′(a, t) :− V io
2 (a, t).

Here, Q′′ is not executable (the access pattern for V2 requires a to be bound).
Under the constraint ∀a∀t (C(a, t) → R(a, t)), our algorithm can discard the
unanswerable second rule, resulting in the executable rewriting Q′′′(a, t) :−
V1(a, t). 2

Contributions. We solve the problem of rewriting queries using views with
limited access patterns under integrity constraints (denoted {Q,V,P,Σ}) and
prove that feasibility is NP-complete in the size of the input queries, for fixed
views and query inclusion constraints over 2 UCQ and ΠP

2
-complete for UCQ¬.

These results hold in those cases when the chase terminates and its result is
not too large (Theorem 14). While checking for this is undecidable, A fairly
general sufficient condition is given by Theorem 10. We present an algorithm,
ViewRewrite, which is guaranteed to find an exact plan (if one exists) or

2 A query inclusion constraint over L is an implication ∀x̄(U → V) with U, V ∈ L
(cf. Section 2).

4

at least the minimally containing plan (unique if it exists) (Theorem 13). We
also give an algorithm for finding the maximally contained executable plan
(Theorem 15). Moreover, we expose an interesting connection between com-
puting the maximally contained executable plan and computing the certain
answers in an information integration system (Theorem 18). We are particu-
larly interested in complexity results given in terms of the size of the input
query only, for fixed schema, views and constraints, because a typical system
would be configured off-line for a given schema, views, and constraints, then
process a large number of input queries.

One side effect of our results is a unified treatment for three flavors of rewriting
problems which have been introduced and solved separately in prior work. We
show that {Q,V,P,Σ} reduces to {Q,P,Σ′}, i.e., rewriting queries with access
patterns and constraints without views (Theorem 13) and also to {Q,V,Σ′′},
i.e. rewriting queries under constraints using views without access patterns
(Theorem 20).

We show how to solve {Q,P,Σ′} and {Q,V,Σ′′} by reduction to rewriting
queries under constraints only. These reductions provide two separate routes

{Q,V,P,Σ} ; {Q,P,Σ′} ; {Q,Σ′′′} and
{Q,V,P,Σ} ; {Q,V,Σ′′} ; {Q,Σ′′′′}

to a unified solution for all three problems, based on our extension of the
relational chase theory to queries and constraints with disjunction and nega-
tion (Section 3). Specifically we show that a minimally containing query in
the {Q,P,Σ} case can be obtained by chasing Q with Σ and computing the
answerable part. Similarly, in the presence of views, we can compute the min-
imally containing query by chasing with Σ and the constraints corresponding
to V and again computing the answerable part.

We also extend the above results to handle equality and arithmetic compar-
isons by modeling them with constraints (Section 8).

Finally, since the notion of feasibility depends on the language in which the
rewriting is to be expressed, it is natural to ask whether there are cases when
there exists no rewriting of Q in the prescribed language, but Q is nevertheless
answerable by a general computable query. We show the surprising result that
this is not the case, that is, answerability and feasibility (for appropriately
chosen rewriting language) coincide (Theorem 21).

Related Work. There is a large body of related work that deals with one
or more of the following three aspects: (i) query rewriting under limited ac-
cess patterns, see [23,21,15,9,24,17,16,20,19] and references within; (ii) query
rewriting under integrity constraints (a.k.a. semantic query optimization), see

5

for instance [13,5] and references within; and (iii) query rewriting and answer-
ing using views [6,7,11]. These all have important applications in data inte-
gration and query optimization [14,18,10]. All of the above mentioned work on
rewriting has focused on either of two flavors: maximally contained or exact
rewritings.

In this paper, we introduce algorithms which deal uniformly with all three
aspects of rewriting and which find exact, maximally contained and minimally
containing rewritings.

In the category of maximally contained rewritings, the closest related results
are those of [7], which considers the most expressive queries and views, and of
[13], which handles the most expressive constraints. [7] shows how to obtain
a maximally contained rewriting for recursive Datalog queries using conjunc-
tive query views. [7] also considers access patterns on the views as well as
very restricted constraints (which can express the standard key but not all
foreign key constraints) and it shows how to construct a recursive plan which
is guaranteed to be maximally contained. As opposed to [7], we do not con-
sider recursive queries but we allow negation and disjunction in queries, views
and constraints (our constraints express key, foreign key, join, multi-valued,
and embedded dependencies and beyond). Moreover, we provide decision pro-
cedures for the existence of an exact plan and, in its absence, we show how
to obtain not only the best contained but also the best containing approx-
imations. [13] finds the maximally contained rewriting of CQ queries under
more expressive constraints than [7] (embedded dependencies), provided the
predicate dependency graph is acyclic. However, views, access patterns and
negation (in either query or constraints) are not handled.

With respect to finding exact rewritings, [5] shows how to treat views and
integrity constraints uniformly for UCQ queries. The present paper extends
these results to UCQ¬ queries, constraints, views with limited access patterns,
and maximally contained and minimally containing rewritings. [21,17,16] shows
NP-completeness in the size of the query for deciding feasibility of UCQ
queries over relations with limited access patterns (i.e. no negation, no views
and no constraints are considered). Still in the absence of views and con-
straints, [20] shows that if negation is added then deciding feasibility becomes
ΠP

2
-complete; [19] further extends the notion of feasibility to all first-order

queries and characterizes the complexity of many first-order query classes.

Paper Outline. The preliminaries in Section 2 include earlier results on con-
tainment and feasibility under access patterns. Section 3 presents our exten-
sion of the chase procedure to unions of conjunctive queries with negation.
The extended chase tool will be employed in the remainder of the paper for
query rewriting. In particular, Section 4 presents our results on feasibility and

6

rewriting with access patterns under constraints. In Section 5 we generalize
these results to include views. In Section 6 we establish our results on maxi-
mally contained executable queries. Section 7 provides an alternative method
for deciding feasibility: Instead of handling access patterns via the answerable
part of a query, we show that they too can be reduced to constraints and the
chase. Section 8 shows how other extensions such as equality and arithmetic
comparisons all can be treated uniformly via constraints. Finally, Section 9
defines a notion of answerability independent of a query language and shows
that for the case of UCQ¬ queries, feasible is the same as answerable.

2 Preliminaries

2.1 Basics

A schema τ is a list of relation symbols and their arities. An instance A over σ
has one relation for every relation symbol in σ, of the same arity. The universe
of A, which we also denote A consists of all the values in all the relations of
A. We write |A| for the size of the universe of A. For an instance A and a
relation symbol R ∈ τ , we write RA for the relation in A associated to R.

The complexity results in this paper assume the schema τ to be
fixed, and that all queries, views and constraints are over τ .

2.2 Queries

A term is a variable or constant. We write x̄ to denote a finite sequence of terms
x1, . . . , xk. We use lowercase letters x, y, z, . . . for terms and uppercase letters
P,Q,R, . . . for relation symbols and queries. A datalog rule is an expression
of the form P (z̄) :− `1(x̄1), . . . , `n(x̄n) where each `i(x̄i) in the rule is a literal,
i.e., a positive atom R(x̄) or a negative literal ¬R(x̄). Given a rule Q, we
define head(Q) and body(Q) to be the parts to the left and to the right of
′′ :−′′, respectively. A datalog program is a finite set of datalog rules. We only
consider nonrecursive programs and we further require that all rules have
the same head. In particular, this implies that we do not allow atoms in the
body of a rule which refer to the head of another rule. Therefore, head(P) is
well-defined for the programs P we consider.

We represent queries (and therefore views) by programs unless otherwise spec-
ified. If a query Q is given by multiple rules Q1, . . . , Qn, we denote this by
Q =

∨

iQi and we have Q(D) =
⋃

iQi(D), where Q(D) denotes the result of

7

query Q on database D.

Queries given by one or more rules are unions of conjunctive queries with
negation (UCQ¬). Those given by a single rule are conjunctive queries with
negation (CQ¬). If all literals are positive, then they are unions of conjunctive
queries (UCQ) in the former case, and conjunctive queries (CQ) in the later
case.

We say that a variable appears positively if it appears in a positive literal. A
query Q ∈ CQ¬ is safe if every variable which appears in the rule (whether
in the head or in the body) appears positively in its body. A query Q =

∨

iQi

with Q1, . . . , Qn ∈ CQ¬ is safe if every Qi is safe and all Qis have the same
head.

In the definition of ans(Q) below, we will need to consider two special kinds
of queries. A query Q ∈ CQ¬ given by head(Q) :− false is unsatisfiable and
is always safe (this is an extension of the definition above). A query Q ∈ CQ¬

given by a rule with an empty body is safe if there are no variables in the head
(i.e., if the query is boolean).

Unless otherwise specified, all queries are assumed to be in UCQ¬

and safe. Furthermore, E, P , and Q always denote queries.

2.3 Query Containment

This section contains a review of well-known results (see, in particular, [22]
for the handling of negation) which we need in order to prove the results in
the following sections. Its main purpose is to fix the notation and summarize
the known results in this notation. We include some of the proofs since they
help in the understanding of the sections that follow.

P is contained in Q (P v Q) if, for all databases D, P (D) ⊆ Q(D). P is
equivalent to Q (P ≡ Q) if P v Q and Q v P . Given a set of constraints Σ,
P is Σ-contained in Q (P vΣ Q) if, for all D which satisfy Σ, P (D) ⊆ Q(D).
P is Σ-equivalent to Q (P ≡Σ Q) if P vΣ Q and Q vΣ P .

P is strictly contained in Q (P @ Q) if P v Q and Q 6v P . P minimally
contains Q if Q v P and there is no P ′ such that Q @ P ′ @ P . P is maximally
contained in Q if P v Q and there is no P ′ such that P @ P ′ @ Q. We define
minimally Σ-contains and maximally Σ-contained similarly.

CONT(L) is the decision problem: for queries P,Q ∈ L determine whether
P v Q (L is a class of queries). CONTΣ(L) is the problem: for a fixed set of
constraints Σ and queries P,Q∈L decide whether P vΣ Q.

8

Theorem 1

(1) CONT(CQ) and CONT(UCQ) are NP-complete [2].
(2) CONT(CQ¬) and CONT(UCQ¬) are ΠP

2
-complete [22].

We write free(Q) for the set of free variables in the query Q and vars(Q) for
the set of all variables in the query Q (both free and existentially quantified).

Definition 1 [Homomorphism] Given P,Q ∈ CQ¬ with heads P (x̄) and
Q(ȳ), a mapping

h : vars(P) ∪ consts(P) → vars(Q) ∪ consts(Q)

(which we write h : P → Q for brevity) is a homomorphism from P into Q
if h(x̄) = ȳ and, for every literal `(v̄) in P , there is a literal `(h(v̄)) in Q. We
write P ↪→ Q if there is a homomorphism from P to Q. Notice that we require
homomorphisms to preserve literals, i.e. both positive and negated atoms.

Definition 2 [Satisfies] Given Q ∈ CQ¬ with free variables x̄ := free(Q),
a database D, and a tuple of constants d̄, Dd̄ satisfies Q, which we write
Dd̄ |= Q if there is a mapping

h : vars(Q) ∪ consts(Q) → D

such that h is the identity on the constants, h(x̄) = d̄, for every atom R(v̄)
in Q, the tuple h(v̄) appears in relation R in D and, for every negated atom
¬R(v̄) in Q, the tuple h(v̄) does not appear in relation R in D

Definition 3 [Frozen Instance] If Q ∈ CQ¬, then [Q] := Dd̄, the frozen
instance of Q, consists of a database D and a distinguished tuple d̄. D is the
database which consists of one tuple for each positive atom in Q where each
variable x has been replaced by a corresponding constant cx. d̄ is the tuple
which consists of the constants cx1

. . . cxk
corresponding to the free variables

x1 . . . xk in Q.

We write Dd̄ |= Q instead of the more traditional D |= Q[d̄] because we often
need to refer to frozen instances and these consist of both a database and a
distinguished tuple of constants and therefore it is more convenient to write
[P] |= Q rather than something that would require to separate the database
in [P] from the distinguished tuple of constants in [P]. We set Q(D) := {d̄ :
Dd̄ |= Q}.

We say that Q ∈ CQ¬ is satisfiable, if there is Dd̄ such that Dd̄ |= Q. Notice
that a CQ¬ query Q is satisfiable iff there is no atom R(x̄) which appears both
positively and negatively and that checking for the presence of such atom can
be done in quadratic time. The following two results follow directly from the
corresponding definitions.

9

Lemma 1

(1) If Q ∈ CQ, then [Q] |= Q.
(2) If Q ∈ CQ¬ and Q is satisfiable, then [Q] |= Q.

Lemma 2

(1) If P,Q,R ∈ CQ¬ and P ↪→ Q ↪→ R, then P ↪→ R.
(2) If P,Q ∈ CQ¬, P ↪→ Q, and Dd̄ |= Q, then Dd̄ |= P .

Proof. (1) If f : P ↪→ Q and g : Q ↪→ R, then h : g ◦ f is a homomorphism
P ↪→ R. (2) If there is a mapping g : Q→ D as in Definition 2 and f : P ↪→ Q,
then h : g ◦ f is a mapping P → D satisfying Definition 2 so Dd̄ |= P . 2

Definition 4 [Complete Query] P ∈ CQ¬ is complete if it is satisfiable and,
for all Q ∈ CQ¬, [P] |= Q implies Q ↪→ P . P ∈ UCQ¬ is complete if P =

∨

i Pi

where each Pi is CQ¬ and complete.

Intuitively, P ∈ CQ¬ is complete if tuples not in [P] (constructed from [P]’s
active domain) correspond to negated atoms in P .

Example 3 Consider the queries

P (x, y) :− R(x, y), R(y, y)

and

Q(x, y) :− R(x, y),¬R(y, x)

We have [P] |= Q, yet Q 6↪→ P since there are no negative literals in P . This
shows that P is not complete. On the other hand, the queries

P ′(x, y) :− R(x, y), R(y, y),¬R(y, x), R(x, x)

and

P ′′(x, y) :− R(x, y), R(y, y), R(y, x), R(x, x)

are both complete. We have [P ′] |= Q and Q ↪→ P ′ and we also have [P ′′] 6|= Q

and Q 6↪→ P ′′.

Lemma 3

(1) If P,Q ∈ CQ, then Q ↪→ P iff [P] |= Q.
(2) If P,Q ∈ CQ¬ and P is complete, then Q ↪→ P iff [P] |= Q.

Proof. (1) Assume P,Q ∈ CQ and Q ↪→ P . Then [P] |= P by Lemma 1 and
therefore [P] |= Q by Lemma 2. Conversely, assume P,Q ∈ CQ and [P] |= Q.
Then the function h witnessing the latter (Definition 2) is a homomorphism
Q ↪→ P .

10

(2) Assume P,Q ∈ CQ¬ and Q ↪→ P . Then, since P is complete and there-
fore satisfiable, [P] |= P by Lemma 1 and therefore [P] |= Q by Lemma 2.
Conversely, assume P,Q ∈ CQ¬, P is complete, and [P] |= Q. Then Q ↪→ P

follows directly from the definition of complete. 2

Theorem 2

(1) If P,Q ∈ CQ, then P v Q iff Q ↪→ P.

(2) If P,Q ∈ CQ¬ and P is complete, then P v Q iff Q ↪→ P.

Proof. (1) Assume P,Q ∈ CQ. If Q ↪→ P and Dd̄ |= P then Dd̄ |= Q by
Lemma 2. Therefore P v Q. Conversely, since [P] |= P always holds, if P v Q,
then [P] |= Q and therefore Q ↪→ P by Lemma 3. (2) If P,Q ∈ CQ¬, then the
same proof works, except that we use the fact that P is complete. 2

Theorem 3

(1) If P1, . . . , Pn, Q1, . . . , Qm ∈ CQ, then

∨

i

Pi v
∨

j

Qj iff ∀i∃j(Pi v Qj) iff ∀i∃j(Qj ↪→ Pi).

(2) If P1, . . . , Pn, Q1, . . . , Qm ∈ CQ¬ and P1, . . . , Pn are complete, then

∨

i

Pi v
∨

j

Qi iff ∀i∃j(Pi v Qj) iff ∀i∃j(Qj ↪→ Pi).

Proof. Assume P1, . . . , Pn, Q1, . . . , Qm ∈ CQ. Set P :=
∨

i Pi and Q :=
∨

j Qj.
If P v Q, then [Pi] |= P so [Pi] |= Q. Therefore, for some j, [Pi] |= Qj and, by
Lemma 3, Qj ↪→ Pi. By Theorem 2, Qj v Pi. The other direction is obvious.
If P1, . . . , Pn, Q1, . . . , Qm ∈ CQ¬, then the same proof works, except that we
need the fact that P1, . . . , Pn are complete. 2

Definition 5 [Completion] The completion of Q, which we write comp(Q),
is the maximal disjunction

∨

iQi of complete non-equivalent queries Qi v Q,
where Qi ∈ CQ¬ and vars(Qi) ⊆ vars(Q).

That is, comp(Q) is the query (defined only up to order of conjuncts and
disjuncts)

∨

16i6nQi where n the maximal integer such that for each i the
following hold:

• for each j, j 6= i, Qi is not equivalent to Qj,
• Qi is satisfiable,
• Qi has the same head as Q,
• the body of Qi includes all the literals of Q,
• for each k, each k-ary relation R in the schema and each k-tuple x̄ of terms

from Q either R(x̄) or ¬R(x̄) occurs in the body of Qi.

11

The following is immediate from the definition of comp.

Lemma 4

(1) comp(Q) ≡ Q.
(2) comp(Q) is complete.
(3) If Q is complete, then comp(Q) = Q (up to order)
(4) For every schema τ , there is a polynomial pτ such that if comp(Q) =

∨

iQi

with Qi ∈ CQ¬, then, for all i, |Qi| 6 pτ (|Q|).
(5) For every schema τ ′, comp(Q)|τ ′ ≡ Q|τ ′.

Proof.

(1) It follows from the definition that comp(Q) v Q. Now assume, to get a
contradiction, that there is Dd̄ such that Dd̄ |= Q and Dd̄ 6|= comp(Q).
Pick P ∈ CQ¬ to be complete and to satisfy [P] = Dd̄. Then [P] |= Q and
therefore, by Lemma 3, Q ↪→ P . By Theorem 2, P v Q and therefore P
must be a disjunct of comp(Q), contradicting [P] 6|= comp(Q). It follows
that Q v comp(Q).

(2) Immediate from the definition of comp(Q).
(3) This follows from the fact that two complete queries P,Q ∈ CQ¬ are

equivalent iff they are equal (up to order).
(4) This follows from the fact that there are at most 2vr literals with v

variables and a relational symbol of arity r and therefore at most 2|τ |vr

literals with v variables over τ where r is the maximal arity of a relational
symbol in τ .

(5) This follows from 1, 2, and the fact that comp(Q)τ ′ is complete over τ ′.

2

Notice that while each Qi is bounded in size by a polynomial pτ , the number
of such queries Qi is exponential in the number of variables in Q. Lemma 4
and Theorem 3 imply the following.

Theorem 4 If comp(P) =
∨

i Pi with P1, . . . , Pn ∈ CQ¬ and Q =
∨

j Qm with
Q1, . . . , Qj ∈ CQ¬, then

∨

i

Pi v
∨

j

Qi iff ∀i∃j(Pi v Qj) iff ∀i∃j(Qj ↪→ Pi).

The upper bound for CQ¬ and UCQ¬ in Theorem 1 follows from Lemma 4
and Theorem 4.

Corollary 1 If Q is over the schema τ , then P v Q iff P |τ v Q.

Proof. One direction is clear. For the other direction, assume P v Q and

12

Q =
∨

iQi with Q1, . . . , Qn ∈ CQ¬. Then

comp(P) v Q Since P ≡ comp(P) by Lemma 4

comp(P)|τ v Q By Theorem 4 (*)

P |τ v Q Since comp(P)|τ ≡ P |τ by Lemma 4

(*) since homomorphisms from Qi must map into τ -literals. 2

2.4 Access Patterns

This section contains a review of known results from [20,21,17]. We include
most of the proofs in the appendix. An access pattern for a k-ary relation R

is an expression Rα where α is a word of length k over the alphabet {i, o}. ‘i’
denotes a required input slot and ‘o’ denotes an output slot (no value required).
Given access patterns P, an annotation of Q assigns to each occurrence of a
relation symbol a pattern from P.

Definition 6 [Executable] Q is executable if it can be annotated so that every
variable of a rule appears first 3 positively in an output slot in the body of
that rule.

Definition 7 [Feasible] Q is feasible if it is equivalent to an executable query
Q′. FEASIBLE(L) is the decision problem: for Q ∈ L, determine whether Q
is feasible.

Remark. A set of access patterns is additional information about a schema
(the one specifying the base relations or the one consisting of the view heads).
Access patterns are necessary to determine whether a query is executable or
feasible, and to determine the answerable part of a query (defined below). All
other notions defined in this paper (e.g. safety) do not depend on the access
patterns.

Theorem 21 in Section 9 below shows that a query Q is feasible iff it is answer-
able in the intuitive sense. That is, if there is an algorithm which computes Q
respecting the access patterns.

For Q ∈ CQ¬, we say that a literal `(x̄) (not necessarily in Q) is Q-answerable
if there is an executable Q′ ∈ CQ¬ which is a conjunction of `(x̄) and literals
in Q. The answerable part of a query Q is another query ans(Q) defined below.
ans(Q) may be undefined for some queries Q, but when defined it is executable.

Definition 8 [Answerable Part] If Q ∈ CQ¬ is unsatisfiable we set the body

3 when reading the program that defines it from left to right

13

of ans(Q) to false; otherwise we set the body of ans(Q) to the conjunction
of the Q-answerable literals {L1, . . . , Lm} in Q. in the order L1, . . . , Lm where
L1, . . . , Lm satisfy the following conditions. Set Qi to be the conjunction of
literals L1, . . . , Li or empty in case i = 0. We require Li to be Qi−1-answerable.
Notice that if Li is Q-answerable, then it must be Qj answerable for some j
(this follows from the definition of Q-answerable). Furthermore, if both Li and
Lj for i < j are Qi−1-answerable, we require Li to appear first 4 in Q. We set
head(ans(Q)) := head(Q). However, if the resulting query ans(Q) is unsafe,
we say that ans(Q) is undefined. If Q =

∨

iQi with Q1, . . . , Qn ∈ CQ¬, we
set ans(Q) :=

∨

i ans(Qi). In this case ans(Q) is defined iff every ans(Qi) is
defined. For an example, see the last part of Example 1.

The main results on testing feasibility for UCQ¬ queries are [20]: if defined,
ans(Q) is the minimal (under containment) executable query containing Q

(Theorem 5); checking feasibility of UCQ¬ queries can be reduced to checking
UCQ¬ query containment (Corollary 2), and is in fact as hard as checking
query containment of UCQ¬ queries (Theorem 6). Checking feasibility of UCQ
queries is NP-complete in the size of the query (Theorem 7) [21,17].

Lemma 5 ans(Q) can be computed in quadratic time in the size of Q.

Proof. We consider the case when Q ∈ CQ¬; the case Q ∈ UCQ¬ is handled
the same way, one rule at a time. Give ans(Q) the same head as Q and build its
body one literal at a time as follows. Start with B, the set of bound variables,
empty. Find the first literal `(x̄) in Q not yet added to ans(Q) such that,

• `(x̄) is positive and there is some access pattern for it in P such that all
variables in x̄ which appear in input slots in `(x̄) are in B, or

• `(x̄) is negative and its variables are in B.

If there is no such literal, stop. Otherwise, add `(x̄) to ans(Q), set B :=
B ∪ {x̄}, and repeat. Clearly, this algorithm adds to the body of ans(Q) all
the Q-answerable literals in Q and no others and their order satisfies the
definition. 2

Lemma 6 If Q,E ∈ CQ¬, Q is complete, ans(E) is defined, and Q v ans(E),
then ans(Q) is defined and ans(Q) v ans(E).

Lemma 7 If ans(Q) is defined, then ans(comp(Q)) is defined and ans(Q) ≡
ans(comp(Q)).

Lemma 8 If ans(Q) is defined, then Q v ans(Q).

Theorem 5 If QvE and E is executable then ans(Q) is defined and

4 when reading Q from left to right

14

Qv ans(Q)vE. [20]

Corollary 2 Q is feasible iff ans(Q) is defined and ans(Q) v Q.

We write A 6P
m B if problem A is polynomial time reducible to B by a many-

one reduction and A ≡P
m B if A is polynomial time equivalent to B. A proof

of the following result is included in the Appendix.

Theorem 6 FEASIBLE(UCQ¬) ≡P
m CONT(UCQ¬) and therefore is ΠP

2
-

complete. [20]

Theorem 7 FEASIBLE(UCQ) ≡P
m CONT(UCQ) and therefore is NP-complete.

[21,17].

3 An Extension of the Chase

Given a set of constraints, there is a well known procedure for extending a
query Q1 to another query Q′

1 by an iterative procedure known as the chase
so that, for any query Q2,

Q1 vΣ Q2 iff Q′
1 v Q2.

The chase was originally introduced to check containment of CQ queries under
embedded dependencies [1], but it also applies to query rewriting, as shown
in the following sections. In this section, we extend the chase procedure to
UCQ¬ queries and corresponding sets of constraints.

To any query language L, we associate a class of constraints of the form
IC(L) := { ∀x̄ (U→V) | U, V ∈ L} where x̄ is the set of free variables in both
U and V . Such constraints express the containment of U in V and are precisely
the embedded dependencies [1] when L is the language of conjunctive queries
with equality atoms.

Unless otherwise specified, we assume all constraints are subsets
of IC(UCQ¬). Furthermore Σ always denotes a set of IC(UCQ¬)
constraints.

We observe first that constraints in IC(UCQ¬) can be normalized to eliminate
disjunction and existential quantification from the premise of the implication.
Indeed, consider the constraint σ ∈ IC(UCQ¬)

σ : ∀x̄ ϕ(x̄) → ξ(x̄)

where ϕ, ξ ∈ UCQ¬ with free(ϕ) = free(ξ) = x̄ and ϕ(x̄) =
∨n

i=1 ϕi(x̄) with

15

ϕi ∈ CQ¬ for all 1 6 i 6 n. Then it follows from application of DeMorgan’s
laws that an instance satisfies σ if and only if it satisfies the set of constraints
{σi}

n
i=1:

σi : ∀x̄ ϕi(x̄) → ξ(x̄).

Also notice that, denoting z̄ := vars(ϕi)\ x̄, σi is equivalent (again by DeMor-
gan) to

∀x̄∀z̄ ϕi(x̄, z̄) → ξ(x̄).

In the remainder of this section we assume that all constraints are normalized
to the form (11) below and we define the chase for such constraints only.

Let σ ∈ IC(UCQ¬) be a normalized integrity constraint of the form

σ : ∀x̄ ψ(x̄) →
l

∨

i=1

∃ȳi ξi(x̄, ȳi) (11)

where ψ is a quantifier-free CQ¬ with x̄ = vars(ψ), and for each i, ξi is a
quantifier-free CQ¬ with {ȳi} ⊆ {vars(ξi)} ⊆ {x̄} ∪ {ȳi}.

Chase Step. Let Q ∈ CQ¬ and assume w.l.o.g. that vars(Q)∩vars(σ) = ∅ and
that ∀i 6= j ȳi ∩ ȳj = ∅ (this is always achievable through variable renaming).

We say that a chase step of Q with σ applies iff there is a homomorphism h

from ψ to Q, both viewed as boolean queries, such that for each i, h has no
extension to a homomorphism from ψ ∧ ξi to ψ. In other words, there is no
homomorphism h′ from ψ ∧ ξi to ψ such that h′(x̄) = h(x̄). The result of this
chase step, denoted step(Q, σ, h), is a UCQ¬ query obtained as follows. First
construct the disjunction

∨l
i=1Q ∧ h′(ξi), where h′ is a mapping on vars(σ)

that extends h to be the identity on ȳi. Next, remove all unsatisfiable CQ¬s.
Note that all CQ¬s may be unsatisfiable in which case the result of the chase
step is the unsatisfiable empty disjunction false.

Example 4 Consider the constraint

∀x∀y R(x, y) → ∃z S(x, z) ∧ ¬E(z, x) ∨ T (y, x) (12)

Then no chase step with (12) applies to the boolean query Q :− R(m,n) ∧
T (n,m) because the only homomorphism h = {x 7→ m, y 7→ n} from R(x, y)
to R(m,n) is its own extension to R(x, y)∧ T (y, x) and therefore since one of
the disjunts of the conclusion is satisfied, the whole conclusion is satisfied.

16

However, a chase step applies to Q :− R(m,n), yielding

U :−R(m,n) ∧ S(m, z) ∧ ¬E(z,m)

U :−R(m,n) ∧ T (n,m)

Note that no unsatisfiable disjuncts were created in this case.

In contrast, a chase step of Q :− R(m,n) ∧ ¬T (n,m) yields

U :− R(m,n) ∧ ¬T (n,m) ∧ S(m, z) ∧ ¬E(z,m)

since R(m,n) ∧ T (n,m) ∧ ¬T (n,m) is unsatisfiable. 2

We lift the definition of chase step of a CQ¬ to that of UCQ¬s. Let Q =
∨

j Qj,
and let σ ∈ IC(UCQ¬) such that w.l.o.g. vars(σ)∩ vars(Q) = ∅. Then a chase
step of Q with σ applies iff there is a j0 such that a chase step with σ applies to
Qj0 using some homomorphism h. The result of the chase step on Q is defined
as

∨

j 6=j0 Qj ∨ step(Qj0, σ, h).

Deterministic Chase Sequence. Let Σ ⊆ IC(UCQ¬) be a set of constraints.
A chase sequence of a query Q0 with Σ is a sequence of queries Q0, Q1, . . . , Qn

such that Qi+1 is the result of applying a chase step with some σ ∈ Σ to Qi.
Note that for each Qi several chase steps may be simultaneously applicable,
thus potentially allowing several distinct chase sequences of Q0 with Σ. How-
ever, given some arbitrary total order O on Σ, O uniquely determines a chase
sequence as follows. As long as chase steps apply, they are executed. Whenever
several chase steps apply simultaneously to Qi, we apply a step correspond-
ing to the minimal constraint in the order O, say σm. Note that even for σm

several chase steps may apply, because there are several homomorphisms from
vars(σm) to the variables of Qi. In that case, execute the step corresponding
to the homomorphism h which minimizes h(vars(σm)) w.r.t. the lexicographic
order of Qi’s variables. We say that the chase determined by O terminates
if the corresponding chase sequence has finite length n. We define the chase
result of Q0 as Qn and denote it as chase(Q0,Σ, O).

The chase does not always terminate (even in the case with no negation) and
its syntactic form depends on the order O. However if the chase terminates
for any two orders O1 and O2, then the two chase results are equivalent:
chase(Q,Σ, O1) ≡ chase(Q,Σ, O2) which is the same as saying that they are
homomorphically equivalent. That is, there are homomorphisms

chase(Q,Σ, O1) ↪→ chase(Q,Σ, O2) and chase(Q,Σ, O2) ↪→ chase(Q,Σ, O1).

All our results below which depend on the chase result hold under homomor-

17

phic equivalence and therefore we do not specify any specific chase order in our
results or algorithms. Any order which leads to chase termination is sufficient
and later we will consider conditions which ensure that the chase terminates
for any order.

We therefore define the result of the chase up to equivalence. To this end, we
introduce Negation Constraints:

Definition 9 [Negation Constraints] Στ
¬ ⊆ IC(UCQ¬) is the smallest set of

constraints which contains, for each k, each k-ary relation R in the schema τ
and some k-tuple of distinct x̄ of variables, the constraint ∀x̄ (true → (R(x̄)∨
¬R(x̄))).

We allow queries which are unsafe in the conclusion of the constraints (we
need them for Στ

¬); however if Q is safe, then chase(Q,Σ, O) is also safe, even
when Σ includes unsafe sentences.

Definition 10 [Chase Result QΣ] QΣ := chase(Q,Σ ∪ Στ
¬, O) for some order

on which the chase terminates (if there is such order).

We write QΣ,Σ′

for (QΣ)Σ′

which in general is not equivalent to QΣ∪Σ′

.

In the following, we use the notion of chase result QΣ to extend previous results
which do not handle negation. In particular, we reduce containment under
constraints to containment over all databases. While the exact statement of
this reduction is given in Theorems 8 and 9 below, they essentially state that

Q1 vΣ Q2 iff QΣ
1 v Q2.

Previous work shows the reduction for CQ query containment under IC(CQ)
constraints [1], and UCQ queries under IC(UCQ) [5]. We extend these to
UCQ¬ queries and IC(UCQ¬) constraints next.

Theorem 8 states that the chase preserves equivalence to the original query
under the constraints.

Theorem 8 (Soundness of the Chase)

(1) If a chase step of query Q with constraint σ ∈ Σ applies using homomor-
phism h, then Q ≡Σ step(Q, σ, h).

(2) Let O be any total order on Σ which determines a terminating chase of
Q. Then Q ≡Σ chase(Q,Σ, O).

The proof is given in the Appendix.

Theorem 9 (Completeness of the Chase) If chase(P,Στ
¬ ∪ Σ, O) termi-

18

nates for some O, then

P vΣ Q iff chase(P,Στ
¬ ∪ Σ, O) v Q

The proof is given in the Appendix.

It is well-known that checking termination of the chase is undecidable even for
the constraint language IC(CQ) [1]. [5] and [8] introduce a sufficient condition,
checkable in P, for termination of the chase with IC(UCQ) constraints. It is
fairly wide and generalizes the notions of full and acyclic dependencies [1].
The condition requires a set of constraints to have stratified witnesses. 5 Here
we extend the notion to sets of IC(UCQ¬) constraints.

Definition 11 [Chase Flow Graph 6] Given Σ ⊆ IC(UCQ¬) define its chase
flow graph G = (V,E) as a directed graph whose edge labels can be either ∀
or ∃. G is constructed as follows: for every relation R of arity a mentioned
in Σ, V contains a node Ri (1 6 i 6 a). For every pair of relations R, S of
arities a, a′ if R(x̄) appears in the premise and S(ȳ) in the conclusion of some
constraint σ ∈ Σ,

• if xi = yj, then add a ∀-labeled edge from Ri to Sj and
• if yj is existentially quantified, then add an ∃-labeled edge from Ri to Sj.

Notice that this definition is independent of whether R and S appear within
the scope of negation or disjunction.

Definition 12 [Set of Constraints with Stratified Witnesses] We say that a
set of constraints has stratified witnesses if it has no cycles through ∃-edges.

We introduce the following notations.

• u denotes the maximum number of universally quantified variables men-
tioned in a disjunct of a constraint’s conclusion:

u := max{|vars(ξi) ∩ {x̄}| : (∀x̄ψ →
∨

i

∃ȳiξi) ∈ Σ}

• Given a constraint σ ∈ Σ, we define eσ denotes the maximum number of
existentially quantified variables mentioned in a disjunct of a constraint’s
conclusion: eσ := maxi |ȳi| where σ = ∀x̄ψ →

∨

i ∃ȳiξi. We set e :=
∑

σ∈Σ eσ.

5 The notion first arose in a conversation between the first author and Lucian Popa.
It was then independently used in [5] and in [8] (in the latter paper, under the term
weakly acyclic).
6 The chase flow graph is similar to the graph used to determine the existence of
stratified normal forms for ILOG programs [12]. These invent object identities, just
like the chase invents new variables.

19

According to the following result, sets of constraints with stratified witnesses
enjoy the important property that the chase with them is guaranteed to ter-
minate, and moreover to produce a result which is a union of CQ¬ queries,
such that there are at most exponentially many union members, each of size
polynomial in the size of the original query.

Theorem 10 (Chase Termination)

(1) For any Q ∈ UCQ¬, any Σ ⊆ IC(UCQ¬) with stratified witnesses and
any total order O on Σ, the chase terminates.

(2) Moreover, assume that chase(Q,Σ, O) :=
∨

iQi and denote with l the
maximum number of ∃-edges on any path in the chase flow graph of Σ.
Then for each i,

|vars(Qi)| ≤ (1 + e)ul

|vars(Q)|u
l

where e and u are as defined above.

The proof is given in the Appendix.

Corollary 3 Under the hypothesis of Theorem 10, fix the database schema
and Σ. Then the size of each Qi ∈ CQ¬ in the chase result is polynomial in
the size of Q.

Remark. The chase with Στ
¬ gives us a procedure for computing the comple-

tion of a query.

Proposition 1 For any Q ∈ UCQ¬ and any total order O on Στ
¬, the cor-

responding chase terminates and comp(Q) = chase(Q,Στ
¬, O) up to order of

conjuncts and disjuncts.

4 Integrity Constraints

We consider {Q,P,Σ}, i.e., the problem of answering a query Q in the presence
of access patterns P and integrity constraints Σ.

Definition 13 [Σ-Feasible] Q is Σ-feasible if it is Σ-equivalent to an exe-
cutable query Q′. FEASIBLEΣ(L) is the decision problem: for Q ∈ L and
fixed Σ, decide whether Q is Σ-feasible.

The main results in this section are that, if defined, ans(QΣ) is the minimal
(under Σ-containment) executable query Σ-containing Q (Theorem 11), that
checking Σ-feasibility of UCQ¬ queries can be reduced to checking containment

20

of UCQ¬ queries (Corollary 4), and that in those cases where QΣ is well-defined
(i.e., the chase terminates) and not too large its complexity is the same as
that of checking containment of UCQ¬ queries (Theorem 12b). Corresponding
results hold for CQ, CQ¬, and UCQ (Theorem 12a). We outline the algorithms
Rewrite and Feasible which use the following functions:

• ans(Q), which given a query Q, produces the query ans(Q). A quadratic
time algorithm for this function is outlined in the proof of Lemma 5.

• chase(Q,Σ, O), which given a query Q, a set of constraints Σ, and an order
on the constraints O, produces the query chase(Q,Σ, O) as described in
Section 3. In general, no guarantees are given for the running time or space
of chase(Q,Σ, O); in fact, it may not even terminate (unless Σ has stratified
witnesses).

• contained(P,Q), which given queries P and Q, returns true if P v Q, false
otherwise (its complexity is given in Theorem 1).

Note that algorithm Rewrite(Q,Σ) may return undefined or may not ter-
minate; similarly, Feasible(Q,Σ) may not terminate. Theorem 11 and Corol-
lary 4 below show that algorithms Rewrite and Feasible are correct and
complete regardless of the chase order O, as long as the chase terminates.

function Rewrite(Q,Σ)

(1) Compute Σ′ := Σ ∪ Στ
¬ and pick some order O for Σ′;

(2) Q1 := chase(Q,Σ′, O);

(3) Q2 := ans(Q1);

(4) return Q2.

Here we give a simplified version of Feasible which gives an exponential time
algorithm. This algorithm can be parallelized to give a ΠP

2
algorithm when Q

and Σ satisfy the assumptions of Theorem 12, as outlined in the proof of that
theorem.

function Feasible(Q,Σ)

(1-3) same as (1–3) of Rewrite(Q,Σ);

(4) if Q2 = undefined then return false;

(5) Q3 := chase(Q2,Σ′, O);

(6) return contained(Q3, Q).

The following shows that, if it is at all possible to overestimate Q via an exe-
cutable query, then the query returned by algorithm Rewrite is a minimally
Σ-containing rewriting of Q, i.e. it is the executable rewriting of Q which least

21

overestimates Q.

Theorem 11 If Q vΣ E, E executable, and QΣ is defined, then ans(QΣ) is
defined and Q vΣ ans(QΣ) v E.

Proof. Assume QvΣE, E executable, and QΣ is defined. Then by Theorem
9, QΣvE. Thus, by Theorem 5, ans(QΣ) is defined and QΣvans(QΣ)vE. By
Theorem 9, QvΣans(QΣ)vE. 2

According to the following corollary of Theorem 11, algorithm Feasible is a
decision procedure for Σ-feasibility provided that the chase terminates.

Corollary 4 The following are equivalent:

(1) Q is Σ-feasible and QΣ is defined.
(2) ans(QΣ) is defined and ans(QΣ) vΣ Q.
(3) ans(QΣ)Σ is defined and ans(QΣ)Σ v Q.

Proof. If (1) holds, then Q vΣ E for some executable E and therefore (2)
holds by Theorem 11. If (2) holds, then certainly ans(QΣ)Σ is defined (since
the chase QΣ terminates) and ans(QΣ)Σ v Q holds by Theorem 9, so (3) holds.
If (3) holds, then certainly QΣ is defined and ans(QΣ) is executable and, by
Theorem 9, Σ-contained in Q, so Q is Σ-feasible by Corollary 2. 2

The following result provides a fairly general condition on the behavior of the
chase which implies (tight) upper bounds for deciding Σ-feasibility.

Theorem 12

(1) If Σ ⊆ IC(UCQ) and there is a polynomial p such that for all Q, QΣ ∈
UCQ is defined and |QΣ| 6 p(|Q|), then FEASIBLEΣ(UCQ) is NP-
complete.

(2) If Σ ⊆ IC(UCQ¬) and there is a polynomial p such that for all Q,
QΣ(=

∨

iQ
′
i) ∈ UCQ¬ is defined and for all i, |Q′

i| 6 p(|Q|), then
FEASIBLEΣ(UCQ¬) is ΠP

2
-complete.

Proof.

(1) Given Q ∈ UCQ and Σ and p as in the hypotheses, compute ans(QΣ)Σ

(if this is undefined return ‘no’) and check whether ans(QΣ)Σ v Q. Since
|ans(QΣ)Σ| 6 |QΣ| 6 p(|Q|) the latter can be checked in NP in the
size of Q. The lower bound follows from the fact that we can reduce
FEASIBLE(UCQ) to FEASIBLEΣ(UCQ) by taking Σ = ∅.

(2) Assume the hypotheses of the theorem, Q =
∨

j Qj, and ans(QΣ)Σ =
∨

`Q
′′
` with Qj, Q

′′
` ∈ CQ¬. Since each Q′′

` is complete, by Theorem 3, we
can test whether ans(QΣ)Σ v Q (if the left hand side is undefined return

22

‘no’) by testing ∀`∃j(Q′′
` v Qj). To test the latter in ΠP

2
in the size of Q

proceed as follows.
• ∀-verify that for every “candidate” P, P ′ ∈ CQ¬ such that P is a dis-

junct of QΣ and P ′ is a disjunct of ans(P)Σ (here P ′ takes the place of
Q′′

`)
• ∃-guess j and a homomorphism Qj → P ′ and verify the homomorphism

in polynomial time.
The important points are that

• We can check whether P is a disjunct of QΣ in NP time in |P |. In
particular, we don’t need to generate all of QΣ; there is a chase se-
quence Q = Q0, Q1, . . . , Qn = QΣ (with Qs+1 obtained by a chase
step on Qs

j0(s)
) and it is enough to find a sequence of CQ¬ queries

P 0, P 1, P 2, . . . , P n such that P s = Qs
j0(s)

and P n = P .

• Similarly, we can check whether P ′ is a disjunct of ans(P)Σ in NP in
|P ′| and |ans(P)|.

• Since we have assumed that for all i, |Q′
i| 6 p(|Q|), we know that if P

and P ′ satisfy the conditions above, then |P |, |P ′| 6 p(|Q|).
The lower bound follows from the fact that we can reduce FEASIBLE(UCQ¬)
to FEASIBLEΣ(UCQ¬) by taking Σ = ∅.

2

The fact that QΣ is defined only up to equivalence is not a concern for our
needs, due to the following result, which implies that ans(QΣ) is also defined
up to equivalence.

Lemma 9

(1) If P v Q and ans(Q) is defined, then ans(P) is defined and ans(P) v
ans(Q).

(2) If P ≡ Q and ans(Q) is defined, then ans(P) is defined and ans(P) ≡
ans(Q).

Proof. (1) If ans(Q) is defined then it is executable and P v Q v ans(Q). By
Theorem 5, ans(P) is defined and ans(P) v ans(Q). (2) follows from (a). 2

Theorem 10 and Theorem 12 immediately imply the following:

Corollary 5 For any fixed Σ ⊆ IC(UCQ¬) with stratified witnesses FEASIBLEΣ(QΣ)
is ΠP

2
-complete in the size of Q.

23

5 Views

We now consider the problem {Q,V,P,Σc}: given

(1) a query Q over schema τ ,
(2) a set of views V given as UCQ¬ queries V1, . . . , Vn over schema τ
(3) a set of access patterns P over schema τV , where

τV := {head(V1), . . . , head(Vn)}, and
(4) a set of constraints Σc over τ ,

we are interested in finding a query E such that

(1) E is over schema τV ,
(2) E is executable w.r.t. the access patterns P, and
(3) E is Σ-equivalent to Q,

where Σ = Σc ∪ ΣV
f ∪ ΣV

b , and ΣV
f ,Σ

V
b ⊆ IC(UCQ¬) are “forward” and “back-

ward” constraints over τ ∪ τV which capture the semantics of the views as
follows:

ΣV
f := {∀x̄iȳi (body(Vi) → head(Vi)) | Vi ∈ V, 1 6 i 6 n}

ΣV
b := {∀x̄i (head(Vi) → ∃ȳibody(Vi)) | Vi ∈ V, 1 6 i 6 n}

where x̄i are the variables in head(Vi), and ȳi are the variables in body(Vi)
which do not appear in head(Vi). We call such E an executable Σc-rewriting
of Q using V.

Definition 14 [Σc,V-Feasible] Q is Σc,V-feasible if there is an executable Σc-
rewriting of Q using V. FEASIBLEΣc,V(L) is the decision problem: for Q ∈ L
and fixed Σc and V, decide whether Q is Σc,V-feasible.

Notice that this provides a reduction of {Q,V,P,Σc} to {Q,P,Σ′}, which we
covered in Section 4. In addition to the above reduction, the main results in
this section are the following. It is enough to consider QΣc,ΣV

f instead of QΣ for
computing the answerable part (but for testing feasibility we also need ΣV

b).
If defined, ans(QΣc,ΣV

f |τV) is the minimal (under Σ-containment) executable
query over τV Σ-containing Q (Theorem 13). We write Q|τ for the query with
the same head as Q and with body given by the literals in Q which have
relation symbols in schema τ . It follows that checking whether there is an
executable Σc-rewriting of a query Q using V can be reduced to checking con-
tainment (Corollary 6). We also show that we can stratify the chase and that
we only need special conditions on Σc (but not on ΣV

f or ΣV
b) to guarantee

that QΣ is well-defined and suitably small (Theorem 14). We outline the algo-
rithms ViewRewrite and ViewFeasible which use the functions ans(Q),

24

chase(Q,Σ, O), and contained(P,Q).

function ViewRewrite(Q,Σc,V)

(1) Compute Σc
′ := Σc ∪ Στ

¬ and pick some order Oc for Σc
′;

(2) Compute ΣV
f
′
:= ΣV

f ∪ Στ
¬ and pick some order Of for ΣV

f
′
;

(3) Q1 := chase(Q,Σc
′, Oc);

(4) Q2 := chase(Q1,ΣV
f
′
, Of);

(5) Q3 := Q2|τV (that is, drop all τ literals);

(6) Q4 := ans(Q3);

(7) return Q4.

ViewRewrite(Q,Σc,V) may return undefined or may not terminate. Sim-
ilarly, ViewFeasible(Q,Σc,V) may not terminate. Theorem 13 and Corol-
lary 6 show that these algorithms are correct and complete in case the chase
terminates regardless of the order O. The simplified version of ViewFeasible

below results in an exponential time algorithm; however, it can be parallelized
to give a ΠP

2
(in the size ofQ) algorithm when Q and Σ satisfy the assumptions

of Theorem 14.

function ViewFeasible(Q,Σc,V)

(1–6) same as (1–6) of ViewRewrite(Q,Σc,V);

(7) if Q4 = undefined then return false;

(8) Compute ΣV
b
′
:= ΣV

b ∪ Στ
¬ and pick some order Ob for ΣV

b
′
;

(9) Q5 := chase(Q4,ΣV
b
′
, Ob);

(10) Q6 := chase(Q5,Σc
′, Oc);

(11) Q7 := Q6|τ (that is, drop all τV literals);

(12) return contained(Q7, Q).

Example 5 We illustrate algorithm ViewRewrite on the setting from Ex-
ample 2.

Σc contains the constraint

∀a∀t C(a, t) → R(a, t) (13)

Στ
¬ contains

∀a∀t true → (R(a, t) ∨ ¬R(a, t)) (14)

∀a∀t true → (C(a, t) ∨ ¬C(a, t)), (15)

25

ΣV
f contains

∀a∀t C(a, t) ∧ R(a, t) → V1(a, t) (16)

∀a∀t C(a, t) ∧ ¬R(a, t) → V2(a, t), (17)

and ΣV
b contains

∀a∀t V1(a, t) → C(a, t) ∧ R(a, t) (18)

∀a∀t V2(a, t) → C(a, t) ∧ ¬R(a, t). (19)

We are given query Q(a, t) :− C(a, t).

Step 3 of ViewRewrite chases Q with Σc ∪ Στ
¬. Suppose it first chases Q

with constraint (14), to obtain

Q′(a, t) :−C(a, t), R(a, t)

Q′(a, t) :−C(a, t),¬R(a, t)

whose second rule then chases with (13) to

Q′′(a, t) :−C(a, t),¬R(a, t), R(a, t)

which is unsatisfiable and is dropped from the chase step result. No further
chase step applies to the remaining rule, so Step 3 yields

Q1(a, t) :−C(a, t), R(a, t).

In Step 4, ViewRewrite chases Q1 with ΣV
f
′
. Only one chase step applies,

namely with (16), yielding

Q2(a, t) :−C(a, t), R(a, t), V1(a, t).

In Step 5, Q2 is reduced to the atoms mentioning only the view vocabulary
τV = {V1, V2}, yielding

Q3(a, t) :− V1(a, t).

Since V1’s access pattern is ‘oo’, ViewRewrite returns Q4 = ans(Q3) = Q3.

Q3 turns out to be an equivalent rewriting ofQ. Indeed, algorithm ViewFeasible

checks this as follows. During the chases in Steps 9 and 10, only one chase step
applies, namely with (18), yielding

26

Q6(a, t) :− V1(a, t), C(a, t), R(a, t).

Then Step 11 drops all view literals, constructing

Q7(a, t) :−C(a, t), R(a, t)

which is obviously contained in Q, as witnessed by the identity homomorphism
from Q into Q7. Therefore, algorithm ViewFeasible returns true. 2

Analogously to Theorem 11, we have that if there is an an executable query
expressed in terms of the views containing Q, then the query returned by algo-
rithm ViewRewrite is guaranteed to be the minimal (under Σ-containment)
executable overestimate of Q.

Theorem 13 If Σ = Σc ∪ ΣV
f ∪ ΣV

b , Q vΣ E, E is an executable query over
τV , and QΣc,ΣV

f is defined, then ans(QΣc,ΣV

f |τV
) is defined and

Q vΣ ans(QΣc,ΣV

f |τV
) v E.

Proof. First notice that QΣ = QΣc,ΣV

f
,ΣV

b = QΣc,ΣV

f because ΣV
f only introduces

atoms with relation symbols from τV and these in turn can only “fire” con-
straints from ΣV

b which reintroduce bodies that have already been matched
(with new quantified variables). Such chase steps never apply.

Therefore since QΣc,ΣV

f is defined, so is QΣ. Then by Theorem 11, ans(QΣ) is
defined and Q vΣ ans(QΣ) v E. Then by Corollary 1, Q vΣ ans(QΣ)|τV

v E.
Because all access patterns are over τV , we have ans(QΣ|τV

) ≡ ans(QΣ)|τV
.

Therefore, Q vΣ ans(QΣ|τV
) v E as desired.

Finally, since ans(QΣ) is defined, ans(QΣc,ΣV

f) is defined and therefore ans(QΣc,ΣV

f |τV
)

is defined, again because all access patterns are over τV . 2

In Corollary 6 part 2 (below), the effect of the chase, of computing the an-
swerable part, and of restricting the result to a subschema can be described
as follows:

• In QΣc,ΣV

f we introduce the view heads.
• In ans(QΣc,ΣV

f |τV
) we remove the original literals in Q and the view bodies.

• In ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc we expand the view heads to again include their

bodies which we chase with Σc.
• At this point, we have a query over τ ∪ τV , but since Q is over τ , only the
τ part matters, which is why we use ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc|τ .

Corollary 6

27

(1) There is an executable Σc-rewriting of Q using V iff ans(QΣc,ΣV

f |τV
) is

defined and ans(QΣc,ΣV

f |τV
) vΣ Q, where Σ = Σc ∪ ΣV

f ∪ ΣV
b .

(2) If ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc is defined, then there is an executable Σc-rewriting

of Q using V iff ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc|τ v Q.

Proof. (1) If there is an executable Σc-rewriting E of Q using V, then E ≡Σ Q

and by Theorem 13,
ans(QΣc,ΣV

f |τV
) v E ≡Σ Q

and ans(QΣc,ΣV

f |τV
) is defined. Conversely, if ans(QΣc,ΣV

f |τV
) is defined and

ans(QΣc,ΣV

f |τV
) vΣ Q, then since

Q ≡Σ Q
Σ v QΣ|τV

v ans(QΣ|τV
) ≡Σ ans(QΣc,ΣV

f |τV
),

we have ans(QΣc,ΣV

f |τV
) ≡Σ Q where ans(QΣc,ΣV

f |τV
) is executable.

(2) By (1) and Theorem 9 we have that if ans(QΣc,ΣV

f |τV
)Σ is defined, then

there is an executable Σc-rewriting of Q using V iff ans(QΣc,ΣV

f |τV
)Σ v Q. But

ans(QΣc,ΣV

f |τV
)Σ = ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc, as no chase steps with the constraints

in ΣV
f apply. Since Q is over τ , by Corollary 1 we have ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc v Q

iff ans(QΣc,ΣV

f |τV
)ΣV

b
,Σc|τ v Q, 2

Theorem 14

(1) If Σ ⊆ IC(UCQ), V ⊆ UCQ and there is a polynomial p such that for all
Q,QΣc ∈ UCQ is defined and |QΣc | 6 p(|Q|), then FeasibleΣ,V(UCQ)
is NP-complete.

(2) If Σ⊆IC(UCQ¬), V⊆UCQ¬ and there is a polynomial p such that for
all Q, QΣc(=

∨

iQ
′
i)∈UCQ¬ is defined and for all i: |Q′

i|6p(|Q|), then
FeasibleΣ,V(UCQ¬) is ΠP

2
-complete.

Proof. The proof is similar to that of Theorem 12. 2

Corollary 7 For any fixed Σ ⊆ IC(UCQ¬) with stratified witnesses and fixed
V ⊆ UCQ¬, FEASIBLEΣ,V(QΣ) is ΠP

2
-complete in the size of Q.

6 Maximally Contained Rewritings

When an exact rewriting of a query Q does not exist, we want to approximate
Q as best as possible. In Sections 4 and 5 we have shown how to obtain the
minimally containing rewritings, which are the best overestimates of Q. In this
section we consider maximally contained rewritings of Q, which are the best
underestimates of Q.

Given a schema τ , let Dτ be the unary recursive query given by rules of the

28

form Dτ (xj) :− Dτ (xi1), . . . , Dτ (xik), R(x̄) for every relation R ∈ τ and every
access pattern Rα where xi1 , . . . , xik are the input slots of Rα and j is an
output slot in Rα. Notice that every all-output access pattern yields a non-
recursive rule. If no such access pattern exists, and there are no constants in
the schema, then Dτ is empty on every instance and the maximally contained
rewriting of Q is the empty query.

Definition 15 [Domain Extension] The domain extension of Q ∈ CQ¬ is
another query dext(Q) given by the rules with head Dτ (xj) mentioned above
and the rule

dext(Q)(x̄) :− Dτ (y1), . . . , Dτ(yk), body(Q)

where the head of Q is Q(x̄) and yi are the variables in body(Q).

For Q ∈ UCQ¬ where Q =
∨

iQi with Qi ∈ CQ¬ we define dext(Q) :=
∨

i dext(Qi).

Example 6 Consider the query Q from Example 1. For this query, dext(Q)
is the following query.

Dτ (t) :−Dτ (a), C(a, t)

Dτ (t) :−Dτ (a), J(a, t)

Dτ (a) :−M(a, t)

Dτ (t) :−M(a, t)

Dτ (t) :−Dτ (a), P (a, t, p)

Dτ (p) :−Dτ (a), P (a, t, p)

Dτ (a) :−R(a, t)

Dτ (t) :−R(a, t)

Dτ (a) :−D(a, t, c)

Dτ (t) :−D(a, t, c)

Dτ (c) :−D(a, t, c)

dext(Q)(a, t) :−Dτ (a), Dτ (t), C(a, t)

dext(Q)(a, t) :−Dτ (a), Dτ (t), J(a, t)

dext(Q)(a, t) :−Dτ (a), Dτ (t), Dτ(p),M(a, t),¬P (a, t, p), L(p)

Notice thatDτ and dext(Q) are recursive queries; in particular, here we deviate
from the convention in Section 2 that all the rules of a query have the same
head. Clearly, dext(Q) is executable 7 (if all access patterns are input-only,
then dext(Q) is equivalent to the empty query) and dext(Q) v Q.Dτ , dext(Q),
and the following result are given in [7] for CQ.

7 We have not defined “executable” for recursive queries, but the extension is
straightforward.

29

Theorem 15 If E v Q, E is executable, and E contains no constants, then
E v dext(Q) v Q.

Proof. We already know that dext(Q) v Q. Assume comp(E) =
∨

iEi with
E1, . . . , En ∈ CQ¬. Also assume Q :=

∨

j Qj with Q1, . . . , Qm ∈ CQ¬. Assume
E v Q. Then comp(E) v Q and therefore ∀i∃j(Qj ↪→ Ei). We show that
∀i∃j(Ei v dext(Qj)) and and this implies E ≡ comp(E) v dext(Q) as desired.

We proceed as follows. Pick i. Then there is j and a homomorphism h such
that h : Qj ↪→ Ei. We show that Ei v dext(Qj) by generating Q′ v dext(Qj)
and an extension h′ of h such that h′ : Q′ ↪→ Ei. Then Ei v Q′ v dext(Qj). To
obtain Q′ from Qj we proceed as follows. Set h0 := h and Q0 := dext(Qj) =
Dτ (y1), . . . , Dτ (yn), Qj where y1, . . . , yn are the variables which appear in Qj.
If Qm does not contain a Dτ atom, set Q′ := Qm and h′ := hm. Otherwise,
obtain Qm+1 from Qm by replacing one Dτ (xi) atom in Qm with the body of
a rule in the Dτ program containing the atom R(x̄) in which xi first occurs
positively in an output slot in Ei (we say that the atomR(ā) corresponds to the
atom Dτ (xi)). Such body may contain several Dτ atoms (those corresponding
to input slots in R), but since Ei is executable, every variable x in it occurs
first positively in an output slot and therefore these additional Dτ atoms
correspond to atoms in Ei which occur before R(x̄) when reading Ei from left
to right. Therefore, there will be some Qm containing no Dτ atoms. Obtain
hm+1 by extending hm to include the atom R(x̄). Clearly, Q′ v dext(Qj) as
desired. 2

We must disallow constants since they can be used to partially enumerate
the domain. If we allow constants and ‘=’, we can add rules of the form
Dτ (x) :− (x = c) for every constant c. Notice that nothing special needs to be
done here to handle negation since negative literals do not contribute towards
enumerating the domain.

Theorem 16 If E vΣ Q, E is executable, E contains no constants, and EΣ

is defined, then E vΣ dext(Q) v Q.

Proof. If E is executable, then EΣ is also executable. Since EΣ v Q and con-
tains no constants, EΣ v dext(Q) by Theorem 15. Therefore E vΣ dext(Q) v
Q. 2

Now assume that as in Section 5 we have a query Q, a set of constraints Σc,
and a set of views V given by UCQ¬ queries V1, . . . , Vn with access patterns on
the heads of the views. We express the views as constraints ΣV

f and ΣV
b as in

Section 5. We are interested in finding a maximally Σc-contained executable
rewriting of Q in terms of V1, . . . , Vn. That is, we want a query over V that is
maximally Σ-contained in Q.

Theorem 17 If E is a maximally Σc-contained rewriting of Q over V (re-

30

gardless of access patterns), and Σc is such that EΣc is defined for any E,
then dext(E) is a maximally Σc-contained executable Σc-rewriting of Q.

Proof. Assume E is as in premise and P is an executable query over V and
P vΣc

Q. Then P vΣc
E by the maximality of E. Since P is executable and

PΣc is defined, by Theorem 16 we have P vΣc
dext(E). 2

[7] shows how to compute such a maximally Σc-contained rewriting of Q in
the absence of negation using a recursive plan. But it is easy to see that
such recursive plans can be transformed into a union of conjunctive queries:
we simply take the union of all minimal CQ queries over V which are Σc-
contained in Q (the results of [7] imply that this union is finite when the
chase terminates). The extension to handle negation is straightforward and
we omit it in view of our results in the next section.

It turns out that in case Q ∈ UCQ we can obtain the answer to dext(Q) by
using the standard certain answers semantics 8 used in information integration
systems which are defined as follows [8]. The set of certain answers to Q for D
under constraints Σ, which we write certQ

Σ(D) is
⋂

(D,T)∈ΣQ(T). The schemas
of D and T are disjoint and Σ is a set of constraints over the union of these
two schemas.

Notice that the domain enumeration program Dτ is a (recursive) view and
can therefore be captured with integrity constraints, as shown in Section 5.
Call the set of resulting constraints ΣD; notice that ΣD ⊆ IC(CQ). For every
relation R and access pattern α, define a constraint σR,α as follows:

Dτ (xi1), . . . , Dτ (xik), R(x̄) → R′(x̄)

where xi1 , . . . , xik are the input slots ofRα. Alternatively, Dτ (x̄), R(x̄) → R′(x̄)
would work just as well.

Given a schema τ and a set of access patterns P, define

Στ,P := ΣD ∪ {σR,α : R ∈ τ, α ∈ P}.

Στ,P is a set of IC(CQ) constrains. These constraints are over the input schema
{Dτ} ∪ {R : R ∈ τ} and output schema {R′ : R ∈ τ}. Στ,P is not source-to-
target since the symbol Dτ appears both in the premise and the conclusion of
some constraints in it.

Theorem 18 For any schema τ , set of access patterns P, query Q ∈ UCQ,
and database D, dext(Q)(D) is equal to the certain answers to Q′ for D under
the constraints Στ,P , where Q′ is obtained from Q by replacing every occurrence

8 Currently defined only for monotone queries.

31

of every relational symbol R ∈ τ with the corresponding symbol R′. That is,

dext(Q)(D) = certQ′

Στ,P
(D).

Therefore, access patterns do not require special treatment in information
integration system beyond the introduction of additional constraints.

Proof. Assume Q =
∨

iQi with each Qi ∈ CQ. Assume ā ∈ dext(Q)(D) and
is of arity k Then ā ∈ dext(Qi)(D) for some i. By the definition of dext,
this means that every element of ā as well as every existentially-quantified
witnesses for ā is in Dτ . Notice that any database T satisfying (D, T) |=
Στ,P must satisfy RD ∩ Dr

τ ⊆ R′T for every relation R ∈ τ and there is
such a database T0 with RD ∩ Dr

τ = R′T0 . By monotonicity of Q, we must
have Q(T0) ⊆ Q(T) for all databases T satisfying (D, T) |= Στ,P . Therefore

ā ∈ Q(T0) = certQ′

Στ,P
(D). Conversely, assume ā ∈ certQ′

Στ,P
(D). This implies

ā ∈ Q(T0) and, by the definition of dext and T0, ā ∈ dext(Q)(D). 2

7 Reducing Access Patterns to Constraints

In this section, we show that the problem {Q,P,Σ} of deciding feasibility in
the presence of access patterns reduces to the problem {Q,Σ′} of deciding
equivalence in the presence of constraints only (Theorem 19). Furthermore,
we reduce the problem {Q,V,P,Σ} of finding rewritings using views with
access patterns to one of finding rewritings using views and constraints in
the absence of access patterns {Q,V,Σ′′} (Theorem 20). These results en-
able alternative proofs for the complexity of answering queries in the presence
of access patterns. They also facilitate an alternative implementation of algo-
rithms Rewrite, Feasible, ViewRewrite etc. using a chase-based module
for rewriting under constraints such as the C&B implementation in [4]. The
reduction uses the constraints ΣD defined in the previous section.

Theorem 19 If Σ has stratified witnesses, then

(1) Q is Σ-feasible iff Q vΣD∪Σ dext(Q), and
(2) QΣD∪Σ is defined and Q vΣD∪Σ dext(Q) is decidable in ΠP

2
in the size of

Q.

Proof. Part (1): The proof uses Lemmas 10 and 11 below.

Only If: Assume Q is Σ-feasible. Then there exists an executable E such that
Q ≡Σ E. In particular, E vΣ Q. Moreover, since Σ has stratified witnesses,
EΣ is defined. Then by Theorem 16, E vΣ dext(Q). Since Q vΣ E, we have
Q vΣ dext(Q).

32

If: Assume Q vΣD∪Σ dext(Q). By construction, dext(Q) v Q so dext(Q) ≡ΣD∪Σ

Q. Since dext(Q) is executable, Q is ΣD ∪Σ-feasible. Then by Corollary 4, we
have that ans(QΣD∪Σ)ΣD∪Σ v Q. By Lemma 11 below, ans(QΣD∪Σ)Σ v Q.

But from Lemma 10 below it follows that ans(QΣD∪Σ)Σ is the same as ans(QΣ)Σ

enriched with Dτ atoms, because Dτ atoms do not appear in Σ and thus do
not contribute to the second chase. Moreover, since Dτ does not appear in
Q, the homomorphisms witnessing the containment ans(QΣD∪Σ)Σ v Q also
witness the containment ans(QΣ)Σ v Q. Therefore, ans(QΣ) vΣ Q, whence
ans(QΣ) ≡Σ Q. Since ans(QΣ) is executable, Q is Σ-feasible.

Part (2): The termination of the chase is guaranteed by the combination of
two reasons. First, Σ has stratified witnesses, so QΣ is defined. Second, though
ΣD does not have stratified witnesses, we can show that only the “forward”
constraints from ΣD apply during the chase of Q. These contain no disjunction
and no existential quantification. Moreover, they only introduce unary D-
atoms, so they only increase the result of chasing Q with Σ alone by a linear
factor. 2

Lemma 10 Set Q′ = QΣ,ΣD . Chasing QΣ with ΣD introduces an atom Dτ (x)
iff x appears in some Q′-answerable literal of Q′. Equivalently, a literal l(x1, . . . , xn)
in Q′ is Q′-answerable iff the chase of QΣ with ΣD introduces Dτ (x1), . . . , Dτ (xn).

Proof. This follows immediately from the definition of ΣD and answerable
literals. 2

Lemma 11 ans(QΣD∪Σ)ΣD∪Σ = ans(QΣ,ΣD)Σ,ΣD = ans(QΣ,ΣD)Σ.

Proof. The first equality holds since Σ does not mention Dτ . For the second
equality, set Q′ = QΣ,ΣD . Notice that chasing ans(Q′) with Σ does not intro-
duce Q′-answerable literals because any such literals are already in ans(Q′).
Therefore, by Lemma 10, the chase of ans(Q′)Σ with ΣD does not apply. 2

Theorem 19 gives another route to the upper bound on the complexity of
checking feasibility from the complexity of checking containment.

We now reduce the rewriting problem {Q,V,P,Σ} to {Q,V,Σ′′}. First, define
Dτ as in Section 6, but using view symbols instead of relation symbols from
τ . Next capture Dτ with constraints ΣD. For any V ∈V and access pattern
V α, define a new view V D(free(V)) :− body(V), D(xi1), . . . , D(xik) where the
xij ∈ free(V) are the free variables of V which appear in input slots. Each V D

is a view without access patterns. Denoting VD := {V D | V ∈ V}, we have
the following result.

Theorem 20 Q has an exact (minimally containing) executable Σ-rewriting
over V iff it has an exact (minimally containing) Σ ∪ ΣD-rewriting over VD.

33

Proof. If: Let RD be a Σ∪ΣD-rewriting of Q over VD. Our candidate for the
executable Σ-rewriting of Q is the recursive program P defined by the union
of the following rules

• the rules in Dτ ,
• for each V D(x̄, ȳ) :− D(ȳ), body(V) in VD, the rule V ′(x̄, ȳ) :− D(ȳ), V (x̄, ȳ),

and
• the rule obtained by replacing each occurrence of V D in RD with V ′.

Indeed, notice that P ≡ΣD
RD by construction. Since RD ≡ΣD∪Σ Q, we have

P ≡Σ∪ΣD
Q. From the semantics of the datalog rules for Dτ , it follows that

P ≡Σ Q. But P is executable and its EDBs are in V.

Only If: Let Q have an executable Σ-rewriting R over V, i.e. Q ≡ΣV

f
∪ΣV

b
∪Σ R.

Since R is executable, R is feasible over V, in the presence of ΣV
f ∪ ΣV

b ∪ Σ,
so by Theorem 19, R ≡ΣV

f
∪ΣV

b
∪Σ∪ΣD

dext(R). Then Q ≡ΣV

f
∪ΣV

b
∪Σ∪ΣD

dext(R).

Notice that by construction of dext(R), dext(R) is equivalent to a query RD

obtained by replacing each occurrence of V ∈ V in R with V D. Then RD is a
Σ ∪ ΣD-rewriting of Q over VD. 2

Theorem 20 enables an alternative implementation of algorithm ViewRewrite,
namely by rewriting using views and integrity constraints in the absence of ac-
cess patterns. [4] describes the implementation of the C&B algorithm, which
is sound and complete for precisely this rewriting task (i.e. it finds a {Q,V,Σ}-
rewriting whenever one exists). All we need to do to use the C&B implemen-
tation is to apply it to VD and Σ ∪ ΣD instead of V and Σ.

Remark. The following observation sheds additional light on why the rewrit-
ing problem {Q,V,P,Σ} reduces to {Q,V,Σ′′}. We can show that the an-
swerable part ans(Q) of a query Q can be computed by chasing Q with ΣD

(as obtained for Theorem 19 and Theorem 20). More specifically,

(a) chase(Q,ΣD, O) terminates for any order O on ΣD,
(b) the chase result is unique regardless of O (denote it QΣD), and
(c) if we restrict QΣD to only those atoms R(x̄) for which D(x̄) appears in

QΣD , we obtain ans(Q).

8 Extensions

The key technique that allows us to treat negation, views, and access patterns
uniformly is modeling with constraints (recall Στ

¬, ΣV
f ∪ΣV

b , respectively ΣD).
This approach enables the straightforward implementation of our algorithms
by reusing an already existing chase module [4]. It turns out that we can extend

34

our solution to handling equality and arithmetic comparisons by capturing
them with constraints as well.

Handling Equality. Equality can be modeled as a binary relation E with
access patterns ‘io’ and ‘oi’ subject to the following constraints Στ

= ⊆ IC(CQ):

• ∀x, y E(x, y) → E(y, x),
• ∀x, y, z E(x, y), E(y, z) → E(x, z),
• for every R ∈ τ and i, ∀x̄ R(x̄) → E(xi, xi), and
• for every R ∈ τ : ∀x̄, ȳ R(x̄) ∧ E(x1, y1) ∧ . . . ∧ E(xk, yk) → R(ȳ).

Handling Arithmetic Comparisons. The comparison ‘≤’, which gives
UCQAC¬, can be handled as a binary relation LE with access pattern ‘ii’
subject to the following constraints Σ≤ ⊆ IC(CQ¬) which say that LE is an
unbounded dense total ordering:

(1) ∀x, y, z LE(x, y) ∧ LE(y, z) → LE(x, z),
(2) ∀x, y LE(x, y) ∧ LE(y, x) → E(x, y),
(3) ∀x, y ¬LE(x, y) → LE(y, x), and
(4) ∀x, y L(x, y) → ∃u, v, w (L(u, x) ∧ L(x, v) ∧ L(v, y) ∧ L(y, w)),

where L(x, y) stands for LE(x, y) ∧ ¬E(x, y).

Notice that the chase with axiom (4) (the density axiom) is non-terminating,
yielding chains of < comparisons of arbitrary length. However, we can show
that for a natural restriction, there is no need to chase with the density axiom.
This restriction demands that all integrity constraints be safe, i.e. that all
variables appearing in a ≤ atom also appear in some relational atom other
than a ≤ atom. In this case, all of our results extend to unions of conjunctive
queries with negation, equality and arithmetic comparisons (UCQAC¬) as well
as the corresponding constraints IC(UCQAC¬). All we need to do is replace
Σ with Σ′ consisting of Σ, the equality constraints, and constraints 1-3 above,
then run algorithms Feasible, ViewRewrite, Rewrite, ViewFeasible

on Σ′.

Even if the restriction above does not hold, it can be shown that the chase
with the density axiom can be truncated so as to generate < chains of length
bounded by the number of variables in the original query. All we need to do is
run algorithms Feasible, ViewRewrite, Rewrite, ViewFeasible using
the truncating chase with the constraints Σ′′ := Σ ∪ Στ

= ∪ Σ≤.

Queries with Binding Patterns.

So far, we have not considered binding patterns in the query to be answered.

35

This is the same as considering queries with an all-output annotation on the
query head. But suppose we want to answer a query Q with an annotation
Qio. That is, we are willing to supply a value in the first slot of Q in order to
get an answer to our query. We can model such queries in two ways. (1) We
can replace the free variables in Q with ‘i’ annotations with new constants to
obtain Q′. (2) We can add a new unary relation S and a corresponding unary
view (in case we are working with views) and give this unary relation/view the
access pattern ‘o’. Then we can obtain the query Q′ from Q by adding S(x)
to the query body for every variable x in the head with an ‘i’ access pattern.
Either way, we have that Q is feasible, Σ-feasible, etc. for such access patterns
in Q iff Q′ is feasible, Σ-feasible, etc.

9 Answerability

Feasibility is defined in terms of UCQ¬ queries. A natural question is whether
some UCQ¬ queries over sources with binding patterns may be answered not
by a UCQ¬ query, but by a more general query. In the most general case, we
may allow any computable query. However, to model the presence of binding
patterns, we must define such a computable query not in terms of a Turing
machine which takes the relation extents (which may be inaccessible) as inputs,
but instead as a Turing machine with oracle access to the relations, subject
to the access patterns. We say that an oracle call to R is compatible with the
access patterns α if the input to the oracle call is a set of tuples I of the same
arity as the number of input slots in Rα and the output is the set of tuples O
in R such that O restricted to the input slots in Rα is equal I.

Definition 16 We say that Q is answerable if there is an oracle Turing ma-
chine M taking no input which, for any database D, can make queries to the
base relations of D which are compatible with the access patterns and such
that M computes Q(D).

Theorem 21 Q is feasible iff it is answerable.

Proof. Fix some schema τ and assume Q is over τ . It is clear that if Q is
feasible, then it is answerable, so we prove the converse. Assume Q =

∨

iQi

with each Qi ∈ CQ¬.

Assume first that ans(Q) is defined, but ans(Q) 6≡ Q. By Lemma 8 we must
have ans(Q) 6v Q. Therefore, there is k such that ans(Qk) 6v Q. Assume
that x̄ are the free variables of Qk. Set A := [Qk] and B := [ans(Qk)]. Then
cx̄ ∈ Q(A) − Q(B) so Q(A) 6= Q(B). For each relation R in τ , set R′ :=
dext(R). Then R′(A) = R′(B) by Lemma 12 below. Therefore, all oracle calls
on databases A and B give equal outputs on equal inputs. This implies that

36

any oracle Turing machine which only makes queries with tuples over Dτ must
give the same answer for databases A and B, and therefore can not compute Q.
In fact, this holds for an arbitrary oracle Turing machine with no input which
is only allowed to make queries to the relations R in τ , since such machine
can only “invent” a finite number of additional constants C not in Dτ and we
can take isomorphic copies of A and B whose universe is disjoint from C.

If ans(Q) is undefined, then for some k ans(Qk) has fewer free variables than
Qk and therefore also Qk 6v Q, so the argument above also applies. 2

The following lemma follows directly from the definitions of ans and dext.

Lemma 12 If R′ = dext(R) and Q ∈ CQ¬, then R′([Q]) = R′([ans(Q)]).

10 Conclusions

Our results extend previous work in two directions. (1) We treat access pat-
terns, constraints, and views together. (2) We allow for larger classes of queries,
constraints, and views that include negation and arithmetic comparisons. We
present a framework for these results that unifies several techniques presented
separately in previous work. We also show how to handle access patterns in an
information integration setting. Finally, we show that it is sufficient to search
for executable rewritings only among UCQ¬ queries.

37

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley, 1995.

[2] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In ACM Symposium on Theory of Computing
(STOC), pages 77–90, 1977.

[3] Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using
views with access patterns under integrity constraints. In Intl. Conference on
Database Theory (ICDT), 2005.

[4] Alin Deutsch and Val Tannen. Mars: A system for publishing xml from mixed
and redundant storage. In Intl. Conf. on Very Large Data Bases (VLDB), 2003.

[5] Alin Deutsch and Val Tannen. Reformulation of xml queries and constraints.
In Intl. Conf. on Database Theory (ICDT), 2003.

[6] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries
using views. In PODS, 1997.

[7] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query
plans for data integration. Journal of Logic Programming, 43(1):49–73, 2000.

[8] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. In Intl. Conf. on Database Theory
(ICDT), 2003.

[9] Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query
optimization in the presence of limited access patterns. In SIGMOD, pages
311–322, 1999.

[10] J. Grant and J. Minker. A logic-based approach to data integration. Theory
and Practice of Logic Programming, 2(3):323–368, 2002.

[11] Alon Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[12] Richard Hull and Masatoshi Yoshikawa. On the equivalence of database
restructurings involving object identifiers. In PODS, 1991.

[13] Christoph Koch. Query rewriting with symmetric constraints. AI
Communications, 17(2), 2004. to appear.

[14] Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker,
editor, Workshop on Logic-Based Artificial Intelligence, Washington, DC, 1999.

[15] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous
information sources using source descriptions. In 22nd Intl. Conf. on Very Large
Data Bases (VLDB), pages 251–262, Bombay, India, 1996.

38

[16] Chen Li. Computing complete answers to queries in the presence of limited
access patterns. Journal of VLDB, 12:211–227, 2003.

[17] Chen Li and Edward Y. Chang. On answering queries in the presence of limited
access patterns. In Intl. Conference on Database Theory (ICDT), 2001.

[18] Todd D. Millstein, Alon Y. Levy, and Marc Friedman. Query containment for
data integration systems. In PODS, pages 67–75, 2000.

[19] Alan Nash and Bertram Ludäscher. Processing first-order queries under limited
access patterns. In PODS, Paris, France, 2004.

[20] Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries
with negation under limited access patterns. In Intl. Conference on Extending
Database Technology (EDBT), Heraklion, Crete, Greece, 2004.

[21] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates
with binding patterns. In PODS, pages 105–112, 1995.

[22] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational
expressions with the union and difference operators. Journal of the ACM,
27(4):633–655, 1980.

[23] Jeffrey Ullman. The complexity of ordering subgoals. In PODS, 1988.

[24] Vasilis Vassalos and Yannis Papakonstantinou. Expressive capabilities
description languages and query rewriting algorithms. Journal of Logic
Programming, 43(1):75–122, 2000.

39

A Some Proofs

Proof. (Lemma 7) Assume Q =
∨

k Qk with Q1, . . . , Qr ∈ CQ¬. Assume
ans(Q) is defined. Then, by Lemma 6, ans(comp(Q)) is defined since comp(Q)
is complete and comp(Q) v ans(Q). Set A = ans(comp(Q)) and E = comp(ans(Q)).
Assume A =

∨

iAi and E =
∨

j Ej with A1, . . . , An, E1, . . . , Em ∈ CQ¬. Also
assume Q′ = comp(Q) =

∨

`Q
′
` with Q1, . . . , Qs ∈ CQ¬. Notice that all Ai,

Ej, and Q′
` are satisfiable, by the definition of comp.

Pick an arbitrary Ai. Then Ai = ans(Q′
`) for some ` with Q′

` complete and
there must be some k such that Q′

` v Qk. By Theorem 2, Qk ↪→ Q′
` and

therefore ans(Qk) ↪→ Q′
`. Again by Theorem 2, Q′

` v ans(Qk) and by Lemma
6, ans(Q′

`) v ans(Qk) which yields Ai = ans(Q′
`) v ans(Qk) v ans(Q). Since

this holds for all i, by Theorem 3, ans(comp(Q)) = A v ans(Q).

Pick an arbitrary Ej. Then Ej v ans(Qk) for some k. By Theorem 2, there is
a homomorphism h : ans(Qk) → Ej. We show below that, for some `, we can
extend h to a homomorphism h′ : ans(Q′

`) → Ej. Therefore, by Theorem 2,
Ej v ans(Q′

`) = Ai for some i. Since this holds for all i, by Theorem 3 and
Lemma 4, ans(Q) ≡ E v A = ans(comp(Q)).

To extend h we proceed as follows. To get from Qk to Q′
` v Qk we need to add

literals to Qk. We set P0 = Qk and Pt = Q` and we add only one literal to each
Pi to get Pi+1.

9 Similarly, we will have homomorphisms hi : ans(Pi) → Ej

starting with h0 = h and ending with ht = h′.

To go from Pi to Pi+1 we have two possibilities: either we add r(x̄) or we
add ¬r(x̄) where r(x̄) does not occur in Pi. Suppose that ¬r(x̄) is not Pi-
answerable. Then we set Pi+1 = Pi,¬r(x̄) and hi+1 = hi. Since ans(Pi+1) =
ans(Pi), we have the desired homomorphism hi+1 : ans(Pi+1) → Ej.

Otherwise, since Ej is complete, there must be a homomorphism hi+1 : ans(Pi), r(x̄) →
Ej or a homomorphism hi+1 : ans(Pi),¬r(x̄) → Ej. We set Pi+1 accordingly to
either Pi, r(x̄) or Pi,¬r(x̄). In the former case, since ¬r(x̄) is not Pi-answerable,
r(x̄) does not add any new bindings and therefore ans(Pi, r(x̄)) = ans(Pi), r(x̄)
and we have the desired homomorphism hi+1 : ans(Pi+1) → Ej. 2

Proof. (Lemma 6) Assume Q,E ∈ CQ¬, Q is complete, and Q v ans(E).
Then, by Theorem 2, there is a homomorphism h : ans(E) → Q. Define
body(Q′) as the conjunction of all the literals in the range of h (possibly with
repetition) in the order induced by ans(E). We know that in body(ans(E)),
every variable appears first in an output slot of a positive literal. Since h maps
positive literals to positive literals, the same holds for body(Q′). In particular,

9 the order is unimportant

40

h must map every variable in head(ans(E)) = ans(E) to a different variable
in head(Q), and therefore since ans(E) is defined and therefore safe, ans(Q′)
is defined. Furthermore, every literal in Q′ is Q′-answerable and therefore
Q-answerable and thus appears in ans(Q), which is defined because ans(Q′)
is defined. Therefore h is a homomorphism h : ans(E) → ans(Q) and, by
Theorem 2, ans(Q) v ans(E). 2

Proof. (Lemma 8) Set Q′ := comp(Q) and assume Q′ :=
∨

iQi with Qi ∈
CQ¬. Since the identity mapping is a homomorphism ans(Qi) → Qi, by The-
orem 3, comp(Q) v ans(comp(Q)). By Lemmas 4 and 7,

Q ≡ comp(Q) v ans(comp(Q)) ≡ ans(Q).

2

Proof. (Theorem 5) Assume Q v E and E is executable. Since, by Lemma
4, comp(Q) ≡ Q, we have comp(Q) v E. Assume comp(Q) =

∨

iQi and
E =

∨

j Ej with Qi, Ej ∈ CQ¬. Then since comp(Q) is complete, by Theorem
3, ∀i∃j(Qi v Ej). Since ans(Ej) = Ej, by Lemma 6, ans(Q) is defined and
∀i∃j(ans(Qi) v Ej). By Lemmas 8, 7, and Theorem 3,

Q v ans(Q) ≡ ans(comp(Q)) v E.

2

Proof. (Theorem 6) Corollary 2 shows that FEASIBLE(UCQ¬) 6P
m CONT(UCQ¬)

(if ans(Q) is undefined, we reduce Q to two queries P, P ′ such that P 6v P ′).

For the other direction, consider two queries P,Q ∈ UCQ¬ with free variables
x̄ where P = P1 ∨ . . . ∨ Pk. We define the query

P ′(x̄, y) :− P1, B(y) ∨ . . . ∨ Pk, B(y)

where y is a variable not appearing in P or Q and B is a relation not appearing
in P or Q with access pattern B i. We give relations R appearing in P or Q
output access patterns (i.e., Rooo...). As a result, P and Q are both executable,
but P ′ @ P and P ′ is not feasible. We set Q′ := P ′ ∨ Q. Clearly, ans(Q′) ≡
P ∨ Q. If P v Q, then ans(Q′) ≡ P ∨ Q ≡ Q v Q′ so by Corollary 2, Q′

is feasible. If P 6v Q, then since P ′ @ P and P ′ 6v Q we have ans(Q′) ≡
P ∨ Q 6v P ′ ∨Q ≡ Q′ so again by Corollary 2, Q′ is not feasible. This shows
that CONT(UCQ¬) 6P

m FEASIBLE(UCQ¬). 2

Proof. (Theorem 8) Part (1). In the following, given a quantifier-free formula
ϕ, we denote with ϕ[x̄] a query with body ϕ and tuple of head variables
x̄. Given a mapping h, h(ϕ) denotes the formula obtained by substituting
h(vars(ϕ)) for (vars(ϕ)).

41

Assume σ is normalized, of form (11). Let step(Q,Σ, h) :=
∨n

i=1Qi. By defi-
nition of the chase step, each Qi is obtained by adding goals to Q. Therefore
Qi v Q for each 1 6 i 6 n and step(Q,Σ, h) v Q. We next show Q vΣ

∨

iQi.
Pick an arbitrary database D and an arbitrary tuple d̄ such that Dd̄ |= Q as
witnessed by a mapping v. We have

D d̄ |= Q witness v (s1)

⇒ D v ◦ h(x̄) |= ψ[x̄] witness v ◦ h (s2)

⇒ ∃i D v ◦ h(x̄) |= ψ ∧ ξi[x̄] witness hi (s3)

⇒ ∃i D v ◦ h(x̄) |= h′(ψ ∧ ξi)[h
′(x̄)] witness v′ (s4)

⇒ ∃i D d̄ ∩ v ◦ h(x̄) |= h′(ψ ∧ ξi)[h
′(x̄) ∩ free(Q)] witness v′ (s5)

⇒ ∃i D d̄ |= body(Q) ∧ h′(ψ ∧ ξi)[free(Q)] witness v′ (s6)

⇒ ∃i D d̄ |= Qi witness v′ (s7)

where

• x̄ := vars(ψ)
• hi is a mapping on vars(σ) which agrees with v ◦ h on x̄
• h′ agrees with h on x̄ and is the identity on ȳi

• v′ agrees with v on vars(Q) and with hi on ȳi

• d̄ ∩ v ◦ h(x̄) denotes the tuple obtained by keeping only the components
in d̄ (their relative order is preserved) which appear in some component of
v ◦ h(x̄). Analogously for h′(x̄) ∩ free(Q).

(s2) follows from (s1). (s3) follows from (s2) and the fact thatD |= σ. (s4) from
(s3) and the observations that v′ ◦h′(x̄) = v ◦h(x̄) and that v′ ◦h′(ȳi) = hi(ȳi).
(s5) follows trivially from (s4) and so does (s6) from (s5). (s7) follows from
(s6) and the definition of the chase step.

Part (2). By induction on the length of the chase sequence, using Part (1) for
the induction step. 2

Proof. (Theorem 9) We first observe that P vΣ Q iff P vΣτ
¬∪Σ Q since

all databases over the same schema as Στ
¬ satisfy Στ

¬, in particular so do all
databases which satisfy Σ. It suffices therefore to prove

P vΣτ
¬∪Σ Q iff chase(P,Στ

¬ ∪ Σ, O) v Q

If: Observe that chase(P,Στ
¬∪Σ, O) v Q implies chase(P,Στ

¬∪Σ, O) vΣτ
¬∪Σ Q

and that Theorem 8 implies P vΣτ
¬∪Σ chase(P,Στ

¬ ∪ Σ, O).

Only If: Assume chase(P,Στ
¬ ∪ Σ, O) =

∨k
i=0 Pi with each Pi ∈ CQ¬. Notice

42

that if k = 0 then the chase result is defined as the unsatisfiable empty union,
which is contained in any Q. Suppose k > 0. Let x̄ be the free variables
of Pi Since Pi is satisfiable, it follows from Lemma 1 that [Pi] |= Pi, which
implies [Pi] |= chase(P,Στ

¬ ∪ Σ, O). But since the chase terminates, it follows
that [Pi] |= Στ

¬ ∪ Σ for each 1 6 i 6 k hence by soundness of the chase
(Theorem 8) we have [Pi] |= P and by hypothesis we conclude [Pi] |= Q.
Assume Q =

∨l
j=1Qj where Qj ∈ CQ¬ for all 1 6 j 6 l. Then by Theorem 3

for some j, Qj ↪→ [Pi]. Now observe that since Pi was obtained by chasing with
Στ

¬, it is complete, hence by Lemma 3 we have Qj ↪→ Pi whence by Theorem 2
we get chase(P,Στ

¬ ∪ Σ) v Q. 2

Proof. (Theorem 10) Assume that Q, Σ, e, u, and l are as in the hypotheses
of the Theorem.

Part 1: We show that the chase can generate only a finite number of new
variables and hence only finitely many distinct new atoms. Notice that after
all these atoms are generated, no more chase steps can apply (they would only
generate duplicates of already existing atoms) and the chase must terminate.

For any query Q′ in the chase sequence and any v ∈ vars(Q′), define

name(v) =











v if v ∈ vars(Q)

Fσ,i,k(name(h(z̄))) if (*) holds

where (*) is the property that v was generated during the chase prefix ending
at Q′, as the result of a chase step with σ ∈ Σ using homomorphism h.
Furthermore, σ has general form (11) and v is the variable corresponding to
the kth component of ȳi. We define z̄ := x̄ ∩ vars(ξi). {Fσ,i,k}σ,i,k is a family of
Skolem function symbols.

Notice that names are terms over the variables of Q and the Skolem function
symbols. The following is easily shown by induction on the length of the chase
sequence.

Claim 1. Names uniquely identify the variables generated during the chase.

For any name n we define the depth of n as the maximum nesting depth of
Skolem function symbols in n. Then we can prove the following by induction
on d (omitted).

Claim 2. Let v be any variable satisfying (*) above, and let depth(name(v)) =
d. If v appears in ξi as the mth argument of a relation R then there exists a
path p in the chase flow graph of Σ such that p ends in the node R.m and
contains d ∃-edges.

Since the chase flow graph G has no cycles through ∃-edges, the maximum

43

number (over all paths in G) of ∃-edges per path is well-defined and finite and
we denote it l. By Claim 2, the depth of variable names is upper bounded by
l. Since the number of distinct variables is bounded by Q and the number of
distinct Skolem symbols is bounded by Σ, there are only finitely many distinct
names the chase can produce. By Claim 1, this results in finitely many distinct
variables.

Part 2: Recall that at every step of the chase, we can view the intermediate
result as a finite set of CQ¬ queries. Denoting with Mj the number of variable
names of depth at most j appearing in one of these queries, we have the
following recurrence relation

M0 ≤ |vars(Q)|

Mj+1 ≤Mj + eMu
j

since there are at most e Skolem functions and each term of depth j+1 consists
of a Skolem function with at most u arguments, each a Skolem term of depth
j. Since

Mj+1 ≤Mj + eMu
j ≤ (1 + e)Mu

j ≤ (1 + e)uMu
j

it follows that Ml ≤ (1 + e)ul

|vars(Q)|u
l

. 2

44

