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ABSTRACT
Recently, there has been extensive research that generated a
wealth of new XML full-text query languages, ranging from
simple Boolean search to combining sophisticated proximity
and order predicates on keywords. While computing least
common ancestors of query terms was proposed for efficient
evaluation of conjunctive keyword queries by exploiting the
document structure, no such solution was developed to eval-
uate complex full-text queries. We present efficient evalua-
tion algorithms based on a formalization of full-text XML
queries in terms of keyword patterns and an algebra which
manipulates pattern matches. Our algebra captures most
existing languages and their varying semantics and our algo-
rithms combine relational query evaluation techniques with
the exploitation of document structure to process queries
with complex full-text predicates. We show how scoring
can be incorporated into our framework without compro-
mising the algorithms complexity. Our experiments show
that considering element nesting dramatically improves the
performance of queries with complex full-text predicates.

1. INTRODUCTION
The recent increase in the number of XML repositories [19,

22] has motivated extensive work on designing languages for
XML full-text search [10, 13, 14, 21, 25, 26, 28], designing
scoring methods [2, 8, 10, 14, 16] and developing efficient
query evaluation algorithms [1, 17, 24, 29]. However, previ-
ous efforts were either tightly connected to the idiosyncrasies
of each language or focused on the common denominator of
existing languages, namely conjunctions of terms, thus not
addressing optimization in the presence of complex full-text
search predicates. We propose a unified approach to the op-
timization of a large class of rich XML query languages with
full-text predicates. The approach is based on translating
them to an algebra which supports rewriting optimizations,
score computation and efficient evaluation, by combining
relational set-at-a-time processing techniques with XML-
specific exploitation of the nested document structure.
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Complex full-text predicates are needed to meet the ex-
pressivity demands of increasingly sophisticated XML search
applications such as digital libraries [22], and more recently,
the Initiative for the Evaluation of XML retrieval methods
(INEX) [19], a TREC-like effort for XML. The challenges
to a unified treatment of XML full-text search are posed
by the variety of expressive powers and semantics. Queries
range from simple keyword search to a complex combination
of full-text predicates and operate on the textual content of
leaf elements in the XML document tree, returning elements
satisfying the predicates. Figure 1 shows a fragment of an
XML document extracted from the Library of Congress col-
lection [22]. A typical query would look for

all elements containing the terms Jefferson and
education within a window of 10 words, with
Jefferson ordered before education [26, 28].

Existing languages may return the most specific [17, 21] or
all elements satisfying full-text predicates, possibly filtered
by a user-specified structured query [14, 25, 26, 28]. For
a given answer full-text predicates are checked against oc-
currences of query terms (also called matches) that belong
to that answer. Predicates are usually interpreted in one of
two ways. Under binding semantics, the same match within
an answer must satisfy all query predicates. Under existen-
tial semantics, query predicates may be satisfied by different
term matches within an answer.

Full-text predicates pose a challenge to efficient evaluation
as well. Under both semantics, due to element nesting, eval-
uating predicates on each element independently may result
in redundant work, as matches nested within an element
must be considered again when evaluating the predicates
on its ancestors. The challenge is to compute the smallest
necessary number of elements and matches and use element
nesting to infer qualifying answers. This problem may seem
simple at first since such solutions have been proposed in
the past for conjunctive keyword queries (no predicates) by
computing lowest common ancestors (LCAs) [17, 21, 24, 29].
However, due to the interplay between expressive full-text
predicates which necessitate to keep track of matches, and
flexible query semantics, a direct application of existing so-
lutions would not suffice.

Example 1.1. Consider the query given above on the doc-
ument on Figure 1. Under binding semantics of the predicates,
the query returns the empty answer, since whenever a match for
Jefferson precedes education, they are too far apart.

A reasonable relaxation of the query involves the more flexi-
ble existential semantics, which yields the nodes shown in solid
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Figure 1: XML Document for Example 1.1

circles in Figure 1(a). Each node is selected because it contains
one match of the query terms which satisfies the order predicate
and another match which satisfies the window. Prior work [17,
21, 24, 29] focuses on queries which specify only conjunctions of
terms, for which the most specific answers are sought. These are
the LCAs of the elements in which individual query terms oc-
cur. In our example, the set of LCAs is congress-info, action,
committee-name, legis-session, legis-desc and bill. The nat-
ural extension to predicate support corresponds to computing with
each LCA only the matches which are not nested within a de-
scendant LCA, as this compressed representation suffices to in-
fer all matches. In our example, this means that we only keep
matches contained in action which are not in committee-name.
If we now apply the window predicate to the LCA set, we obtain
committee-name and legis-desc since none of the other LCA
nodes contains a valid pair of matches. The order predicate will
then result in the empty answer. We obtain the same empty result
even if the order in which the predicates are applied is reversed.

In both cases the results are incomplete if compared with the

correct answer (the solid circles). This is due to the fact that

matches are only kept within their most specific element.

One could envision two query evaluation strategies which
compensate for the problem illustrated by Example 1.1. First,
one could keep with each LCA all query term matches in its
subtree, even those nested within descendant LCAs. This
would lead to redundant computation and defeat the pur-
pose of working with LCAs in the first place. An alternative
fix would simply apply all full-text predicates simultaneously
to each node. However, we would like to devise query evalu-
ation algorithms that work regardless of the order in which
predicates are applied, guaranteeing full compositionality of
the predicates with conditions requiring the match of term
conjunctions, disjunctions and negations. We therefore face
the challenge of integrating efficient LCA computation with
efficient match manipulation (violated by the first fix), while
guaranteeing such properties as commutativity, reordering
and free compositionality for the full-text predicates (vio-
lated by the second fix).

In addition, ranking in our context must account for dif-
ferent query semantics and guarantee the highest scores for
the most relevant answers. Existing relevance ranking meth-
ods discussed in related work, do not take query predicates
into account. We propose to account for full-text predicates
when scoring query answers and show that element scores

can be computed incrementally from their descendant ele-
ments without compromising query performance.

In summary, this paper makes the following contributions:
1. We introduce a formalization of XML full-text queries in
terms of keyword pattern matches and we present an alge-
bra called XFT which constructs and manipulates pattern
matches using conjunction, disjunction and difference oper-
ators, as well as selection with complex full-text predicates.

XFT permits flexible query semantics by supporting bind-
ing and existential interpretations of full-text predicates.
Thus, most existing full-text languages can be expressed
in XFT, which enables a uniform treatment of their eval-
uation and optimization problems.1 The XFT operators
are freely composable, enabling query rewriting based on
algebraic equivalences in the spirit of relational algebra op-
timization. Finally, XFT can be seamlessly integrated with
algebras for structured XML search such as [1, 27], thereby
enabling the optimization of queries which combine struc-
tured and full-text predicates [5, 10, 14, 25, 26, 28, 30].

2. To show the feasibility of efficient evaluation of XFT
expressions, we devise an algorithm called SCU (for Small-
est Containing Unit), which minimizes the number of ele-
ments and matches it needs to compute at each operator
in order to evaluate all query answers. Our algorithm com-
bines relational query evaluation techniques with the stack-
based exploitation of element nesting. While stack algo-
rithms have been widely employed for LCA computation [4,
17, 21, 29], they do not straightforwardly apply to our set-
ting; they violate our compositionality requirement by con-
suming input sorted according to the preorder traversal of
the document and producing postorder-sorted output. The
SCU algorithm takes a novel approach which transforms
postorder-sorted input into postorder-sorted output. This
is made possible by the off-line generation of inverted lists.

3. XFT operators enable the definition of scoring meth-
ods that account for the satisfaction of query predicates and
can thus incorporate flexible query semantics (binding and

1Translation into XFT also yields semantics specifications
which are significantly more concise than the standard-
provided ones (see Section 2.4.)



existential). We show how element scores can be computed
incrementally from their descendants, without compromis-
ing the complexity of evaluating the XFT operators.

4. We run experiments that study the performance of the
SCU algorithm and show that accounting for element nest-
ing to evaluate complex full-text predicates improves query
response time by several orders of magnitude when com-
pared to a naive evaluation of the algebra. Our performance
results compare favorably to GalaTex [12], the reference im-
plementation of XQuery Full-Text [28].

The paper is organized as follows. Section 2 presents the
XFT algebra, its formal semantics, some algebraic equiv-
alences, and the translation of XQFT [28] and NEXI [26]
into XFT. It also shows how XFT can incorporate answer
scoring. Section 3 describes the XFT evaluation algorithms,
while their implementation and performance evaluation are
reported in Section 4. We present related work in Section 5
and conclude in Section 6.

2. THE XFT ALGEBRA
Formalization of full-text languages. We start from the

observation that typical XML full-text languages (we shall
call their family the XQFT class after the most expressive
among them, namely XQuery Full-Text [28]) have a common
characteristic: their semantics can be formalized in terms
of the individual matches of keyword patterns in the input
document, possibly filtering them using predicates.

Patterns and Matches. In XQFT-class languages, an ex-
pression’s principal role is to specify patterns which are tu-
ples of terms to be simultaneously matched against the XML
document. A singleton term (k) is a pattern whose matches
are the positions at which the term appears in the docu-
ment. A term position uniquely identifies a term match and
preserves order and proximity information between terms in
the document. For instance, the term education in Fig-
ure 1(b) appears at positions 3 and 45 and 67 further in
the document. The matches of a pattern (k1, k2, . . . , kn)
are tuples (m1, m2, . . . , mn) where each mi is a match of
term ki. Since some full-text languages allow negation (see
XQFT in Section 2.4), an expression may in general spec-
ify an inclusion-exclusion pattern pair such that each pair
pp has two attributes: pp.I holding one pattern and pp.E

holding a set of patterns. Intuitively, such expressions spec-
ify nodes with matches of the inclusion pattern pp.I but
no matches of the exclusion patterns in pp.E. Due to the
presence of disjunction, queries may return sets of inclusion-
exclusion pattern pairs. For example, the XQFT expression

(Jefferson && education || committee) && ¬Thomas

specifies the pattern pairs

I E
(Jefferson, education) {(Thomas)}

(committee) {(Thomas)}

The matching table. For any XQFT-class language, we
define the semantics of a query Q to be a nested table
[[Q]](N, P, M) (called a matching table), where N is an XML
element node, P is a pattern, and M is a set of matches. [[Q]]
collects the matches of all patterns specified by Q as follows:
For each inclusion-exclusion pattern pair pp of Q and each
XML element N such that N contains no matches of pp.E’s
patterns, the set M of matches of pp.I contained in N is

non-empty, and N satisfies the predicates appearing in the
query, [[Q]] contains a tuple t where t.N = N , t.P = pp.I,
and t.M = M .

Example 2.1. The matching table for a simple query asking

for all elements containing the term education on the document

in Figure 1(a) is
N(ode) P (attern) M(atches)

bill (education) {(3), (45), (67)}
congress-info (education) {(3)}
action (education) {(45)}
action-desc (education) {(45)}
committee-name (education) {(45)}
legis-session (education) {(67)}
legis-desc (education) {(67)}

XFT algebra. We designed the XFT algebra to construct
matching tables for queries in all XQFT-class languages,
thus enabling a uniform treatment of their evaluation and
optimization problems. XFT facilitates rewriting optimiza-
tions and lends itself to efficient evaluation using algorithms
that combine relational query evaluation techniques with the
exploitation of document structure to process XML queries
with complex full-text predicates. Section 2.1 defines the
XFT data model and operators which are inspired from re-
lational algebra. In Section 2.2, we show relational-style
algebraic rewritings which can benefit optimizations. Sec-
tion 2.4 shows translations into XFT for the XQFT [28] and
the NEXI [26] languages. Section 2.3 explains how XFT
permits scoring of query answers under flexible query se-
mantics.

2.1 XFT Operators
The XFT operators manipulate matching tables, compos-

ing them into new tables or filtering their tuples according
to predicates. This is in the same spirit as the XQFT data
model described in [28]. The formal semantics of XFT is
shown in Figure 2 and detailed next. The selection opera-
tors in XFT are defined for the binding and the existential
predicate semantics. Ri denote matching tables.

• get(k) returns a table containing one tuple t for each
node n with a non-empty set of matches (denoted matches(n, k))
of term k against the subtree rooted at n. In Figure 2, N
denotes the set containing a unique identifier for each node
in the input document collection. The result of evaluat-
ing get(services) on the document on Figure 1 is a ta-
ble containing one entry for each of congress-info, bill,
legis-body, legis, legis-session and legis-desc.

• R1 or R2 returns a table which collects for each node
n and pattern p, the union of the corresponding matches
found in R1 and in R2.

• The conjunction operator R1andR2 creates a new table
for the nodes with matches given by both R1 and R2. For
each such node n, if Ri states that the matches of pattern
pi under n are the set mi, we may infer that n actually
contains matches of pattern p1 ◦ p2. The operator ◦ con-
catenates two patterns, eliminating duplicate terms. For
instance, (k1, k2) ◦ (k3, k2, k4) = (k1, k2, k3, k4). The empty
pattern () is the identity element: p ◦ () = () ◦ p = p. All
elements contain a match of (). It is easy to see that the
matches of p1 ◦p2 are given by the natural join of m1 ⊲⊳ m2.

Since the expressions delivering the operands of and may
contain or, the join of the corresponding matching tables
can in principle construct several distinct tuples agreeing on



the N and P attributes. In this case, group coalesces all
matches by unioning them together.
• R1minusR2 returns the tuples in R1 pertaining to nodes

without matches in R2.
Summarizing, operators get, and, or and minus find for

each inclusion-exclusion pattern pair pp specified by the ex-
pression, the nodes n with no matches of pp.E and the actual
matches of pp.I under n.

The remaining operators, also referred to as full-text pred-
icates, test various conditions on the matches (possibly fil-
tering them in the process). For each full-text predicate P ,
we provide two operators P b and P ∃, to support binding,
respectively existential semantics. In Figure 2, K denotes
an ordered pattern of terms (k1, . . . , kl), and ΠK(M) the
projection of the set of matches M on the components cor-
responding to the terms in K. If the matches in M do
not correspond to a pattern which includes the terms in K,
ΠK(M) = ∅.
• timesθc({K1, . . . , Kl}) applied to an input table R, se-

lects the tuples whose cumulative match count for patterns
K1, . . . , Kl, satisfies the θ-comparison to the integer c.
• ordered∃(k1, . . . , kl) applied to table R returns the tu-

ples containing some match in which the position of term ki

appears in the document order before that of the term ki+1

for all i in the input term list k1, . . . , kl. The other flavor of
this operator, orderedb(k1, . . . , kl), drops from each tuple t

the matches in t.M which violate the above ordering condi-
tion. If all matches are dropped, so is t.
• window∃

θc(k1, . . . , kl) applied to an input table R, re-
turns the tuples t ∈ R containing some match which fulfills
the window condition, i.e. in which all positions of terms
k1, . . . , kl, lie within a maximum distance which satisfies the
θ-comparison with integer c. windowb

θc(k1, . . . , kl) drops all
non-conforming matches first (dropping also t if no matches
are left).
• dist∃θc(k1, . . . , kl) applied to an input table R, returns

the tuples t ∈ R containing some match which conforms
to the condition that the positions of terms which are ad-
jacent in the pattern (k1, . . . , kl), are at distance satisfying
the θ-comparison with integer c. distb

θc(k1, . . . , kl) drops all
non-conforming matches first (and also t if no matches are
left).

Example 2.2. The query in Example 1.1 is expressible in
XFT as (we abbreviate the terms for readability):

σordered∃(Jeff,edu)(σwindow∃
≤10

(Jeff,edu)(get(Jeff) and get(edu))).

Here we used ordered∃ and window∃ to denote the exis-
tential semantics where an answer must contain at least one
match of Jefferson and education that satisfies window
and one possibly different match that satisfies order. 2

We now formalize the connection between the results of
XFT algebra expressions and the matches of patterns against
the input XML trees. Like all XQFT-class queries, each
XFT expression X specifies a set of inclusion-exclusion pat-
tern pairs denoted with ppairs(X) and defined formally in
Figure 3. The XFT operators omitted from the figure do not
affect the set of pattern pairs. The inclusion-exclusion pat-
tern pair of the expression in Example 2.2 is (I = (Jefferson,
education), E = {}). The query contains no negation and
therefore specifies no exclusion pattern.
2To relax the query further and return answers containing
only one term, we could replace and by an outer join.

Operator Definition

get(k) {t | n ∈ N , M = matches(n, k), M 6= ∅,
t.N = n, t.P = (k), t.M = M}

R1orR2 group(R1 ∪R2)
R1andR2 group({t | t1 ∈ R1, t2 ∈ R2, t.N = t1.N = t2.N,

t.P = t1.P ◦ t2.P, t.M = t1.M ⊲⊳ t2.M})
R1 minusR2 {t | t ∈ R1, t.N 6∈ ΠN (R2)}
σtimesθc(S)(R) {t | t ∈ R, (

P S

K∈S{|ΠK(t1.M)| | t1 ∈ R,
t1.N = t.N}) θ c}

σordered∃(K)(R) {t | t ∈ R, ∃(m1, m2, . . . , ml) ∈ ΠK(t.M),

m1 < m2 < . . . ml}
σorderedb(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t1.M),
m1 < m2 < . . . ml},

M 6= ∅, t.M = M}
σ

window∃
θc

(K)(R) {t | t ∈ R, ∃(m1, m2, . . . , ml) ∈ ΠK(t.M),

(max1≤i,j≤ldistance(mi, mj)) θ c }
σ

windowb

θc
(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t.M),
(max1≤i,j≤ldistance(mi, mj))θ c},

M 6= ∅, t.M = M}
σ

dist∃
θc

(K)(R) {t | t ∈ R, (m1, m2, . . . , ml) ∈ ΠK(t.M),

Order(m),
V

1≤i<l distance(mi, mi+1) θ c}

σ
distb

θc
(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t.M),
Order(m),

V

1≤i<l distance(mi, mi+1) θ c},
M 6= ∅, t.M = M}

group(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,
t.M =

S

{t2.M | t2 ∈ R, t2.N = t1.N,
t2.P = t1.P},

t.M 6= ∅}
θ ∈ {=, <,≤, >,≥}

Figure 2: The XFT Algebra

Theorem 2.1. Let X be an XFT algebra expression con-
sisting only of get, and, or and minus operators. Then the
result of X on any collection of XML documents is a match-
ing table R such that t ∈ R if and only if there is some
pattern pair pp ∈ ppairs(X) where

(i) t.P = pp.I,
(ii) t.M holds all matches of pp.I under t.N , and
(iii) there are no matches of pp.E’s patterns under t.N .

2.2 XFT Rewriting Optimization
The main benefit of using an algebra is to be able to ap-

ply logical rewritings to queries while preserving the set of
query answers. The design of XFT is highly influenced by
the relational algebra in order to enable typical rewritings
such as pushing selections and join reordering. While a full-
fledged rewriting-based optimizer is subject of future work,
our experiments already confirm the expected performance

ppairs(get(k)) = {pp | pp.I = (k), pp.E = {}}

ppairs(X1andX2) = {pp | pp1 ∈ ppairs(X1), pp2 ∈ ppairs(X2),

pp = pp1 • pp2}

ppairs(X1orX2) = ppairs(X1) ∪ ppairs(X2)

ppairs(¬X) = {(x1 • · · · • xn)|{pp1, . . . , ppn} = ppairs(X),

x1 ∈ not(pp1), . . . xn ∈ not(ppn)}

(I1, E1) • (I2, E2) = (I1 ◦ I2, E1 ∪ E2)

not((I, E)) = {((), {I})} ∪ {(e, {})|e ∈ E}

Figure 3: Inclusion-Exclusion pairs of patterns in
XFT expressions



benefit of rewriting-based optimization (Section 4).
The formal semantics of XFT implies a plethora of al-

gebraic equivalences. We only list a few here that we im-
plemented as a proof of concept. Let us consider again the
query in Example 2.2. We have seen that its expression in
the algebra is (we abbreviate the terms for readability):
σordered∃(Jeff,edu)(σwindow∃

≤10
(Jeff,edu)(get(Jeff) and get(edu))).

This expression is equivalent to
σordered∃(Jeff,edu) ∧ window∃

≤10
(Jeff,edu)(get(Jeff) and get(edu))

and to
σwindow∃

≤10
(Jeff,edu)(σordered∃(Jeff,edu)(get(Jeff) and get(edu))).

Now consider adding to this query the condition that the
term services appear after education in the text. This
query could be written as

σordered∃(Jeff,edu)(σordered∃(edu,services)(σwindow∃
≤10

(Jeff,edu)(

get(Jeff) and get(edu) and get(services)))),
which is equivalent after pushing selections into the and

operator, to
σordered∃(Jeff,edu)(σwindow∃

≤10
(Jeff,edu)(get(Jeff) and get(edu))

and (σordered∃(edu,services)(get(edu) and get(services)))).

Finding LCAs of query terms is a typical implementation
of the and operator which has been widely used in previous
work [17, 21, 24, 29]. However, as we have shown in Ex-
ample 1.1, simply computing LCAs and applying selection
predicates does not always return the set of correct answers
due to violating the above equivalences.

Section 3 shows our solution to combining the best of
two worlds in algorithms that preserve query rewritings and
enable the implementation of the and operator using LCAs.

2.3 Scoring
The goal of scoring in the context of XFT is twofold:

(i) allow to manipulate scored answers in a query plan while
preserving the query semantics and, (ii) define answer scores
in a way that guarantees that the score of an element node
can be computed efficiently. We describe a scoring method
that conforms to these requirements.

We assume that scores are stored along with tuples in the
initial matching tables and define term weights as follows:

Term Weights. We adapt the standard tf*idf func-
tion [16, 10] to individual nodes and compute the weight
of a term k for a given leaf node n. This function is defined
as: (i) idf, or inverse document frequency, that quantifies the
relative importance of an individual term in the collection
of documents; and (ii) tf, or term frequency, that quantifies
the relative importance of a term in an individual document.
In the vector space model [3], query terms are assumed to
be independent of each other, and the tf*idf contribution of
each term is added to compute the final score of the answer
document. Intuitively, since XML queries return elements
as opposed to whole documents, the weight of a term in el-
ements of different types (tag) may be different. We denote
itf, the idf of elements of the same type.

The term frequency tf(n,k) is defined as (occ(k, n) denotes
the number of distinct occurrences of term k in leaf node n):

tf(n, k) =
occ(k, n)

max{occ(k′, n) | k′ ∈ words(n)}

Let T be the set of all nodes that share the same tag as

node n, then, itf(n,k) is defined as:

itf(n, k) = log(1 +
| T |

| {n ∈ T | k ∈ words(n)} |
)

Intuitively, bill elements have a different relevance to
a given term than committee-info elements. The fewer
elements of the same type, the higher their itf for a term.

We note that the tf of a node for a term can be inferred
from its descendant nodes while itf needs to be pre-computed
and stored with the node. The get operator in our algebra
could be used to retrieve term weights. Next, we define an
element score.

Answer Scores. We define the weight of a term k in an
answer s as tf(s, k) × itf(s, k). Given a pattern containing
a set of keywords K, the score of an answer is defined as:
score(s) =

P

k∈K (tf(s, k) × itf(s, k)).
Given this definition, it is easy to see that and can com-

pute the score of each output tuple using the above for-
mula while or and minus would only need to preserve input
scores. Binding predicates may choose to modify scores in
a way that is different from existential ones thereby enforc-
ing query semantics when computing scores. Consequently,
the use of an algebra permits better control over the inter-
mediate answer scores and decide whether or not individual
query operators have an impact on scores.

Similarly to vector-based scoring, our method assumes in-
dependence between term weights within an element node.
Thus, a key advantage of our scoring method is the ability
to compute the score of a node in an incremental fashion
from its descendant nodes without affecting the algorithms
complexity. More sophisticated scoring is possible (though
with higher evaluation complexity) if the independence as-
sumption is relaxed, as in probabilistic IR models [15]. We
do not pursue that avenue further in this paper.

2.4 Application to XQFT and NEXI
XQFT. XQuery Full-Text (XQFT), an upcoming W3C

standard [28], is an extension of XPath and XQuery to al-
low with full-text predicates. Wherever XQuery allows a
predicate, XQFT allows the expression ftcontains(E) with
E a text search expression. For example,

/books/book[review ftcontains

((“thumbs”&&“up” ||“must”&&“read”) distance ≤ 1

||(“best-seller” times ≥ 2))]/author

returns all authors of books whose very enthusiastic review
contains either the term pair (“thumbs”,“up”) in close prox-
imity or similarly the pair (“must”,“read”) , or mentions the
term “best-seller” at least twice.

The syntax of the XQFT expressions that may appear in
the scope of the ftcontains expression is given in Figure 4.
The XQFT primitives not shown in the figure do not affect
the patterns as they do not mention any terms. We define
the binding semantics of XQFT in Figure 5.

NEXI. Similarly to XQFT, we show how our algebra cap-
tures the semantics of NEXI [26], the language that is being
used within INEX [19] to express XML search queries. The
core expression in NEXI is the about expression which per-
mits conjunction of query terms. For example,

/books/book[about(review, “thumbs” “up” “must” “read”

“best-seller”)]/author



E → ′′k′′

| E1 && E2

| E1 || E2

| E times θ c

| E ordered

| E window θ c

| E distance θ c

| (E)

| ¬E

θ → = | < | ≤ | > | ≥

k → any term

Figure 4: Syntax of W3C’s Standard XQFT

[[′′k′′]] = get(k)

[[E1 && E2]] = [[E1]] and [[E2]]

[[E1 || E2]] = [[E1]] or [[E2]]

[[E predicate]] = orKi∈S(σpredicate(Ki)
([[E]])), where

predicate ∈ {orderedb, windowb
θc, distb

θc}

and S = ΠI(ppairs(E))

[[E times θ c]] = σtimesθc(S)([[E]]), (see S above)

[[(E)]] = [[E]]

[[¬E]] = {t | n ∈ N , t.N = n, t.P = (), t.M = {()}}

minus [[E]]

Figure 5: Specification of XQFT Semantics in XFT

returns book authors whose review is about one of the
terms. NEXI also allows the specification of weights which
is not yet supported in XFT. The syntax of NEXI about

is very simple: E → ′′k′′|E1 E2. We express its semantics
through translation into XFT: [[′′k′′]] = get(k), [[E1 E2]] =
[[E1]] or [[E2]].

3. XFT EVALUATION ALGORITHMS
Algorithms to compute LCAs of query terms have shown

very good performance for the evaluation of conjunctive key-
word queries [17, 21, 24, 29]. We have seen in Section 1 that
their applicability to the evaluation of full-text predicates is
not straightforward. This section presents novel algorithms
that implement operators in the algebra proposed in Sec-
tion 2. Section 3.1 describes AllNodes a straightforward
implementation of our algebra. More efficient algorithms
that use element nesting, are presented in Section 3.2. We
finish with a note on incremental scoring in SCU .

3.1 The AllNodes Algorithm
A key design goal of the XFT algebra was amenability

to efficient, set-at-a-time pattern match construction and
filtering by leveraging tried-and-true relational techniques.
Indeed, notice in Figure 2 that R1andR2 joins R1 and R2

on N , aggregating the M attributes of joining tuples via
natural join; R1orR2 corresponds to taking the union of R1

and R2, grouping it by the N and P attributes, and ag-
gregating the M attributes by unioning them; both flavors
of ordered,window and distance are simple selections over
the M attribute of each tuple, and times can be evaluated
by grouping on N followed by aggregation using the count

function, with a having clause for the θ-comparison.
We have implemented this evaluation strategy as a proof

of concept in the AllNodes algorithm detailed next.
Node and Word Identifiers. We choose to represent

node and term match identifiers using the well-established
Dewey encoding which enables efficient computation of the
LCA of two nodes (or term matches) as the longest common
prefix of their ids [17, 21, 24, 29]. For example, the id of
the first match of the term services encountered in the
document in Figure 1(b) is 1.1.1.9 where 1 is the id of the
root node bill, 1.1 is the id of node congress-info and
1.1.1 is the id of the text node containing the term. Also,
testing whether node a is an ancestor of node d reduces to
finding a’s id as a prefix of d’s id.

The get operator. The get operator is implemented us-
ing a lookup in a standard inverted list index [3] IL which
associates with each term k the list of its matches, given by
their Dewey ids. The list of matches is stored in top-down,
right-child-first traversal order. get(k) needs to return all
nodes containing the match of k, but the inverted lists only
store the immediately containing node, i.e., leaf nodes in the
XML document. While this requires some processing when
reading the inverted lists, the alternative of storing all ances-
tor nodes of a term match is known to lead to tremendous
space overhead and is commonly avoided [17]. The pro-
cessing required to restore all ancestors of a term match is
minimal: we obtain their ids as the strict prefixes of the id
of the match. The implementation of get must

1. perform a single pass over the input inverted lists.

2. collect for each node all term matches under it before
outputting the node;

3. avoid duplicate output of node ids.

We satisfy all these desiderata using Algorithm 1 below.

Algorithm 1 get(k) in AllNodes Implementation

Require: inverted list IL stores matches of k in top-down,
rightmost-child-first traversal order

Ensure: outputs matching table sorted in descending lexico-
graphic order on N

1: initialize stack
2: push(t), where t.N = the root, t.P = (k), t.M = ∅
3: (m, n) = get next match(IL, k)
{ m is the match of k, n its immediately containing node}

4: while (stack not empty) do

5: t=top(stack)
6: if n is a descendant-or-self of t.N then

7: add m to all tuples in stack
8: for (each proper descendant d of t.N

which is an ancestor-or-self of n) do

9: push(td), where td.N = d, td.P = (k), td.M = {m}
{push higher nodes first!}

10: end for

11: (n,m) = get next match(IL, k)
12: else

13: output t and pop the stack
14: end if

15: end while

The algorithm produces the output sorted by the descend-
ing lexicographic order of the Dewey ids of the N attribute.
Thus, the task of subsequent operators is to preserve this
order to enable merge-style algorithms, as detailed below.

The and operator. The and implementation performs a
merge of the two (already sorted) inputs. Whenever tuples



t1 and t2 have the same value for their N attribute, the set
of matches of the resulting tuple t is computed by taking the
natural join of t1.M with t2.M . This is in keeping with The-
orem 2.1, since all matches of the combined pattern under
t.N are indeed found this way. The results of the joins can
be large, degenerating in most cases (when the patterns in
t1 and t2 do not overlap) to Cartesian products. These are
notoriously expensive to compute, both in terms of time and
space. This computation can be performed lazily, sometimes
avoided entirely, and in most cases preceded by a reduction
of the operand sizes. The idea is to record the two operands
of the natural join (worst-case Cartesian product) in t.M

without further computation. To this end, t1.M, t2.M, t.M

hold lists of sets of matches, with the understanding that a
list represents the multiway join of all its sets, in the order
they are listed. We describe below how these matches are
materialized when evaluating full-text predicates.

The or operator. or essentially unions its operands R1

and R2, grouping the result by the N and P attributes and
unioning together the matches in each group. The union
is computed by simply merging the operands, which are al-
ready sorted on N , breaking ties by sorting on P . The merge
ensures that the output is ordered on N, P as well. The pat-
terns are compared using lexicographic order induced by the
alphabetic order of the individual terms. The grouping in-
volves no additional overhead, as the operands are already
sorted on the grouping attributes so each group is listed
contiguously in the merge of R1 and R2.

The times operator. times needs to group its operand
table on N , counting the matches in each group. This re-
quires a linear scan, since the table is already sorted on N .

The Other Operators. All other operators are order-
preserving, as they at most drop tuples from the table. They
require one linear scan of the input table.

Avoiding Cartesian product. Recall that the and op-
erator does not materialize matches, instead simply com-
puting the list of t.M as the append of the list t2.M and
the list t1.M . As long as the result of this and operator is
consumed by other and operators, matches won’t need to
be materialized and the lists keep growing. Materialization
is delayed until required by a predicate, at which point the
Cartesian product is pruned by pushing selections into it,
using equivalences in the spirit of those illustrated in Sec-
tion 2.2.

Pipelining. All our operator implementations can be
pipelined (the group operator used to implement and and
or is not fully blocking, as its input is sorted).

3.2 The SCU Algorithm
The definition of matching tables was primarily intro-

duced with the purpose of providing a clean formal seman-
tics of XML full-text search which captures various query
language semantics, in particular XQFT (as shown in Sec-
tion 2.4). Matching tables also enable relational-style eval-
uation of full-text queries, as demonstrated in Section 3.1.

However, matching tables are not necessarily the ideal
data structure to manipulate during evaluation. Indeed, by
definition of the matching table, whenever a table R con-
tains a tuple t, R also contains a tuple ta for each ancestor
a of t.N , and t.M is included in ta.M . t.M is therefore
redundantly stored in R, forcing the AllNodes algorithm
(especially the full-text predicates) to repeatedly visit its
contents. The redundancy increases with element nesting,

i.e., the depth of node td in the document.
In this section, we introduce an alternative evaluation al-

gorithm that operates on tables which eliminate precisely
the redundant storage of the descendant’s matches in the
ancestor. These tables, called SCU tables (for Smallest Con-
taining Unit), lead to smaller intermediate results and there-
fore to potentially better overall performance. Our experi-
ments (Section 4) show that this potential is indeed reached.

Definition 3.1 (SCU tables). SCU tables have the same
schema as matching tables, but satisfy:

1. for every pair of tuples ta, td such that ta.N is an
ancestor of td.N and ta.P = td.P , the descendant’s
matches are not repeated in the ancestor’s: ta.M ∩
td.M = ∅. We call ta.M the direct matches of node
ta.N , and td.M the inherited matches of node ta.N .

2. there is no tuple ta such that ta.M = ∅ and such that
|{td | td.P = ta.P, td is descendant of ta}| = 1.

An immediate implication on SCU tables is that in any tuple
t, t.N is the LCA of all matches in t.M .

Example 3.1. Recall the matching table of the term education
in Example 2.1. Its corresponding SCU table is given below, this
time revealing the Dewey ids of the nodes and positions:

N P M

1.1 (education) {(1.1.1.3)}
1.2.2.2 (education) {(1.2.2.2.1.45)}
1.3.2 (education) {(1.3.2.1.67)}

SCU tables contain the same information as matching
tables, but in a compressed way. Any matching table can be
reduced into an SCU table: for each tuple ta, remove from
ta.M the set td.M whenever td.N is a descendant of ta.N

and ta.P = td.P , and drop ta altogether if ta.M becomes
empty and if there is precisely one tuple td with td.P =
ta.P and where td.N is a descendant of ta.N . We call this
operation reduce. Its inverse is called expand and it turns
an SCU table into a matching table in the obvious way.

The SCU algorithm takes an XFT expression E and a
list of SCU tables S1, . . . , Sn and returns an SCU table
SCUE(S1, . . . , Sn). The SCU algorithm is semantically
equivalent to the XFT algebra, in the sense that for any
matching tables R1, . . . , Rn and any XFT expression E,

E(R1, . . . , Rn)
= (†)

expand(SCUE(reduce(R1), . . . , reduce(Rn))).

SCU tables are possible due to the XML tree structure
since they rely on element nesting information stored in
Dewey ids to expand into matching tables. SCU tables
lead to a significant simplification in the implementation of
the get operator, which now needs to output for each term
match only the immediately containing node but none of the
ancestors. The implementation of the orderedb, distb,windowb

operators is not affected, as all they do is filter matches,
dropping the ones who violate the filtering condition re-
gardless of whether they are stored redundantly. There is
no change of semantics if these full-text predicates work on
SCU tables instead of matching tables. However, the run-
time performance is improved as fewer tuples are inspected,
and shorter lists of matches per tuple are scanned.



The conciseness of SCU tables comes at a price though: it
poses new problems to the evaluation of the other full-text
predicates, as well as the and operator, in the sense that
directly applying their AllNodes implementation to SCU
tables breaks requirement (†), as detailed below.

and can no longer be computed as an equijoin on the N

attribute, as illustrated by the following example.

Example 3.2. Consider the XFT expression

get(Column) and get(introduced)

For the document in Figure 1(a), there is only one match of

the term Column and of introduced. The immediately contain-

ing nodes are sponsors, respectively action-desc. Let RColumn

and Rintroduced be the SCU tables returned by get(Column) and

get(introduced) according to the SCU implementation. These

contain one tuple each, tColumn ∈ RColumn with tColumn.N = sponsors,

and similarly for tintroduced ∈ Rintroduced. The LCA bill of

sponsors and action-desc contains a match of pattern (Column,

introduced), but the equijoin of tColumn with tintroduced is empty,

failing to produce the corresponding tuple. The expand operation

cannot remedy the problem, as the expansion of an empty ta-

ble remains empty. In contrast, by Theorem 2.1, since (Column,

introduced) has a match under bill, and should output such a

tuple as is indeed the case in the AllNodes implementation.

The ordered∃,dist∃, window∃ and times operators are af-
fected as well if operating on SCU tables. The semantics
of full-text predicates depends on the all matches appear-
ing under a node, which is why in the matching table, each
tuple t is self-contained for the purposes of predicate eval-
uation: all matches under node t.N are collected in t.M .
The full-text predicates can therefore be evaluated locally
on each tuple, akin to predicates in relational selections. In
contrast, an SCU table keeps the matches relevant to the
evaluation of a full-text predicate on node ta.N distributed
across several tuples corresponding to descendants of ta.N .
In this case, full-text search predicates are turned into global
aggregation operations working on the entire table. This is
illustrated in Example 1.1. We summarize it here.

Example 3.3. Recall that the query in Example 1.1 is

σordered∃(Jeff,edu)(σwindow∃
≤10

(Jeff,edu)(get(Jeff)and get(edu)))

Node action is returned since it contains one match for each of

the query terms satisfying ordered∃ and one satisfying window∃.

However, since the match satisfying ordered∃ (resp., window∃)

violates window∃ (resp., ordered∃), each match would be filtered

prematurely regardless of the order of predicate application.

We compensate for these problems by adapting the im-
plementation of the affected operators as follows.

The and operator. The previous example shows that the
equijoin does not work on SCU tables, and that two tuples
t1 ∈ R1, t2 ∈ R2, despite not agreeing on their N attribute,
carry matches relevant to the LCA of t1.N and t2.N . This
suggests an immediate fix: when “joining” tuples t1 and
t2, output the tuple t with t.N = LCA (t1.N, t2.N), t.P =
t1.P ◦ t2.P, t.M = t1.M ⊲⊳ t2.M .

This approach poses significant efficiency challenges. Since
any two nodes from the same document have an LCA (the
document root in the worst case), the tempting but naive
implementation involves a Cartesian product. A more ef-
ficient alternative would be to adopt one of the state-of-
the-art stack-based algorithms developed in prior work to

evaluate conjunctive keyword searches in XML documents
by computing the LCAs of the matches, without keeping
track of the matches themselves [29], or without evaluating
any full-text predicates on them [4, 17].

Preorder versus Postorder Incompatibility. The
immediate adaptation of existing stack-based algorithms to
our needs is precluded by the fact that existing algorithms
assume the input sorted in preorder, but produce their re-
sult in postorder. This is not a problem in prior works,
which focus only on computing LCAs of a conjunctive pat-
terns without post-processing the result. In our setting this
mismatch precludes operator compositionality.

Compositional Stack-Based Algorithms. We pro-
pose a stack-based solution yielding an efficient single-pass
algorithm which computes S1 and S2, where S1, S2 are SCU
tables sorted in postorder traversal order. The result is also
sorted in postorder, thus facilitating the seamless compo-
sition of and operators with each other (and, as we shall
see below, with all other operators) without any interven-
ing sorting step. This is important for evaluation perfor-
mance, and essential for enabling pipelined implementation.
Though stack-based processing is not a new idea, the solu-
tion for consuming input in postorder is novel and guaran-
tees efficient compositionality of our algebra operators.

Algorithm 2 uses a stack containing descendant LCAs and
their matches for consideration by ancestor LCAs.

The stack holds tuples of schema (L,Dir1,Dir2) and the
algorithm maintains the invariant that, according to the in-
put consumed so far,

• L is an LCA of at least one pair of matches from S1 ×
S2;

• Dir i is a set of matches (called the direct matches)
from Si, each contained in L but occurring in no LCA
which is a proper descendant of L;

The stack is maintained while two cursors are advanced in
a single pass over the input SCU tables S1 and S2, reading
tuples s1, s2 respectively. At each step, the stack contains a
list of LCAs of pairs of matches from S1, S2. These LCAs
reside on the same root-to-leaf path, with the deepest LCA
at the top of the stack. This is achieved by pushing a newly
computed LCA only if it is a descendant of the stack top’s
LCA, top().L.

If the new LCA l is greater in postorder than top().L
(line 22 in Algorithm 2), the postorder sorting of the inputs
guarantees that no further descendant LCAs of top().L can
be encountered and we can pop and output the latter (lines
26–27). Additionally, if the newly computed LCA l is not an
ancestor of top().L, there is a new LCA l′ induced by top().L
and l (computed at line 24), and l′ must be pushed (line 41)
on the stack before l (line 44), to maintain the descendant-
last invariant for stack LCAs. Notice that l′ has no direct
matches, since they are all nested within l and top().L.

If the new input contributes to the same LCA as top().L
(line 30), this input is recorded in the top stack tuple (lines
30–36), since we need to accumulate all direct matches con-
tributing to the LCAs.

Finally, the new input can generate an LCA l which is
a descendant of top().L. At this point (line 36), we know
that the input matches are not direct matches for top().L,
and they must be removed from the top().Dir i lists (lines
37–40). Moreover, l is pushed on the stack since now we
expect the remaining input to contribute to its descendant



LCAs (line 44).
When a stack tuple o is output, we generate SCU table tu-

ples t from it. This involves setting t.N = o.L and comput-
ing the matches corresponding to the pairs in the Cartesian
product o.Dir1 × o.Dir2 (not shown in the pseudocode).

The node operations performed by Algorithm 2 are all
very well supported by Dewey ids. Indeed, checking that
l is larger than top().L in postorder (line 22) reduces to
checking that the Dewey id of l is either lexicographically
larger than or a strict prefix of the Dewey id of top().L.
Similarly for the tests in line 14. The ancestor test in line
26 reduces to testing that the Dewey id of l′ is a strict prefix
of top().L’s id. The LCA computations are implemented as
simply finding the longest common prefix of the operands.

Algorithm 2 SCU Implementation of and Operator

Require: S1, S2 are SCU tables sorted in postorder on N
Ensure: outputs SCU table corresponding to

reduce(expand(S1) and expand(S2))
sorted in postorder on N attribute

1: initialize stack
2: open cursors on S1 and on S2

3: s1 ← get next(S1), s2 ← get next(S2)
4: l← LCA (s1.N, s2.N)
5: push(L = l,Dir1 = {s1},Dir2 = {s2})
6: while (at least one cursor can advance) do

7: if (EOF(S2)) then

8: s1 ← get next(S1);
9: else if (EOF(S1)) then

10: s2 ← get next(S2)
11: else

12: s′1 ← look ahead(S1); l1 ← LCA (s′1.N, s2.N)
13: s′2 ← look ahead(S2); l2 ← LCA (s1.N, s′2.N)
14: if ((l1 <post l2 or

l1 = l2 and s1.N ≤post s2.N) then

15: s1 ← get next(S1)
16: else

17: s2 ← get next(S2)
18: end if

19: end if

20: l← LCA (s1.N, s2.N)
21: l′ ← l
22: if (l >post top().L) then

23: if (l is not ancestor of top().L) then

24: l′ ← LCA (l, top().L)
25: end if

26: while (l′ is ancestor of top().L) do

27: o← pop(); output o
28: end while

29: end if

30: if (l′ = top().L) then

31: if (S1 cursor was last to advance) then

32: top().Dir1 ← top().Dir1 ∪ {s1}
33: else

34: top().Dir2 ← top().Dir2 ∪ {s2}
35: end if

36: else

37: if (non-empty stack) then

38: top().Dir1 ← top().Dir1 \ {s1}
39: top().Dir2 ← top().Dir2 \ {s2}
40: end if

41: if (l′ 6= l) then

42: push(L = l′,Dir1 = ∅,Dir2 = ∅)
43: end if

44: push(L = l,Dir1 = {s1},Dir2 = {s2})
45: end if

46: end while

47: while (non-empty stack) do

48: o← pop(); output o

49: end while

Evaluation of Full-text Predicates. Since each SCU
tuple contains only the direct matches under its nodes, but
the predicates depend also on indirect matches, their evalu-
ation needs to fulfill the following requirements:

• detect that a descendant already satisfied the predicate
and hence the ancestor’s matches needn’t be tested

• if a descendant tuple td does not satisfy the predicate,
before dropping td its direct matches must be propa-
gated to the tuple ta of its immediate ancestor. The
matches are needed, as they might satisfy predicate
operators higher up in the plan.

These requirements suggest a natural evaluation strategy,
which exploits and preserves the postorder sorting of the in-
puts, leading to full compositionality of all operators. The
strategy calls for considering descendants first, using a stack
to propagate matches to ancestors, as detailed in Algorithm 3.
The stack tuples have schema (T, D) where T is an SCU
tuple and D a boolean flag. The algorithm maintains the
invariant that D is set to true iff the predicate is satisfied
by T.N or any of its descendants consumed so far from the
input. When a new tuple s is read, if s.N is an ancestor of
the node at the stack top top().T.N , we cannot expect fur-
ther input to contribute any descendants of top().T.N , and
it is safe to pop (line 16). If the popped D flag is set to true,
we record that s satisfies the predicate (line 11) through its
indirect matches, so the predicate need not be checked on
the direct matches of s (line 18). Otherwise, we drop the de-
scendant (but not before propagating its matches to s (line
14)) and we check the predicate on s (line 19). If s satisfies
the predicate either through direct or indirect matches, it
is output. Either way, s is pushed on the stack (line 24)
together with the verdict on the predicate’s satisfaction, for
subsequent consumption by ancestors of s.N .

Example 3.4. The query plan on Figure 6 illustrates the in-

put and output SCU tables of Example 1.1. For instance, node

legis-session (Dewey 1.3) is selected due to the propagation of

its Jefferson match 1.3.2.1.72 by the ordered∃ predicate. The

final set of answers is action, legis-session and bill.

Algorithms Complexity. For each tuple consumed from
the input, Algorithm 2 performs constant-time stack manip-
ulation operations, computes an LCA (which depends on the
length of the common prefix of the Dewey ids), and later,
upon popping the tuple, it generates matches. When ap-
plied to inputs |S1| and |S2 and producing output |S|, the
running time contains: a linear component in the size of
the inputs |S1| + |S2|; a linear component in the size of the
output |S|; denoting with D the maximum nesting depth
of a discovered LCA, it performs for each LCA at most D

operations of scanning the Dewey id. The total number of
LCAs is upper-bounded by the smallest size among |S1| and
|S2|: O(|S1| + |S2| + |S| + D × min(|S1|, |S2|). Algorithm 3
runs in time worst-case linear in the size of the input, |S|, if
the predicate is not satisfied and all matches end up being
inspected and propagated up the XML hierarchy.

Scoring. It is easy to see that the use of a stack in Algo-
rithm 3 provides direct access to the descendants of a node,
found at the top of the stack when the node gets pushed.
This is compatible with the incremental computation of the
score of a node from its descendant nodes. The node’s score
can be easily updated/recomputed as long as the scoring
function depends on descendants only.



Algorithm 3 SCU Implementation of Full-Text Predicates

Require: S is an SCU table sorted in postorder on N
the predicate P ∈ {ordered∃, window∃, dist∃} applies to indi-
vidual SCU tuples

Ensure: outputs SCU table corresponding to
reduce(σP (expand(S))) sorted in postorder on N

1: initialize stack; open cursor on S
2: s← get next(S); satisfies← P (s)
3: if (satisfies = true) then

4: output s
5: end if

6: push(s, satisfies)
7: while (not EOF(S)) do

8: s← get next(S); satisfies← false
9: while (s.N is ancestor of top().T.N) do

10: if (top().D = true) then

11: satisfies = true
12: else

13: {propagate matches to ancestor:}
14: s.M ← s.M ∪ top().T.M
15: end if

16: pop()
17: end while

{only check predicate if descendants violate:}
18: if (satisfies = false) then

19: satisfies← P (s)
20: end if

21: if (satisfies = true) then

22: output s
23: end if

24: push(T = s, D = satisfies)

25: end while

4. EXPERIMENTS
Our experiments demonstrate the superiority of SCU over

AllNodes . We also perform a detailed study of the SCU
algorithm which shows that the overhead of using a stack
and propagating matches is minimal. Finally, the compari-
son of SCU with GalaTex [12] a conformance implemen-
tation of XQuery Full-Text [28], and the TeXQuery Quark
implementation 3 confirms our optimizations.

4.1 Experiments Setup
We implemented our algorithms in Java and ran experi-

ments on a Centrino 1.8GHz laptop with 1GB of RAM. We
used both real datasets, a 300MB DBLP document,4 and
synthetic documents generated with XMark.5 Document
sizes range from 50 to 300MB. Queries contain up to 5 joins
and 4 full-text predicates. All times are reported in millisec-
onds and correspond to query execution times that do not
include the time to access inverted lists. All queries used in
the experiments are given in the table below.
Q Description

q1 get(See) and get(internationally)and
get(description) and get(charges) and
get(ship)

q2 σorderedE(See,internationally,description,charges,ship)q1

q3 push selections in q2 at each join
q4 σwindow≥1(See,internationally,description,charges,ship)q1

q5 σwindow≥90000000(See,internationally,description,charges,ship)q1

When using document sizes with XMark, term frequen-
cies varied as shown in the table below (we do not show

3http://www.cs.cornell.edu/database/quark
4http://dblp.uni-trier.de/xml/
5http://monetdb.cwi.nl/xml/

orderedE

windowE

1.1        Jefferson      education
             1.1.3.1.22    1.1.1.3

1.2.2.2  1.2.2.2.1.51 1.2.2.2.1.45

1.2        1.2.1.28       1.2.2.2.1.45

1.3.2     1.3.2.1.72    1.3.2.1.67

1.3        1.3.2.1.54    1.3.2.1.67

1           ...                 ...

1.3        Jefferson     education
             1.3.2.1.54   1.3.2.1.67
             1.3.2.1.72   1.3.2.1.67

1.2       Jefferson      education
            1.2.1.2.8       1.2.2.2.1.45
            1.2.2.2.1.51  1.2.2.2.1.45

1           Jefferson     education
             1.1.3.1.22   1.1.1.3   ...

1.3        Jefferson     education
             1.3.2.1.54   1.3.2.1.67
             1.3.2.1.72   1.3.2.1.67

1.2       Jefferson      education
            1.2.1.2.8      1.2.2.2.1.45
            1.2.2.2.1.51 1.2.2.2.1.45

1           Jefferson     education
             1.1.3.1.22   1.1.1.3   ...

get (Jefferson)
1.1.3         1.1.3.1.22
1.2.2.2      1.2.2.2.1.51
1.2           1.2.1.28
1.3.1.2      1.3.1.2.1.54
1.3.2         1.3.2.1.72

get (education)
  1.1.1            1.1.1.3
  1.2.2.2        1.2.2.2.1.45
  1.3.2          1.3.2.1.67

Figure 6: SCU Execution for Query in Example 1.1

the frequencies for all sizes). These frequencies are higher
than previously reported frequencies [17, 24, 29] and affect
directly the size of the inverted lists and of intermediate
query results.
Term 50MB 100MB 200MB 300MB

See 3546 7242 14549 21670
internationally 3536 7081 14285 21260
description 3835 7847 15767 23503
charges 5662 11460 23097 34407
ship 5817 11709 23608 35166

4.2 Comparison of AllNodes and SCU

Varying Document Size. Figures 7 and 8 shows the
result of running AllNodes and SCU algorithms on a con-
junctive query q1 and on two queries with predicates (q2 and
q3) where the predicate is pushed in one case (q3) and on
XMark documents ranging from 50 to 300MB. Both algo-
rithms grow linearly in document size with all 3 queries. On
average, SCU has a 30% speedup over AllNodes . Note
that on a 150MB document, AllNodes on q3 beats SCU
on q2. However, SCU quickly catches up and the differ-
ence increases with larger documents due to the fact that
AllNodes processes more entries, even if element nesting
remains the same. It is not surprising to see that perform-
ing a relational-like rewriting improves performance by an
average of 40%. A more interesting observation is that the
improvement on SCU is more dramatic since the selection
is pushed all the way down to each join and thus reduces
the size of intermediate results early on.

4.3 SCU Performance
Varying Query Predicates. Figure 9 shows how SCU

performs on queries q1, q4 and q5 on an increasing docu-
ment size. The predicate used in q4 is always true and has
not been pushed. It always finds that descendant nodes sat-
isfying it, so its evaluation only introduces the overhead of



stack maintenance. This overhead, quantified as the differ-
ence between q4 and q1’s times is very small and grows very
slowly with larger documents since element nesting does not
change much. The predicate in q5 is always false and re-
quires to propagate matches to ancestors. This is why the
overhead, quantified as the difference between q5 and q1’s
times, is more important than the previous one. However,
the good news is that it also grows very slowly with docu-
ment size as element nesting does not grow.

Figure 7: Vary Document Size (Query w/o Preds)

Figure 8: Vary Document Size (Query with Preds)

Varying Query Terms on Flat DBLP Data. Fig-
ure 10 reports running query q1 with a varying number of
terms (from 2 to 5 terms) on a 300MB DBLP document.
Due to the fact that DBLP is very flat, AllNodes performs
better than SCU since SCU pays the overhead of manipulat-
ing a stack. The good news are that the difference between
the performance of the two algorithms does not get larger
with queries containing more terms. Moreover, the time for
AllNodes to read inverted lists and build input tuples is
3 seconds longer than the time for SCU, which manipulates
shorter lists by definition.

4.4 Comparison with Existing Systems
We compared SCU with GalaTex and Quark (Figure 11).

Due to the limitations of these two systems, we ran conjunc-
tive queries (1 to 4 terms) on a 150KB XMark document.
GalaTex and Quark have similar performances which are

Figure 9: Vary Query Predicates

Figure 10: Vary Query Terms

worse than AllNodes and SCU . The performance differ-
ence increases with queries containing more terms.

5. RELATED WORK
Several full-text algebras and query evaluation algorithms

have been proposed in the past [1, 11, 15, 18, 23, 27]. The
most notorious algebras are the text region algebras which
were proposed to model structured full-text search [9, 11,

Figure 11: AllNodes , SCU , GalaTex and Quark



20, 23]. A text region is a sequence of consecutive words
in a document and is often used to represent a structural
part such as section and chapter. However, this algebra
has limited expressive power [11]. The TIX and TOSS al-
gebras [1, 18] focus on evaluating conjunctive queries and
phrase search while the algebra in [27] is used to express
NEXI queries [26].

There has been extensive research in information retrieval
on the efficient evaluation of full-text queries [3], including
structured full-text queries [6] and of XML queries such as
XQuery/IR [5], XSEarch [10], XIRQL [14], XXL [25] and
Niagara [30]. However, these works develop algorithms for
specific full-text predicates in isolation.

The idea of computing the most specific elements for con-
junctive queries has been actively explored using LCAs [17,
21, 24, 29]. We show in Section 3 that extending this idea to
support the efficient evaluation of queries with complex full-
text predicates needs to account for individual term matches
in XML elements and, sometimes propagate matches along
the XML hierarchy. Moreover, we show that a blind appli-
cation of state of the art stack-based algorithms [17, 21, 29]
results in higher complexities. This is due to the fact that
preorder is a natural choice for XPath evaluation, since any
other ordering would require materializing the document in
main memory, or a two pass algorithm. However, for full-
text, inverted lists are generated off-line and could be in
postorder, which ends up being the natural order expected
and automatically preserved by all our algorithms.

Relevance ranking methods for XML are based on extend-
ing the well-established vector and probabilistic methods [3]
to incorporate structure by propagating answer scores along
the XML tree [14], considering overlapping elements [8], ap-
plying length normalization to paths [7] or computing tag or
path-based term weights [2, 10, 16]. None of them accounts
for query predicates to score answers and is thus not appli-
cable to distinguish between the binding and the existential
semantics.

6. CONCLUSION
We presented the XFT algebra and efficient evaluation al-

gorithms that account for element nesting in XML document
structure to evaluate queries with complex full-text predi-
cates. XFT subsumes the XQFT-class full-text languages,
enabling a uniform treatment of their optimization and effi-
cient evaluation problems. The novelty of our algorithms lies
in their ability to combine relational query evaluation tech-
niques with the stack-based exploitation of element nesting
when evaluating full-text predicates. We are currently ex-
ploring the use of pull-based topk algorithms.
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