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ABSTRACT
Integration systems typically support only a restricted set of queries
over the schema they export. The reason is that the participating
information sources contribute limited content and limited access
methods. In prior work, these limited access methods have often
been specified using a set of parameterized views, with the un-
derstanding that the integration system accepts only queries which
have an equivalent rewriting using the views. These queries are
called feasible. Infeasible queries are rejected without an explana-
tory feedback. To help a developer, who is building an integra-
tion application, avoid a frustrating trial-and-error cycle, we intro-
duce the CLIDE query formulation interface, which extends the
QBE-like query builder of Microsoft’s SQL Server with a coloring
scheme that guides the user toward formulating feasible queries.
We provide guarantees that the suggested query edit actions are
complete (i.e. each feasible query can be built by following only
suggestions), rapidly convergent (the suggestions are tuned to lead
to the closest feasible completions of the query) and suitably sum-
marized (at each interaction step, only a minimal number of actions
needed to preserve completeness are suggested). We present the
algorithms, implementation and performance evaluation showing
that CLIDE is a viable on-line tool.

1. INTRODUCTION
Many information sources support only a limited set of queries

over their schema, as a result of privacy constraints [17, 9] or a re-
sult of limited access methods [23, 7]. In both privacy and mediation-
oriented systems, a source specifies a set of queries that can be an-
swered directly using views over its schema. A mediator extends
the set of directly supported queries with a set of indirectly sup-
ported ones by appropriately rewriting the latter so that they are an-
swered by filtering and combining the results of directly supported
queries. If a submitted query is not supported the user simply re-
ceives a rejection, being forced into a trial-and-error query devel-
opment loop. We propose that the user should be guided toward
feasible (i.e., supported) queries and we developed the CLIDE in-
teractive system for this purpose.

The CLIDE (CLient guIDE) system is a graphical query for-
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mulation interface that mimics the visual paradigm of Microsoft’s
Query Builder, incorporated in MS Access and MS SQL Server
[1]. Microsoft’s Query Builder, in turn, is based on the Query-
By-Example (QBE) [24] paradigm. CLIDE guides the user toward
formulating feasible conjunctive queries and indicates any action
that will lead toward a non-feasible conjunctive query. In particu-
lar, CLIDE provides compactly-presented guidance in the form of
a color scheme, which in every step of the query formulation indi-
cates which possible actions should, should not or may be taken in
order to reach a feasible query. A flag indicates whether the cur-
rent query is feasible or not. If it is, colors indicate how to reach
another feasible query, which will be a syntactic extension of the
current one. As usual, an action is the inclusion of a table in the
FROM clause, the formulation of a selection condition in the WHERE
clause or a projection of a column in the SELECT clause.

We illustrate the use of CLIDE and the color-driven interaction
using an example from service-oriented architectures.
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Figure 1: Service-Oriented Architecture

Service-Oriented Architectures Information systems offer lim-
ited access to their data by publishing views, web services or APIs.
For example, Amazon’s E-Commerce Service [2] provides a set of
web services that allow one to query its catalog and product data,
and Google’s Web APIs [3] export web services for developers to
issue search requests and receive results as structured data.

Service-oriented architectures [4] aggregate a collection of such
services in order to provide more sophisticated web services and
to support web applications. Figure 1 shows a simple instance of
an architecture where the mediator enables a computer shopping
portal, such as CNET.com, to have integrated query access to two
sources. We assume that Dell and Cisco export a set of web ser-
vices on their computer and router catalogs, respectively. Since we
want to be able to issue (distributed) queries, we associate schemas
with Dell and Cisco and model the web services as parameterized



Computers(cid, cpu, ram, price) (Dell Schema)
NetCards(cid, rate, standard, interface)

ComByCpu(cpu) → (Computer)*
SELECT DISTINCT Com.* (V1)
FROM Computers Com
WHERE Com.cpu=cpu

ComNetByCpuRate(cpu, rate) → (Computer, NetCard)*
SELECT DISTINCT Com.*, Net.* (V2)
FROM Computers Com, NetCards Net
WHERE Com.cid=Net.cid AND Com.cpu=cpu
AND Net.rate=rate

Routers(rate, standard, price, type) (Cisco Schema)

RoutersWired() → (Router)*
SELECT DISTINCT Rou.* (V3)
FROM Routers Rou
WHERE Rou.type=’Wired’

RoutersWireless() → (Routers)*
SELECT DISTINCT Rou.* (V4)
FROM Routers Rou
WHERE Rou.type=’Wireless’

(S1.Computers.cid, S1.NetCards.cid) (Column Associations)
(S1.NetCards.rate, S2.Routers.rate)
(S1.NetCards.standard, S2.Routers.standard)

Figure 2: Source Schemas and Web Services

views over those schemas [11]1. Figure 2 illustrates part of their
respective schema and the signatures of four web services they ex-
port.

The Dell schema describes computers that are characterized by
their cid, CPU model (e.g., P4), RAM installed and price, and have
a set of network cards installed. Each network card has the cid
of the computer it is installed in, accommodates a specific data
rate (e.g., 54Mbps), implements a standards (e.g., IEEE 802.11g)
and communicates with a computer via a particular interface (e.g.,
USB). The web service ComByCpu returns the computers of a given
cpu. (We assume there is a Computer type.) The service ComNet-
ByCpuRate provides computers of a given cpu that have installed
network cards of a given data rate. The Cisco source describes
routers that also accommodate a specific data rate, implement stan-
dards, have their own price and are of a particular type. The Router-
sWired and RoutersWireless services return routers that are of either
wired or wireless type respectively.

In Figure 1, a user builds the computer shopping portal by for-
mulating queries against the source schemas, and deploys a medi-
ator in order to execute queries against the exported web services
during run-time. The mediator can answer the query “return all
P4 computers with a 54Mbps network card and the compatible
wireless routers” by combining the answers of web service calls
CompNetByCpuRate and RoutersWired. However, it cannot answer
the query “return all computers with 1GB of RAM”. The reader is
pointed to Chapter 20.3 of [7] for similar examples. CLIDE appro-
priately guides the user toward the formulation of feasible queries
by employing the following coloring scheme:

• Red color indicates actions that lead to unsupported queries, re-
gardless of what is included next. For example, conditioning the
type column of Routers with a constant other than ’Wired’
and ’Wireless’ leads to unsupported queries.

1Indeed, it is often the case that web services are based on parame-
terized queries over databases. However, for the purposes of medi-
ation it is not necessary to assume that the Dell and Cisco schemas
are known.

• Yellow color indicates actions that are necessary for the formula-
tion of a feasible query. For example, conditioning the cpu of
Computers will be yellow since all queries that the mediator
can answer and involve the Computers table require a given
cpu.

• Blue color indicates a set of actions where at least one of them
is required to be taken in order to reach one of the next feasible
queries. Notice that one can choose among many blue options.
For example, after the cpu of Computers has been conditioned
and a feasible query has been reached, one should condition ei-
ther the ram or the price column (among other choices) in
order to reach the next feasible query.

• White color indicates selection conditions, tables and projections
whose participation in the query is optional.

CLIDE is based on a modular architecture consisting of the front-
end and a back-end that enables the front-end’s behavior by decid-
ing the color of each action. The above coloring scheme is im-
plemented by CLIDE’s front-end and is independent of the specifi-
cation that has been used to describe the set of supported queries.
Multiple back-ends are possible, depending on the nature of the
specification of the supported query set. For example, one could
have a back-end for the P3P privacy-related supported query set
specification of [9] or the specification of [23] that is related to
queries supported as a result of wrapping web forms.
Parameterized Views One of the most common and, at the same
time, most challenging back-ends relates to the case where the
set of directly supported queries are described using parameterized
views, a technique that has been used to describe content and ac-
cess methods in the widely used Global-as-View (GaV) integra-
tion architectures [8], and also recently to describe privacy con-
straints in [17]. Going back to Figure 2, the parameterized view
V1 corresponds to the web service ComByCpu. Notice that the
parameterized view not only indicates the input (cpu) and output
(Computer) of the service, but also indicates how the input and
output are semantically related with respect to the underlying data-
base. Typically the sources considered by the mediator can be too
many to individually browse in order to formulate a feasible query.

Deciding whether a given query is feasible or not is a query
rewriting problem: The mediator is given a query q over a database
D and a set of parameterized views V1, . . . , Vn and it searches for
a plan (if any) that combines the views and computes q(D). The
plan is typically in the form of a query q′(V1(D), . . . , Vn(D)) that
runs on the views and often incorporates primitives that indicate the
passing of information across sources and web services.

Several rewriting algorithms have been published; the reader is
referred to the survey [8]. However, these algorithms are not suf-
ficient for CLIDE’s back-end since whenever there is no plan they
only declare that the query cannot be answered. Some algorithms
return overestimate or underestimate approximations of the query
result, thus addressing a different goal than the one in our setting
where the developer needs to know the exact queries that can be
issued and program accordingly. Nevertheless, there are important
technical connections between those algorithms and our work that
are discussed in later sections.

1.1 Contributions
Formal Guarantees on the Interaction Any good interface that
guides the user toward some action must be comprehensive (com-
plete) and, at the same time, avoid overloading the user with infor-
mation at every step [13, 20]. CLIDE achieves both goals since it
satisfies the following guarantees at every step of the interaction:



1. Completeness: Every feasible query can be built by following
suggested actions only.

2. Minimality: The minimal set of actions that preserves complete-
ness is suggested.

3. Rapid convergence: The shortest sequence of actions from a
query to any feasible query consists of suggested actions.

Interaction sessions between the user and the CLIDE front-end
are formalized using an Interaction Graph, which models the queries
as nodes and the actions that the user performs as edges. Conse-
quently, the color of each action is formally defined as a property of
the set of paths that include the action and lead to feasible queries.
Then the above guarantees are formally expressed as graph proper-
ties.
Back-End Algorithms The challenge facing the CLIDE back-end
is that the coloring properties cannot be trivially turned into an al-
gorithm since they require the enumeration of an infinite number of
feasible queries. Note that the number of queries is infinite for two
reasons. First, there is an infinite number of constants that may be
used. We tackle this problem by considering parameterized queries
(similar to JDBC’s prepared statements) where each one stands for
infinitely many queries. Still, the number of parameterized queries
is infinite, because the size of the FROM clause is unlimited, which
then leads to unlimited size SELECT and WHERE clauses.

We describe a set of algorithms that find a finite set of closest fea-
sible queries, related to the current query, and determine the color-
ing by inspecting it. For our purpose, we leverage prior algorithms
and implementations for finding exact and maximally-contained
rewritings [14, 6, 16]. However, we needed to significantly op-
timize and extend current implementations in order to achieve on-
line performance and to ensure that the produced maximally-contained
queries are syntactic extensions of the current query, hence en-
abling the color algorithm. We provide a set of experiments that
illustrate the class of queries and views CLIDE can handle, while
maintaining on-line response.
CLIDE Demo We implemented the CLIDE front-end and the
back-end algorithms which are available as an on-line demonstra-
tion at http://www.clide.info.
Paper Outline Section 2 provides definitions and notation conven-
tions. Section 3 discusses query building interfaces, focusing on
CLIDE-related issues, and introduces the interaction graph, which
allows us to formally define their behavior. Section 4 discusses the
aspects of CLIDE that pertain to interaction in the presence of a
limited set of feasible queries. Section 5 describes the algorithms
of the CLIDE back-end. Section 6 describes the implementation
and optimizations, which are experimentally evaluated in Section 7.
Section 8 presents related work and discusses CLIDE’s applicabil-
ity to other settings. Section 9 concludes the paper.

2. DEFINITIONS AND NOTATIONS
The CLIDE front-end formulates queries from the set of con-

junctive SQL queries with equality predicates CQ= under set se-
mantics. The FROM clause consists of table atoms R r, where R
is some table name and r an alias. The SELECT clause consists of
the SQL keyword DISTINCT and projection atoms r.x, where x
is a column of r. The WHERE clause is a conjunction of selection
atoms and join atoms. Constant selection atoms are of the form
r.x=constant, where r is some alias and x some column, while
parameterized selection atoms are of the form r.x=parameter.
Obviously, at most one selection atom for each alias-column pair
can appear in the WHERE clause. Join atoms are of the form r.x=s.y.
We define the empty query to have no table, join, selection or pro-
jection atom.

Column associations identify pairs of columns, within a source
or across sources, whose join is meaningful. Figure 2 illustrates the
association of the cid columns of Computers and NetCards
and the rate and standard columns of NetCards and Routers2.
The user can configure CLIDE to suggest either arbitrary joins or
only joins between columns that are associated, in order to re-
duce the number of suggestions displayed to the user. In the lat-
ter case, the user still has the option to formulate joins between
non-associated columns, but the CLIDE front-end will not suggest
them. For the rest of the presentation, we assume the user has con-
figured CLIDE to suggest joins between associated columns only.
We denote this class of queries with CQ=CA.

The views that CLIDE takes as input are from the set of para-
meterized conjunctive SQL queries CQ=P , where parameterized
selection atoms of the form r.x=parameter appear in the WHERE
clause. We assume that all joins are between associated columns.
CQ=CA is a subset of CQ=P .

Two queries q1 and q2 are syntactically isomorphic, denoted by
q1

∼= q2, if they are identical modulo table alias renaming. Syntac-
tic isomorphism is important since the users of query writing tools
typically do not have control (or do not care to control) the exact
table alias names.

We denote the set of feasible queries by FQ ⊆ CQ=CA. As
in [16], we define the feasible queries given a set of views V =
V1, . . . , Vk ∈ CQ=P over a fixed schema D, to be the set of
queries qF1, . . . , qF m ∈ CQ=CA over D that have an equivalent
CQ= rewriting using V . In the absence of parameters a rewriting is
simply a query that refers exclusively to the views. In the presence
of parameters we need to also ensure that there is a viable order of
passing parameter bindings across the views of the rewriting [16,
18]. We capture this requirement as follows: First associate to each
view a schema that includes both the columns that the view re-
turns and the columns that participate in parameterized selections
(even if they are not returned). Then we associate with each view
schema a binding pattern that annotates every column that partici-
pates in a parameterized selections as bound, which is denoted by
a ‘b’ superscript, and every other column as free, denoted by an ‘f ’
superscript. For example, we associate the following schema and
binding pattern to V1 in Figure 2:

V1(cid
f , cpub, ramf , pricef )

A valid rewriting is a query that refers to the views only and there
is an order V1, . . . , Vn of the used views such that if a column x is
bound in Vi then either there is a selection atom Vi.x=constant or
a join atom Vi.x=Vj.y where j < i.

3. QUERY BUILDING INTERFACES
The CLIDE front-end is a QBE-like [24] graphical interface. It

adopts Microsoft’s Query Builder interface [1] as the basis for the
interactive query formulation, since users are very familiar with it.
Figure 3a shows a snapshot of Microsoft’s Query Builder, where
the user formulates a query over the schemas of Figure 2. The top
pane displays the join of the Computers table with the NetCards
table on cid and the projection of the ram and price columns of
Computers and of the interface column of NetCards. The
middle pane shows selections that set cpu equal to ‘P4’ and rate
equal to ‘54Mbps’, and the bottom pane displays the corresponding
SQL expression. The user can add to the top pane tables from the

2Column associations can be explicitly declared by the mediator
owner. They can also be derived from the pairs of type-compatible
columns, from foreign-key constraints, the join atoms in the views,
or any of the recently proposed schema matching techniques [15].



(a) Microsoft’s Query Builder

(b) CLIDE’s Front-End expressing the query of Figure 3a
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 Figure 3: QBE-Like Query Building Interfaces

list shown on the left. The user can also formulate joins, like the
one on cid.

Figure 3b provides a snapshot of CLIDE’s front-end for the query
of Figure 3a. Apart from the feasibility flag and the coloring, the
correspondence with Microsoft’s Query Builder is straightforward:
CLIDE displays a table box for each table alias in the FROM clause.
Selections on columns are displayed in selection boxes. Columns
are projected using check boxes, called projection boxes. Joins are
displayed as solid lines, called join lines, connecting the respective
column names. The list of available tables is shown in a separate
pane. Also shown is the SQL statement that the interface graph-
ically represents. The “Last Step” and “Next Step” buttons allow
the user to navigate into the history of queries formulated during
the interaction.

The user builds CQ=CA queries with the following visual ac-
tions:

1. Table action: Drag a table name from the table list and drop it in
the main pane. The interface draws a new table box with a fresh
table alias and adds a table atom to the FROM clause of the SQL
statement.

2. Selection action: Typing a constant in a selection box results to
adding a selection atom to the WHERE clause.

3. Join action: Dragging a column name and dropping it on another
one results to a join line connecting the two column names and a
new join atom in the WHERE clause.

4. Projection action: Checking a projection box adds a projection
atom to the SELECT clause.

4. CLIDE INTERACTION IN THE PRES-
ENCE OF LIMITED ACCESS METHODS

When not all CQ=CA queries against a database schema are fea-
sible, CLIDE guides the user toward formulating feasible queries
by coloring the possible next actions in a way that indicates what
has to be done, what may and what cannot be done. Table actions
are suggested by coloring the background of table names in the ta-
ble list. Selections and projections are suggested by coloring the
background of their boxes. Joins are suggested by coloring join
lines.

We illustrate the color scheme using the interaction session of
Figure 4, which refers to the running example of Figure 2. The user
wants to formulate a query that returns computers that meet various
selection conditions, including conditions about network cards and
routers - as long as those conditions are supported. Figure 4 shows
snapshots of the interaction session, where CLIDE’s color scheme
suggests, at each interaction step, which actions lead to a feasible
query.
Required and Optional Actions Consider the query that the user
has formulated in Snapshot 1. The interface indicates that this
query is infeasible (see flag at top right) and that every feasible
query that extends it must have a selection on cpu. The latter indi-
cation is given by coloring yellow (light gray on a B/W printout) the
cpu selection box. The rest of the selection boxes and projection
boxes are white suggesting that these actions are optional, i.e., fea-
sible queries can be formulated with or without these actions being
performed.

So the user performs the yellow selection on cpu by typing a
constant in the selection box. This leads to the feasible query of
Snapshot 2. This query is feasible since the mediator can run view
V1 with the parameter instantiated to ’P4’ and then project out the
cid and cpu columns.
Required Choice among multiple Actions The user may termi-
nate the interaction session and incorporate the query of Snapshot 2
in her application or may continue to extend the query. The inter-
face indicates that, in order to reach a next feasible query, at least
one of the NetCards, Routers or (an additional) Computers
tables has to be included in the query, among other options. The in-
dication is provided by coloring the corresponding names in the ta-
ble list blue (medium gray). Each given blue atom, say NetCards,
does not appear in all feasible queries that extend the current query.
If it did appear in all, then it would be yellow (i.e., required).
Non-Obvious Feasible Queries Snapshot 3 presents a complex
case, where the interface’s color scheme informs the user about
non-obvious feasible queries. After the user introduces a NetCards
table, the interface suggests that one of the following extensions to
the query is required: The join line between the cid’s of Computers
and NetCards is suggested since it leads to the formulation of
view V2. It is blue since the user has more options: She can in-
troduce a second copy of Computers, say Com2, which will lead
toward the feasible query that joins Networkswith Com2, selects
on rate and takes a Cartesian product with Com1. If Cartesian
product queries are of no interest to the user, she can set an option
to have CLIDE ignore them. In such case the cid join would be a
required (yellow) extension. For the remainder of the example, we
assume that this option is set.

The user has another pair of options at Snapshot 3. She can
perform the blue rate selection, which leads to the formulation
of view V2. Alternatively, she may introduce a Routers table
and join the rate columns of NetCards and Routers, thus
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Figure 4: Snapshots of an Interaction Session

instantiating the rate parameter of V2 with constants provided by
another table.
Selection Options In Snapshot 4, the user has performed the sug-
gested join and introduced a Routers table. Now the Routers.type
column needs to be bounded and the interface presents to the user
a drop-down list that explains which constants may be chosen. She
can either choose ’Wired’ or ’Wireless’. The symbol * denotes
any other constant and is colored red (dark gray) to indicate that no
feasible query can be formulated if she chooses this option. Note
that the options of a drop-down list can have different colors. If
there were only one constant that she could choose, then this op-
tion would be yellow. In the special case where any constant can be
chosen, then no drop-down list is shown, as in the case of the cpu
selection box in Snapshot 1.

The front-end can also be configured to hide all red actions, in-
cluding columns with red selection and projection boxes. Note that
a red selection box implies a red projection box and vice versa. So
the front-end can remove the column from the corresponding table
box altogether.

In the next steps, the user performs the suggested join, chooses
the ’Wireless’ constant and checks several projection boxes. Snap-
shot 5 shows the new query, which is feasible. The mediator plan
that implements this query first accesses view V4, then for each
rate returned accesses view V2 with its parameters instantiated to
‘P4’ and the given rate, and finally performs the necessary pro-
jections.

The CLIDE front-end displays only yellow and blue join lines.
Red and white join lines are typically too many and are not dis-
played. If the user wants to perform a join other than the ones
suggested, she has to follow a trial-and-error procedure.

Note that unchecked projection boxes can be either blue, white
or red. A projection box cannot be yellow, because if there is a
feasible query that has the corresponding projection atom in the
SELECT clause, then the query formulated by removing this atom
is also feasible.

Finally, if the user performs a red action, then all boxes, lines
and items in the table list are colored red, indicating that the user
has reached a dead end, i.e., no feasible query can be formulated by
performing more actions and it is necessary to backtrack, i.e., undo
actions.

4.1 Specification of CLIDE’s Color Scheme
Interaction sessions between the user and the CLIDE front-end

are formalized by an Interaction Graph. The nodes of the interac-
tion graph correspond to CQ=CA queries and the edges to actions.

DEFINITION 4.1. (Interaction Graph) Given a database schema
D and a set of CQ=P views V over D, an interaction graph is a
rooted DAG GI = (N, s, E) with labeled nodes N and labeled
edges E such that:

• For every query q ∈ CQ=CA over D there is exactly one node
n ∈ N whose label q(n) is syntactically isomorphic to q. We
call n feasible if q(n) is feasible.

• s is the root node and is labeled with the empty query.

• Every edge e(n
a→ n′) ∈ E is labeled with an action a which

yields a query that is isomorphic to q(n′) when applied to q(n).
a is either a table, a projection, a join, a specific selection of the
form r.x=constant, or a generic selection of the form r.x=*.
Here * denotes any constant other than the ones that appear in
specific selections and label edges originating from n.

�
Figure 5 shows part of an interaction graph for the schemas in

Figure 2, where nodes n1 to n5 correspond to the queries formu-
lated in Snapshots 1 to 5 of Figure 4. Notice that there are multiple
interaction graphs that correspond to a given schema, since each
node n can be relabeled with any of the queries that are syntacti-
cally isomorphic to q(n), i.e., with any query that uses other alias
names. CLIDE considers a single interaction graph by controlling
the generation of aliases. By convention, the generated aliases fol-
low the lexical pattern Ti where T is the first three letters from the
name of the table (for illustration purposes) and i is a number that
is sequentially produced.

Figure 5 indicates feasible queries by green (shaded) nodes. The
root s is indicated by a hollow node. The outgoing edges of a
node n capture all possible actions that the user can perform on
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Figure 5: Part of an Interaction Graph

q(n). These are the actions that the front-end colors and they are
finitely many. Even though there are infinitely many constants that
can potentially generate infinitely many selections for a given col-
umn, they are aggregated by the * symbol. In Figure 5, for ex-
ample, the * in the selection Com1.cpu=* labeling an outgoing
edge of n1 aggregates all possible constants. The * in the selection
Rou1.type=* labeling an outgoing edge of n4 denotes all con-
stants except ‘Wired’ and ‘Wireless’, because corresponding selec-
tions label adjacent edges.

For a query q(n), the coloring rules are formally expressed as a
coloring of the actions labeling outgoing edges of node n.

DEFINITION 4.2. (Colors) Given an interaction graph GI =

(N, s,E), a node n ∈ N and an outgoing edge e(n
a→ m), the

action a is colored:

• Yellow (Required) if every path pi from n to a feasible node nF

contains an edge labeled with a.

• Blue (At Least One Required) if (i) a is not yellow, (ii) at least one
path pi from n to a feasible node nF contains an edge labeled
with a, and (iii) there is no path from n to nF that contains a
feasible node, excluding n and nF .

• Red (Forbidden) if there is no path from n to a feasible node that
contains an edge labeled with a.

• White (Optional) if not colored otherwise.

�
We say that actions colored yellow or blue are called suggested.
The same action may have different color at various points in the
interaction. For example, table action NetCards Net1 is white
when it labels an outgoing edge of n1 and blue when it labels an
outgoing edge of n2.

CLIDE assigns colors according to Definition 4.2 and features
the following characteristics of desirable behavior.

1. Completeness of Suggestions Every feasible query can be for-
mulated by starting from the empty query and at every interaction
step picking only among blue and yellow actions.

2. Minimality of Suggestions At every step, only a minimal num-
ber of actions, which are needed to preserve completeness, are
suggested as required. Equivalently, for each blue or yellow
action a, there is at least one feasible query toward which no
progress can be made without picking a.

3. Rapid Convergence by Following Suggestions Assume that
the user is at node n of the interaction graph and consequently
follows a path p consisting of yellow and blue edges until she
reaches feasible query q(n′). It is guaranteed that there is no
path p′ that is shorter than p and also leads from n to n′.

5. THE CLIDE BACK-END
The CLIDE back-end is invoked every time the interaction ar-

rives at a node n in the interaction graph. It takes as input the query
q(n), the schemas and the views exported by the sources, and the
set of column associations. The back-end partitions the set of pos-
sible actions, which label outgoing edges of n, into sets of blue,
red, white and yellow suggested actions. It also decides if q(n) is
feasible or not.

The first challenge in determining the partition is that the color
definitions make statements about all possible extensions of the cur-
rent query, i.e., all feasible nodes reachable from n. These corre-
spond to an infinite set of infinitely long paths in the interaction
graph. Hence, the color definitions cannot be trivially translated
into an algorithm.

We show that at each interaction step, it is sufficient to consider
only a representative subgraph of the interaction graph to color the
possible actions either blue or yellow. This subgraph consists of n,
the feasible nodes that are closest to n, and the paths connecting n
to these feasible nodes. The closest feasible nodes are labeled with
queries in FQC(n) which is defined below.

DEFINITION 5.1. (Closest Feasible Queries FQC) Given an
interaction graph GI = (N, s, E) and a node n ∈ N , the set of
closest feasible queries FQC(n) are the ones that label feasible
nodes nF reachable from n such that there is no path p from n to
nF that contains a feasible node, excluding the endpoints of p. �

Section 5.1 presents the computation of FQC(n) when parame-
terized selection atoms do not appear in the views. We show that
FQC(n) is finite and present optimizations for computing it, which
proved crucial to CLIDE’s usability. If parameterized selection
atoms appear in the views, then FQC(n) is infinite. Section 5.3
shows that CLIDE’s back-end faces this additional challenge with-
out compromising any of the formal guarantees by computing a
finite representative set of seed queries SQ(n).

The second challenge (Section 5.2) that the back-end faces is to
efficiently color the possible actions given the set of closest fea-
sible queries. Even though coloring an action yellow or blue is
straightforward and inexpensive, coloring the remaining actions red
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or white using a brute force algorithm leads to significant perfor-
mance overhead.

Figure 6 shows the architecture of the CLIDE system implemen-
tation. Currently, the system parses the schemas, view definitions
and column associations from corresponding text files. The Closest
Feasible Queries Algorithm computes the set FQC(n) and imple-
ments the algorithm of Section 5.1. When parameterized selec-
tion atoms do not appear in the views, the Color Algorithm compo-
nent inputs the set FQC(n) and implements the algorithm of Sec-
tion 5.2. When parameterized selection atoms appear in the views,
the Color Algorithm component inputs a set of seed queries SQ(n)
produced by the Parameters Algorithm component described in
Section 5.3.

5.1 Closest Feasible Queries Algorithm
The search for closest feasible queries faces an infinite search

space, namely all possible extensions of the current query. We limit
this space to a finite one, corresponding to nodes in the interaction
graph that are within a bounded distance from n. Then, we present
an efficient method for enumerating FQC(n) without exploring
the whole search space.
Maximally-Contained Feasible Queries Intuitively, as the user
syntactically extends the current query with new tables, selections
and joins, she creates queries which are contained in the initial one.
It is therefore a natural starting point to search for the closest feasi-
ble queries among the contained and feasible ones. We can further
focus on the maximally-contained [8] and feasible queries since
they are the least constraining (semantically) and hence they have
the least number of additional tables, selections and joins. As in [8],
the set of maximally-contained feasible queries is formally defined
as the set of queries such that

1. for each maximally-contained query q1, q1 is feasible and con-
tained in q(n) (q1 � q(n)),

2. for each maximally-contained query q1 and any feasible query
q′1 � q(n), if q′

1 contains q1, then q′1 is equivalent to q1, and

3. for each feasible query q1 � q(n) there exists a maximally-
contained query q2 such that q1 � q2.

Among the maximally-contained feasible queries, we focus on
the ones which are minimal syntactic extensions of q(n), in the
sense that dropping any table, selection or join compromises fea-
sibility or containment in q(n) or the property of syntactically ex-
tending q(n). We denote this set as FQME(n). Section 6 de-

scribes how we extended one of the several maximally-contained
rewriting algorithms proposed in the literature [8] to obtain FQME(n).

FQME(n) is known to be finite if we restrict q(n) and the views
to conjunctive queries with constant selection atoms [8].

LEMMA 5.1. All minimal feasible extensions of q(n) which are
maximally-contained are also closest feasible queries (FQME(n) ⊆
FQC(n)). �

However, there are closest feasible queries that are not in FQME(n),
as the next example shows, and we will have to find them.

EXAMPLE 5.1. Assume that views V1 and V2 of Figure 2 are
replaced by the following views V ′

1 and V ′
2 , respectively, which con-

tain constant selections only.

SELECT DISTINCT Com.* (V ′
1 )

FROM Computers Com
WHERE Com.cpu=’P4’

SELECT DISTINCT Com.*, Net.* (V ′
2 )

FROM Computers Com, Network Net
WHERE Com.cid=Net.cid AND Com.cpu=’P4’
AND Net.rate=’54Mbps’

If the current query is q(n3) in Figure 5 (Snapshot 3 in Figure 4),
then the only query in FQME(n3) is q(n9) given below.

SELECT DISTINCT Com1.ram, Com1.price q(n9)
FROM Computers Com1, Computers Com2, NetCards Net1
WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’
AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Note that q(n10) is also a closest feasible query to q(n3), but it
is not in FQME(n3) since it is contained in q(n9).

SELECT DISTINCT Com1.ram, Com1.price q(n10)
FROM Computers Com1, NetCards Net1
WHERE Com1.cid = Net1.cid AND Com1.cpu=’P4’
AND Net1.rate=’54Mbps’

Intuitively, one can extend q(n9) with joins until the Com2 alias
“collapses” into Com1, leading to a closer query, reachable from
q(n3) and clearly contained in q(n9) due to the added joins. �

Even though FQME(n) does not give us the set of closest fea-
sible queries, we can use it to bound the search space for FQC(n).
Theorem 5.1 below states that all queries in FQC(n) correspond
to nodes located within a bounded distance from n.

THEOREM 5.1. Given a node n in the interaction graph and the
set FQME(n), if pL is the longest path from n to a node labeled
with a query in FQME(n), then all nodes labeled with queries in
FQC(n) are reachable from n via a path p, where |p| ≤ |pL|. �

Theorem 5.1 enables a brute force algorithm for computing FQC(n):
(i) compute FQME(n), (ii) compute the bounded distance |pL| as
the length of the longest path from n to some query in FQME(n),
(iii) enumerate the set of queries B(n, |pL|) reachable from q(n)
by systematically applying up to |pL| actions in all possible ways,
and (iv) return all feasible queries from B(n, |pL|).

This algorithm computes FQC(n), but is highly inefficient. In
the worst case, it enumerates all paths of length |pL|. The following
observations allow us to prune this search dramatically, by starting
from FQME(n).
Alias Collapse Rule We can compute FQC(n)\FQME(n) start-
ing from the queries in FQME(n) and rewriting them using the
alias collapse rule, which rewrites a query q into a query q′ as fol-
lows: pick a pair of table atoms sharing the same relation name,
say R R1, R R2, and rename R2 with R1 in q, to obtain q′.



EXAMPLE 5.2. One can obtain the closest feasible query q(n10)
from query q(n9) by collapsing the aliases Com1 and Com2. �

Notice that indiscriminate application of the collapse rule can
lead to unsatisfiable queries. To see this, assume that q contains the
selection conditions R1.x=‘5’ and R2.x=‘3’. After collaps-
ing R1 and R2, q′ contains the inconsistent selection conditions
R1.x=‘5’ and R1.x=‘3’. We apply the alias collapse rule only
if they lead to satisfiable queries.

LEMMA 5.2. For any q1 ∈ FQC(n) \FQME(n), there exists
q2 ∈ FQME(n) such that q1 is obtained from q2 by repeatedly
applying the alias collapse rule. �

Lemmas 5.1 and 5.2 lead to the following algorithm for comput-
ing FQC(n).

algorithm QuickFQC

Input: node n
Output: FQC(n)

begin
compute M := FQME(n) using an algorithm for finding

maximally-contained rewritings,
extended to produce
minimal syntactic extensions of q(n)

// compute FQC(n) \ FQME(n) in AC:
let AC := the empty set ∅
for each qM ∈ M do

for each pair of distinct aliases r1,r2 of some relation in qM do
let q := collapse r1 and r2 in qM

AC := CollapseToFeasible(q, AC)
return M ∪ AC
end

procedure CollapseToFeasible
Input: query q, query set AC
Output:all feasible queries obtainable from q by collapsing aliases
begin
if q is unsatisfiable return the empty set ∅

if q is feasible and not contained in any qi ∈ AC
AC := AC∪ {q}

for each pair of distinct aliases r1,r2 of some relation in q do
let q′ := collapse r1 and r2 in q
AC := CollapseToFeasible(q′, AC)

return AC
end

THEOREM 5.2. QuickFQC computes FQC(n). �

5.2 Color Algorithm
After computing the set of closest feasible queries FQC(n),

CLIDE decides if the current query is feasible or not, and then col-
ors all possible actions that the user can perform next. The current
query is feasible if it is a closest feasible one, i.e., q(n) ∈ FQC(n),
and infeasible otherwise. We first present the algorithm for finding
the yellow and blue actions when the current query is infeasible.
We deal with the white and red actions, as well as the feasible case,
next.
Blue and Yellow Instead of working with the infinite interaction
graph, we can restrict our attention to the finite close subgraph con-
sisting of n, all closest feasible nodes labeled with the closest fea-
sible queries in FQC(n) and the paths between them. Then we
have:

LEMMA 5.3. For an infeasible current query q(n), and for every
action a applicable to q(n), a is colored yellow (blue) with respect
to the interaction graph if and only if a is colored yellow (blue)
with respect to the close subgraph of n. �

At this point, it is easy and more efficient to color the actions
without actually materializing the close subgraph. We color a join
a yellow if it appears in all closest feasible queries, and blue if it
appears in some. In the case of a table action T, we color it yellow
(resp. blue) if in all (resp. some) closest feasible queries there exists
a table atom T Tj, such that T Ti and T Tj do not necessarily
refer to the same alias, and T Tj does not appear in the current
query.

Specific selections, i.e., selections of the form r.x=constant,
are colored either yellow or blue the same way joins are colored.
The front-end displays these actions in the corresponding selection
box as options of a drop-down list. Generic selections of the form
r.x=* and projections cannot be colored blue or yellow when the
current query is infeasible, because for each feasible query they
participate in, there is another feasible query that can be formulated
without performing them. Conversely, when the current query is
infeasible, performing a projection or a generic selection that does
not appear in the views will not yield a feasible query3.
White and Red Any remaining actions are either white or red. For
each such action a, a brute force approach would add a to the cur-
rent query, thus yielding query q(n′), and then test if FQC(n′) is
empty. If so, a is colored red, otherwise white. This approach, al-
though simple, requires the non-emptiness test of FQC(n′), which
is an expensive operation, as the experiments of Section 7 demon-
strate. Hence, we need to devise more efficient techniques for col-
oring red and white actions.

In the case of table actions we color red the ones that are not
used in any view, and white the remaining ones, since a feasible
query qF can lead to another feasible query that takes the Cartesian
product of qF and the view that contains the table in question.

For the case of projections and selections, we attach a maxi-
mum projection list to every closest feasible query qF ∈ FQC(n).
A maximum projection list consists of all projections that can be
added to qF , in addition to the ones already in the current query,
without compromising feasibility. For example, if we add all pos-
sible projections to q(n9) of Example 5.1, while preserving feasi-
bility, then we formulate the following query q′(n9):

SELECT DISTINCT q′(n9)
Com1.cid, Com1.cpu, Com1.ram, Com1.price
Com2.cid, Com2.cpu, Com2.ram, Com2.price
Net1.cid, Net1.rate, Net1.standard, Net1.interface

FROM Computers Com1, Computers Com2, NetCards Net1
WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’
AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Hence, the maximum projection list of q(n9) consists of all pro-
jections in q′(n9) except Com1.ram and Com1.pricewhich ap-
pear in q(n9). In Section 6 we show how we extended a maximally-
contained rewriting algorithm to generate these lists in linear time.

Once we compute the maximum projection lists, we color a pro-
jection red if it does not appear in any list. Generic selections are
colored red if the projection r.x is red. These selections are also
shown as options of the corresponding drop-down lists. In the spe-
cial case where no specific selections exist, then no drop-down list
is displayed and the selection box is colored according to the color
of the generic selection.

Any remaining actions are colored white. Note that specific se-
lections can never be colored white or red. The CLIDE front-end
does not display white and red joins, so they are not a consideration.
Feasible Current Query If the current query is feasible, we use
the same algorithm, but we color all non-red actions blue, as each
one leads to a new feasible query, not obtainable via other actions.
3Note that generic selections can be colored yellow or blue when
parameterized selections appear in the views. Please see Sec-
tion 5.3 for details.



5.3 Parameters
When parameterized selection atoms appear in the views, the

algorithms in Sections 5.1 and 5.2 need to be extended, because
the set of closest feasible queries becomes infinite. The following
example illustrates this point.

EXAMPLE 5.3. Assume the following employees and man-
agers source schema. The exported parameterized view V5 returns
the mid of an employee’s manager, given the employee’s eid. V6

returns the salary of a manager, given the manager’s mid. Note
that the source schema is recursive, i.e., an employee has a man-
ager, but a manager is also an employee, who has a manager. One
of the column associations we consider witnesses this recursion.

Empls(eid, mid) (Schema)
Mngrs(mid, salary)

EmplsMngrs(eid) → (Employee)*
SELECT DISTINCT E1.* (V5)
FROM Empls E1
WHERE E1.eid=eid

MngrsSalary(mid) → (Manager)*
SELECT DISTINCT M1.* (V6)
FROM Mngrs M1
WHERE M1.Mid=mid

(S1.Empls.eid, S1.Empls.mid) (Column Associations)
(S1.Empls.mid, S1.Mngrs.mid)

The user wants to find out the salaries of an employee’s man-
agers and has currently formulated query q1:

SELECT DISTINCT M1.salary q1
FROM Mnrgs M1, Empls E1
WHERE M1.mid=E1.mid

At this point, E1.eid has to be provided to reach a feasible
query. Therefore, the front-end makes two suggestions: (i) perform
a selection on E1.eid, or (ii) introduce a second Empls E2 ta-
ble, so that parameters can be passed from E2.mid to E1.eid
(based on the first column association). The suggested actions are
both blue.

Option (i) will formulate the feasible query q2F which returns
the salaries of E1.eid employee’s immediate managers.

SELECT DISTINCT M1.salary q2F

FROM Mnrgs M1, Empls E1
WHERE M1.mid=E1.mid
AND E1.eid=‘‘A123’’

Option (ii) leads toward a query that returns the salaries of man-
agers that are two levels above an employee. More specifically, if
the user introduces table a second table Empls E2, then the front-
end colors the join E1.eid=E2.mid yellow, which formulates
q3:

SELECT DISTINCT M1.salary q3
FROM Mnrgs M1, Empls E1, Empls E2
WHERE M1.mid=E1.mid AND E1.eid=E2.mid

For q3, the front-end makes the same kind of suggestions to the
user as for q1, since E2.eid has to be provided now. A selection
on E2.eid formulates the feasible query q4F which returns the
salaries of managers that are two levels above that employee.

SELECT DISTINCT M1.salary q4F

FROM Mnrgs M1, Empls E1, Empls E2
WHERE M1.mid=E1.mid AND E1.eid=E2.mid
AND E2.eid=‘‘A123’’

It becomes evident that the user can build chains of Empls
aliases of an unbounded length, where each alias joins its eid
with the next one’s mid, before performing a constant selection on
the eid of the last Empls alias. These queries are infinitely many
and are all closest feasible. For example, q2F and q4F are two
such queries, and there is no sequence of actions that applied on
q2F formulate q4F . �

Searching for closest feasible queries starting from the maximally-
contained ones becomes problematic as it is known that the latter
set is infinite in the presence of binding patterns [8]. Moreover,
the coloring of actions cannot be done by enumerating all closest
feasible queries.

Instead, CLIDE identifies a finite set of parameterized seed queries
SQ(n), where q(n) is the current query. These are not necessar-
ily feasible, but have the property that each path toward a closest
feasible query must pass through some seed query first. In Exam-
ple 5.3, q2F is a feasible seed query of q1, while q3 is an infeasible
one, which however must be constructed on the way to q4F . The
algorithm suggests to the user a finite set of actions leading from
q(n) toward the seed queries SQ(n). This can be done by sim-
ply calling the color algorithm of Section 5.2 on SQ(n) instead of
FQC(n). This approach does not compromise the guarantees of
completeness, minimality of suggestions and rapid convergence.

It is a priori non-obvious that the finite set SQ(n) even exists.
However, it turns out that this is indeed the case, and moreover that
SQ(n) can be computed as follows. Start by ignoring the bind-
ing patterns of the views and computing the maximally-contained
rewritings of q(n) in terms of the views. Under the original bind-
ing patterns, not all obtained rewritings are valid, and the values
of their parameters must be provided. In each such rewriting, pa-
rameter values may be provided by (i) selections with a constant,
or (ii) via a parameter-passing join with a view alias from within
the rewriting or (iii) via a parameter-passing join with a new view
alias. The considered parameter-passing joins must be compatible
with the column associations. Notice that there are only finitely
many considered selections and parameter-passing joins. We ob-
tain SQ(n) by systematically extending the rewritings according
to possibilities (i), (ii) and (iii), and unfolding the view definitions
in all extended rewritings.

6. IMPLEMENTATION
The current implementation of CLIDE consists of the compo-

nents that compute the closest feasible queries and color the ac-
tions, shown in Figure 6. The component that handles parameter-
ized selections in the views is under development.

CLIDE uses MiniCon [14] as the core of its maximally-contained
rewriting component. Even though an initial implementation was
provided to us, we had to significantly optimize and extend it in or-
der to enable CLIDE’s color algorithm and achieve on-line perfor-
mance. Figure 7 illustrates the anatomy of the maximally-contained
rewriting component from Figure 6.
Views Expansion The first challenge we faced was that MiniCon
does not produce maximally-contained rewritings that are syntactic
extensions of the current one. MiniCon initially produces a set of
rewritings expressed using the views. Once these rewritings are
expanded so that they are expressed in terms of the source schemas,
they are not syntactic extensions of the current query, because fresh
aliases are introduced. For example, if the current query is q(n3)
(Snapshot 3 in Figure 4), MiniCon produces the following rewriting
query qR that combines V ′

1 and V ′
2 :

SELECT DISTINCT V ′
1.ram, V ′

1.price qR

FROM V ′
1, V ′

2
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Figure 7: MiniCon Optimizations and Extensions

After expanding the views of qR, we obtain the following query
qRE , which is expressed in terms of the source schemas.

SELECT DISTINCT ComA.ram, ComA.price qRE

FROM Computers ComA, Computers ComB, NetCards Net
WHERE ComB.cid = Net.cid AND ComA.cpu=’P4’
AND ComB.cpu=’P4’ AND Net.rate=’54Mbps’

Query qRE is syntactically isomorphic to the closest feasible
query q(n9), but it is not a syntactic extension of q(n3), since
q(n3) contains a table Computers Com1, while qRE contains
the tables Computers ComA and Computers ComB. It is not
straightforward if Com1 corresponds to ComA or ComB.

We could find the correspondences between the tables of q(n3)
and the tables of qRE by computing the containment mapping [5]
from q(n3) into qRE . The containment mapping considers all atoms
of the two queries in order to find the correct correspondences. For
example, Com1 of q(n3) cannot be mapped into ComB of qRE ,
because the ComB.ram and ComB.price projections do not ap-
pear in the SELECT clause, as is the case in q(n3). Once we com-
pute the containment mappings, we can turn the MiniCon rewriting
queries into syntactic extensions of the current query by renaming
the aliases of the former.

We managed to avoid computing the containment mappings on
top of MiniCon. We observed that while MiniCon searches for
maximally-contained rewritings, it builds the containment mappings
from the current query to the maximally-contained ones. So we ex-
tended MiniCon to log this information and output it along with
the set of maximally-contained rewriting queries over the views, as
shown at the bottom of Figure 7.

Subsequently, we wrote a Views Expansion component, which
uses the logged containment mappings to expand the views in every
MiniCon maximally-contained rewriting so that the resulting queries
are syntactic extensions of the current one.

The Views Expansion component also generates the maximum
projection lists used in the color algorithm of Section 5.2. In Sec-
tion 5.2, we defined a maximum projection list to be the list of
all possible projections that can be added to a query without com-
promising feasibility. It turns out that for each expanded query, the
maximum projection list corresponds to all projections in the views
that appear in the initial MiniCon rewriting. For example, the initial
rewriting of q(n9) is qR. We can safely add to qR all projections in
views V ′

1 and V ′
2 , without compromising feasibility, and obtain the

following query q′R:

SELECT DISTINCT q′
R

V ′
1.cid, V ′

1.cpu, V ′
1.ram, V ′

1.price

V ′
2.cid, V ′

2.cpu, V ′
2.ram, V ′

2.price
V ′
2.cid, V ′

2.rate, V ′
2.standard, V ′

2.interface
FROM V ′

1, V ′
2

Hence, the maximum projection list of q(n9) consists of all pro-
jections in q′R except V ′

1.ram and V ′
1.price which are mapped

into from q(n9). The containment mappings are used here as well,
so that the aliases in the maximum projection lists refer to aliases
that appear in the current query. These lists are constructed in linear
time.
Redundant Queries Removal The Views Expansion component
inputs maximally-contained queries, but not all syntactic extension
queries it outputs are necessarily maximally-contained. It turns out
that views expansion introduces redundancy across queries, i.e.,
expanded queries might contain one another. For example, if the
current query is q(n1) in Figure 5 (Snapshot 1 in Figure 4), then
MiniCon outputs two maximally-contained rewritings qR1 and qR2

over the views V ′
1 and V ′

2 which do not contain one another:

SELECT DISTINCT V ′
1.ram, V ′

1.price qR1
FROM V ′

1

SELECT DISTINCT V ′
2.ram, V ′

2.price qR2
FROM V ′

2

The expansion of qR1 though contains the expansion of qR2, ac-
cording to the definition of the views V ′

1 and V ′
2 in Example 5.1.

In order to preserve the rapid convergence and minimality guar-
antees of CLIDE (see Section 4.1), we have to eliminate contained
queries. This additional work is performed by the Redundant Queries
Removal component, which we built from scratch and tests if one
query is contained in another. The query containment test amounts
to finding containment mappings between queries and is in general
NP-complete in the query size. In practice, the constructed queries
are small, and this test is very efficiently implemented [22]. We
compute the containment mappings from query q1 into query q2 by
constructing a canonical database [5] for q2, canDB(q2) and run-
ning q1 over canDB(q2). To efficiently evaluate q1, we employ
standard algebraic optimization techniques: we construct an alge-
braic operator tree for q1 (left deep join tree), in which selections
and projections are pushed and joins are implemented as hash joins.

The efficient implementation of the Views Expansion component
proved crucial to the on-line response of CLIDE, since query con-
tainment tests are the bottleneck for CLIDE’s performance, as Sec-
tion 7 demonstrates.
Redundant Actions Removal The output of the Redundant Queries
Removal component is still not the set of minimal feasible exten-
sion queries FQME that we are looking for, because they are not
necessarily minimal extensions of the current query. For example,
if q is the current query shown below, then qE is the only feasible
expansion query we get from MiniCon. qE is not a minimal expan-
sion query though. Query qME requires one action less than qE to
reach an equivalent query that minimally extends the current one.

SELECT DISTINCT Com1.ram, Com1.price q
FROM Computers Com1, Computers Com2

SELECT DISTINCT Com1.ram, Com1.price qE

FROM Computers Com1, Computers Com2
WHERE Com1.cpu=’P4’ AND Com2.cpu=’P4’

SELECT DISTINCT Com1.ram, Com1.price qME

FROM Computers Com1, Computers Com2
WHERE Com1.cpu=’P4’

The Redundant Actions Removal component finds FQME by
systematically detecting two identical constants that refer to identi-
cal columns of two tables with identical names but distinct aliases,
dropping one of them at a time, and testing for equivalence with the
initial query. The same rule is applied on self-joins.



7. EXPERIMENTAL EVALUATION
Our experimental evaluation shows that CLIDE is a viable on-

line tool. The MiniCon algorithm was evaluated via extensive ex-
periments in [14] to measure the time to find the maximally-contained
rewritings of queries using views. The goal of our experiments was
to show that the rest of the CLIDE components do not add a pro-
hibitive cost, and that the algorithms of Sections 5.1 and 5.2, as
well as our extensions and optimizations (efficient implementation
of containment test, logging MiniCon’s containment mappings) are
crucial in obtaining quick response times.
The Experimental Configuration To study how CLIDE scales
with increasing complexity of the constructed query and with the
number of views in the system, we used a synthetic experimental
configuration, whose scaling parameters are K, L, M , as described
below.

The schema. In the literature, synthetic queries are usually gen-
erated in one of two extreme shapes: chain queries and star queries.
For a more realistic setting, we chose a schema which allowed us
to build queries of a chain-of-stars shape, and in which joins follow
foreign-key constraints (the most common reason for joins). To this
end, we picked a schema comprised of a relation A(ka, a) playing
the role of a star center, which is linked (via foreign key constraints)
to K relations {Bi(kb, fb, b)}0≤i≤K (the star corners). Each Bi

is in turn the center of another star whose L corners are given by
the relations {Ci,j(kc, fc, c)}0≤j≤L . ka, kb, kc are respectively
the key columns for A, the Bi’s and the Ci,j’s. In each Bi, fb is
a foreign key referencing ka from A. In each Ci,j , fc is a foreign
key referencing kb from Bi.

The Views. The MiniCon experiments in [14] consider two ex-
tremes for view shapes, one very favorable, the other one lead-
ing to long rewriting time. The views in our configuration fall
in the middle of this spectrum, and are more realistic. Each view
we picked covers one of the foreign-key-based joins suggested by
the schema. Moreover, we introduced selections with constants
in these views, to force the interface to propose not only tables
and joins, but also selections. For each i, we introduced M views
{V n

i }0≤n≤M joining A with Bi and imposing a selection com-
paring the b column with some constant cn. For each i, j we intro-
duced M views {V n

i,j}0≤n≤M joining Bi with Ci,j and comparing
the c column to the constant cn.

V n
i : SELECT x.a, y.kb, y.b

FROM A x, Bi y
WHERE x.ka=y.fb AND y.b=cn

V n
i,j : SELECT y.kb, y.b, z.c

FROM Bi y, Ci,j z
WHERE y.kb=z.fc AND z.c=cn

There are K ×M +K×L×M views in the configuration. For an
intuitive interpretation of our abstract configuration, let the Bi ta-
bles stand for computer accessories, such as network cards, storage,
keyboard, etc. For instance if B1 plays the role of the NetCards
table in Figure 2 and A that of Computers, then the view V 3

1

provides the computers compatible with a network card satisfying
a selection condition with constant c3.

The Queries. We scripted a family of interactions in which the
simulated user starts by performing an A table action and then fol-
lows only blue and yellow suggestions, continuing even after reach-
ing feasible queries.

After the initial A table action, CLIDE suggests joins with the
Bi’s. If any of these suggestions are taken (say by picking Bp),
CLIDE suggests the corresponding selections on Bp’s column b, as
a list of options c1, . . . , cM . It also suggests table actions leading to
the join of A with some other Bj or of Bp with some Cp,o. When
the simulated user picks a selection with cn it reaches a feasible
query having a rewriting using V n

p . When this feasible query is ex-
tended to join Bp with some Cp,o, CLIDE suggests (among others)
selections comparing Cp,o’s column c to some constant. Picking
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Figure 8: CLIDE’s response time

one of these, say cr , generates another feasible query, which has a
rewriting that joins V n

p with V r
p,o.

The Measurements The measurements were conducted on a ded-
icated workstation (Pentium 4 3.2GHz, MS Windows XP Pro, 1GB
RAM) using Sun’s JRE-1.5.0. All measurements are elapsed times.

We generated four configurations by fixing K = 7, L = 3 and
varying M = 4, 6, 8, 10, yielding respectively 112, 168, 224 and
280 views. Figure 8 reports the time CLIDE took to come up with
the suggestions at each current query. Query (n, m) is a query
reached after performing n table actions and joins, and m selec-
tions. On the horizontal axis, all odd-position queries are infeasi-
ble, while even-position queries are all feasible, being obtained by
adding a relevant selection to their predecessor. For instance, fea-
sible query (2,2) is obtained from infeasible query (2,1) by adding
a selection action.

Notice that, while CLIDE’s response is good overall, scaling
to large number of views, it is much better for feasible queries.
This is an expected result, since CLIDE needs to consider a sin-
gle closest feasible query, i.e., the one that the user has reached,
as opposed to the number of closest feasible queries when the cur-
rent query is infeasible. The bottleneck in CLIDE’s performance
turns out to be the containment tests, which are a consequence of
the views expansion. For instance, for query (14, 13), there are
700 expanded queries of which only 10 are non-redundant. These
queries are quite sophisticated, joining up to 15 views. To identify
them, CLIDE runs pairwise containment tests over the 700 redun-
dant queries, then it minimizes the 10 queries invoking more con-
tainment tests. This work dominates the response time. 8311 con-
tainment tests need 6 seconds out of the 6.4 seconds of the elapsed
time. The reason CLIDE scales to these query and view sizes is the
efficient implementation of the containment test.

Note that when parameterized selections do not appear in the
views, we could invoke MiniCon only when the user reaches a fea-
sible query. We could exploit the fact that one interaction step along
an edge n

a→ n′ changes q(n) only incrementally. If a was a yel-
low or blue action, FQC(n′) would be contained in FQC(n) and
we would not need to call MiniCon to compute FQC(n′). In-
stead, we could inspect the containment mappings from q(n) into
FQC(n) and we could compute FQC(n′) by pruning those map-
pings that would not be consistent with action a and dropping from
FQC(n) all queries into which there would be no more contain-
ment mappings. This optimization would be in effect as long as the
user would perform yellow and blue actions and for the periods of
the interaction between feasible queries.



8. DISCUSSION AND RELATED WORK
Alternative query formulation paradigms have been proposed in

the literature [19], but the QBE paradigm is the one that users are
mostly familiar with today. As an alternative to a visual query
builder, one could try to exploit existing formalisms for compact
descriptions of infinite sets of supported queries. These focus mainly
on sets of binding patterns [6, 11, 16, 23] and sets of parameterized
queries described by the infinite unfoldings of recursive Datalog
programs [10, 21]. However, these representations are meant for
consumption by rewriting algorithms and not by humans: checking
whether a given query is supported requires non-obvious rewriting
algorithms, especially when the set of indirectly supported queries
is enhanced via additional processing inside a mediator. This is
a key obstacle to the practical utilization of current query rewrit-
ing algorithms for interactive query development, forcing the query
writer into a trial-and-error loop.

There are many scenarios which would benefit from CLIDE’s
approach to query building. One example is the setting of [23],
which is a special case of a service-oriented architecture with pa-
rameterized views restricted to identity views over individual ta-
bles. Their algorithm infers binding patterns for queries against
these views, and could conceptually be used by the user to reach
a feasible query by providing appropriate bindings. However, the
user queries may be adorned with exponentially many binding pat-
terns, turning the visual inspection by the user into a cumbersome
process. Another obvious CLIDE application is in data privacy en-
forcement. [17, 9] allow data owners to identify the non-sensitive
data they are willing to export by means of parameterized, virtual
views against the proprietary data. Data consumers formulate their
queries against the proprietary database as well, but their queries
are rejected [17] or return null values [9] if they are not feasible
according to the virtual views.

The implementation of the CLIDE back-end described here re-
quires as one building block an algorithm for finding maximally-
contained rewritings. We picked MiniCon [14] because we had ac-
cess to the code, but we could have swapped it with any other one
[8]. Their applicability to our problem comes as a pleasant surprise,
as the original goal of these algorithms is different: to provide an
underestimate approximation of the query answer when the query
is not feasible. Other systems [12] automatically formulate an over-
estimate or underestimate of the submitted query. We believe that
in many applications the user needs full control and understanding
of what she can ask and which precise query is being answered.

9. CONCLUSIONS
We presented the CLIDE interactive system and its color scheme

that leads the user toward feasible queries in a setting where the
content and access methods of the sources are described by para-
meterized conjunctive views. We have provided guarantees of com-
pleteness, minimality of suggestions and rapid convergence. We
formalized the interaction with the front-end using an interaction
graph and reduced coloring properties to interaction graph proper-
ties that the back-end has to decide upon. We developed the front-
end and the back-end for the case where only constant selections
appear in the views. We implemented effective optimizations that
enable on-line use of CLIDE for a wide class of queries and views.
A CLIDE demonstration is available at http://www.clide.info.
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