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Abstract

We study data-driven Web applications provided by Web sites interacting with users or applications. The Web site can access an
underlying database, as well as state information updated as the interaction progresses, and receives user input. The structure and
contents of Web pages, as well as the actions to be taken, are determined dynamically by querying the underlying database as well
as the state and inputs. The properties to be verified concern the sequences of events (inputs, states, and actions) resulting from the
interaction, and are expressed in linear or branching-time temporal logics. The results establish under what conditions automatic
verification of such properties is possible and provide the complexity of verification. This brings into play a mix of techniques from
logic and model checking.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Interactive Web applications provide access to information as well as transactions and are typically powered by
databases. They have a strong dynamic component and are governed by protocols of interaction with users or pro-
grams, ranging from the low-level input–output signatures used in WSDL [41], to high-level workflow specifications
(e.g., see [7,9,12,27,40,42]). One central issue is to develop static analysis techniques to increase confidence in the
robustness and correctness of complex Web applications. This paper presents new verification techniques for Web
applications, and investigates the trade-off between the expressiveness of the Web application specification language
and the feasibility of verification tasks.

In the scenario we consider, a Web application is provided by an interactive Web site that posts data, takes input
from the user, and responds to the input by posting more data and/or taking some actions. The Web site can access
an underlying database, as well as state information updated as the interaction progresses. The structure of the Web
page the user sees at any given point is described by a Web page schema. The contents of a Web page is determined
dynamically by querying the underlying database as well as the state. The actions taken by the Web site, and transitions
from one Web page to another, are determined by the input, state, and database.

✩ A preliminary version of this paper appeared in Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, 2004.
✩✩ Supported in part by the National Science Foundation under grants ITR-0225676 (SEEK), IKM-0415257 and IIS-0347968 (CAREER).
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The properties we wish to verify about Web applications involve the sequences of inputs, actions, and states that
may result from interactions with a user. This covers a wide variety of useful properties. As an example, for a Web site
supporting an e-commerce application, it may be desirable to verify that no product is delivered before payment of
the right amount is received. Or, we may wish to verify that the specification of Web page transitions is unambiguous,
(the next Web page is uniquely defined at each point in a run), that each Web page is reachable from the home page,
etc. To express such properties, we rely on temporal logic. Specifically, we consider two kinds of properties. The first
requires that all runs must satisfy some condition on the sequence of inputs, actions, and states. To describe such
properties we use a variant of linear-time temporal logic. Other properties involve several runs simultaneously. For
instance, we may wish to check that for every run leading to some Web page, there exists a way to return to the home
page. To capture such properties, we use variants of the branching-time logics CTL and CTL∗.

Our results identify classes of Web applications for which temporal properties in the above temporal logics can be
checked, and establish their complexity. For linear-time properties, the restriction needed for decidability essentially
imposes a form of guarded quantification in formulas used in the specification of the Web application and the property.
This is similar to the “input boundedness” restriction first introduced by Spielmann in the context of ASM transducers
[36,37]. With this restriction, verification of linear-time properties is PSPACE-complete for schemas with fixed bound
on the arity, and EXPSPACE otherwise. As justification for the input-boundedness restriction, we show that even slight
relaxations of our restrictions lead to undecidability of verification. Thus, our decidability results are quite tight. In
terms of expressiveness, it turns out that many practically relevant Web applications can be modeled with input-
bounded specifications. For example, we have shown that significant portions of a Dell computer shopping Web site,
Expedia, Barnes and Noble, and a Grand Prix motor racing web site can be specified within the restricted framework
(see http://www.cs.ucsd.edu/~lsui/project/index.html for a demo). Furthermore, a verifier for input-bounded Web ap-
plications and linear-time properties has been implemented, with surprisingly good verification times for the four Web
sites mentioned earlier. The implementation builds upon techniques developed in the present paper and is presented
in [15,17].

For branching-time properties, the restrictions needed for decidability are considerably more stringent, and the
complexity of verification ranges from PSPACE to 2-EXPTIME, depending on the restriction.

Our formalization of Web applications aims to be quite faithful to real high level specification tools in the style of
WebML [9], and is rather complex. To simplify the technical development of our results, we use a convenient, much
simpler abstract model of data-driven reactive systems. This consists of a device extending the Abstract State Machine
(ASM) transducers previously studied by Spielmann [36,37]. Specifically, the device, that we call ASM+ transducer,
receives input consisting of relational tuples, and produces relations as output. As in Spielmann’s ASM transducers, its
control is specified using first-order queries accessing the input, a relational database, and state information consisting
of additional relationals updated at each transition. Our main motivation for introducing ASM+ transducers is that they
are sufficiently powerful to simulate the considerably more complex Web application specifications we aim to verify,
and thus are a convenient vehicle for developing the bulk of our verification results. Thus, we first establish verification
results using ASM+ transducers, then show how verification of Web applications can be reduced to verification of
ASM+ transducers.

1.1. Related work

Our notion of Web application is a fairly broad one. It encompasses a large class of data-intensive Web applications
equipped (implicitly or explicitly) with workflows that regulate the interaction between different partners who can
be users, WSDL-style Web services, Web sites, programs and databases. We address the verification of properties
pertaining to the runs of these workflows.

Prior work on Web service verification has mostly focused on propositional (finite-state) abstractions of both the
service workflow and the properties. These abstractions disregard the underlying database and the data values involved
in the interaction. They allow one to verify for instance that some payment occurred before some shipment, but
not that it involved the intended product and the right amount. [34] proposes an approach to the verification and
automated composition of finite-state Web services specified using the DAML-S standard [12]. The verified properties
are propositional, abstracting from the data values. They pertain to safety, liveness and deadlocks, all of which are
expressible in LTL. [33] is concerned with verifying a given finite-state Web service flow specified in the standard
WSFL [42] by using the explicit state model checker SPIN [26]. The properties are expressed in LTL (again abstracting
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from data content). Another data-agnostic verification effort is carried out in [24,29], which describe verification
techniques focusing on bugs in the control flow engendered by browser operations. The control flow is specified using
a browser-action-aware calculus. The flow is verified using model checking, after abstraction to finite-state automata
labeled with propositional predicates. The same automata are used for property specification.

Our model is related to WebML [9], a high-level conceptual model for data-driven Web applications, extended in
[8] with workflow concepts to support process modeling. It is also related to [4], which proposes a model of peers with
underlying databases. The model is a particular case of the one presented here, in which database and state access is
restricted to key lookup only, so that at most one tuple is retrieved or updated at any given time. [4] does not address
verification, focusing on automatic synthesis of a desired Web service by “gluing” together an existing set of services.

Other related models are high-level workflow models geared towards Web applications (e.g. [7,12,42]), and
ultimately to general workflows (see [5,14,22,25,39,40]), whose focus is however quite different from ours. Non-
interactive variants of Web page schemas have been proposed in prior projects such as Strudel [19], Araneus [32] and
Weave [20], which target the automatic generation of Web sites from an underlying database.

More broadly, our research is related to the general area of automatic verification, and particularly reactive systems
[30,31]. Directly relevant to us is Spielmann’s work on Abstract State Machine (ASM) transducers [36,37]. Similarly
to the earlier relational transducers of Abiteboul et al. [3], these model database-driven reactive systems that respond
to input events by taking some action, and maintain state information in designated relations. Our ASM+ transducer
model extends ASM transducers with two features: (i) the ability to constrain inputs by a FO formula, and (ii) allow-
ing access to previous user inputs. The additional features turn out to be essential for simulating the Web applications
we consider. In proving our results on verification of linear-time properties of ASM+ transducers, we build upon the
techniques developed in [36,37]. However, unlike the proof of Spielmann that consists of reducing the verification
problem to finite satisfiability of E + TC formulas,1 we provide a more direct proof for ASM+ transducers. In par-
ticular, this also yields an alternative proof of Spielmann’s original result on ASM. As discussed in the paper, the
more direct proof also provides the basis for the implementation of a practical verifier for linear-time properties of
Web applications, described in [15,17]. For the results on branching-time properties we use a mix of techniques from
finite-model theory and temporal logic (see [18]), as well as automata-theoretic model-checking techniques developed
by Kupferman, Vardi, and Wolper [28].

The paper is organized as follows. Section 2 introduces our model and specification language for Web sites. Sec-
tion 3 presents the variants of linear and branching time temporal logics used to specify properties of Web applications.
Next, Section 4 introduces ASM+ transducers and presents the verification results in this context. Finally, Section 5
establishes the verification results for Web applications, mostly by reduction to verification of ASM+ transducers.

2. Web application specifications

In this section we provide our model and specification language for data-driven Web applications. In doing so, we
aim to capture a significant portion of real specification languages provided by high-level tools for Web application
specification, such as WebML [9]. Our model of a Web application captures the interaction of an external user2 with
the Web site, referred to as a “run.” Informally, a Web application specification has the following components:

• a database that remains fixed throughout each run;
• a set of state relations that change throughout the run in response to user inputs;
• a set of Web page schemas, of which one is designated as the “home page,” and another as an “error page”;
• each Web page schema defines how the set of current input choices is generated as a query on the database and

states. In addition, it specifies the state transition in response to the user’s input, the actions to be taken, as well as
the next Web page schema.

Note that the state relations can be thought of as the portion of the database that can change during a run. The distinc-
tion between states and immutable relations becomes relevant when we consider restrictions needed for decidability
of verification.

1 E + TC is existential first-order logic augmented with a transitive closure operator.
2 We use the term “user” generically to stand for any partner interacting with the Web site, be it an actual user, program, a Web service, etc.
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Intuitively, a run proceeds as follows. First, the user accesses the home page, and the state relations are initialized
to empty. When accessed, each Web page generates a choice of inputs for the user, by a query on the database and
states. All input options are generated by the system except for a fixed set that represents specific user information
(e.g. name, password, credit card number, etc.). These are represented as constant symbols in the input schema, whose
interpretations are provided by the user throughout the run as requested. The user chooses at most one tuple among
the options provided for each input. In response to this choice, a state transition occurs, actions are taken, and the next
Web page schema is determined, all according to the rules of the specification. As customary in verification of reactive
systems, we assume that all runs are infinite (finite runs can be easily represented as infinite runs by fake loops).

We now formalize the above notion of Web application. We assume a fixed and infinite set of elements dom∞.
A relational schema is a finite set of relation symbols with associated arities, together with a finite set of constant
symbols. Relation symbols with arity zero are also called propositions. A relational instance over a relational schema
consists of a finite subset Dom of dom∞, and a mapping associating to each relation symbol of positive arity a finite
relation of the same arity over Dom, to each propositional symbol a truth value, and to each constant symbol an element
of Dom. We use several kinds of relational schemas, with different roles in the specification of the Web application.

We assume familiarity with first-order logic (FO) over relational vocabularies. We adopt here an active domain
semantics for FO formulas, as commonly done in database theory (e.g., see [2]).

Definition 2.1. A Web application W is a tuple 〈D,S, I,A,W,W0,Wε〉, where:

• D, S, I, A are relational schemas called database, state, input, and action schemas, respectively. The sets of relation
symbols of the schemas are disjoint (but they may share constant symbols). We refer to constant symbols in I as
input constants, and denote them by const(I).

• W is a finite set of Web page schemas.
• W0 ∈ W is the home page schema, and Wε /∈ W is the error page schema.

We also denote by PrevI the relational vocabulary {prevI | I ∈ I − const(I)}, where prevI has the same arity as I

(intuitively, prevI refers to the input I at the previous step in the run).
A Web page schema W ∈ W is a tuple 〈IW,AW,TW,RW 〉 where IW ⊆ I,AW ⊆ A, TW ⊆ W (TW is a set of target

Web pages). Then RW is a set of rules containing the following:

• For each input relation I ∈ IW of arity k > 0, an input rule OptionsI (x̄) ← ϕI,W (x̄) where OptionsI is a relation
of arity k, x̄ is a k-tuple of distinct variables, and ϕI,W (x̄) is an FO formula over schema D∪S∪PrevI ∪ const(I),
with free variables x̄.

• For each state relation S ∈ S, one, both, or none of the following state rules:
– an insertion rule S(x̄) ← ϕ+

S,W (x̄),

– a deletion rule ¬S(x̄) ← ϕ−
S,W (x̄),

where the arity of S is k, x̄ is a k-tuple of distinct variables, and ϕε
S,W (x̄), ε ∈ {+,−}, are FO formulas over

schema D ∪ S ∪ PrevI ∪ const(I) ∪ IW , with free variables x̄.
• For each action relation A ∈ AW , an action rule A(x̄) ← ϕA,W (x̄) where the arity of A is k, x̄ is a k-tuple of

distinct variables, and ϕA,W (x̄) is an FO formula over schema D∪S∪PrevI ∪const(I)∪IW , with free variables x̄.
• For each V ∈ TW , a target rule V ← ϕV,W where ϕV,W is an FO sentence over schema D ∪ S ∪ PrevI ∪

const(I) ∪ IW .

Finally, Wε = 〈∅,∅, {Wε},RWε 〉 where RWε consists of the rule Wε ← true.

Intuitively, the action rules of a Web page specify the actions to be taken in response to the input. The state rules
specify the tuples to be inserted or deleted from state relations (with conflicts given no-op semantics, see below). If no
rule is specified in a Web page schema for a given state relation, the state remains unchanged. The input rules specify
a set of options to be presented to users, from which they can pick at most one tuple to input (this feature corresponds
to menus in user interfaces). At every point in time, I contains the current input tuple, and prevJ contains the input
to J in the previous step of the run (if any). The choice of this semantics for prevJ relations is somewhat arbitrary,
and other choices are possible without affecting the results. For example, another possibility is to have prevJ hold the
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Fig. 1. Web pages in the demo.

most recent input to J occurring anywhere in the run, rather than in the previous step. Also note that prevJ relations
are really state relations with very specific functionality, and are redundant in the general model. However, they are
very useful when defining tractable restrictions of the model.

Notation. For better readability of our examples, we use the following notation: relation R is displayed as R if it is
a state relation, as R if it is an input relation, as R if it is a database relation, and as R̄ if it is an action relation. In
Example 2.2 below, error ∈ S, user ∈ D and name,password,button ∈ I.

Example 2.2. We use as a running example throughout the paper an e-commerce Web site selling computers online.
New customers can register a name and password, while returning customers can login, search for computers fulfill-
ing certain criteria, add the results to a shopping cart, and finally buy the items in the shopping cart. A demo Web
site implementing this example, together with its full specification, is provided http://www.cs.ucsd.edu/~lsui/project/
index.html. Figure 1 represents the Web pages of our demo, depicted in WebML style.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

A. Deutsch et al. / Journal of Computer and System Sciences 73 (2007) 442–474 447

The demo site implements the Web application 〈D,S, I,A,W,HP,Wε〉. See Fig. 1 for an overview of all Web
pages of the demo, depicted in WebML style. We list here only the pages in W that are mentioned in the running
example:

HP the home page
RP the new user registration page
CP the customer page
AP the administrator page
LSP a laptop search page
PIP displays the products returned by the search
CC allows the user to view the cart contents and order items in it
MP an error message page

The following describes the home page HP which contains two text input boxes for the customer’s user name and
password respectively, and three buttons, allowing customers to register, login, respectively clear the input.

Page HP
Inputs IHP : name,password,button(x)

Input Rules:
Optionsbutton(x) ← x = “login” ∨ x = “register” ∨ x = “clear”
State Rules:

error(x) ← ¬user(name,password) ∧ button(“login”) ∧ x = “failed login”
Target Web Pages THP: HP, RP, CP, AP, MP
Target Rules:

HP ← button(“clear”)
RP ← button(“register”)
CP ← user(name,password) ∧ button(“login”) ∧ name 
= “Admin”
AP ← user(name,password) ∧ button(“login”) ∧ name = “Admin”
MP ← ¬user(name,password) ∧ button(“login”)

End Page HP

Notice how the three buttons are modeled by a single input relation button, whose argument specifies the clicked
button. The corresponding input rule restricts it to a login, clear or register button only. As will be seen shortly
(Definition 2.3), each input relation may contain at most one tuple at any given time, corresponding to the user’s
pick from the set of tuples defined by the associated input rule. This guarantees that no two buttons may be clicked
simultaneously. The user name and password are modeled as input constants, as their value is not supposed to change
during the session. If the login button is clicked, the state rule looks up the name/password combination in the database
table user. If the lookup fails, the state rule records the login failure in the state relation error, and the last target rule
fires a transition to the message page MP. Notice how the “Admin” user enjoys special treatment: upon login, she is
directed to the admin page AP, whereas all other users go to the customer page CP. Assume that the CP page allows
users to follow either a link to a desktop search page, or a laptop search page LSP. We illustrate only the laptop search
functionality of the search page LSP (see the online demo for the full version, which also allows users to search for
desktops).

Page LSP
Inputs ILSP : laptopsearch(ram,hdisk,display),button(x)

Input Rules:
Optionsbutton(x) ← x = “search” ∨ x = “view cart” ∨ x = “logout”
Optionslaptopsearch(r, h, d) ← criteria(“laptop”, “ram”, r)

∧ criteria(“laptop”, “hdd”, h) ∧ criteria(“laptop”, “display”, d)

State Rules:
userchoice(r, h, d) ← laptopsearch(r, h, d) ∧ button(“search”)
Target Web Pages TLSP: HP, PIP, CC
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Target Rules:
HP ← button(“logout”)
PIP ← ∃r∃h∃d laptopsearch(r, h, d) ∧ button(“search”)
CC ← button(“view cart”)

End Page LSP

Notice how the second input rule looks up in the database the valid parameter values for the search criteria pertinent
to laptops. This enables users to pick from a menu of legal values instead of providing arbitrary ones.

We next define the notion of “run” of a Web application. Essentially, a run specifies the fixed database and
consecutive Web pages, states, inputs, and actions. Thus, a run over database instance D is an infinite sequence
{〈Vi, Si, Ii,Pi,Ai〉}i�0, where Vi ∈ W, Si is an instance of S, Ii is an instance of IVi

, Pi is an instance of prevI,
and Ai is an instance of AVi

. We call 〈Vi, Si, Ii,Pi,Ai〉 a configuration of the run.
The input constants play a special role in runs. Their interpretation is not fixed a priori, but is instead provided by

the user as the run progresses. We will need to make sure this occurs in a sound fashion. For example, a formula may
not use an input constant before its value has been provided. We will also prevent the Web application from asking
the user repeatedly for the value of the same input constant. To formalize this, we will use the following notation. For
each i � 0, κi denotes the set of input constants occurring in some IVj

in the run, j � i, and σi denotes the mapping
associating to each c ∈ κi the unique Ij (c) where j � i and c ∈ IVj

.

Definition 2.3. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application and D a database instance over schema D.
A run of W for database D is an infinite sequence of configurations {〈Vi, Si, Ii,Pi,Ai〉}i�0 where Vi ∈ W, Si is an
instance of S, Ii is an instance of IVi

, Pi is an instance of prevI, Ai is an instance of AVi
and:

• V0 = W0, and S0,A0,P0 are empty;
• for each i � 0, Vi+1 = Wε if one of the following holds:

(i) some formula used in a rule of Vi involves a constant symbol c ∈ I that is not in κi ;
(ii) IVi

∩ κi−1 
= ∅;
(iii) there are distinct W,W ′ ∈ TVi

for which ϕW,Vi
and ϕW ′,Vi

are both true when evaluated on D,Si , Ii and Pi ,
and interpretation σi for the input constants occurring in the formulas;

otherwise, Vi+1 is the unique W ∈ TVi
for which ϕW,Vi

is true when evaluated on D,Si , Ii , Pi and σi if such W

exists; if not, Vi+1 = Vi ;
• for each i � 0, and for each relation R in IVi

of arity k > 0, Ii(R) ⊆ {v} for some v ∈ OptionsR , where OptionsR

is the result of evaluating ϕR,Vi
on D, Si , Pi and σi ;

• for each i � 0, and for each proposition R in IVi
, Ii(R) is a truth value;

• for each i � 0, and for each constant symbol c in IVi
, Ii(c) is an element in dom∞;

• for each i � 0, and for each relation prevI in prevI, Pi(prevI ) = Ii−1(I ) if I ∈ IVi−1 and Pi(prevI ) is empty
otherwise;

• for each i � 0, and relation S in S, Si+1(S) is the result of evaluating(
ϕ+

S,Vi
(x̄) ∧ ¬ϕ−

S,Vi
(x̄)

) ∨ (
S(x̄) ∧ ϕ−

S,Vi
(x̄) ∧ ϕ+

S,Vi
(x̄)

) ∨ (
S(x̄) ∧ ¬ϕ−

S,Vi
(x̄) ∧ ¬ϕ+

S,Vi
(x̄)

)
on D, Si , Ii , Pi and σi , where ϕε

S,Vi
(x̄) is taken to be false if it is not provided in the Web page schema

(ε ∈ {+,−}). In particular, S remains unchanged if no insertion or deletion rule is specified for it;
• for each i � 0, and relation A in AVi+1 , Ai+1(A) is the result of evaluating ϕA,Vi

on D, Si , Ii , Pi and σi .

Note that the state and actions specified at step i+1 in the run are those triggered at step i. This choice is convenient
for technical reasons. As discussed above, input constants are provided an interpretation as a result of user input, and
need not be values already existing in the database. Once an interpretation is provided for a constant symbol, it can
be used in the formulas determining the run. For example, such constant symbols might include name, password,
credit-card, etc. Note that, as a consequence of the definition of a run over database D, all configurations in a run
are instances over the finite domain of D extended with interpretations for const(I). In particular, each run, although
infinite, has only finitely many distinct configurations.
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The error Web page serves an important function, since it signals behavior that we consider anomalous. Specifically,
the error Web page is reached in the following situations:

(i) the value of an input constant is required by some formula before it was provided by the user;
(ii) the user is asked to provide a value for the same input constant more than once; and

(iii) the specification of the next Web page is ambiguous, since it produces more than one Web page.

Once the error page is reached, the run loops forever in that page. We call a run error free if the error Web page is not
reached, and we call a Web application error-free if it generates only error-free runs. Clearly, it would be desirable
to verify that a given Web application is error-free. As we will see, this can be expressed in the temporal logics we
consider and can be checked for restricted classes of Web applications.

3. Temporal properties of Web applications

In this section we introduce the temporal languages used for specifying properties of Web applications. These are
variants of linear-time and branching time temporal logics.

3.1. Linear-time temporal logic

We begin with linear-time properties, that must be satisfied by all runs of a Web application. Such properties are
expressed using a variant of linear-time temporal logic, adapted from [1,18,37]. We begin by defining this logic, that
we denote LTL-FO (first-order linear-time temporal logic).

Definition 3.1. [1,18,37] The language LTL-FO (first-order linear-time temporal logic) is obtained by closing FO
under negation, disjunction, and the following formula formation rule: If ϕ and ψ are formulas, then Xϕ and ϕUψ

are formulas. Free and bound variables are defined in the obvious way. The universal closure of an LTL-FO for-
mula ϕ(x̄) with free variables x̄ is the formula ∀x̄ ϕ(x̄). An LTL-FO sentence is the universal closure of an LTL-FO
formula.

Note that quantifiers cannot be applied to formulas containing temporal operators, except by taking the universal
closure of the entire formula, yielding an LTL-FO sentence. For a given LTL-FO sentence, we refer to its maximal
subformulas containing no temporal operators as the FO components of the sentence.

Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application. To express properties of runs of W , we use LTL-FO
sentences over schema D ∪ S ∪ I ∪ PrevI ∪ A ∪ W, where each W ∈ W is used as a propositional variable. The
semantics of LTL-FO formulas is standard, and we describe it informally. Let ∀x̄ ϕ(x̄) be an LTL-FO sentence over
the above schema. The Web applicationW satisfies ∀x̄ ϕ(x̄) iff every run ofW satisfies it. Let ρ = {ρi}i�0 be a run of
W for database D, and let ρ�j denote {ρi}i�j , for j � 0. Note that ρ = ρ�0. Let Dom(ρ) be the active domain of ρ,
i.e. the set of all elements occurring in relations or as interpretations for constants in ρ. The run ρ satisfies ∀x̄ ϕ(x̄)

iff for each valuation ν of x̄ in Dom(ρ), ρ�0 satisfies ϕ(ν(x̄)). The latter is defined by structural induction on the
formula. An FO sentence ψ is satisfied by ρi = 〈Vi, Si, Ii,Pi,Ai〉 if the following hold:

• the set of input constants occurring in ψ is included in κi ;
• the structure ρ′

i satisfies ψ , where ρ′
i is the structure obtained by augmenting ρi with interpretation σi for the

input constants. Furthermore, ρi assigns true to Vi and false to all other propositional symbols in W.

The semantics of Boolean operators is the obvious one. The meaning of the temporal operators X,U is the following
(where |= denotes satisfaction and j � 0):

• ρ�j |= Xϕ iff ρ�j+1 |= ϕ,
• ρ�j |= ϕUψ iff ∃k � j such that ρ�k |= ψ and ρ�l |= ϕ for j � l < k.
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Observe that the above temporal operators can simulate all commonly used operators, including B (before), G (always)
and F (eventually). Indeed, ϕBψ is equivalent to ¬(¬ϕU¬ψ), Gϕ ≡ false Bϕ, and Fϕ ≡ true Uϕ. We use the above
operators as shorthand in LTL-FO formulas whenever convenient.

LTL-FO sentences can express many interesting properties of a Web application. A useful class of properties
pertains to the navigation between pages.

Example 3.2. The following property states that if page P is reached in a run, then page Q will be eventually reached
as well:

G(¬ P) ∨ F(P ∧ FQ). (1)

Another important class of properties describes the flow of the interaction between user and application.

Example 3.3. Assume that the Web application in Example 2.2 allows the user to pick a product and records the
pick in a state relation pick(product_id,price). There is also a payment page PP, with input relation pay(amount)
and “authorize payment” button. Clicking this button authorizes the payment of amount for the product with identifier
recorded in state pick, on behalf of the user whose name was provided by the constant name (recall page HP from Ex-
ample 2.2). Also assume the existence of an order confirmation page OCP, containing the actions conf(user_id,price)
(which confirms the price to the user) and ship(user_id,product_id) (which places the shipment order). The following
property involving state, action, input and database relations requires that any shipped product be previously paid for:

∀pid,price
[
ξ(pid,price)B¬(

conf(name,price) ∧ ship(name,pid)
)]

(2)

where ξ(pid,price) is the formula

PP ∧ pay(price) ∧ button(“authorize payment”) ∧ pick(pid,price) ∧ ∃pname catalog(pid,price,pname). (3)

3.2. Branching-time temporal logics

Branching-time logics allow to express temporal properties involving quantification over runs. For example, such
quantification is needed to express the property “At any point in a run, there is a way to return to the shopping cart
page.”

We next provide the syntax and semantics of the branching-time logics CTL-FO and CTL∗-FO, adapted from
[1,37]. These are extensions of the well-known languages CTL and CTL∗ (see [18]). We also review the notion of
satisfaction of a CTL(∗) formula by a Kripke structure.

Definition 3.4. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application. The set of CTL∗-FO formulas over W is the
set of state formulas defined inductively together with the set of path formulas as follows:

1. each FO formula over the vocabulary of W is a state formula;
2. if ϕ and ψ are state formulas then so are ϕ ∧ ψ , ϕ ∨ ψ , and ¬ϕ;
3. if ϕ is a path formula, then Eϕ and Aϕ are state formulas;
4. each state formula is also a path formula;
5. if ϕ and ψ are path formulas then so are ϕ ∧ ψ , ϕ ∨ ψ , and ¬ϕ;
6. if ϕ and ψ are path formulas then so are Xϕ and ϕUψ .

The set of CTL-FO formulas over W is defined by replacing (4)–(6) above by the rule:

• if ϕ and ψ are state formulas then Xϕ, and ϕUψ are path formulas.

The set of CTL(∗)-FO sentences consists of the universal closures of CTL(∗)-FO formulas.

Note that, as in the case of LTL-FO, first-order quantifiers cannot be applied to formulas using temporal operators
or path quantifiers. The formula is closed at the very end by universally quantifying all remaining free variables,
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yielding an CTL(∗)-FO sentence. The semantics of the temporal operators is the natural extension of LTL-FO with
path quantifiers. Informally, Eϕ stands for “there exists a continuation of the current run that satisfies ϕ” and Aϕ

means “every continuation of the current run satisfies ϕ.” More formally, satisfaction of a CTL(∗)-FO sentence by a
Web application W is defined using the tree corresponding to the runs of W on a given database D. The nodes of
the tree consist of all prefixes of runs of W on D (the empty prefix is denoted root and is the root of the tree). A
prefix π is a child of a prefix π ′ iff π extends π ′ with a single configuration. We denote the resulting infinite tree by
TW,D . Note that TW,D has only infinite branches (so no leafs) and each such infinite branch corresponds to a run of
W on database D. Satisfaction of an CTL(∗)-FO sentence by TW,D is the natural extension of the classical notion of
satisfaction of CTL(∗) formulas by infinite trees labeled with propositional variables (e.g., see [18]), and is provided
below. The main difference is that propositional variables are not explicitly provided; instead, the FO components
of the formulas have to be evaluated on the current configuration (last of the prefix defining the node), as described
earlier. We say that a Web application W satisfies ϕ, denoted W |= ϕ, iff TW,D |= ϕ for every database D.

We review the classical notion of satisfaction of a CTL(∗) formula by a Kripke structure (see[18]). The language
CTL(∗) is the restriction of CTL(∗)-FO where all FO formulas are propositions.

Definition 3.5. Let AP = {p1,p2, . . . , pn} be a finite set of atomic propositional symbols. A Kripke structure over AP
is a 4-tuple K = (S,S0,R,L) where:

• S is a finite set of states.
• S0 ∈ S is an initial state.
• R is a total binary relation on S (R ⊆ S × S), called the transition relation.
• L :S → 2AP assigns to each state the set of atomic propositions which are true in that state.

A path ρ in Kripke structure K is an infinite sequence of states (s0, s1, . . .) such that (si , si+1) ∈ R for every i � 0.
Let ρ�i denote the suffix path (si , si+1, si+2, . . .). The notation K,s |= p indicates that a CTL∗ state formula p holds
at state s of the Kripke structure K . Similarly, K,ρ |= ψ indicates that a CTL∗ path formula ψ holds at a path of ρ of
the Kripke structure K . We write s |= p or ρ |= ψ when it is obvious from the context which structure is concerned.

The notion of satisfaction of a CTL∗ formula by a Kripke structure is defined as follows:

1. s |= p iff p ∈ L(s).
2. s |= ¬p iff p /∈ L(s).
3. s |= ϕ1 ∧ (∨)ϕ2 iff s |= ϕ1 and(or) s |= ϕ2.

s |= Eψ iff there exists an infinite path ρ′ = (s, s1, s2, . . .) in K , starting from s, such that ρ′ |= ψ .
s |= Aψ iff for every infinite path ρ′ = (s, s1, s2, . . .) in K starting from s, ρ′ |= ψ .

4. ρ�j |= ψ iff s′ |= ψ where s′ is the first state in ρ�j .
5. ρ�j |= ψ1 ∧ (∨)ψ2 iff ρ�j |= ψ1 and(or) ρ�j |= ψ2.

ρ�j |= ¬ψ iff ρ�j 
|= ψ .
6. ρ�j |= ψ1Uψ2 iff there exists i � j such that ρ�i |= ψ2 and ρ�k |= ψ1 for all j � k < i.

ρ�j |= Xψ iff ρ�j+1 |= ψ .

A formula of CTL is also interpreted using the CTL∗ semantics. The complexity of checking whether a CTL(∗)

formula is satisfied by a Kripke structure (model checking) is in PTIME for CTL and PSPACE-complete for CTL∗. The
satisfiability problem for CTL(∗) formulas is EXPTIME-complete for CTL and 2-EXPTIME complete for CTL∗. See
[18] for a concise survey on temporal logics, and further references.

Example 3.6. The following CTL∗-FO sentence expresses the fact that in every run, whenever a product pid is bought
by a user, it will eventually ship, but until that happens, the user can still cancel the order for pid.

∀pid∀priceAG
(
ξ(pid,price)

) → A
((

EFcancel(name,pid)
)
U

(
ship(name,pid)

))
where ξ is the formula

PP ∧ pay(price) ∧ button(“authorize payment”) ∧ pick(pid,price) ∧ prod_prices(pid,price). (4)
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4. ASM+ transducers

In this section we present an extension of Spielmann’s Abstract State Machine (ASM) transducers [36,37] and
prove our verification results within this framework. We denote the extended transducer model by ASM+. Informally,
ASM+ transducers extend Spielmann’s ASM transducer model with the ability to inspect the previous user input, and
with input option rules constraining the choice of input by the user. The main interest of the extension is that, as we
shall see, it is sufficiently powerful to simulate a wide class of Web applications. We next define ASM+ transducers
formally.

Definition 4.1. An ASM+ transducer A is a tuple 〈D,S, I,A,R〉, where:

• D, S, I, A are relational schemas called database, state, input, and action schemas, respectively, where S, I, A
contain no constant symbols. We denote by PrevI the relational vocabulary {prevI | I ∈ I}, where prevI has the
same arity as I (intuitively, prevI refers to the input I at the previous step in the run).

• R is a set of rules containing the following:
– For each input relation I ∈ I of arity k > 0, an input rule OptionsI (x̄) ← ϕI (x̄) where OptionsI is a relation of

arity k, x̄ is a k-tuple of distinct variables, and ϕI (x̄) is an FO formula over schema D ∪ S ∪ PrevI, with free
variables x̄.

– For each state relation S ∈ S, one, both, or none of the following state rules:
∗ an insertion rule S(x̄) ← ϕ+

S (x̄),
∗ a deletion rule ¬S(x̄) ← ϕ−

S (x̄),
where the arity of S is k, x̄ is a k-tuple of distinct variables, and ϕε

S(x̄) are FO formulas over schema D ∪ S ∪
PrevI ∪ I, with free variables x̄.

– For each action relation A ∈ A, an action rule A(x̄) ← ϕ(x̄) where the arity of A is k, x̄ is a k-tuple of distinct
variables, and ϕ(x̄) is an FO formula over schema D ∪ S ∪ PrevI ∪ I, with free variables x̄.

Note that an ASM+ transducer is isomorphic to a Web application with a single Web page schema, and no input
constants. The definition of runs, as well as the syntax and semantics of LTL-FO and CTL(∗)-FO formulas, are there-
fore inherited from Web applications. Also, any lower bounds for verification problems proven for ASM+ transducers
apply trivially to Web applications. To transfer the upper bounds, we will need to show appropriate reductions from
Web applications to the simpler ASM+ transducers.

For completeness, we briefly describe configurations and runs of ASM+ transducers. Let A = 〈D,S, I,A,R〉 be
an ASM+ transducer. A configuration of A is a tuple 〈S, I,P,A〉, where S is an instance of S, I and P are instances
of I and PrevI consisting of at most one tuple, and A is an instance of A. Let D be an instance of D. A run of A on
database D is an infinite sequence of configurations {〈Si, Ii,Pi,Ai〉}i�0 where:

• all relations in S0, P0, and A0 are empty and all propositions are false;
• I0 consists of at most one tuple for each input relation, belonging to the result of evaluating the corresponding

input option rule; and
• for i � 0, 〈Si+1, Ii+1,Pi+1,Ai+1〉 is obtained from D and 〈Si, Ii ,Pi,Ai〉 using the rules R, as done for Web

applications with a single Web page (details omitted, see Definition 2.3).

Note that each configuration in a run over database D uses values from the domain of D. In particular, every run,
although infinite, has only finitely many distinct configurations.

We next present our results on verification of ASM+ transducers, first for linear-time properties, then for branching-
time properties.

4.1. Verification of LTL-FO properties

It is easily seen that it is undecidable if an ASM+ transducer satisfies an LTL-FO formula, as shown next.

Proposition 4.2. It is undecidable, given an ASM+ transducer A and an LTL formula ψ , whether A |= ψ .
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Proof. By Trakhtenbrot’s theorem, finite satisfiability of FO sentences is undecidable. Let D be a database schema
and ϕ an FO sentence over D. Consider an ASM+ transducer with database schema D and an action rule A ← ϕ,
where A is a proposition. Clearly, ϕ is finitely satisfiable iff A 
|= G¬A. �

To obtain decidability, we must restrict both the transducers and the LTL-FO sentences. We use a restriction
proposed in [36,37] for ASM transducers, limiting the use of quantification in state and action rule formulas to
“input-bounded” quantification, and an additional restriction on input rules. The restrictions are formulated in our
framework as follows. Let A= 〈D,S, I,A,R〉 be an ASM+ transducer. The set of input-bounded FO formulas over
the schema D ∪ S ∪ I ∪ A ∪ PrevI is obtained by replacing in the definition of FO the quantification formation rule by
the following:

• if ϕ is a formula, α is a current or previous input atom using a relational symbol from I ∪ PrevI, x̄ ⊆ free(α), and
x̄ ∩ free(β) = ∅ for every state or action atom β in ϕ, then ∃x̄, (α ∧ ϕ) and ∀x̄ (α → ϕ) are formulas.

An ASM+ transducer is input-bounded iff all formulas in state and action rules are input bounded, and all input rules
use ∃∗FO formulas in which all state atoms are ground (note that the input option rules do not have to obey the
restricted quantification formation rule above). An LTL-FO sentence over the schema of A is input-bounded iff all of
its FO components are input-bounded.

It was shown in [36,37] that checking satisfaction of an input-bounded LTL-FO sentence by an input-bounded ASM
transducer is PSPACE-complete. The lower bound, shown by reduction of quantified Boolean formula [21], transfers
immediately to input-bounded ASM+ transducers and LTL-FO formulas, since ASM transducers are special cases
of ASM+ transducers. The PSPACE upper bound is shown in [36,37] by reducing the verification problem to finite
satisfiability in the logic E + TC, existential FO extended with a transitive closure operator. With some care, this proof
can be adapted to ASM+ transducers. However, the proof we provide is considerably more direct, circumventing the
laborious reduction to E + TC and the proof of decidability of finite satisfiability for this logic. It also provides an
alternative proof to Spielmann’s original result on input-bounded ASM transducers. Furthermore, the construction
used in our proof provides the basis for a practical implementation of a verifier for Web applications, described in
[15,17].

We next present our proof that verification of input-bounded ASM+ transducers can be done in PSPACE assuming a
fixed bound on the arity of relations, and in EXPSPACE otherwise. Consider an ASM+ transducerA= 〈D,S, I,A,R〉.
For simplicity of exposition, we assume that I consists of only one input relation (the development easily extends to
multiple input relations). In particular, a configuration of A is a tuple 〈S, I,P,A〉 where S is an instance of S, A is an
instance of A, and I and P are instances of the unique input relation in I, each consisting of at most one tuple.

Consider an input-bounded ASM+ transducer A and an input-bounded LTL-FO formula ϕ0 = ∀x̄ ψ0(x̄) over the
schema of A. To check that every run of A satisfies ϕ0 we equivalently verify that there is no run of A satisfying
¬ϕ0 = ∃x̄¬ψ0(x̄). To do so, we would like to adapt classical model checking based on Büchi automata. We informally
recall this approach (see e.g. [11] for a formal development).

4.1.1. Propositional model checking
Classical model checking applies to finite state transition systems. A finite-state transition system T is a tuple

(S, s0, T ,P,σ ) where S is a finite set of configurations (sometimes called states), s0 ∈ S the initial configuration,
T a transition relation among the configurations such that each configuration has at least one successor, P a finite
set of propositional symbols, and σ a mapping associating to each s ∈ S a truth assignment σ(s) for P . T may be
specified using various formalisms such as a non-deterministic finite-state automaton, or a Kripke structure ([11], see
also Section 3.2). A run ρ of T is an infinite sequence of configurations s0, s1, . . . such that (si , si+1) ∈ T for each
i � 0. Intuitively, the information about configurations in S that is relevant to the property to be verified is provided
by the corresponding truth assignments to P . The obvious extension of σ to a run ρ is denoted by σ(ρ). Thus, σ(ρ)

is an infinite sequence of truth assignments to P corresponding to the sequence of configurations in ρ.
Given a transition system T as above and an LTL formula ϕ using propositions in P , the associated model checking

problem is to check whether every run of T satisfies ϕ, or equivalently, that no run of T satisfies ¬ϕ. This can be
done using a key result of [38], showing that from each LTL formula φ over P one can construct an automaton Aφ

on infinite sequences, called a Büchi automaton, whose alphabet consists of the truth assignments to P , and which
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Fig. 2. Büchi automaton for ϕaux = p1Up2.

accepts precisely the runs of T that satisfy φ. This reduces the model checking problem to checking the existence of
a run ρ of T such that σ(ρ) is accepted by A¬ϕ .

We briefly recall Büchi automata. A Büchi automaton A is a non-deterministic finite state automaton (NFA) with
a special acceptance condition for infinite input sequences: a sequence is accepted iff there exists a computation of A

on the sequence that reaches some accepting state f infinitely often. For the purpose of model checking, the alphabet
consists of truth assignments for some given set P of propositional variables. The results of [38] show that for every
LTL formula ϕ there exists Büchi automaton Aϕ of size exponential in ϕ that accepts precisely the infinite sequences
of truth assignments that satisfy ϕ. Furthermore, given a state p of Aϕ and a truth assignment σ , the set of possible
next states of Aϕ under input σ can be computed directly from p and ϕ in polynomial space [35]. This allows to
generate computations of Aϕ without explicitly constructing Aϕ .

Example 4.3. Figure 2 shows a Büchi automaton for p1Up2. Notice that the accepted infinite input sequences consist
of an arbitrary-length prefix of satisfying assignments for p1, followed by a satisfying assignment for p2 and continued
with an arbitrary infinite suffix.

Suppose we are given a transition system T whose configurations can be enumerated in PSPACE with respect to
the specification of T , and such that, given configurations s, s′, it can be checked in PSPACE whether 〈s, s′〉 is a
transition in T . Suppose ϕ is an LTL formula over the set P of propositions of T . The following outlines a non-
deterministic PSPACE algorithm for checking whether there exists a run of T satisfying ¬ϕ: starting from the initial
configuration s0 of T and q0 of A¬ϕ , non-deterministically extend the current run of T with a new configuration s,
and transition to a next state of A¬ϕ under input σ(s), until an accepting state f of A¬ϕ is reached. At this point,
make a non-deterministic choice: (i) remember f and the current configuration s of S, or (ii) continue. If a previously
remembered final state f of A¬ϕ and configuration s of T coincide with the current state in A¬ϕ and configuration
in T , then stop and answer “yes.” This shows that model checking is in non-deterministic PSPACE, and therefore in
PSPACE.

4.1.2. From classical model checking to ASM+ verification
There are two main obstacles to using classical model checking to verify ASM+ transducers. First, LTL-FO for-

mulas are not propositional. Second, the transition systems corresponding to ASM+ transducers are not finite state,
since they have infinitely many possible configurations. We next show how to overcome both obstacles.

Consider an input-bounded ASM+ transducer A and an input-bounded LTL-FO formula ϕ0 = ∀x̄ ψ0(x̄). Let ψ =
¬ψ0 and ϕ = ¬ϕ0 = ∃x̄ ψ(x̄). Let c̄ be a tuple of distinct constant symbols of the same arity as x̄. Verifying that all
runs of a transducer A satisfy ϕ0 is equivalent to checking that no run satisfies ψ(x̄ ← c̄) (the formula obtained by
substituting c̄ for x̄ in ψ(x̄)) for any interpretation of the constants c̄. Let us denote ψ(x̄ ← c̄) by ψc̄. Consider now a
maximal subformula ξ of ψc̄ that contains no temporal operator, which we call an FO component of ψc̄. Note that ξ

has no free variables (as variables previously free in ξ have been replaced by the constant symbols c̄). Thus, ξ can be
evaluated to true or false in every configuration of a run ofA. This allows treating every such ξ as a proposition. More
precisely, for each FO component ξ of ψc̄, let pξ be a propositional symbol. Let ψaux

c̄ be the LTL formula obtained by
replacing in ψc̄ every FO component ξ by pξ . For each configuration ofA, the truth value of pξ is defined as the truth
value of ξ . Clearly, a run ofA satisfies ψc̄ iff it satisfies ψaux

c̄ . Specifically, for i � 0, let σ(ρi) be the truth assignment
to the propositions in ψaux

c̄ such that pξ is true iff ρi |= ξ , and let σ(ρ) = {σ(ρi)}i�0. Let us denote by Aψc̄
the Büchi

automaton corresponding to the propositional LTL formula ψaux
c̄ . A run of Aψc̄

on σ(ρ) is an infinite sequence of
states q0, s0, s1, . . . , si , . . . such that q0 is the start state of Aψc̄

, and 〈q0, σ (ρ0), s0〉, 〈si , σ (ρi+1), si+1〉 are transitions
in Aψc̄

for each i � 0. Clearly, ρ |= ψc̄ iff there exists a run of Aψc̄
on input σ(ρ) that goes through some accepting

state, say f , infinitely often.
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Example 4.4. The following LTL-FO property referring to Example 2.2 states that any confirmed product must have
previously been paid for:

∀pid, category,name, ram,hdd,display,price(
UPP ∧ button(“submit”) ∧ cart(pid,price)

∧ products(pid, category,name, ram,hdd,display,price)
)

B ¬conf(pid, category,name, ram,hdd,display,price). (5)

Property (5) is negated to the following formula ψ :

∃pid, category,name, ram,hdd,display,price

¬(
UPP ∧ button(“submit”) ∧ cart(pid,price)

∧ products(pid, category,name, ram,hdd,display,price)
)

U conf(pid, category,name, ram,hdd,display,price). (6)

Let c̄ be a sequence of constants pid0, category0,name0, ram0,hdd0,display0,price0. By replacing the existentially
quantified variables with c̄, we obtain ψc̄:

¬(
UPP ∧ button(“submit”) ∧ cart(pid0,price0)

∧ products(pid0, category0,name0, ram0,hdd0,display0,price0)
)

U conf(pid0, category0,name0, ram0,hdd0,display0,price0)

which yields the propositional property ψaux
c̄

p1Up2 (7)

where p1,p2 are the new propositional symbols introduced for the FO formulae to the left, respectively right of the
temporal operator U in (7). We have already seen in Fig. 2 the Büchi automaton corresponding to property (7).

In the simple example above, the FO components of ψc̄ happen to be quantifier free. In general however, FO
components may have input-bounded quantifiers.

Next, we address the harder issue of the infinite number of configurations of A. Here we make crucial use of
the input-boundedness restriction. Let A = 〈D,S, I,A,R〉 be an input-bounded ASM+ transducer, and ϕ an input-
bounded LTL-FO formula. Let ψc̄ be obtained from ϕ as described above, for some sequence c̄ of constant symbols.
Let C be the set of constant symbols in the database schema D. We can assume without loss of generality that c̄

belong to C (otherwise we extend the database schema to include c̄). Let D be a database instance of D, and let
ρ = {〈Si, Ii,Pi,Ai〉}i�0 be a run of A on D. Let CD be the set of all domain elements that are interpretations of
constant symbols in C in the instance D. We say that two instances H and H ′ over the same database schema
are CD-isomorphic iff there exists an isomorphism from H to H ′ that is the identity on CD . The CD-isomorphism
type of H consists of all instances H ′ that are CD-isomorphic to H . The critical observation is that, due to input-
boundedness, the truth value of each FO component of ψc̄ in a configuration 〈Si, Ii,Pi,Ai〉 is completely determined
by the restriction3 of Si and Ai to CD , together with the CD-isomorphism type of the subinstance of 〈Ii,Pi,D〉
restricted to CD together with the elements in Ii,Pi . Since Ii and Pi contain at most one tuple each, the number of
such CD-isomorphism types is finite. Moreover, due to the input-boundedness of the state transition rules, the same
information about 〈Si+1, Ii+1,Pi+1,Ai+1〉 is determined by the corresponding information about 〈Si, Ii,Pi,Ai〉. This
will allow us to limit ourselves to inspecting a transition system whose configurations are the finitely many CD-
isomorphism types as above. This essentially reduces verification back to a classical model checking problem and,
with some care, yields a PSPACE verification algorithm. We provide the details next.

For an instance K and a set T of elements, let K|T denote the restriction of K to T . Using the same notation as
above, let ρi = 〈Si, Ii,Pi,Ai〉 be a configuration in a run ρ of A on D. Let k be the arity of I , and Ci

IP consist of CD

together with all elements in Ii ∪ Pi (note that Ii ∪ Pi contains at most 2k elements). Let Di,x̄ be the restriction of D

to Ci
IP together with witnesses to the existentially quantified variables x̄ in the input-options formula ∃x̄ ϕI (x̄) for I ,

3 The restriction of a database instance K to a set T of domain elements is the instance consisting of the tuples in K using only elements in T .
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satisfied by D,Pi, Ii, Si |CD . Let ρ
↓
i = 〈Si |CD, Ii,Pi,Ai |CD,Di,x̄〉. We refer to the sequence {ρ↓

i }i�0 as the local
run4 of ρ. We say that a sequence {ρ′

i}i�0 is a local run of A on D if it is the local run of some run of A on D.

Lemma 4.5. LetA be an input-bounded ASM+ transducer, ϕ an input-bounded LTL-FO formula, and c̄,ψc̄, D, and ρ

be as above. Let ξ be an FO component of ψc̄. Then for each configuration ρi in the run ρ, ρi |= ξ iff ρ
↓
i |= ξ .

Proof. Let ρi = 〈Si, Ii,Pi,Ai〉. We show by induction the following:

(†) for every subformula ξ ′(x̄) of ξ with free variables x̄, and sequence ē of elements in Ci
IP of the same arity as x̄,

ρi |= ξ ′(x̄ ← ē) iff ρ
↓
i |= ξ ′(x̄ ← ē).

As a consequence of (†), ρi |= ξ iff ρ
↓
i |= ξ , since ξ has no free variables.

Consider (†). We can assume wlog that ξ uses only ∧,¬ and ∃. For the basis, suppose ξ ′(x̄) is an atom R(t1, . . . , tm)

where each ti is an element in CD or a variable in x̄. If R is a state or action relation, all ti ’s are elements in CD by
input boundedness, so (†) holds because ρ

↓
i retains S|CD and A|CD . If R is an input or database relation, then again

(†) holds because ρ
↓
i retains Ii,Pi , and D|Ci

IP
. Consider the induction step. If ξ ′ = ξ1 ∧ ξ2 or ξ ′ = ¬ξ1 and ξ1, ξ2

satisfy (†), it immediately follows that ξ ′ satisfies (†). Now suppose ξ ′(x̄) = ∃y (R(t1, . . . , tk) ∧ ϕ(x̄, y)) where R

is the input or previous input relation, each variable among the ti ’s is either y or in x̄ (at least one ti is y by input
boundedness), and (†) holds for ϕ(x̄, y). If R is empty in ρi then ξ ′(x̄ ← ē) is false in both ρi and ρ

↓
i , so (†)

holds. If R is not empty, then ρi |= ξ ′(x̄ ← ē) iff there exists c occurring in R such that ρi |= R(t1, . . . , tk)[x̄ ← ē,

y ← c] ∧ ϕ(x̄, y)[x̄ ← ē, y ← c]. By the induction hypothesis, this happens iff ρ
↓
i |= R(t1, . . . , tk)[x̄ ← ē, y ← c] ∧

ϕ(x̄, y)[x̄ ← ē, y ← c], so ρ
↓
i |= ξ ′(x̄ ← ē), which shows (†). �

Lemma 4.5 shows that in a configuration ρi , the information relevant to satisfaction of ψc̄ is captured by ρ
↓
i . In

other words, a run satisfies ψc̄ iff its local run satisfies ψc̄. Let Ck = C ∪ {c1, . . . , c2k} where c1, . . . , c2k are distinct
new elements (recall that k is the arity of I ). Let m be the number of existentially quantified variables in the input-
options rule for I , and e1, . . . , em be m distinct new elements. Let Ckm = Ck ∪ {e1, . . . , em}. It will be convenient
to assume, without loss of generality, than Ckm ⊂ dom∞. We can represent the CD-isomorphism type of ρ

↓
i by an

instance whose domain is Ckm, which we denote τ(ρi). Thus, Lemma 4.5 says that σ(ρi) = σ(ρ
↓
i ) = σ(τ(ρi)). Note

that the domain of τ(ρi) is the fixed set of elements Ckm, whereas the domain of ρ
↓
i depends on i.

We wish to lift the above from individual configurations to entire runs. More precisely, we would like to be able
to generate sequences {τi}i�0 of instances using elements in Ckm that correspond precisely to the sequences of CD-

isomorphism types of {ρ↓
i }i�0 for runs {ρi}i�0 of A on each database D. We formalize this using the notion of

pseudorun.

Definition 4.6. LetA= 〈D,S, I,A,R〉 be an input-bounded ASM+ transducer, and let ψc̄, C, Ck , and Ckm be defined
as above. A C-pseudorun of A is a sequence of instances {〈Si, Ii,Pi,Ai,Di〉}i�0 with elements in Ckm such that:

1. Si, Ii,Pi,Ai,Di are state, input, previous input, action, and database instances;
2. all Di provide the same interpretation for the constants in C, and each constant in C is interpreted within C;
3. Si and Ai are instances using only elements in C;
4. Ii and Pi contain at most one tuple each, using elements in Ck ;
5. for each i � 0, Pi+1 = Ii and Di |C∪dom(Ii ) = Di+1|C∪dom(Pi+1);
6. for each i � 0, if Ii = {ā} and the input-options formula for I is ∃x̄ ϕI (x̄), then 〈Di,Pi, Si〉 |= ϕI (x̄ ← ā);
7. S0 = A0 = P0 = ∅;
8. for each i � 0, Si+1 = S′

i+1|C and Ai+1 = A′
i+1|C , where S′

i+1 and A′
i+1 are the state and action relations defined

from the configuration 〈Si, Ii,Pi,Ai〉 of A and database Di , according to the rules of A.

4 Our local run is an extension of the notion of local run introduced in [36,37].
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Before proceeding, we make another useful observation showing that we can confine the search for runs of A
satisfying ψc̄ to periodic runs. Specifically, a run {ρi}i�0 is periodic iff there exist n � 0 and p � 0 such that ρi = ρi+p

for every i � n.

Lemma 4.7. Let A be an input-bounded ASM+ transducer, ϕ an input-bounded LTL-FO formula, and c̄,ψc̄ be as
above. Let D be a database instance. If there exists a run of A on D satisfying ψc̄ then there exists a periodic run
of A on D satisfying ψc̄.

Proof. Consider a run ρ = {ρi}i�0 of A on D satisfying ψc̄. Let Aψc̄
be the Büchi automaton corresponding to the

propositional LTL formula ψaux
c̄ . Recall that for i � 0, σ(ρi) denotes the truth assignment to the propositions in ψaux

c̄

such that pξ is true iff ρi |= ξ , and σ(ρ) = {σ(ρi)}i�0. Since ρ |= ψc̄, there exists a run q0, s0, s1, . . . , si , . . . of Aψc̄

on input σ(ρ) that goes through some accepting state, say f , infinitely often. Since there are finitely many distinct
instances ρi in ρ, there must exist n < j , such that sn = sj = f and ρn = ρj . Let p = j − n. Consider the sequence
ρ′ = {ρ′

i}i�0 defined by ρ′
m = ρm for 0 � m � j and ρ′

m = ρ′
m−p for m > j . Clearly, ρ′ is a periodic run of A on D

and Aψc̄
accepts σ(ρ′), so ρ′ |= ψc̄. �

We next show the following key connection between pseudoruns and actual runs.

Lemma 4.8. Let A be an input-bounded ASM+ transducer and ϕ an input-bounded LTL-FO formula. Let C, c̄, and
ψc̄ be as above. The following are equivalent:

(i) there exists some periodic run ρ of A on a database D such that ρ |= ψc̄, and
(ii) there exists some periodic C-pseudorun τ of A such that τ |= ψc̄.

Proof. Consider (i) → (ii). Let ρ = {ρi}i�0 be a periodic run of A on a database D, that satisfies ψc̄. Recall that we
assume without loss of generality that C ⊆ dom∞. We can further assume that CD = dom(D)∩C (otherwise we take
an isomorphic image of D on which this is true). We first construct a C-pseudorun τ of A such that σ(ρ) = σ(τ).
In particular, τ satisfies ψc̄. From τ one can then easily construct a periodic C-pseudorun of A satisfying ψc̄, as in
Lemma 4.7.

Consider {ρ↓
i }i�0, where ρ

↓
i = 〈Sρ

i , I
ρ
i ,P

ρ
i ,A

ρ
i ,D

ρ
i 〉. We define by induction a sequence of one-to-one mappings

{fi}i�0, where fi maps dom(ρ
↓
i ) to Ckm and is the identity on CD :

• f0 is an arbitrary one-to-one mapping from dom(ρ
↓
0 ) to Ckm that fixes CD and maps C0

IP to Ck ;
• fi+1|dom(Pi+1) = fi |dom(Ii) and fi+1 is an arbitrary extension of fi+1|dom(Pi+1) to a one-to-one mapping

from dom(ρ
↓
i+1) to Ckm that is the identity on CD and maps Ci+1

IP to Ck .

Now let τi = fi(ρ
↓
i ) for each i � 0 (note that in particular the constants C are interpreted by τi as in D). By definition,

τi and ρ
↓
i are C-isomorphic. It remains to show that {τi}i�0 is a C-pseudorun of A. Parts (1)–(6) of Definition 4.6

are obviously satisfied. Consider (7). Consider τi and τi+1 for i � 0. Let R be a state relation and Ri = Si(R),
Ri+1 = Si+1(R). Suppose ϕ+

R (x̄) and ϕ−
R (x̄) are the input-bounded formulas of A defining the tuples to be inserted,

respectively deleted from R. Let ē be a sequence of elements in C of the same arity as x̄. Since ρ
↓
i is C-isomorphic

to τi and ϕ+
R ,ϕ−

R are input bounded, one can show similarly to (†) in the proof of Lemma 4.5 that τi |= ϕ+
R (ē) iff

ρ
↓
i |= ϕ+

R (ē), and also τi |= ϕ−
R (ē) iff ρ

↓
i |= ϕ−

R (ē). Also by (†), ρ
↓
i |= ϕ+

R (ē) iff ρi |= ϕ+
R (ē) and ρ

↓
i |= ϕ−

R (ē) iff
ρi |= ϕ−

R (ē). It follows that ē is inserted/deleted from R in the transition from ρi to ρi+1 iff it is inserted/deleted in the

transition from ρ
↓
i to ρ

↓
i+1 iff it is inserted/deleted in the transition from τi to τi+1 according to the state rule for R.

Since by definition R is the same in ρi, ρ
↓
i , and τi , and R is also the same in ρi+1, ρ

↓
i+1, and τi+1, (7) holds for state

relations. A similar argument shows that (7) also holds for action relations.
Now consider the harder (ii) → (i). Let τ = {τi}i�0 be a periodic C-pseudorun satisfying ψc̄, where τi =

〈Sτ
i , I τ

i ,P τ
i ,Aτ

i ,D
τ
i 〉. We define a database D interpreting the constant symbols in C in the same way as τ , and
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a periodic run ρ = {〈Si, Ii,Pi,Ai〉}i�0 of A on D such that for each i, ρ
↓
i is C-isomorphic to τi . In particular,

σ(τ) = σ(ρ), so ρ |= ψc̄.
Recall that τ is a sequence of instances using elements in Ckm and dom∞ is an infinite domain. To construct a

database D and run ρ ofA on D, we will assign values in dom∞ to occurrences of the elements in Ckm in the different
configurations of τ . The challenge is to do so while using only finitely many values.

Consider the elements in Ck − C. Some of these elements occurring in different configurations of τ must be
assigned the same value, while others are independent of each other. We denote by 〈i, a〉 the occurrence of a in τi ,
where i � 0 and a ∈ Ck − C. To capture the required equalities among elements in different configurations, we
define the following equivalence relation ≡ on occurrences 〈i, a〉. First, let 〈i, a〉 ≈ 〈i + 1, a〉 iff a occurs in Ii (and
therefore in Pi+1). Next, let ≡ be the symmetric, reflexive, transitive closure of ≈. Let f be a mapping from the
set of all occurrences of elements in Ckm in τ to dom∞ such that f (〈i, a〉) = f (〈j, a〉) iff 〈i, a〉 ≡ 〈j, a〉, and f is
the identity on C. Note that the range of f is infinite. Consider the sequence f (τ) = {f (τi)}i�0, where f (τi) =
〈f (Sτ

i ), f (I τ
i ), f (P τ

i ), f (Aτ
i ), f (Dτ

i )〉. Let Df = ⋃
i�0 f (Dτ

i ). We first show that f (τ) satisfies the definition of a
local run of A on Df , except for the requirement that Df be finite. Given the definition of pseudorun, and since τi

and f (τi) are C-isomorphic, it is enough to show that

Df |dom
(
f (τi)

) = f
(
Dτ

i

)
for all i � 0. (‡)

Consider a ∈ range(f ). The span of a is {i | ∃b f (〈i, b〉) = a}. From the definition of f it follows that the span
of each a /∈ C is an interval, possibly infinite to the right. Now consider (‡). Suppose towards a contradiction that
Df |dom(f (τi)) 
= f (Dτ

i ) for some i � 0. Since by definition f (Dτ
i ) ⊆ Df |dom(f (τi)), it follows that f (Dτ

i ) ⊂
Df |dom(f (τi)). Thus, for some database relation R, there exists a tuple t such that dom(t) ⊆ dom(f (τi)), R(t) holds
in Df |dom(f (τi)) but R(t) does not hold in f (Dτ

i ). In particular, there must exist j 
= i such that R(t) holds in
f (Dτ

j ). Since t ∈ dom(τi) ∩ dom(τj ), it follows that i, j ∈ span(a) for each a ∈ dom(t). However, from (4) in the
definition of pseudoruns, it follows that f (Dτ

i )|dom(τi )∩dom(τj ) = f (Dτ
j )|dom(τi )∩dom(τj ), so R(t) holds in f (Dτ

i ) iff
R(t) holds in f (Dτ

j ). This is a contradiction. Thus, (‡) holds.
We next construct from f (τ) a local run, and then a run, whose universe is finite. Intuitively, this involves some

“surgery” on f (τ), using a pumping argument. The main idea is the following. Note that f maps elements in each
configuration of τ that are not in C to new elements in dom∞, yielding the infinite universe of f (τ). It turns out that
values can be assigned more economically: if two configurations τα and τβ are isomorphic and far enough apart, the
values assigned by f for τβ can be reused for τα . Based on this observation, we can modify f so that its range has
only finitely many values. We next formalize this argument.

We need to give special treatment to elements in range(f ) whose span is infinite. Since I contains only one tuple of
arity k, it follows that at most k elements in range(f ) − C may have infinite span. Let Rk consist of all such elements
(at most k). Let N > 0 be such that all elements in Rk occur in every f (τi) for i � N . From the periodicity of τ and
the fact that all elements not in Rk ∪ C have finite span, it follows that there exist α,β , N < α < β , where β − α is a
sufficiently large multiple of the least period of τ , such that:

(a) τα = τβ and τi = τi+p for all i � α, where p = β − α,
(b) f (τα) and f (τβ) are (Rk ∪ C)-isomorphic,
(c) there are no elements aα, aβ, d ∈ range(f ) − (Rk ∪ C), such that aα ∈ dom(f (τα)), aβ ∈ dom(f (τβ)), and

span(d) ∩ span(aα) 
= ∅ and span(d) ∩ span(aβ) 
= ∅.

Let h be an (Rk ∪ C)-isomorphism from f (τα) to f (τβ). Consider the sequence of configurations f (τα) . . . f (τβ−1).
Let τ̄α be the prefix of f (τα) . . . f (τβ−1) consisting of all configurations in the sequence whose domain intersects
dom(f (τα))−(Rk ∪C), and let τ̄β−1 be the suffix of f (τα) . . . f (τβ−1) consisting of all configurations in the sequence
whose domain intersects dom(f (τβ))− (Rk ∪C). By (c), τ̄α and τ̄β−1 do not overlap, so f (τα) . . . f (τβ−1) = τ̄ατ̄ τ̄β−1
for some sequence of configurations τ̄ . Let fh(τ̄α) be obtained from τ̄α by replacing each element a ∈ dom(f (τα))

by h(a) ∈ dom(f (τβ)). Intuitively, (c) guarantees that α and β are far enough apart that replacing a by h(a) in τ̄α as
above creates no interference. Note that the sequence fh(τ̄α)τ̄ τ̄β−1 starts with f (τβ). Consider the periodic sequence

ρ↓ = {ρ↓
i }i�0 obtained by concatenating fh(τ̄α)τ̄ τ̄β−1 infinitely many times to the right of f (τ0), . . . , f (τβ−1). It is

easily seen that τi and ρ
↓
i are C-isomorphic for all i � 0. In particular, σ(τ) = σ(ρ↓), so ρ↓ |= ψc̄. It is enough to
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show that ρ↓ is a local run of A for some finite database. Let ρ↓ = {〈Si, Ii ,Pi,Ai,Di〉}i�0. Let D = ⋃
i�0 Di . From

the periodicity of ρ↓ it follows that D is finite. We claim, similarly to (‡), that

D|dom
(
ρ

↓
i

) = Di for each i � 0. (∗)

Suppose towards a contradiction that there exist i, j , i 
= j , a database relation R, and a tuple t such that dom(t) ⊆
dom(ρ

↓
i ) ∩ dom(ρ

↓
j ), Di |= R(t), and Dj 
|= R(t). Because of (‡), ρ

↓
i and ρ

↓
j cannot both be configurations already

appearing in f (τ). Thus, at least one of ρ
↓
i and ρ

↓
j are configurations in fh(τ̄α). There are three cases to consider:

1. ρ
↓
i and ρ

↓
j are both in fh(τ̄α). Due to (c) above, no b ∈ range(h) occurs in dom(f (Dτ

i ))∪ dom(f (Dτ
j )). But then

h can be extended to an isomorphism (by the identity) to the entire dom(f (Dτ
i ))∪dom(f (Dτ

j )), and h−1 is also an

isomorphism. Thus, dom(h−1(t)) ∈ dom(f (τi)) ∩ dom(f (τj )), f (Dτ
i ) |= R(h−1(t)), and f (Dτ

j ) 
|= R(h−1(t)).
However, this is a contradiction with (‡).

2. ρ
↓
i occurs in fh(τ̄α) and ρ

↓
j does not. Thus, dom(t) ⊆ dom(h(f (Dτ

i ))) ∩ dom(f (Dτ
j )), h(f (Dτ

i )) |= R(t), and
f (Dτ

j ) 
|= R(t). Suppose dom(t) ∩ range(h) = ∅. Then dom(t) ⊆ dom(f (Dτ
i )). Thus, dom(t) ⊆ dom(f (Dτ

i )) ∩
dom(f (Dτ

j )), f (Dτ
i ) |= R(t), and f (Dτ

j ) 
|= R(t). This contradicts (‡). Thus, dom(t) ∩ range(h) 
= ∅. But then
dom(f (τj )) ∩ dom(f (τβ)) 
= ∅. From (c) it then follows that dom(t) ⊆ range(h), so dom(t) ⊆ dom(f (τβ)).
By (‡), f (Dτ

β) 
|= R(t) since dom(t) ⊆ dom(f (τβ)) ∩ dom(f (τj )) and f (Dτ
j ) 
|= R(t). Since dom(t) ⊆

dom(f (τβ)), dom(h−1(t)) ⊆ dom(f (τα)), so dom(h−1(t)) ⊆ dom(τα) ∩ dom(f (τi)). Again by (‡), f (Dτ
α) |=

R(h−1(t)) because f (Dτ
i ) |= R(h−1(t)). Thus, f (Dτ

α) |= R(h−1(t)) and f (Dτ
β) 
|= R(t). However, this contra-

dicts the fact that h is an (Rk ∪ C)-isomorphism from f (τα) to f (τβ).

3. ρ
↓
j occurs in fh(τ̄α) and ρ

↓
i does not. The proof is similar to (2) and is omitted.

Thus, (∗) is proven.
Finally, let ρ = {〈S′

i , Ii ,Pi,A
′
i〉}i�0 be obtained from ρ↓ by computing for each i � 0, S′

i+1 and A′
i+1 from

〈S′
i , Ii ,Pi〉 and D, using the state and action rules of A. From (∗), the definition of pseudorun, and the construc-

tion of ρ↓, it is clear that ρ is a run of A on database D, and ρ↓ is the local run of ρ. In particular, σ(τ) = σ(ρ), so
ρ |= ψc̄ . Also, ρ is periodic. This completes the proof. �

Lemma 4.8 says that in order to determine whether A satisfies ψc̄, it is enough to focus on periodic C-pseudoruns
of A. Summarizing the above development, we can now describe a non-deterministic PSPACE verification algorithm
for input-bounded ASM+ transducers and input-bounded LTL-FO properties.

The input to the algorithm is an input-bounded ASM+ transducerA and an input-bounded LTL-FO formula ϕ. Let
∃x̄ ψ(x̄) be the negation of ϕ and let c̄ be a sequence of constant symbols, one for each variable in x̄. Let C consist
of c̄ together with all constant symbols used in the specification of A or in ϕ. Guess an interpretation of the constants
in C by values in C. Let ψc̄ = ψ[x̄ ← c̄] and let ψaux

c̄ be the propositional LTL formula obtained by replacing each
FO component ξ of ψc̄ by a propositional symbol pξ . Let Aψc̄

be the Büchi automaton corresponding to ψaux
c̄ . Let

Ckm = C ∪ {c1, . . . , c2k} ∪ {e1, . . . , em}, where the ci ’s and ej ’s are distinct new elements. We use the following
non-deterministic PSPACE algorithms:

• Büchi-Next: on input (ψaux
c̄ , s, σ ), where s is a state of Aψc̄

and σ is a truth assignment to the propositions in
ψaux

c̄ , the algorithm5 returns a state s′ of Aψc̄
such that 〈s, σ, s′〉 is a transition in Aψc̄

.
• Pseudorun-Next: given as input a configuration τ in a C-pseudorun of A, output a possible next configuration τ ′

in the pseudorun.

The algorithm now proceeds as follows:

1. flag := 0;
2. set τ0 to an initial configuration of a C-pseudorun of A;
3. set s0 to some output of Büchi-Next(ψc̄, q0, σ (τ0)), where q0 is the start state of Aψc̄

;

5 As noted earlier, the existence of such a PSPACE algorithm is a classical result shown in [35].
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4. set (s, τ ) to (s0, τ0);
5. if flag = 0 and s is an accepting state of Aψc̄

then non-deterministically continue or set (s̄, τ̄ ) to (s, τ ) and set
flag := 1;

6. set τ to Pseudorun-Next(τ ) and s to Büchi-Next(ψc̄, s, σ (τ ));
7. if flag = 1 and (s, τ ) = (s̄, τ̄ ) then output YES and stop; otherwise, go to 5.

Clearly, the above non-deterministic PSPACE algorithm accepts iff there exists a periodic C-pseudorun of A accepted
by Aψc̄

. Observe that if the arity of relations in the schema of A is not bounded, the above algorithm is in EXSPACE.
This establishes the following.

Theorem 4.9. It is decidable, given an input-bounded ASM+ transducer A and an input-bounded LTL-FO formula
ϕ, whether every run of A satisfies ϕ. Furthermore, the complexity of the decision problem is PSPACE for fixed arity
schemas, and EXPSPACE otherwise.

Theorem 4.9 in conjunction with Lemma 5.6 complete the proof of the main result of the section, Theorem 5.3. We
note that the PSPACE algorithm described above provides the basis for a practical implementation of a verifier for Web
applications. Such an implementation, including additional heuristics that improve the practical performance of the
algorithm, is described in [15,17]. The implementation turns out to be surprisingly effective, with verification times
of under one minute in a battery of experiments.

4.2. Boundaries of decidability

One may wonder whether the input-boundedness restriction can be relaxed without affecting decidability of ver-
ification. Unfortunately, even small relaxations can lead to undecidability. Specifically, we consider the following:
(i) relaxing the requirement that state atoms be ground in formulas defining input options, by allowing state atoms
with variables, (ii) relaxing the input-bounded restriction by allowing a very limited form of non-input-bounded quan-
tification in the form of state projections, (iii) allowing prevI relations to record all previous inputs to I rather than
just the preceding one, (iv) relaxing the input-bounded restriction on properties to express functional dependencies
(FDs) on the database relations,6 and (v) extending LTL-FO formulas with path quantification.

We begin with extension (i) and show undecidability even for a fixed LTL-FO formula and input options defined
by quantifier-free FO formulas using just database and state relations.

Theorem 4.10. There exists a fixed input-bounded LTL-FO formula ϕ for which it is undecidable, given an input-
bounded ASM+ transducer A with input options defined by quantifier-free FO formulas over database and state
relations, whether A |= ϕ.

Proof. The proof is by reduction of the question of whether a Turing Machine (TM) M halts on input ε. Let M be
a deterministic TM with a left-bounded, right-infinite tape. We construct from it an ASM+ transducer A as follows.
The idea is to represent configurations of M using a 4-ary state relation T . The first two coordinates of T represent a
successor relation on a subset of the active domain of the database. A tuple T (x, y,u, v) says that the content of the
xth cell is u, the next cell is y, and v is a state p iff M is in state p and the head is on cell x. Otherwise, v is some
special symbol #. The moves of M are simulated by modifying T accordingly. M halts on input ε iff there exists a
run of A on some database such that some halting state h is reached. Thus, M does not accept ε iff for every run,
T (x, y,u,h) does not hold for any x, y,u, that is, A |= ∀x∀y∀uG(¬T (x, y,u,h)).

We now outline the construction of A in more detail. The database schema of A consists of a unary relation D and
a constant min. The state relations are the following:

• T , a 4-ary relation;

6 Note that any FD can be expressed as a first-order sentence f , so checking that ASM+ transducer A satisfies property ϕ provided that its
database satisfies FD f reduces to the standard verification problem A |= f → ϕ. The property f → ϕ however is not input-bounded.
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• Cell, Max, and Head, unary relations;
• propositional states used to control the computation: initialized, simul.

The input relations are I (unary) and H (4-ary).
The first phase of the simulation constructs the initial configuration of M on input ε, and the tape that the current

run will make available for the computation. This phase makes use of the unary input relation I . Intuitively, the role
of I is to pick a new value from the active domain, that has not yet been used to identify a cell, and use it to identify
a new cell of the tape. The state relation Cell keeps track of the values previously chosen, to prevent them from being
chosen again. The state relation Max keeps track of the most recently inserted value.

The rules implementing the initialization are the following (the symbol b denotes the blank symbol of M and q0 is
the start state):

OptionsI (y) ← D(y) ∧ y 
= min ∧ ¬Cell(y) ∧ ¬simul,
T (min, y, b, q0) ← I (y) ∧ ¬initialized,

Cell(min) ← ¬initialized,

Head(min) ← ¬initialized,

initialized ← ¬initialized,

T (x, y, b,#) ← I (y) ∧ Max(x),

Cell(y) ← I (y),

¬Max(x) ← Max(x),

Max(y) ← I (y),

simul ← ∀y¬I (y).

The state simul signals the transition to the simulation phase. Notice that this happens either if the input options for
I become empty (because we have used the entire active domain) or because the input is empty at any point. In the
simulation phase, T is updated to reflect the consecutive moves of M. The simulation is aborted if T runs out of tape.
We illustrate the simulation with an example move. Suppose M is in state p, the head is at cell x, the content of the
cell is 0, and the move of M in this configuration consists of overwriting 0 with 1, changing states from p to q , and
moving right. The rules simulating this move are the following:

OptionsH (x, y,0,p) ← simul ∧ Head(x) ∧ T (x, y,0,p),

¬T (x, y,0,p) ← simul ∧ H(x,y,0,p),

T (x, y,1,#) ← simul ∧ H(x,y,0,p),

¬T (y, z,u,#) ← simul ∧ H(x,y,0,p) ∧ T (y, z,u,#),

T (y, z,u, q) ← simul ∧ H(x,y,0,p) ∧ T (y, z,u,#),

¬Head(x) ← simul ∧ H(x,y,0,p),

Head(y) ← simul ∧ H(x,y,0,p).

Such rules are included for every move of M. It is easy to see that this correctly simulates the moves of M. Note that
if the input H is empty, T does not change. Finally, if the head reaches the last value provided in T , the transducer goes
into an infinite loop in which, again, T stays unchanged. Thus, T (x, y,u,h) holds in some run iff the computation
of M on ε is halting. Equivalently, M does not halt on ε iffA satisfies the formula ϕ = ∀x∀y∀uG(¬T (x, y,u,h)). �

We next consider extension (ii): we relax input-boundedness of rules by allowing projections of state relations. We
call an ASM+ transducer input-bounded with state projections if all its formulas are input-bounded, excepting state
rules that allow insertions of the form:

S(x̄) ← ∃ȳ S′(x̄, ȳ)

where S and S′ are state relations. We can show the following.

Theorem 4.11. It is undecidable, given an input-bounded ASM+ transducer A with state projections and input-
bounded LTL-FO sentence ϕ, whether A |= ϕ.

Proof. The proof is by reduction of the implication problem for functional and inclusion dependencies, known to be
undecidable [10]. Recall that a functional dependency (FD) over relation schema S of arity k is an expression X → Y
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where X,Y ⊆ {1, . . . , k}. An instance Z over S satisfies an FD X → Y iff whenever two tuples in Z agree on X they
also agree on Y . An inclusion dependency (ID) over S is an expression [X] ⊆ [Y ] where X,B ⊆ {1, . . . , k} and X and
Y have the same size. An instance Z over S satisfies [X] ⊆ [Y ] iff for each tuple u in Z there exists a tuple v in Z

such that u|X = v|Y . The implication problem for FDs and IDs is to determine, given a set Δ of FDs and IDs over S,
and f an FD over S, whether Δ implies f (i.e., whether every instance over S satisfying Δ also satisfies f ).

Let Δ be a set of FDs and IDs over a relation S, and f an FD over the same relation. We can assume without loss
of generality that all FDs have singletons on the right-hand side, and we denote for simplicity X → {A} by X → A.
We construct an input-bounded ASM+ transducer A with state projections and an input-bounded LTL-FO sentence ϕ

such that Δ |= f iff A |= ϕ.
Let A= 〈D,S, I,A,R〉 where D = {R}, A = ∅, I = {I,done} where I has the same arity as S and done is propo-

sitional, and S consists of the following relations:

• the relation S;
• two propositions stop1, stop2;
• for each ID σ of the form [X] ⊆ [Y ] in Δ, a relation SX of arity |X|, a relation SY of arity |Y |, a relation Sσ

X of
arity |X|, and a proposition violσ ;

• for each FD σ of the form X → A in Δ ∪ {f } a relation SXA of arity |XA|, a relation Sσ
XA1A2

of arity |XA| + 1,
and a proposition violσ .

Next, let R be defined as follows. The input option rule for I defines the cross-product of the active domain given by
the database relation R. The state rules consist of the following:

S(x̄) ← I (x̄) ∧ ¬stop1,

stop1 ← done,
stop2 ← stop1

for each ID σ of the form [X] ⊆ [Y ] in Δ, the following rules (where πX(S) denotes the projection of S on X):

SX ← πX(S),

SY ← πY (S),

Sσ
X(x̄) ← SX(x̄) ∧ ¬SY (x̄) ∧ stop2,

violσ ← ∃x̄ Sσ
X(x̄)

for each FD σ of the form X → A in Δ ∪ {f }, the rules:

SXA ← πXA(S),

Sσ
XA1A2

(x̄, a1, a2) ← SXA(x̄a1) ∧ SXA(x̄a2) ∧ a1 
= a2 ∧ stop2,

violσ ← ∃x̄∃a1∃a2 Sσ
XA1A2

(x̄, a1, a2).

Intuitively, the state relation S is populated by repeated inputs, until done is set to true, which is remembered in the
state propositions stop1 and stop2 (stop2 is needed for timing reasons, to ensure that violations are not tested too
early). The rules check for violations of the dependencies in Δ, so that violσ is set to true iff S violates σ .

Note that all rules are input bounded, except those consisting of projections of state relations. Next, let ξ be the
input-bounded LTL-FO sentence

G(¬done) ∨
[
F(done) ∧

(
F

( ∨
σ∈Δ

violσ

)
∨ G(ψf )

)]

where ψf is the formula ¬S
f
XA1A2

(x̄, a1, a2) whose universal closure states that the FD f = X → A is satisfied.
Finally, let ϕ be the universal closure of ξ . Intuitively, ϕ states that either done is never set to true, or it is set to true
and at least one of the constraints of Δ is violated, or f is satisfied. Thus, A |= ϕ iff Δ |= f . �

We now deal with extension (iii). We say that an ASM+ transducer has lossless input if the prevI relations record
all previous inputs to I in the current run.

Theorem 4.12. It is undecidable, given an input-bounded ASM+ transducer A with lossless input and an input-
bounded LTL-FO formula ϕ, whether A |= ϕ.
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The proof uses a straightforward reduction of the undecidability of finite validity of FO formulas and is omitted.
We show the undecidability of extension (iv) next, proving that in the presence of FDs the verification problem

becomes undecidable even for strictly input-bounded specifications and properties. Given property ϕ and transducer
A with set F of functional dependencies on its database schema, we say thatA satisfies ϕ under F , denotedA |=F ϕ,
iff for every database D which satisfies F , all runs of A over D satisfy ϕ.

Theorem 4.13. It is undecidable, given an input-bounded ASM+ transducer A with functional dependencies F on its
database schema, and an input-bounded LTL-FO formula ϕ, whether A |=F ϕ.

Proof. By reduction from the Post Correspondence Problem (PCP). Consider a PCP instance, i.e. two sequences of
length n: {ui}1�i�n, {vi}1�i�n, where all ui, vj are non-empty words over the alphabet {0,1}. A solution to P is a
finite non-empty sequence σ ∈ [1, . . . , n]∗ such that the two strings obtained by concatenating uσ(1)uσ(2) . . . uσ(k) and
vσ(1)vσ(2) . . . vσ(k) are identical (σ(i) is the element at position i in σ ). We say that these strings are generated by the
solution σ . We construct ASM+ transducer A, set F of FDs, and property ϕ such that P has a solution iff A 
|=F ϕ.
A simulates the search for a PCP solution as follows. The database encodes a finite string θ intended to correspond

to the string generated by a solution of P . A non-deterministically picks a sequence of indexes from [1, . . . , n] (by
repeatedly asking an external user to pick an input among the options [1, . . . , n]). Upon receiving the index i, A tries
to match the corresponding words ui and vi in parallel against θ , by maintaining two cursors U and V on θ , as well as
a cursor on ui and a cursor on vi . The cursors advance in lock-step, being incremented only if they point to the same
character. Initially, U and V start from the first position in θ . The property ϕ is satisfied only if for all j , upon finishing
to fully match uj and vj , U and V never meet on θ . It is easy to see that, if the database encodes a string θ , a run of A
violates ϕ if and only if the sequence of indexes picked by the user is a solution to P , which generates a prefix of θ .

θ is encoded using two binary database relations, chain(s, t) (intended to contain as a subgraph a chain of directed
s → t edges) and char(i, c) (intended to label each node i in the chain with a character c ∈ {0,1}). We pick F to
enforce that chain(s, t) satisfies the functional dependencies (FDs) s → t and t → s and char satisfies the FD i → c.
The FDs on chain ensure that nodes have in-degree and out-degree one, so chain is a union of disjoint cycles and
chains. The FD on char will ensure that indexes are labeled uniquely, and the rules ensure that the labels are in {0,1}
(the fact that 0 and 1 are distinct constants is stated in the property). To ensure that the cursors U and V progress along
the same path without revisiting any node, we enforce that they start from the same position, a special node ‘$,’ and
never return to ‘$.’

In detail, the schema of A consists of

• D = {chain(s, t), char(i, c), ‘$,’ 0,1} as described above (‘$,’ 0, and 1 are constants).
• I = {I(i),U(x),V(x)}. Intuitively, the user provides his pick of a word index in I, and U and V are the cursors on θ .

The options provided to the user contain the immediate successors in chain of the cursors at the previous input
prevU,prevV. Of course, there is at most one successor due to the FDs on chain.

• S contains the following propositional states:
– for each 1 � i � n, each 1 � j � |ui | and each 1 � k � |vi |, state Uj

i and state Vk
i (these play the role of cursors

in the ui and vi words);
– state doneu, set to true only when a full ui word is matched; begunu which, when set to false, signals that the

matching of ui words has not yet begun; similarly, states donev and begunv .
• A = ∅.

A contains

• the input rules

OptionsI(i) ← (i = 1 ∨ i = 2 ∨ · · · ∨ i = n) ∧ (¬begunu ∧ ¬begunv ∨ doneu ∧ donev);
OptionsU(t) ← (¬begunu ∧ t = ‘$’) ∨ begunu ∧ ¬doneu ∧ ∃s∃c prevU(s) ∧ chain(s, t) ∧ t 
= ‘$’

∧ char(t, c) ∧
(∨

i,j

prevI(i) ∧ c = ui(j) ∧ Uj
i

)
;
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OptionsV(t) ← (¬begunv ∧ t = ‘$’) ∨ begunv ∧ ¬donev ∧ ∃s∃c prevV(s) ∧ chain(s, t) ∧ t 
= ‘$’

∧ char(t, c) ∧
(∨

i,k

prevI(i) ∧ c = vi(k) ∧ Vk
i

)
;

• the state rules

begunu ← ¬begunu ∧ ∃t U(t),

begunv ← ¬begunv ∧ ∃t V(t),

doneu ← ∃t U(t) ∧
(

n∨
i=1

U|ui |−1
i

)
,

¬doneu ← doneu ∧ ∃x I(x),

donev ← ∃t V(t) ∧
(

n∨
i=1

V|vi |−1
i

)
,

¬donev ← donev ∧ ∃x I(x).

Moreover, for 1 � i � n,

U1
i ← I(i),

Uj
i ← Uj−1

i ∧ ∃t U(t) for 1 < j � |ui |,
¬Uj

i ← Uj
i ∧ ∃t U(t) for 1 � j � |ui |,

V1
i ← I(i),

Vj
i ← Vj−1

i ∧ ∃t V(t) for 1 < j � |vi |,
¬Vj

i ← Vj
i ∧ ∃t V(t) for 1 � j � |vi |.

F consists of FDs t → s, s → t on chain and i → c on char.
The (input-bounded) property ϕ is

∀t 0 
= 1 ∧ G¬(
prevU(t) ∧ prevV(t) ∧ doneu ∧ donev

)
. �

Finally, we address the undecidability of extension (v).

Theorem 4.14. It is undecidable, given an input-bounded ASM+ transducer A and input-bounded CTL-FO sen-
tence ϕ, whether A |= ϕ.

Proof. Using path quantifiers, one can easily simulate first-order quantification by considering runs that provide
values for the quantified variables as inputs. This allows to use a reduction of finite validity of FO sentences to
the above verification problem. We illustrate the reduction for FO sentences of the form ∃x∀y α(x, y) where α is
a quantifier free formula over relational vocabulary {R}. Let A = 〈D,S, I,A,R〉 be an ASM+ transducer where
D = {R}, I = {X,Y } (X,Y are unary relations), A = ∅, S = {SX,SY ,donex, trueα} (SX,SY are unary and the other
states are propositional). The input option rules are:

OptionsX(x) ← (
ψdom(x) ∧ ¬donex

) ∨ (
donex ∧ SX(x)

)
,

OptionsY (y) ← donex ∧ ψdom(y),

where ψdom(x) defines the active domain provided by R. The state rules are the following:

SX(x) ← X(x),

donex ← ¬donex,

trueα ← ∃x∃y
(
X(x) ∧ Y(y) ∧ α(x, y)

)
.

Note that a path in TA starts at root, then proceeds to the start configuration of a run on some database D. The first
input provided is a value of x, which is remembered in the state relation SX . In the next configuration, donex is true,
the same value of x as previously chosen is provided again via input X, and an arbitrary value is provided for y by
the input relation Y . In the following configuration trueα is true if α(x, y) is satisfied for the chosen values of x, y.
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Let ϕ be the CTL-FO sentence EXAXAX(trueα). Clearly, A |= ϕ iff ∃x∀y α(x, y) is valid. Note that A and ϕ are
input bounded (in fact ϕ is propositional, so in CTL). This proof is easily extended along the same lines to the general
case. �

The proof further shows that a single alternation of path quantifiers is sufficient to yield undecidability, since one
alternation is enough to express validity of FO sentences in the prefix class ∃∗∀∗FO, known to be undecidable [6].

4.3. Verification of branching-time properties

In this section we consider the verification of branching-time temporal properties of ASM+ transducers. As noted
in the previous section, the decidability results for input-bounded ASM+ transducers do not extend to CTL(∗)-FO
sentences, even if they are restricted to be input bounded (by requiring every FO subformula to be input bounded).
We next consider several restrictions leading to decidability of the verification problem for CTL(∗)-FO sentences.

4.3.1. Propositional input-bounded ASM+ transducers
The first restriction further limits input-bounded ASM+ transducers by requiring all states to be propositional.

Furthermore, no rules can use PrevI atoms. We call such ASM+ transducers propositional. In a propositional ASM+
transducer, inputs can still be parameterized. The CTL∗ formulas we consider are propositional and use only state
symbols. For a given ASM+ transducer A = 〈D,S, I,A,R〉, we denote by ΣA the propositional vocabulary S. We
first show the following:

Theorem 4.15. Given a propositional, input-bounded ASM+ transducer A and a CTL∗ formula ϕ over ΣA, it is
decidable whether A |= ϕ. The complexity of the decision procedure is CO-NEXPTIME if ϕ is in CTL, and EXPSPACE

if ϕ is in CTL∗.

Proof. The proof has two stages. First, we show that there is a bound on the size of databases that need to be con-
sidered when checking for violations of ϕ (or equivalently, satisfaction of ¬ϕ). Second, we prove that for a given
database D there exists a Kripke structure KA,D over alphabet ΣA, of size exponential in ΣA, such that TA,D |= ¬ϕ

iff KA,D |= ¬ϕ. This allows us to use known model-checking techniques for CTL(∗) on Kripke structures to verify
whether TA,D |= ¬ϕ.

We start with the following:

Lemma 4.16. Let A be a propositional, input bounded ASM+ transducer, and ϕ a CTL∗ formula over ΣA. Then
A 
|= ϕ iff there exists a database instance D of size exponential in A, such that TA,D |= ¬ϕ.

Proof. LetA= 〈D,S, I,A,R〉 be a propositional, input-bounded ASM+ transducer and ϕ a CTL∗ formula over ΣA.
For each configuration ρ of A, we denote by λ(ρ) the set of states true in ρ. We also denote by λ the extension of
this mapping to trees of configurations TA,D , where λ(root) = ∅. Obviously, if λ(TA,D1) = λ(TA,D2) then TA,D1 and
TA,D2 satisfy the same CTL∗ formulas over ΣA. Now suppose that A 
|= ϕ, so there is some D such that TA,D |= ¬ϕ.
We show that there exists a database D0 of size exponential inA, such that λ(TA,D) = λ(TA,D0), so TA,D0 |= ¬ϕ. This
is done by showing that λ(TA,D) = λ(TA,D0) iff D0 satisfies a particular FO sentence ξ in the prefix class ∃∗∀∗FO
with a number of variables exponential in A. Since ξ is satisfied by D, it is satisfiable. But this implies that ξ has a
model D0 whose domain has a number of elements equal to the number of existential variables of ξ , so exponential
in A (see [6]). Thus, the size of D0 is also exponential in A (for bounded database schema arity).

We next describe ξ . Note that, because states are propositional, the sets of propositions true in successors of a
configuration ρ of a run of A on D depend only on D and λ(ρ). Thus, λ(ρ) uniquely determines the set {λ(ρ̄) |
〈ρ, ρ̄〉 ∈ TA,D}. Consider a pair 〈Σ,Σ̄〉 = 〈λ(ρ),λ(ρ̄)〉 ∈ λ(TA,D). Let I1, . . . , Ik be the input predicates in I, and let
ϕ1 . . . , ϕk be the ∃∗FO formulas defining the input options for I1, . . . , Ik . We construct a quantifier-free FO sentence
ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k) on D such that λ(ρ̄) = Σ̄ whenever ρ̄ is the next configuration from ρ resulting from the choice of
inputs x̄1, . . . , x̄k from the options available for I1, . . . , Ik . For simplicity, we show the construction for the case when
all user inputs are non-empty. The construction can be easily adapted to account for empty inputs.
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Thus, 〈Σ,Σ̄〉 ∈ λ(TA,D0) iff D0 |= ∃x̄1 . . .∃x̄k [ϕ1(x̄1) ∧ · · · ∧ ϕk(x̄k) ∧ ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k)]. To ensure that only

valid pairs 〈Σ,Σ̄〉 occur in λ(TA,D0), it must also be the case that D0 |= ∀x̄1, . . . ,∀x̄k [(ϕ1(x̄1) ∧ · · · ∧ ϕk(x̄k)) →∨
Σ̄ ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k)].
Then ξ is the conjunction of all such formulas for all pairs in λ(TA,D), yielding a formula in the prefix class

∃∗∀∗FO. Since there can be exponentially many such pairs, ξ is exponential in A.
In order to define the sentence ϕ〈Σ,Σ̄〉 we need the following notation. For each FO sentence ψ let ψΣ be the sen-

tence obtained by replacing in ψ every proposition p ∈ Σ by true and p /∈ Σ by false. Further, for each input-bounded
formula ψ let the quantifier-free version of ψ , denoted ψqf , be defined as follows. Intuitively, ψqf eliminates the
quantifiers by taking advantage of the fact that each input I consists, after the user’s choice, of at most a single tuple x̄I

(x̄I is a sequence of m distinct variables, where m is the arity of I ). The formula ψqf reformulates ψ using these
tuples. Specifically, let ψ ′ be obtained by replacing each input-bounded quantification ∃x̄ (α ∧ β) and ∀x̄ (α → β) by
α ∧ β .

Next, let ψqf be obtained by first bringing ψ ′ to DNF (disjunctions of conjunctions), then applying to each disjunct
δ the following procedure yielding δ′. Let eq (neq) be the (in)equalities occurring in δ. For each input relation I

occurring in δ and each i, 1 � i � m, let θ(I, i) be the set of terms occurring in the ith position of I in a positive
occurrence I (z̄) in δ. Let ≡ be the reflexive, transitive closure of the following relation on the terms of δ: {(x, y) |
x = y ∈ eq} ∪ {(x, y) | x, y ∈ θ(I, i) for some I and i}. If for some x, y it is the case that x ≡ y and x 
= y is in neq ,
then δ′ = false. Otherwise, define the following equivalence relation on the pairs (I, i) of input atoms I and positions
i of I : (I, i) ≡ (J, j) iff there exist terms x, y so that x ≡ y, x ∈ θ(I, i), and y ∈ θ(J, j). For each variable y in δ, let
ν(y) be one arbitrarily chosen (xI )i for which y ∈ θ(I, i). Let δ′ be obtained as follows:

1. add to δ the conjunction of all equalities (xI )i = (yJ )j where (I, i) ≡ (J, j), c = c′ where c, c′ are constants and
c ≡ c′, and (xI )i = c for some arbitrarily chosen c ∈ θ(I, i), if such exists;

2. for each negative occurrence ¬I (z1, . . . , zm) of an input atom, add the conjunct consisting of the disjunction∨m
i=1(ν(zi) 
= (xI )i);

3. delete all input atoms;
4. replace each variable y by ν(y) in the remaining atoms.

Finally, ψqf is the disjunction of all resulting δ′.
We can now define ϕ〈Σ,Σ̄〉. This is constructed using the rules of A. Consider a proposition p in S. We associate

to p and ¬p formulas βp and β¬p defined using the rules for (¬)p. If p ← γ and ¬p ← δ are in R then βp is τ
qf
Σ ,

where τ = (γ ∧ ¬δ) ∨ (p ∧ ¬δ), and β¬p is π
qf
Σ where π = (¬p ∧ ¬γ ) ∨ (¬p ∧ γ ∧ δ) ∨ (δ ∧ ¬γ ). Finally, ϕ〈Σ,Σ̄〉

is the quantifier-free formula
∧

p∈Σ̄ βp ∧ ∧
p∈(ΣV −Σ̄) β¬p . �

The next stage towards the proof of Theorem 4.15 is to reduce the verification problem for a fixed database to a
model checking problem of a CTL(∗) formula on a Kripke structure. We therefore show the following.

Lemma 4.17. For each ASM+ transducer A over database schema D, each database instance D over D, and each
CTL(∗) formula ϕ over ΣA, one can construct, in time polynomial in D and exponential in A, a Kripke structure
KA,D over ΣA, of size exponential in ΣA, such that TA,D |= ϕ iff KA,D |= ϕ.

Proof. The Kripke structure KA,D has one node labeled for each set of propositions Σ ⊆ ΣA labeling a node in
λ(TA,D). There is an edge 〈Σ,Σ̄〉 iff there is a node labeled Σ with a child labeled Σ̄ in λ(TA,D). Clearly, KA,D can
be obtained by expanding λ(TA,D) until no new labels are found. Each edge involves evaluating the formulas of A
on Σ and D, which is polynomial in Σ and D and exponential in A. The maximum number of edges is exponential
in ΣA. �

Lemmas 4.16 and 4.17 provide the proof of Theorem 4.15: to check that A 
|= ϕ, first guess a database D of size
exponential inA, then construct from D andA, in time exponential inA, the Kripke structure KA,D . Finally, checking
that KA,D |= ¬ϕ is in polynomial time with respect to KA,D and ¬ϕ if ϕ is in CTL, and in polynomial space if ϕ is
in CTL∗. Overall, checking A |= ϕ is in CO-NEXPTIME if ϕ is in CTL, and in EXPSPACE if ϕ is in CTL∗. �
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A special case of interest involves ASM+ transducers that are entirely propositional. Thus, the database plays no
role in the specification: inputs, states, and actions are all propositional, and the rules do not use the database. Let us
call such a transducer fully propositional. We can show the following:

Theorem 4.18. Given a fully propositional ASM+ transducer A and a CTL∗ formula ϕ over ΣA, it is decidable in
PSPACE whether A |= ϕ.

Proof. In the case of a fully propositional ASM+ transducer A, the Kripke structure KA,D is independent of D

(let us denote it by KA). However, KA is exponential with respect to A so cannot be constructed in PSPACE. We
therefore need a more subtle approach, that circumvents the explicit construction of KA. To do so, we adopt techniques
developed in the context of model checking for concurrent programs (modeled by propositional transition systems).
Specifically, the model checking algorithm developed by Kupferman, Vardi and Wolper in [28] can be adapted to
fully propositional transducers. The algorithm uses a special kind of tree automaton, called hesitant alternating tree
automaton (HAA) (see [28] for the definition). As shown in [28], for each CTL∗ formula ϕ one can construct an HAA
Aϕ accepting precisely the trees (with degrees in a specified finite set) that satisfy ϕ. In particular, for a given Kripke
structure K , one can construct a product HAA K × Aϕ that is non-empty iff K |= ϕ. The non-emptiness test can be
rendered efficient using the crucial observation that non-emptiness of K × Aϕ can be reduced to the non-emptiness
of a corresponding word HAA over a 1-letter alphabet, which is shown to be decidable in linear time, unlike the
general non-emptiness problem for alternating tree automata. Finally, it is shown that K ×Aϕ need not be constructed
explicitly. Instead, its transitions can be generated on-the-fly from K and ϕ, as needed in the non-emptiness test for the
1-letter word HAA corresponding to K ×Aϕ . This yields a model checking algorithm of space complexity polynomial
in ϕ and polylogarithmic in K . We refer to [28] for details.

In our case, K is KA, and the input consists of ϕ and A instead of ϕ and KA. The previous approach can be
adapted by pushing further the on-the-fly generation of KA × Aϕ by also generating on-the-fly the relevant edges
of KA from A when needed. This yields a polynomial space algorithm for checking whether A |= ϕ, similar to the
algorithm with the same complexity obtained in [28] for model checking of concurrent programs. �
5. Verification of Web applications

We finally present our verification results for Web applications. Most of the results are shown by reducing the
verification problem for Web applications to corresponding verification problems for ASM+ transducers. We begin
with linear-time properties.

5.1. Linear-time properties of Web applications

As for ASM+ transducers, the decidability results for verification of linear-time properties of Web applications
require the input-boundedness restriction. This extends naturally from ASM+ transducers to Web applications.

Definition 5.1. A Web application is input-bounded if all formulas used in state, action, and target rules are input
bounded, and formulas used in input option rules are ∃∗FO formulas in which all state atoms are ground.

Example 5.2. All rules on pages HP, LSP in Example 2.2 are input-bounded. Property (1) in Example 3.2 is trivially
input-bounded, as it contains no quantifiers. Property (2) in Example 3.3, however, is not input-bounded because
pname appears in no input atom. We turn this into an input-bounded property by modeling the catalog database
relation with two relations prod_prices(pid,price) and prod_names(pid,pname). We can now rewrite property (2) to
the input-bounded sentence

∀pid,price
[
ξ ′(pid,price)B¬(

conf(name,price) ∧ ship(name,pid)
)]

(8)

where ξ ′(pid,price) is short for

PP ∧ pay(price) ∧ button(“authorize payment”) ∧ pick(pid,price) ∧ prod_prices(pid,price). (9)
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We show the following result on the verification of linear-time properties. Recall from Section 2 that a Web appli-
cation is error-free if no run ever leads to the special error page.

Theorem 5.3. The following are decidable:

(i) given an input-bounded Web application W , whether it is error free;
(ii) given an error-free Web applicationW with input-bounded rules and an input-bounded LTL-FO sentence ϕ over

the schema of W , whether W satisfies ϕ.

Furthermore, both problems are PSPACE-complete for schemas with fixed bound on the arity, and in EXPSPACE for
schemas with no fixed bound on the arity.

The lower bound follows immediately from the PSPACE lower bound for ASM+ transducers. The upper bound is
more involved, and requires a reduction to the verification problem for ASM+ transducers. To begin, we note that
part (i) of Theorem 5.3 can be reduced to part (ii).

Lemma 5.4. For each Web application W with input-bounded rules there exists an error-free Web application W ′
with input-bounded rules, of size quadratic in W , such that W is error free iff W ′ |= ϕ, for some fixed input-bounded
LTL-FO sentence ϕ.

Proof. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application with input-bounded rules. Intuitively, we wish to
construct a Web application W ′ with a new Web page schema W ′

ε that is reached according to the rules of the
application (and without generating an error), exactly when the error page Wε would be reached in the original
Web application. Then it is enough to verify that W ′

ε is never reached in any run of W ′. To this end, we define
W ′ = 〈D,S′, I,A,W′,W ′

0,Wε〉 as follows. For each input constant c of W , let pc be a new propositional symbol,
and S′ = S ∪ {pc | c is an input constant ofW}. W′ contains a new Web page schema W ′

ε defined identically to Wε ,
and for each Web page schema W = 〈IW,AW,TW,RW 〉 of W different from W0 and Wε , a Web page schema
W ′ = 〈IW,AW,T′

W,R′
W 〉, where T′

W = TW ∪ {W ′
ε}. R′

W consists of the following rules. The state, input, and action
rules of RW remain unchanged, except for the addition of one state rule pc ← true for each input constant c ∈ IW .
Before defining the target rules, let ψW be ψ1 ∨ ψ2 ∨ ψ3, where:

• ψ1 is the disjunction of all formulas ϕV,W ∧ ϕV ′,W where V 
= V ′ and V ← ϕV,W , V ′ ← ϕV ′,W are target rules
in RW ,

• ψ2 is the disjunction of all formulas ϕV,W ∧ ¬pc where V ← ϕV,W is a target rule in RW and c is an input
constant occurring in some input rule in V but not in IW , or occurring in some other rule of V , but not in IW ∪ IV ,
and

• ψ3 is the disjunction of the formulas ϕV,W ∧pc where V ← ϕV,W is a target rule inRW and c occurs in IV − IW ,
and ϕV,W if c ∈ IW ∩ IV .

Intuitively, ψW states that the original target rules of W are ambiguous (stated by ψ1) or the next Web page uses some
input constant not yet provided (formula ψ2), or the next Web page requires as input some constant already provided
(stated by ψ3). The target rules of W ′ make use of ψW :

• each target rule V ← ϕV,W , where V ∈ TW , is replaced by V ← ϕV,W ∧ ¬ψW ,
• W ′

ε ← ψW is a new target rule.

Finally, W ′
0 is a special case. It is defined as above if input rules of W0 contain no input constants, and the other

formulas contain only input constants in IW0 ; otherwise, it is defined as 〈∅,∅, {W ′
ε}, {W ′

ε ← true}〉.
It is easily verified that W ′ is error free and W ′ is input bounded if W is input bounded. Also, W is error free iff

the page W ′
ε is never reached in any run of W ′, i.e. W ′ satisfies the input-bounded LTL-FO sentence G ¬W ′

ε . �
The following shows that checking that a Web application is error-free is already PSPACE-hard.
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Lemma 5.5. Checking whether an input-bounded Web application is error free is PSPACE-hard.

Proof. The proof is by reduction from quantified Boolean formula (QBF), known to be PSPACE-complete [21].
Let ϕ be a quantified Boolean formula (we can assume ϕ uses just ∨,¬,∃). Consider the Web application Wϕ =
〈D,S, I,A,W,W0,Wε〉 where:

• D = {R : 1,0,1}, S = ∅, I = {I0 : 1, I1 : 1}, A = ∅, W = {W0,W1,W2}.
• W0 = 〈{I0, I1},∅, {W1,W2},RW0〉 where RW0 consists of the input rules

OptionsIi
(x) ← R(x),

for i ∈ {0,1} and the target rules

Wi ← I0(0) ∧ I1(1) ∧ 0 
= 1 ∧ ϕ′, i ∈ {1,2},
where ϕ′ is defined from ϕ as follows:
– each propositional variable x is replaced by (x = 1);
– disjunction and negation remain unchanged;
– ∃x ψ becomes ∃x ((I0(x) ∨ I1(x)) ∧ ψ).

• {W1,W2} are arbitrary.

Clearly, Wϕ is input-bounded and of size polynomial in ϕ, and it is error free iff there is no run for which I0 = {0},
I1 = {1}, and ϕ′ is true. Obviously, there exists a run for which I0 = {0} and I1 = {1}. But then ϕ′ has the same value
as ϕ. Therefore, W is error-free iff ϕ is false. �

We next reduce the verification of error-free Web applications to verification of ASM+ transducers.

Lemma 5.6. Let W = 〈D,S, I,A,W,W0,Wε〉 be an error-free, input-bounded Web application and ϕ an LTL-FO
or CTL(∗)-FO sentence over the schema of W . There exists an ASM+ transducer A, of size linear in W , such that
W |= ϕ iff A |= ϕ.

Proof. In brief, the reduction has to overcome two obstacles: (i) simulating the multiple Web schemas of W , and
(ii) eliminating the constants from the input schema of W . It is easy to deal with (i): we just simulate the behavior
of different Web pages and transitions using new propositional state variables corresponding to the Web pages. Over-
coming (ii) makes essential use of the assumption that W is error free. Indeed, this guarantees that the value of each
input constant is only provided once, and that no formula makes use of such constants before they are provided. This
allows to assume that the input constants are provided prior to the run, as part of the database.

More precisely, let A= 〈D′,S′, I′,A′,R〉 where:

• D′ = D ∪ const (I), where const (I) denotes the set of input constant symbols in I;
• S′ = S ∪ W, where each W ∈ W is taken to be a propositional symbol;
• I′ = I − const(I);
• A′ = A.

The set of rulesR ofA is defined as follows. For each relational input I of I we add toR the input rule OptionsI (x̄) ←
ξ , where ξ is the disjunction of all formulas ϕI,W (x̄) ∧ W for which OptionsI (x̄) ← ϕI,W (x̄) is an input rule of
the page W in W . We define the state rules next. For each state rule (¬)S(x̄) ← ϕε

S,W (x̄) of W, we add a state
rule (¬)S(x̄) ← ϕε

S,W (x̄) ∧ W to R. In addition, for each target rule V ← ϕV,W of W we add to R the state rules
V ← ϕV,W ∧ W and, if V 
= W , ¬W ← ϕV,W ∧ W . The action rules of R consist of all rules A(x̄) ← ϕ(x̄) ∧ W for
which A(x̄) ← ϕ(x̄) is an action rule of Web page schema W in W. �

Theorem 5.3(ii) and the PSPACE upper bound (EXPSPACE with no fixed bound on arities) now follow from
Lemma 5.6 and Theorem 4.9.

The undecidability results developed in Section 4.2 carry over to verification of Web applications due to the reduc-
tion provided by Lemma 5.6. The following is a corollary of Lemma 5.6 and Theorems 4.10–4.13.
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Corollary 5.7.

1. There exists a fixed input-bounded LTL-FO sentence ϕ for which it is undecidable, given an error-free, input-
bounded Web application W with input options defined by quantifier-free FO formulas over database and state
relations, whether W |= ϕ.

2. It is undecidable, given an error-free, input-bounded Web applicationW with state projections and input-bounded
LTL-FO sentence ϕ, whether W |= ϕ.

3. It is undecidable, given an error-free, input-bounded Web applicationW with lossless input and an input-bounded
LTL-FO sentence ϕ, whether W |= ϕ.

4. It is undecidable, given an error-free, input-bounded Web application W with functional dependencies F on its
database schema, and an input-bounded LTL-FO sentence ϕ, whether W |=F ϕ.

5.2. Branching-time properties of Web applications

Lemma 5.6 and Theorem 4.14 imply the following undecidability result:

Corollary 5.8. It is undecidable, given an error-free, input-bounded Web application W and input-bounded CTL-FO
sentence ϕ, whether W |= ϕ.

We therefore consider next several restrictions leading to decidability of the verification problem for CTL(∗)-FO
sentences. Some of the results mirror directly those obtained for ASM+ transducers in Section 4.3, while others
require some development specific to the Web application formalism.

5.2.1. Propositional input-bounded Web applications
The first restriction we consider for Web applications is an extension of propositional input-bounded ASM+ trans-

ducers. The restriction limits input-bounded Web applications by requiring all states and actions to be propositional.
Furthermore, no rules can use PrevI atoms. We also call such Web applications propositional. As for ASM+ trans-
ducers, in a propositional Web application, inputs can still be parameterized in the Web application specification. The
CTL∗ formulas we consider are propositional and use input, action, state, and Web page symbols, viewed as propo-
sitions (recall that the CTL∗ formulas used for propositional ASM+ transducers used only the states). Satisfaction of
such a CTL∗ formula by a Web application is defined as for CTL∗-FO, where truth of propositional symbols in a given
configuration 〈V,S, I,A〉 is defined as follows: a Web page symbol is true iff it equals V , a state symbol s is true iff
s ∈ S, an input symbol J is true iff J ∈ IV , and an action symbol a is true iff a ∈ A.

Example 5.9. CTL(∗)-FO is particularly useful for specifying navigational properties of Web applications. Note that
these applications do not necessarily have to be propositional; we could abstract their predicates to propositional sym-
bols, thus concentrating only on reachability properties. This is in the spirit of program verification, where program
variables are first abstracted to booleans [13,23], in order to check CTL∗ properties such as liveness. For our running
example, abstracting all non-input atoms to propositions, we could ask whether from any page it is possible to navigate
to the home page HP using the following CTL sentence:

AGEF(HP).

The following CTL property states that, after login, the user can reach a page where he can authorize payment for a
product:7

AG
((

HP ∧ button(“login”)
) → EF

(
button(“authorize payment”)

))
where button(“login”),button(“authorize payment”) denote the corresponding propositions. In the specification of the
abstracted application, we can still allow in the home page HP a state rule that checks successful login:

logged_in ← users(name,password) ∧ button(“login”).

7 The most important property in electronic commerce
..
�.
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For a given Web application W = 〈D,S, I,A,W,W0,Wε〉, we denote by ΣW the propositional vocabulary con-
sisting in all symbols in S∪I∪A∪W. By abuse of notation, we use the same symbol for a relation R in the vocabulary
of W and for the corresponding propositional symbol in ΣW .

Theorem 5.10. Given a propositional, input-bounded, error-free Web application W and a CTL∗ formula ϕ over
ΣW , it is decidable whether W |= ϕ. The complexity of the decision procedure is CO-NEXPTIME if ϕ is in CTL, and
EXPSPACE if ϕ is in CTL∗.

Theorem 5.10 is a consequence of Theorem 4.15 on ASM+ transducers together with the following.

Lemma 5.11. For each propositional, input-bounded, error-free Web application W and CTL∗ formula ϕ over ΣW ,
one can construct in linear time a propositional, input-bounded ASM+ transducerA such that ΣA ⊇ ΣW andW |= ϕ

iff A |= ϕ.

Proof. The proof is similar to that of Lemma 5.6. In order for the states of A to contain all propositions in ΣW ,
one has to introduce, in addition to the states for Web pages introduced in the proof of Lemma 5.6, new states for all
actions and inputs, that are true precisely when the corresponding propositional symbol in ΣW evaluates to true in
the semantics of CTL∗ formulas over ΣW described above. This is straightforward and details are omitted. �

The complexity of the decision problem of Theorem 4.15 can be decreased under additional assumptions. The
following result focuses on verification of navigational properties of Web sites, expressed by CTL∗ formulas over
alphabet W.

Corollary 5.12. Let S be a fixed set of state propositions and D a fixed database schema. Given a propositional,
input-bounded, error-free Web application W with states S and database schema D, and a CTL∗ formula ϕ over W,
it is decidable in PSPACE whether W |= ϕ.

Proof. The decision procedure is similar to that for Theorem 4.15. Since S is fixed and ϕ refers only to W, it is
enough to retain, in labels of λ(TW,D) only the states and Web page names. Since W is error free, there is exactly
one Web page name per label. It follows that the number of pairs 〈Σ,Σ̄〉 occurring in λ(TW,D) is quadratic in W,
so the formula ξ has polynomially many variables, and the size of the database D0 is polynomial in W . The Kripke
structure KW,D0 can now be constructed in PSPACE with respect to W , and checking ϕ can be done in PSPACE with
respect to KW,D0 and ϕ. Altogether, checking that W |= ϕ is done in PSPACE with respect to W and ϕ. �

Another special case of interest, as for ASM+ transducers, involves Web applications that are entirely propositional.
Thus, the database plays no role in the specification: inputs, states, and actions are all propositional, and the rules do
not use the database. Such Web application are called fully propositional. We can show the following, which is a direct
consequence of Lemma 5.6 and Theorem 4.18.

Theorem 5.13. Given a fully propositional, error-free Web application W and a CTL∗ formula ϕ over ΣW , it is
decidable in PSPACE whether W |= ϕ.

One may wonder if the restrictions of Theorem 5.10 can be relaxed without compromising the decidability of
verification. In particular, it would be of interest if one could lift some of the restrictions on the propositional nature
of states and actions. Unfortunately, we have shown that allowing parameterized actions leads to undecidability of
verification, even for CTL formulas whose only use of action predicates is to check emptiness. The proof is by
reduction of the implication problem for functional and inclusion dependencies. We omit the details.

5.2.2. Web applications with input-driven search
The restrictions considered so far require states of a Web application to be propositional, and do not allow the use

of PrevI atoms. Although adequate for some verification tasks, this is a serious limitation in many situations, since
no values can be passed on from one Web page to another. We next alleviate some of this limitation by considering
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Web applications that allow limited use of PrevI atoms. This can model commonly arising applications involving a
user-driven search, going through consecutive stages of refinement. More formally:

Definition 5.14. A Web application with input-driven search is an input-bounded Web applicationW = 〈D,S, I,A,W,

W0,Wε〉 where:

• I consists of a single unary relation I ;
• S consists of propositional states including not-start;
• A is propositional;
• D includes a constant symbol i0 and a designated binary relation RI ;
• the state rule for not-start is not-start ← ¬not-start;
• the input option rule for I is in all Web pages of the form

OptionsI (y) ← (¬not-start ∧ y = i0) ∨ (
not-start ∧ ∃x

(
prevI (x) ∧ RI (x, y)

) ∧ ϕ(y)
)

where ϕ(y) is a quantifier-free formula over D ∪ S with free variable y.

Note that not-start is false at the start of the computation and true thereafter. To initialize the search, the first input
option is the constant i0. Subsequently (when not-start is true), if x was the previously chosen input, the allowed next
inputs are the y’s for which RI (x, y) ∧ ϕ(y) holds, where RI is the special input search relation and ϕ places some
additional condition on y involving the database and the propositional states.

Example 5.15. Consider a variation of a computer-selling Web site which does not just partition its products into
desktops and laptops, but rather uses the more complex classification depicted in Fig. 3. The user can search the
hierarchy of categories, and will only see a certain category if it is currently in stock, as reflected by the database.
The propositional state new is set on the page which offers the choice between new and used products. The page
schemas for new and old computers are reused, so when generating the options, the Web site must consult state new to
distinguish among new and old products. We can abstract this Web site as a Web application with input-driven search,
in which the binary database relation RI is a graph which contains as a subgraph the one in Fig. 3, and in which the
unary database relations such as newDesktop, usedDesktop, usedLaptop contain the in-stock products. Here is the
input rule corresponding to the desktop search page:

OptionsI (y) ← (¬not-start ∧ y = i0) ∨ not-start ∧ ∃x
(
prevI (x) ∧ RI (x, y)

)
∧ (

new ∧ newDesktop(y) ∨ ¬new ∧ usedDesktop(y)
)
. (10)

We can show the following.

Theorem 5.16. Given a Web application with input-driven search W and a CTL∗ formula ϕ, it is decidable whether
W |= ϕ in EXPTIME if ϕ is in CTL, and 2-EXPTIME if ϕ is in CTL∗.

Proof. We reduce the problem of checking whether W |= ϕ to the satisfiability problem for CTL(∗) formulas. As
mentioned in Section 3.2, this is known to be EXPTIME-complete for CTL and 2-EXPTIME complete for CTL∗. We
consider Kripke structures over the alphabet ΣW ∪ D. Intuitively, each node of the Kripke structure represents a
configuration, and its label represents the relevant information about the configuration: the set of propositions in ΣW
that hold, and the type of the current input with respect to the database, i.e. the set of relations Q in D−{RI } for which

Fig. 3. Fragment of RI for Example 5.15.
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yk ∈ Q, where k is the arity of Q and y the current input. Note that the types of different inputs are independent of
each other because inputs are unary, so every Kripke structure can be viewed as representing an input choice relation
RI together with type assignments for the elements of RI . In addition, in order for a Kripke structure to represent
an actual run of W , the assignments of literals of ΣW to nodes has to be consistent with the rules of W . However,
this can be easily expressed by a CTL formula ρ computable in polynomial time from W . It follows that W |= ϕ iff
ρ ∧ ¬ϕ is unsatisfiable. The latter is a CTL formula if ϕ is in CTL, and a CTL∗ formula if ϕ is in CTL∗. �
6. Conclusions

We have identified a practically appealing and fairly tight class of Web applications and linear-time temporal for-
mulas for which verification is decidable. The complexity of verification is PSPACE-complete (for fixed database arity).
This is quite reasonable as static analysis goes.8 For branching-time properties, we identified decidable restrictions
for which the complexity of verification ranges from PSPACE to 2-EXPTIME. To obtain these results, we used a mix
of techniques from logic and model checking.

6.0.3. Verification of Web service compositions
An important aspect of Web applications is their interaction and the composition of multiple services required for

complex applications (e.g., see [27]). In [16] we extend the present study of verification of single Web applications by
considering verification of compositions of Web service peers that interact asynchronously by exchanging messages.
We consider two formalisms for specification of correctness properties of compositions, namely LTL-FO and conver-
sation protocols. For both formalisms, we map the boundaries of verification decidability. We also address modular
verification, in which the correctness of a composition is predicated on the properties of its environment.

6.0.4. Implementation
We have implemented a verifier for input-bounded LTL-FO properties and Web applications, by coupling the

pseudorun technique described in Section 4.1 with various database heuristics. The verifier is described in [15,17].
Verification times obtained were surprisingly good, often on the order of seconds. We plan to pursue this investi-
gation in order to establish the boundary of practical feasibility of our approach, and extend the implementation to
compositions of Web services.

6.0.5. Future work
Other interesting aspects of Web application verification could not be addressed in this paper and are left for future

work. We mention two issues that deserve further study: sessions and multiple users.
In practical Web applications it is not always realistic to assume that verification applies to all possible runs of

the application. This may be due to various reasons: there may be a need to verify properties of complex applications
in a modular fashion, the restrictions needed for decidability may only hold for certain portions of runs, etc. Let us
call portions of runs to be verified sessions. Some sessions can be specified implicitly within the temporal formula to
be verified, while others may require explicit definition by other means. It is of interest to understand what types of
sessions can be verified by our approach. For instance, in our running example, the default assumption is that sessions
consist of single-user runs beginning at login and ending at logout. However, other types of sessions can be fit to our
restrictions, including certain kinds of multi-user sessions.
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8 Recall that even testing inclusion of two conjunctive queries is NP-complete!
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