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Abstract

Recent works have shown the benefits of keyword proximity search in querying XML doc-

uments in addition to text documents. For example, given query keywords over Shakespeare’s

plays in XML, the user might be interested in knowinghowthe keywords co-occur. In this pa-

per, we focus on XML trees and define XML keyword proximity queries to return the (possibly

heterogeneous) set ofminimum connecting trees(MCTs) of the matches to the individual key-

words in the query. We consider efficiently executing keyword proximity queries on labeled

trees (XML) in various settings: (i) when the XML database has been pre-processed, and

(ii) when no indices are available on the XML database. We perform a detailed experimental

evaluation to study the benefits of our approach, and show that our algorithms considerably

outperform prior algorithms and other applicable approaches.

1 Introduction

Keyword search is a user-friendly information discovery technique that has been extensively stud-

ied for text documents. Keyword proximity search is well-suited to XML documents as well,

which are often modeled as labeled trees [3]. For example, consider a document consisting of

(marked up) Shakespeare’s plays in XML. A user might be interested in matching the query key-

words “mother, king, brother”, and determine where they co-occur and within what context. For

example, they may all appear within the same line or it may be that “king” and “brother” appear in

a line of a speech and “mother” appears in another line of the same speech, and so on.
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In the case of XML trees, the problem of keyword proximity search reduces to the problem of

finding the subtrees rooted at the lowest common ancestors (LCAs) of the XML nodes that contain

the keywords. Recently, a large corpus of work [18, 14, 19, 20] has been conducted on efficiently

finding the LCAs of the query keyword nodes in XML trees.

However, these works focus on computing the LCA nodes and notthe whole XML subtrees

rooted at the LCA nodes. These subtrees are needed in order torank the results and display them

to the user, since ranking typically depends on the types of the connections. Furthermore, Xu and

Papakonstantinou [20] and Li et al. [18] provide efficient algorithms for locating only theSmallest

LCAs(see Section 6).

This paper presents algorithms to compute theMinimum Connecting Trees (MCTs)of the nodes

that contain the keywords, that is, the subtrees rooted at the LCAs of the nodes that contain the

keywords. We make the following technical contributions:

• We formulate two main problems: (i) identifying and presenting in a compact manner all

MCTs, which explain how the keywords are connected, and (ii)identifying only MCTs

whose root is not an ancestor of the root of another MCT.

• We design and analyze efficient algorithms to compute MCTs, in two cases: (i) when the

XML data has been pre-processed and relevant indices have been constructed, and (ii) when

the XML data has not been pre-processed, i.e., the XML data can only be processed sequen-

tially.

• We perform a detailed experimental evaluation to study the benefits of our approach, and

show that our algorithms considerably outperform both prior algorithms for keyword prox-

imity on labeled graphs [7, 17, 13] as well as other applicable approaches.

Notice that this work only focuses on how to efficiently return the connections between the nodes

that contain the keywords. However, similarly to previous LCA works [20, 18], it does not solve the

problem of how to rank these connections. Intuitively, the MCT is the basic connecting component

between objects of a tree although the specific strength of this connection has its own merit. The

ranking problem has been studied in previous works [14, 7, 12]. The combination of our execution

framework with these ranking techniques is left as future work.
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The rest of this paper is organized as follows. We describe the notation we use and formulate

the problems in Section 2. Our algorithms for the case of indexed XML data are presented in

Section 3, and for unindexed data in Section 4. We present a detailed experimental evaluation

of our algorithms in Section 5. Related work is discussed in Section 6, and we conclude with

directions for further work in Section 7.

2 Framework

2.1 Notation

We use the conventional labeled directed tree notation to represent XML documents. Each node

v of the tree corresponds to an XML element and is labeled with atagλ(v). If v is a leaf node

it also has a string valueval(v) that contains a list of keywords. We assume that each nodev

has a unique idid(v). Figure 1 illustrates a tree that will be used in the examples. id(v) is the

first component of the 4-tuple associated with each nodev. The other three components will be

explained in Section 3.2, where we first make use of these components.

A keyword queryis simply a set of keywordsk1, . . . , km. It returns a compact representation

of the set of trees that connect the nodes that contain the keywords in their value or their tag. The

following discussion formally defines and motivates the semantics.

Definition 2.1 (MCT and LCA) Theminimum connecting tree (MCT)of nodesv1, . . . , vm of the

input labeled treeT is the minimum size subtreeTM of T that connectsv1, . . . , vm.

The root of the tree is called thelowest common ancestor(LCA) of the nodesv1, . . . , vm.

An MCT of keywordsk1, . . . , km is an MCT of nodesv1, . . . , vm that contain the keywords.

For example, the MCTs (1) and (2) are two of the MCTs of the query “Tom, Harry”, and the

MCTs (3), (4) and (5) correspond to the query “Tom, Dick, Harry”.

a1 ← p1 → a2 (1)

a8 ← p4 ← s3 → p5 → a9 (2)
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[r, 1, 42, 0] root
[c1, 2, 41, 1] conference

[s1, 3, 16, 2] session
[p1, 4, 9, 3] paper

[a1, 5, 6, 4] author (Harry Smith)
[a2, 7, 8, 4] author (Tom Jones)

[p2, 10, 15, 3] paper
[a3, 11, 12, 4] author (Tom Brown)
[a4, 13, 14, 4] author (Dick Smith)

[s2, 17, 26, 2] session
[p3, 18, 25, 3] paper

[a5, 19, 20, 4] author (Tom Green)
[a6, 21, 22, 4] author (Harry Brown)
[a7, 23, 24, 4] author (Dick Jones)

[s3, 27, 40, 2] session
[p4, 28, 31, 3] paper

[a8, 29, 30, 4] author (Harry Jones)
[p5, 32, 35, 3] paper

[a9, 33, 34, 4] author (Tom Smith)
[p6, 36, 39, 3] paper

[a10, 37, 38, 4] author (Dick Brown)

Figure 1: Input Labeled Tree Used in Examples

s1

p1 p2

a1 a2 a4

(3)

p3

a5 a6 a7

(4)

s3

p4 p5 p6

a8 a9 a10

(5)

According to the typical assumption of keyword proximity systems [7, 13, 17, 16, 4], smaller

MCTs are considered better solutions since they provide a closer connection between the key-

words. However, our framework and algorithms are not tied toa particular ranking function, since
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we focus on efficiently generating all the MCTs. In our running example, MCT (1) is better than

MCT (2) since MCT (1) shows that Tom and Harry are co-authors while MCT (2) merely shows

that they both had papers in the same session of the conference. Similarly, MCT (3) is better than

MCT (5), since MCT (5) shows that the 3 authors are linked through 3 different papers in the same

session, while MCT (3) shows that they are linked through only 2 different papers in the same

session. Indeed, we will later augment our keyword queries to bound the size of the MCTs, since

beyond a size the result is often uninteresting.

The set of MCTs is often overwhelmingly large since it may contain the following form of data

redundancy, which leads to a number of MCTs that is exponential in the number of keywords in

the query. Consider a listl1 of nodes that containk1, a list l2 of nodes that containk2, and so on,

up to a listlm of nodes containingkm. Suppose noden is the pair-wise LCA of the nodes of them

lists and all nodes are at equal distances fromn. In our running example, there is such a list[a2, a3]

of “Tom” nodes (|l1| = 2) and a list[a6, a8] of “Harry” nodes (|l2| = 2), such that their common

LCA is c1 (conference). Then there are|l1| × |l2| × . . .× |lm| MCTs. Notice that if there arei, j

such that|li| > 1 and|lj| > 1, then each MCT can be implied (inferred) by the other MCTs and

the set of MCTs is redundant. For example, the MCTs

a2 ← p1 ← s1 ← c1 → s2 → p3 → a6 (6)

a3 ← p2 ← s1 ← c1 → s3 → p4 → a8 (7)

of query “Tom, Harry” together imply the MCTs

a2 ← p1 ← s1 ← c1 → s3 → p4 → a8 (8)

a3 ← p2 ← s1 ← c1 → s2 → p3 → a6 (9)

The encoding of the set of MCTs ingrouped distance treesresolves this problem. We first

define distance MCTs.

Definition 2.2 (DMCT) Consider nodesv1, . . . , vm of the input treeT . TheDistance MCT (DMCT)

TD = d(TM) of the MCTTM of nodesv1, . . . , vm is the minimum node-labeled and edge-labeled

tree such that:
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1. TD contains the nodesv1, . . . , vm,

2. TD contains the LCAsu1, . . . , uk of any pair of nodes(vi, vj) wherevi, vj ∈ [v1, . . . , vm],

i 6= j,

3. there is an edge labeled with the number` between any two distinct nodes

n, n′ ∈ {v1, . . . , vm, u1, . . . , uk} if there is a path of length̀ from n′ to n in TM , and the

path does not contain any noden′′ ∈ {u1, . . . , um} other thann andn′.

The DMCT (10) corresponds to the MCT (1) and the DMCTs (11-14)correspond to the

MCTs (6-9).

a1

1
← p1

1
→ a2 (10)

a2

3
← c1

3
→ a6 (11)

a3

3
← c1

3
→ a8 (12)

a2

3
← c1

3
→ a8 (13)

a3

3
← c1

3
→ a6 (14)

Notice that the exponential explosion in the number of keywords is still present.Grouped

DMCTsresolve the problem (if possible) by grouping together DMCTs of the same structure.

Definition 2.3 (GDMCT) A Grouped DMCTof a treeT is a labeled tree where edges are labeled

with numbers and nodes are labeled with lists of node id’s fromT .

A DMCT D belongsto a GDMCTG if D and G are isomorphic. Assuming thatf is the

mapping of the nodes ofD to the nodes ofG, which induces a corresponding mapping, also called

f , of the edges ofD to the edges ofG, the following must hold:

1. if nD is a node ofD, nG is a node ofG andf(nD) = nG then the label ofnG contains the id

of nD,

2. if eD is an edge ofD, eG is an edge ofG andf(eD) = eG then the label ofeD and the label

of eG are the same number.
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The GDMCT (15) captures DMCTs (11-14). The notationu1[a2, a3] indicates that the label of

the nodeu1 is [a2, a3].

u1[a2, a3]
3
← u0[c1]

3
→ u2[a6, a8] (15)

Note that each tree that is an instance of a GDMCT and is also a subtree of the XML data tree

T is a DMCT of an MCT ofT .

We define the size of a GDMCT (or DMCT) to be the sum of the weights of its edges. We

often eliminate from the solution those trees whose sizes exceed a user-provided size thresholdK.

2.2 Problems

We consider two closely related keyword search problems in this paper.

Problem 1 (All GDMCTs Problem) Given an input labeled treeT , keywordsk1, . . . , km, and an

integerK, find the minimal set of tuples(n, G), whereG is a GDMCT whose root has list label[n]

such that:

1. n is an LCA ofk1, . . . , km,

2. each DMCTD of size up toK rooted at noden that is an LCA ofk1, . . . , km belongs to at

least one GDMCTG, such that(n, G) is a tuple,

3. if any node idni is removed from the label[n1, . . . , ni, . . . , nm] of a noden′ ∈ G of a tuple

(n, G) then there is at least one DMCTD of size up toK that does not belong to any tuple

though it is rooted at the LCAn of k1, . . . , km.

4. every nodeni of the label[n1, . . . , ni, . . . , nm] of a noden′ contains the same subsetS of

keywords fromk1, . . . , km.1

5. the size ofG is no more thanK.

1This condition ensures that each DMCTD contained in the GDMCT (that is,D is also contained inT ) contains
all keywordsk1, . . . , km.
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The query “Tom, Harry”, withK = 5 returns the relation (16), while the same query with

K = 3 returns (17).

{ (p1, u1

1
[a1]

1
← u1

0
[p1]

1
→ u1

2
[a2])

(s1, u2

1
[a1]

2
← u2

0
[s1]

2
→ u2

2
[a3])

(p3, u3

1
[a5]

1
← u3

0
[p3]

1
→ u3

2
[a6])

(s3, u4

1
[a8]

2
← u4

0
[s3]

2
→ u4

2
[a9]) }

(16)

{ (p1, u1

1
[a1]

1
← u1

0
[p1]

1
→ u1

2
[a2])

(p3, u3

1
[a5]

1
← u3

0
[p3]

1
→ u3

2
[a6]) }

(17)

A closely related problem to Problem 1, discussed next, is one which returns only GDMCTs

whose roots (i.e., the LCAs) are not themselves ancestors ofroots of other returned GMDCTs.

Problem 2 (Lowest GDMCTs Problem) Given an input labeled treeT , keywordsk1, . . . , km,

and an integerK, find the minimal set of tuples(n, G), such that:

1. (n, G) is a tuple for Problem 1, i.e., the All GDMCTs Problem, and

2. if (n′, G′) is also a tuple for Problem 1, thenn is not an ancestor ofn′.

For Problem 2, the query “Tom, Harry”, withK = 3 still returns (17), while the same query

with K = 5 returns the relation (18). Note that the tuple withn = s1 from the relation (16) is no

longer a solution for the Lowest GDMCTs Problem since it is anancestor of nodep1 which is part

of a solution.

{ (p1, u1

1
[a1]

1
← u1

0
[p1]

1
→ u1

2
[a2])

(p3, u3

1
[a5]

1
← u3

0
[p3]

1
→ u3

2
[a6])

(s3, u4

1
[a8]

2
← u4

0
[s3]

2
→ u4

2
[a9]) }

(18)

In this paper, we focus our attention on these two problems. We also consider variants of Prob-

lems 1 and 2, where we are interested in returning only the LCAs (not the complete GDMCTs),

provided there is at least one DMCT rooted at the LCA with sizeno more thanK. We refer to

these variants as the “All LCAs Problem” and the “Lowest LCAsProblem” in the paper.
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Notice that, in practice, one may augment GDMCTs with additional information about their

nodes. For example, one may ask that the title of the paper is always displayed along with the

paper. [17] has introduced the “target objects” concept to handle this requirement. For simplicity,

we will neglect such augmentations since they do not affect the performance issues that are the

focus of this paper.

In the sequel, we design efficient algorithms for these problems, and experimentally evaluate

them, under two cases: (i) when the XML data has been pre-processed and relevant indices have

been constructed before the keyword query is evaluated (Section 3), and (ii) when the XML data

has not been pre-processed, i.e., the XML data can only be processed sequentially (Section 4).

3 Algorithms: Indexed XML Data

In this section, we first focus on Problem 1 (All GDMCTs), and design two competitive algo-

rithms to solve it: a straightforward, nested-loops algorithm, and a more sophisticated stack-based

algorithm that is tailored to the XML tree structure in identifying LCAs and GDMCTs. We then

discuss the modifications to our stack-based algorithm thatare needed to solve the variants (Low-

est GDMCTs, All LCAs and Lowest LCAs) of our core problem. These algorithms are compared

experimentally in Section 5.

3.1 All GDMCTs: Nested Loops Algorithm

Intuitively, the nested loops algorithm (NL) for the case of indexed XML data operates over sep-

arate lists of nodes,L(k), one for each query keyword,k, to identify the GDMCTs whose sizes

are no more than the user-provided threshold,K. The master index for the nested loops algorithm

is organized as an inverted index, as follows. A hash table (the keywords are the keys) of all the

keywords in the XML data treeT is created and for each keywordk we keep a listL(k) (value of

hash table) of the nodesn of T that containk, where each noden is stored with itspath-id: the list

of node ids along the path from the root ofT to n. This choice facilitates the easy identification

of the LCA and the GDMCT of a set of nodes, which can be determined by simply examining the

path-ids of the respective nodes. This index is built in one pass overT before any query arrives.

For example, some entries in the master index for the XML treeof Figure 1 are shown below.
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Nested-Loops Algorithm(k1, . . . , km,K ) {
R: array of result GDMCTs;
For i = 1, . . . ,m do

GetL(ki) from master index;
For each combination(u1, . . . , um) with ui ∈ L(ki) do

mct = getMCT(u1, . . . , um);
if (size(mct) ≤ K)
Add mct to its corresponding GDMCT inR if such
a GDMCT exists, else create a new GDMCT inR;

Return R;
}

getMCT(u1, . . . , um ) {
Let pi denote the path-id ofui;
depth = 0;
While p1[depth] = . . . = pm[depth] do

depth + +;
LCA = p1[depth− 1];
Return the MCT rooted at LCA;
}

Figure 2: Nested Loops Algorithm

Tom: [[r, c1, s1, p1, a2], [r, c1, s1, p2, a3], [r, c1, s2, p3, a5], [r, c1, s3, p5, a9]]

Dick: [[r, c1, s1, p2, a4], [r, c1, s2, p3, a7], [r, c1, s3, p6, a10]]

Harry:[[r, c1, s1, p1, a1], [r, c1, s2, p3, a6], [r, c1, s3, p4, a8]]

The execution stage of the Nested Loops Algorithm, using this index, is presented in Figure 2.

Essentially, it checks all combinations of nodes from the keyword lists, computes an MCT (min-

imum connecting tree) for each combination, and then mergesthe resulting MCT into the list of

result GDMCTs, provided its size is within the user-specified threshold.

For example, given the keyword query “Tom, Harry”, and a thresholdK = 3, the Nested Loops

algorithm would examine the12 node-pairs in the cross-product of the index entries for Tomand

Harry, compute12 MCTs, determine that only2 of them meet the threshold, and finally return two

GDMCTs (see relation (17)).

There are two main sources of inefficiency in the Nested Loopsalgorithm. First, as illustrated

in the above example, it has to check all the combinations of nodes from the keyword lists, i.e.,

getMCT(.) is called|L(k1)| × · · · × |L(km)| times. Second (not illustrated in the above example),
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the grouping of the results into GDMCTs is not tightly integrated with the algorithm and a lookup

to the arrayR is required for each relevant MCT found.

We next present a stack-based algorithm that overcomes boththese sources of inefficiency,

is tailored to the XML tree structure in identifying GDMCTs,and delivers performance that is

considerably better than the Nested Loops Algorithm.

3.2 All GDMCTs: Stack-Based Algorithm

Our stack-based algorithm, which we refer to asSA, makes use of a node numbering system, which

associates(start, end, depth) numbers with each node in the XML tree, wherestart

andend correspond to the first and the final times the node is visited in a depth-first traversal of

the XML tree, anddepth is the depth of the node from the root of the tree. In Figure 1, we depict

the(start, end, depth) numbering with each node, as the last three components of the

4-tuple. For example, the numbering associated withs1 is (3, 16, 2). Such a numbering has been

repeatedly utilized (see, e.g., [21, 5]), in a variety of XMLrelated algorithms.

This numbering permits efficient checking of ancestor-descendant (or containment) relation-

ships (by comparing containment of the corresponding(start, end) intervals), and can also

be used to determine thedistancebetween an ancestor and a descendant node in the XML tree

(by computing the difference between correspondingdepths). This latter fact (only exploited

in [21, 5] to check parent-child relationships) will be veryuseful for us to efficiently compute sizes

of MCTs. For example, one can determine thats1 is an ancestor ofa4 (since the interval(3, 16)

contains the interval(13, 14)) and also determine that the distance between them is2 (i.e.,4− 2),

without knowing the intermediate node betweens1 anda4.

3.2.1 Index Structure and Algorithm

Intuitively, the stack-based algorithm for computing GDMCTs, on indexed XML data, operates

over lists of nodes, two for each query keyword (these lists are described below). It

• maintains candidate LCA nodes on a stack,

• computes and maintains partial GDMCTs at each candidate LCA, for subsets of query key-

words, and
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• computes and outputs result GDMCTs when all descendant nodes of a candidate LCA are

known to have been examined.

In order to do so, the lists associated with each keywordk need to contain, in addition to the

nodes ofT that containk, ancestors of these nodes as well. This is because, while the(start,

end, depth) numbers suffice to check ancestor-descendant relationships, they are insufficient

to identify the lowest common ancestors. For example, one would not be able to determine that

the lowest common ancestor ofa1 (with node numbering(5, 6, 4)) anda3 (with node numbering

(11, 12, 4)) is s1 (with node numbering(3, 16, 2)).

Indexing by keyword is provided by the master index, which isorganized as an inverted index,

as follows. A hash table of all the keywords in the XML data treeT is created and for each keyword

k we keep two lists:

• L(k) of the nodes ofT that containk in T , and

• La(k) of the ancestors of nodes inL(k).

That is, the (master) index consists of two lists (L(k) andLa(k)) for each keyword. Each node

is stored as(id, start, end, depth), andL(k) and La(k) are sorted in ascendingstart order.

This index is also built in one pass overT before any query arrives. For example, the entries for

keywords Tom, Dick and Harry, in the index for the XML tree of Figure 1, are shown below.

Tom: L = [(a2, 7, 8, 4), (a3 , 11, 12, 4), (a5 , 19, 20, 4), (a9 , 33, 34, 4)]

La = [(r, 1, 42, 0), (c1 , 2, 41, 1), (s1 , 3, 16, 2), (p1 , 4, 9, 3), (p2 , 10, 15, 3), (s2 , 17, 26, 2),

(p3, 18, 25, 3), (s3 , 27, 40, 2), (p5 , 32, 35, 3)]

Dick: L = [(a4, 13, 14, 4), (a7 , 23, 24, 4), (a10 , 37, 38, 4)]

La = [(r, 1, 42, 0), (c1 , 2, 41, 1), (s1 , 3, 16, 2), (p2 , 10, 15, 3), (s2 , 17, 26, 2), (p3 , 18, 25, 3),

(s3, 27, 40, 2), (p6 , 36, 39, 3)]

Harry:L = [(a1, 5, 6, 4), (a6 , 21, 22, 4), (a8 , 29, 30, 4)]

La = [(r, 1, 42, 0), (c1 , 2, 41, 1), (s1 , 3, 16, 2), (p1 , 4, 9, 3), (s2 , 17, 26, 2), (p3 , 18, 25, 3),

(s3, 27, 40, 2), (p4 , 28, 31, 3)]

While theLa lists in this index are not present in the index for the nestedloops algorithm, each

entry in theL andLa lists is small and of fixed size, unlike in the nested loops index (where the
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Stack Algorithm SA(k1, . . . , km, K ) {
S: stack, where stack entrys consists of (s.nodeID,s.GDMCTs), wheres.GDMCTs is a list of GDMCTs;

1. L← GetList(k1, . . . , km);
2. WhileS not empty OR more nodes inL do{
3. n← Find node with smallest start value inL;
4. WhileS is not empty AND top(S).end< n.start do
5. POP(S);
6. PUSH(n, S);
} }

Figure 3: High Level Description of Stack Algorithm for All GDMCTs Problem

entry size depends on the length of the path from the root of the XML tree). The asymptotic size

complexity of the master index for the Stack Algorithm is better than that of the master index for

the Nested Loops Algorithm. This is because each ancestor ofa node containing keywordk is

represented only once in the Stack Algorithm’s master index, whereas each ancestor is represented

in the path-ids of the Nested Loops Algorithm’s master indexas many times as it has descendants

that contain keywordk. Hence, generally deeper (resp. more shallow) trees require less (resp.

more) storage for the SA master index, compared to the NestedLoops Algorithm index. We shall

also show empirically, in Section 5, that the sizes of the master indices for the two algorithms are

not substantially different.

We next describe the execution stage of the Stack Algorithm in more detail. To clarify the

description and point out the novel contributions of the algorithm, we split it into two parts. The

first part (Figure 3) describes how the selected list of nodesis traversed in a depth-first manner

and the nodes are pushed and popped from the stack. This type of stack-based traversal has been

successfully applied in previous works [5, 10] to efficiently answer XML join queries as we explain

in Section 6. The second and novel part (Figure 4) of theSA algorithm is the processing and

bookkeeping performed at each stack operation (i.e., push and pop) in order to maintain a minimum

amount of information that allows the efficient and timely output of the GDMCTs.

The stackS consists of entries of the form (s.nodeID,s.GDMCTs), wheres.GDMCTs is a list

of GDMCTs found so far, rooted at the node with ids.nodeID. These GDMCTs may bepartial,

i.e., contain a subset of the query keywords, and are annotated with the keywords their nodes

contain.
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GetList(k1, . . . , km) {
1. Fori = 1, . . . , m do;
2. GetL(ki) andLa(ki) from master index;
3. return(∩2

i
La(ki))

⋃
(∪iL(ki));

/* ∩2

i
La(ki) computes, in a single scan, nodes that appear in at least two distinct lists */}

POP(S){
4. h← pop(S);
5. Output and remove fromh.GDMCTs those GDMCTs that contain all keywords;

/* results whose LCA ish */
6. h′ ← top(S);
7. For each GDMCTG in h.GDMCTs do{

/* migrate the remaining GDMCTs ofh to h′ */
8. d = h.depth−h′.depth;
9. r ← root(G); /* r.nodeID= h.nodeID */
10. If degree(r) = 1 AND e is the edge ofG incident onr then{

/* h does not have to be in the GDMCT, andh′ can replaceh as the new root */
11. label(e)← label(e) + d; /* GDMCT edge label */
12. label(r)← h′.nodeID; /* GDMCT node label */}
13. else{ /* h still needs to be in the GDMCT, and a new root must be created */
14. Create a new rootr′ for G, andlabel(r′)← h′.nodeID;
15. Add edgee′ from r′ to r, andlabel(e′)← d; }
16. If size(G) > K then dropG; /* pruning condition, size= sum of edge labels */}

/* the next two steps combine and merge the GDMCTs ofh with those ofh′ */
17. h′.GDMCTs← h′.GDMCTs∪ CreateNewGDMCTs(h.GDMCTs,h′.GDMCTs );
18. h′.GDMCTs← Merge(h.GDMCTs,h′.GDMCTs );}
PUSH(n, S){
19. Pushs(n, ∅) ontoS; /* new stack entrys */
20. Fori = 1, . . . , m do
21. If n containski thens.GDMCTs← s.GDMCTs∪{ni};

/* superscripti identifies the keyword contained in the new single-node, partial GDMCT */ }
CreateNewGDMCTs(h.GDMCTs,h′.GDMCTs ){

/* Generate new GDMCTs that contain multiple keywords. Notice that
even GDMCTs with all keywords will not be output at this point. */

22. NewGDMCTs← ∅;
23. For eachG ∈ h.GDMCTs do
24. For eachG′ ∈ h′.GDMCTs do

/* check if G′, G are disjoint */
25. If keywords(G) ∩ keywords(G′) = ∅ AND size(G) + size(G′) ≤ K then{

/* glue the disjoint trees on their common root */
26. NewGDMCTs← NewGDMCTs∪mergeGDMCTs(G, G′); }
27. Return NewGDMCTs;}
Merge(h.GDMCTs,h′.GDMCTs ){

/* combine isomorphic trees */
28. NewGDMCTs← h.GDMCTs∪h′.GDMCTs;
29. For eachG ∈ h.GDMCTs do
30. For eachG′ ∈ h′.GDMCTs do
31. If keywords(G) = keywords(G′) AND G, G′ are isomorphic with mappingµ from G to G′

32. AND for every nodeui ∈ G, u′i ∈ G′, µ(ui) = u′i then{
/* merge node lists with the same keyword match.*/

33. ReplaceG, G′ in NewGDMCTs by mergeGDMCTs(G, G′, µ); }
/*mergeGDMCTs(.) differs from Merge(.) because (a) it inputs 2 single GDMCTs, and */
/* (b) it does not check any condition before merging.*/

34. Return NewGDMCTs;}

Figure 4: Operations of Stack Algorithm for All GDMCTs Problem
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The algorithm scans the listL consisting of nodes that either contain at least one keywordor

are ancestors of at least two nodes that contain the query keywords; these are the only nodes that

have the chance of being an LCA or participating in a GDMCT. Nodes ofL are being pushed and

popped from the stackS as the scanning proceeds. In particular, at the end of each iteration of the

main loop (i.e., of the loop of lines 2–6 of Figure 3) the top entry of S contains the noden with

the higheststart value seen so far. The other entries of the stack correspond to the ancestors of

n. Beforen is pushed onto the stack, all the stack entries that do not correspond to ancestors of

n are popped fromS. This is accomplished by the loop of lines 4–5 of Figure 3. When an entry

h is popped fromS, any complete GDMCTs fromh.GDMCTs are output (line 5 of Figure 4).

The remaining GDMCTs are partial. Since there is a possibility that the parent ofh may have

descendants that have the keywords that the partial GDMCTs miss, the partial GDMCTs ofh

become partial (or complete) GDMCTs of its parenth′. Notice that the entryh′ may already have

partial GDMCTs that reflect the keywords found in descendants of h′ that were inspected before

h. The transfer of each partial GDMCTG of h to the set of GDMCTs ofh′ follows the following

steps:

• modify G to reflect the new root (lines 10–15) of Figure 4,

• check to see ifG satisfies the pruning condition (line 16 of Figure 4)

Once we have the modified and pruned set of partial GDMCTs ofh we compare them against

the GDMCTs of its parenth′ and create new GDMCTs as is appropriate (line 17 of Figure 4),

which we merge with the GDMCTs ofh′. In particular, we create a new GDMCT for each pair of

GDMCTs fromh andh′ that can be “glued” together to contain a larger subset of thekeywords

(lines 23–26 of Figure 4). Finally, we merge (line 18 of Figure 4) into the same GDMCT every

pair of GDMCTs fromh andh′ that are isomorphic, to ensure the minimality of the number of

produced GDMCTs.

Notice that the reason that the result GDMCTs rooted at nodeh are output whenh is popped

from the stack (line 5 of Figure 4) and not when they are initially produced (lines 17, 22–27 of

Figure 4) is because there could be more GDMCTs that are “mergeable” with the GDMCTs already

produced (lines 18, 28–33 of Figure 4).
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3.2.2 Illustrative Example

We illustrate the execution of our Stack Algorithm, using anexample, with two query keywords

“Tom, Harry”, and a threshold of3. The master index listsL andLa are shown above for these

query keywords. In line (3), the intersection ofLa(Tom) andLa(Harry) would produce the list

[(r, 1, 42, 0), (c1, 2, 41, 1), (s1, 3, 16, 2), (p1, 4, 9, 3), (s2, 17, 26, 2), (p3, 18, 25, 3), (s3, 27, 40, 2)].

Notice that the entries(p2, 10, 15, 3), (p4, 28, 31, 3) and(p5, 32, 35, 3) are not present in this list,

since they are ancestors of only one of the query keywords, and hence can neither be an LCA, nor

be part of any GDMCT.

The Stack Algorithm then iteratively chooses entries from (the conceptual union of)L(Tom),

L(Harry), and this intersection. Some of the initial stack states in the execution are depicted below.

1.

(p1, ∅)

(s1, ∅)

(c1, ∅)

(r, ∅)

The first four entries in the intersection of theLas are pushed onS.

2.

(a1, {a
2
1
})

(p1, ∅)

(s1, ∅)

(c1, ∅)

(r, ∅)

The first entrya1 from L(Harry) is pushed onS, and a partial GDMCT is

created; the superscript of2 in the GDMCT ofa1 indicates a match for the

second query keyword “Harry”.

3.

(p1, {p1

1
→ a2

1})

(s1, ∅)

(c1, ∅)

(r, ∅)

When examining the first entrya2 from L(Tom), the top of stacka1 is

popped, and a new GDMCT is created atp1.

4.

(a2, {a
1
2})

(p1, {p1

1
→ a2

1
})

(s1, ∅)

(c1, ∅)

(r, ∅)

The first entrya2 from L(Tom) is pushed onS, and a partial GDMCT

is created; the superscript of1 in the GDMCT ofa2 indicates a match

for the first query keyword “Tom”.
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5.

(p1, {p1

1
→ a2

1, a
1
2

1
← p1

1
→ a2

1, p1

1
→ a1

2})

(s1, ∅)

(c1, ∅)

(r, ∅)

When examining the second entrya3 from

L(Tom), the top of stacka2 is popped, and new

(combined) GDMCTs are created atp1. Note

that a solution has been found, but it is not out-

put yet.

6.

(s1, {s1

2
→ a2

1, s1

2
→ a1

2})

(c1, ∅)

(r, ∅)

When examining the second entrya3 from L(Tom), the top of

stackp1 is also popped, and the answer(p1, a
1

2

1
← p1

1
→ a2

1
)

is output. Additional GDMCTs are also associated with the

(new) top of stacks1.

7.

(a3, {a
1
3})

(s1, {s1

2
→ a2

1, s1

2
→ a1

2})

(c1, ∅)

(r, ∅)

The entrya3 from L(Tom) is then pushed on the stack, and a

partial GDMCT is created.

8.

(s1, {s1

2
→ a2

1, s1

2
→ [a1

2, a
1
3]})

(c1, ∅)

(r, ∅)

When examining the next entrys2 from the intersection ofLa(Tom) andLa(Harry), the top

of stacka3 is popped, new GDMCTs are created, and merged with the GDMCTsassociated

with s1. In particular, the GDMCTs1

2
→ a1

3
is created (sincea3 is at distance2 from s1), and

merged withs1

2
→ a1

2
, resulting ins1

2
→ [a1

2
, a1

3
]. The GDMCTa1

3

2
← s1

2
→ a2

1
is not created,

since its size (of4) exceeds the user-defined threshold of3.

9. Entries from the lists continue being examined, new GDMCTs created, and pruned until all

the answers are output.

3.3 Lowest GDMCTs: Stack-Based Algorithm

We now present a simple modification of the Stack Algorithm ofFigures 3, 4 to efficiently answer

Problem 2 (the Lowest GDMCTs Problem). This is the case when the user is interested only in the

lowest GDMCTs, i.e., those GDMCTs whose roots are not ancestors of other returned GDMCT
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roots. The key observation is that once we output the GDMCTs of a nodeu (in line 5 of Figure 4),

none of the ancestors ofu in the stack can be LCAs of returned GDMCTs; hence, we can remove

all of them from the stack! Specifically, we can add the following lines after line 5 of the Stack

Algorithm in Figure 4.

5a. If a GDMCT was output then{

5b. S ← ∅;

5c. return;}

As an example, consider again the query keywords “Tom, Harry”, but with a threshold of5.

Once the first solution(p1, a
1

2

1
← p1

1
→ a2

1
) is output in Step 6 (in the illustrative example of

Section 3.2.2), the stack is emptied. Thus, no GDMCT with an LCA of c1 or s1 would be returned.

(Note that, in the All GDMCTs Problem for this example, the solution (s1, a
1

3

2
← s1

2
→ a2

1
) would

also be returned.) We refer to this algorithm asSALowAll.

3.4 LCAs: Stack-Based Algorithms

The Stack Algorithm can also be easily modified to solve the All LCAs Problem and the Low-

est LCAs Problem, where the user is not interested in the GDMCTs, but only in the LCA nodes.

Essentially, the algorithms, which modifySA andSALowAll and we refer to asSAOne and

SALowOne, respectively, would still need to maintain GDMCTs with stack nodes, with two sim-

plifications:

• Procedure Merge(.) in Figure 4 could be simplified, no merging of GDMCTs would need to

be done, and line 33 could be replaced by:

33. Remove one ofG, G′ in NewGDMCTs;

• It is possible to output an LCA early when the first GDMCT (withall keywords) is computed

for that node (in Procedure CreateNewGDMCTs(.) in Figure 4), instead of waiting until the

node is popped from the stack.
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An important point to note is that, while tempting, it does not suffice to simply (i) maintain,

with each stack nodeu, the distancedi to the closest descendantui of u found so far containing

keywordki, and (ii) produce an output when each distance has been filledin, and the sum of the

distances is≤ K. This is because, except for the special case of two query keywords, the size of a

GDMCT is not simply the sum of the distances from the LCA to each of the nodes containing the

m keywords.

3.5 Complexity Analysis

This section presents (Section 3.5.3) a worst-case complexity analysis forSA. Before doing so,

we perform an analysis of the maximum number of the resultingGDMCTs (Section 3.5.1) and

we discuss how individual operations ofSA can be performed in linear time on the size of the

GDMCTs (Section 3.5.2).

3.5.1 Total Number of GDMCTs

We show that in the worst case the numbers of DMCTs and of GDMCTs are exponential on the

number of keywords. However, under reasonable assumptionsexplained below, the worst case

number of GDMCTs is smaller than that of DMCTs. Also notice that in practice the number of

GDMCTs is typically much smaller than the number of DMCTs, due to the grouping.

Consider a query withm keywordsk1, k2, . . . , km. Let L(ki) be the list of the nodes of treeT

that contain keywordki. A DMCT can be obtained by combining one node from each of them lists

L(ki), 1 ≤ i ≤ m. Thus, in the worst case, the total number of DMCTs is given byΠm
i=1
|L(ki)|,

which is exponential inm. GDMCTs group isomorphic DMCTs to provide a more compact result.

But what is the worst case total number of GDMCTs? We show thatthis can also be exponential

in m.

In particular, consider a noden that has each of them keywordski in its subtree, and each

keywordki occurs ath different depthsd = 1, . . . , h in the subtree rooted atn. It is easy to see

that there has to be a different GDMCT for each combination of(keyword, depth). In this case,

there areΠm
i=1

h = hm GDMCTs, which is exponential inm.

However, under reasonable assumptions, the number of GDMCTs is asymptotically smaller
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that that of DMCTs. Consider the simple case where GDMCTs have no internal nodes, no node

contains more than one keyword, and the XML tree has heightH. Then the maximum possible

number of DMCTs isΠm
i=1
|L(ki)| as above, but the maximum number of GDMCTs isHm (each

of them keywords can be in depth1, . . . , H). Hence, ifH is viewed as a constant, the number of

GDMCTs is asymptotically smaller than that of the DMCTs.

3.5.2 Complexity of Finding Isomorphic GDMCTs

Deciding when two GDMCTs can be merged inSA is expensive, unless we refine the representa-

tion of GDMCTs. In this section we describe a canonical representation of a GDMCT that allows

(a) a rapid determination of whether GDMCTs can be glued together in CreateNewGDMCTs (lines

23-25 of Figure 4), and (b) checking whether two GDMCTs are isomorphic, permitting them to be

merged (lines 31-33 of Figure 4). In this canonical representation:

• Each node in the GDMCT is annotated with the keywords in its subtree, in lexicographic

ordering, and the size of its subtree.

• The children sub-trees (rooted at nodesn1, . . . nj) of noden are ordered according to lexi-

cographic ordering of the annotations of the roots of these children subtrees.

Given this canonical representation, one can linearize theGDMCTs in an XML-like nested

representation with start and end tags, obtained from the node annotations. Given this linearized

representation:

• Checking whether two GDMCTs can be glued together requires checking if their keyword

sets are disjoint, and if their combined size does not exceedK, which can be checked using

their annotations in the canonical representations; this can be done in a single pass of the

GDMCTs, that is, in linear time on the size of the GDMCTs.

• Checking whether two GDMCTs are isomorphic can be done by equating the canonical

representations; this can be done in linear time on the size of the GDMCTs as well.
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3.5.3 Time Complexity of SA

In the SA algorithm, each node inL (which is computed in GetList) is pushed on to the stack, and

popped from the stack, at most once. When a node is popped fromthe stack, its GDMCTs need

to be compared (and possibly merged) with the GDMCTs of its parent node in the stack. Since

each operation on a pair of GDMCTs can be done in linear time onthe size of the GDMCTs, the

total time complexity of SA is a function of the total number of GDMCT comparisons, which is

quadratic in the total number of GDMCTs. As a result, in the worst-case, we have:

Theorem 1 The time complexity of SA isO(|L|+ K · (Πm
i=1
|L(ki)|)

2)).

4 Processing Unindexed XML Data

In this section, we consider the case when no master index is available on the XML data tree,

and the goal is to efficiently solve the All GDMCTs Problem fora specific keyword query (with

a threshold). Both the Nested Loops Algorithm and the Stack Algorithm have straightforward

adaptations to work without index lists, by doing a single pass over the data tree. In particular,

NLStream, which is the streaming version ofNL, first traverses in one pass the data tree to create

the index lists of the query keywords and then executes the NLalgorithm2. The streaming version

of the Stack Algorithm, which we refer to asSAStream, is realized by making the following

changes to the Stack Algorithm of Figures 3, 4. Notice thatNLStream makes an additional pass

over the data tree, unlikeSAStream which just makes a single pass.

Remove line 1 of Figure 3.

Replace lines 2–3 of Figure 3 with:

2. WhileS not empty OR more nodes inT do

3. n← Get next node in depth-first order fromT ;

/*Note thatd in line 8 of of Figure 4 will always be 1.*/

2The main drawback of this approach is that the indexing and the execution stages are separated, which means
that the entire inverted index entries would have to be stored and then processed. This factor becomes more important
when the index entries are too long to fit in memory, and are moved to and from secondary storage during the indexing
and processing stages.
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Frequency XMark 10MB XMark 100MB DBLP
1-10 41176 161048 401181

11-200 10924 15883 19213
>200 1294 9210 956

Table 1: Number of keywords in each frequency range in the data sets used

5 Experimental Evaluation

We have designed and performed a comprehensive set of experiments to understand the perfor-

mance of the proposed algorithms. We used both real and synthetic data sets. The synthetic

datasets were generated using the XMark benchmark [2] for various database sizes. We also used

the DBLP database [1] to explore the performance of our algorithms using more realistic data

distributions. The experiments were conducted on a Xeon 2.2GHz computer with 1GB of RAM

running Windows 2000 Professional. The algorithms were implemented in Java and the parsing of

the XML files is performed using the SAX API of the Xerces Java Parser3. The master index is

implemented as a Java Hashtable persistent object.

There are three main parameters affecting the performance of our algorithms, namely (i) the

value ofK denoting the threshold, (ii) the numberm of keywords, and (iii) the size of the dataset.

To understand better the performance of our algorithms for keywords of different selectivities, we

perform experiments using sets of keywords having different frequencies, namelylow, correspond-

ing to keywords with frequency between 1 and 10 in each data collection,medium, corresponding

to keywords with frequency 11-200, andhigh, corresponding to keywords with frequency above

200. The number of keywords in each frequency range, in the different data sets used, is shown in

Table 1.

The experiments are divided into three classes. First we evaluate the proposed algorithmSA,

and its variantsSALowAll, SALowOne. As a baseline for comparison, we use the algorithm

NL, which computes LCAs and GDMCTs using a nested loops approach. We also evaluate an

improvement of this basic strategy that uses the optimal algorithm for identifying the LCA of a

pair of keywords [15]. This algorithm,NLOpt, still considers all pairs of keywords in a nested

loops fashion, but it identifies the LCA of a pair very efficiently, namely inO(1) time. Next, in

Section 5.2, we evaluate our algorithms for the case when no indices are available on the XML data.

3http://xml.apache.org/xerces-j/

22



medium frequency, 2 keywords, 100MB

0

10

20

30

40

50

60

5 10 15

K

m
s
e
c


NL SA NLOpt SALowAll SALowOne

high frequency, 2 keywords, 100MB

1

10

100

1000

10000

100000

5 10 15

K

m
s

e
c



NL SA NLOpt SALowAll SALowOne

DBLP, medium frequency, 2 keywords

0

5

10

15

20

25

30

35

40

5 10 15

K

m
s

e
c



NL SA NLOpt SALowAll SALowOne
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Figure 5: VaryingK

Dataset (MBs) SA index (MBs) NL index (MBs)
1 5.1 3.7
10 49 37
100 500 377

Table 2: Index Size Requirements ofSA

Each value reported in our graphs is an average collected from 50 repetitions of the experiment.

Finally, we compare theSA algorithm against algorithms for keyword proximity searchon labeled

graphs [16, 17, 4]. However, since the algorithms of the prior work operate on data stored in

relational database systems we also built a version of the SAfor XML data stored in a relational

database, so that the comparison is straightforward.

5.1 EvaluatingSA and its Variants

Our first experiment evaluates the index size requirements of the proposedSA algorithm, for differ-

ent sizes of XML data collections of the XMark benchmark. First we compare the size of the index

required by the Stack Algorithm (SA) compared to the Nested Loops Algorithm (NL) for various

XMark dataset sizes. We allocate4 bytes for each node identifier and eachstart, end value

in the depth-first numbering, and1 byte for thedepth number. Since thestart value serves

as a unique node identifier as well, we take this into account in our space computation for theSA

index. Table 2 presents the index size ofSA compared with that ofNL, for various database sizes

generated using the generation tools available in the XMarkbenchmark. Considering the entries of

the table, it is evident that the index size requirements ofSA are about33% higher than that ofNL.

As we will soon demonstrate,SA introduces this small space overhead in order to provide orders
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of magnitude performance improvements.

Figure 5 presents the performance of the algorithms asK (the distance threshold) increases for

a fixed number of keywords (equal to two), for the XMark 100MB and the DBLP datasets. In the

rest of the section, due to space considerations, we do not present the graphs for low frequency

keywords since we have found that they take constant time (upto 20 msec which is the disk access

time) to execute. For the same reason, we only present results for (the most common in practice)

medium frequency keywords for DBLP, because we use the larger XMark dataset to show how the

time scales for frequent keywords (we have found that DBLP scales following the same patterns).

It is evident thatSA is considerably superior to bothNL andNLOpt. SA’s performance benefits

are pronounced when high frequency keywords are involved, since the number of nodes from the

underlying XML tree involved in the operation increases considerably.NL incurs high overhead

because it considers all possible pairs of nodes containingthe query keywords and groups the

results in GDMCTs.NLOpt also considers all pairs, although each pair requires much less time to

process (compared toNL) and thus its performance is somewhat improved. Disk accessappears to

be the dominating factor in Figure 5(a) and Figure 5(c) (because relatively smaller lists of nodes are

involved due to medium frequency query keywords), whereas processing time is the dominating

performance factor in Figure 5(b). Table 3 presents the average number of GDMCTs for the various

keyword frequencies in the 100MB XMark dataset, for different threshold values. It is evident

that the number of GDMCTs produced in the case of high frequency keywords is much higher,

contributing considerably to the increased overhead ofNL andNLOpt, in addition to their inherent

overhead of considering all node pairs. The trend for all algorithms is to experience a degradation

in their performance asK increases, for a specific data size and keyword frequency, because the

expected size of the stack nodes involved in the operation increases. Notice that for algorithms

SALowAll andSALowOne this degradation in performance is not significant, even compared

to algorithmSA, since the output produced by these algorithms is much smaller. In particular it

is interesting to observe that for the AlgorithmSALowOne, which produces the least output, its

performance appears almost insensitive to the range ofK values tested. In contrast, it only depends

on the specific dataset and subsequently on the corresponding query keyword frequency.

Figure 6 presents the results of an experiment exploring theperformance impact of an increas-

ing number of keywords, for a fixed thresholdK = 5. Notice that for clarity of display,NLOpt
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K medium frequency high frequency
5 0.38 33.9
10 28 186
15 37 385

Table 3: Average number of GDMCTs for the 100MB XMark dataset, for medium and high fre-
quency keywords
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Figure 6: Varying number of keywordsm

is not plotted since its performance is very close toNL. SinceNL considers all combinations of

keywords, one from each keyword list, its performance deteriorates exponentially to the number

of keyword lists. AlgorithmSA and its variants are capable of scaling gracefully to an increasing

number of keywords, since they perform a single pass over thekeyword lists and their performance

benefits are substantial.

Figure 7 presents the performance of the algorithms for increasing database size, for various

values of the distance thresholdK; notice the log scale on theY axis. To isolate the effects of

increasing data size, we present the results for keywords selected uniformly at random among the

1000 keywords with the highest frequency in each data set respectively. The results, which are

shown in Figure 7, indicate that the proposed algorithms scale gracefully with increasing database

size, exhibiting almost linear increase in performance with database size. The scalability limita-

tions of algorithmNL are evident in the figure. Increasing the database size is expected to increase

in effect the absolute frequencies of the most 1000 frequentkeywords, which is the keyword collec-

tion from which our queries are derived. As a result, by increasing the database size, the keyword

lists provided as input to each algorithm respectively are much larger in size. Table 4 presents

some statistics of the distribution of frequencies of the 1000 most frequent keywords, as the size
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Size max freq min freq avg. freq
10MB 6663 218 296
100MB 66247 2176 2945
300MB 1999274 6557 8820

Table 4: Statistics on the frequency of 1000 most frequent keywords for increasing database size,
for XMark data
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Figure 7: Varying database size

of the datasets increases. It is evident that the top 1000 keyword frequencies increase substantially

with increasing database size.

5.2 Evaluating theSAStream Algorithm

We now present the evaluation of the variants of our algorithms for non-indexed data, where the

execution times increase dramatically due to the lack of indexing that leads to reading the whole

XML file. Figure 8 compares algorithmsNLStream andSAStream for increasing values of the

distance thresholdK, for two keywords, for medium and high frequency keywords. Notice that

NLStream initially parses the XML document, constructing indices, and then operates on those

indices. In contrast AlgorithmSAStream can operate immediately in conjunction with document

parsing. In Figure 8(a), since we are dealing with not so frequent keywords,NLStream’s per-

formance is dominated by the time to read the document and create the keyword lists and thus its

performance appears to increase only marginally with increasing values ofK. Figure 8(c) presents

a breakdown of the times spent at the two stages ofNLStream’s execution. In effect,SAStream

produces the desired result faster than the time required byNLStream to identify the relevant

keywords and build indices. The performance advantages ofSAStream are pronounced as the
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Figure 8: VaryingK in the algorithms for non-indexed, 100 MB XMark data

frequency of the keywords involved in the operation increases, since its performance is linear in

the size of the document. Contrasting Figure 8(b) and Figure8(d), we observe that the time re-

quired byNLStream to produce the output increases, since larger lists of nodesare involved in

the operation. The performance advantagesSAStream offers in this case are substantial.

In Figures 9(a) and (b), we present the performance ofSAStream andNLStream as the

number of keywords increases, for a fixed distance thresholdK = 5. In Figures 9(c) and (d), we

present a breakdown of the times taken by algorithmNLStream at the various stages of its exe-

cution. NLStream’s execution time increases exponentially withm, in contrast toSAStream,

whose times remain relatively stable, since document parsing and identification of relevant answers

are interleaved. As observed in Figures 9(c) and (d), parsing time is the dominating factor in the

performance ofNLStreamwith processing time becoming significant as the number of keywords

increases.
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Figure 9: Varying the number of keywords in the streaming algorithms, 100MB XMark Data
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5.3 Adaptation ofSA algorithm for DBMS

Next we compareSA against three systems that perform keyword proximity search on labeled

graphs: DBXplorer [4], DISCOVER [16] and XKeyword [17] (seeSection 6 for a short description

of these works). Since all of them operate on data stored in a relational database, in order to have

a fair comparison we implemented a version ofSA which operates on data stored in a DBMS.

In particular, the exact same indexing method is used as in XKeyword and DISCOVER. That is,

Oracle Intermedia Text Index4 is used to find the nodes that contain the keywords. The nodes of the

tree along with their (start,end,depth) triplet are storedin a relation, which we refer to asMaster

relation, whose text attributes are indexed by Oracle Intermedia. The runtime of the algorithm

consists of two stages: reading the text index to get the nodes/tuples that contain the keywords and

their ancestors, and executing the SA algorithm on these nodes. Given the nodes that contain the

keywords, their ancestors are computed using the (start, end) information on which a B+ index has

been built. The index reading stage to find the nodes with the keywords is identical to the one used

in XKeyword and DISCOVER. However, these works continue by building a set of intermediate

tables (tuple sets) and finally executing a set of join queries to produce the results. On the other

hand,SA does not need to access the database any more to compute the results. Figure 10 compares

the performance of these algorithms for the DBLP dataset. Figure 10 (b) analyzes the cost of each

algorithm into the costs of the consisting stages. Notice that we do not include DBXplorer in the

graphs, since it is slower than DISCOVER due to the lack of common subexpressions reuse.

Finally, notice that the performance ofSA decreases considerably when building the master

index as described above, since two steps are needed to get the keyword lists: first query the

DBMS text index to get the node ids, and second get the corresponding (start,end,depth) triplets

from the Master relation. On the other hand, these triplets are retrieved in a single step using the

file-based master index described in Section 3.2.1.

6 Related Work

Lowest Common Ancestor The first area of research relevant to this work is the computation

of the LCA of a set of nodes of a data tree. Kersten et al. [19] present an algorithm, which

4http://technet.oracle.com/products/text/content.html.
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for two keywords, is the same as the Nested Loops algorithm (NL) we present. For more than

two keywords, their semantics are different from the traditional proximity search semantics [13].

In particular, their algorithm inputs a set of relations (i.e., sets of nodes of different types) that

contain the keywords and outputs all pairwise LCAs and not global LCAs. Notice that the nodes

are grouped by type and not by keywords, so there could be pairwise LCAs that only contain the

same keyword twice. Also notice that they use a schema, in contrast to our work.

Li et al. [18] and XKSearch [20] defined Smallest LCAs (SLCAs)to be LCAs that do not

contain other LCAs. Li et al. [18] incorporated SLCA search in XQuery. The algorithms of

XKSearch benefit from the observation that, in contrast to the general LCA problem, the number

of smallest LCAs is bounded by the size of the smallest keyword list. Consequently, in [20] the

keyword lists of the inverted index are themselves indexed and indexed lookup is used to find

potential matches in the large keyword lists. The algorithmhas a generalization to finding all

LCAs but then its key observation does not apply and, more important, it has no efficient way to

produce summaries (such as the GDMCTs) of why each result node is an LCA. The algorithm in

[20] cannot be straightforwardly modified to support the general LCA problem.

XRANK [14] and XSEarch [12] return subtrees as answers to thekeyword queries. However,

the algorithm of XRANK does not return MCTs to explain how thekeywords connect to each other.

Furthermore, only the most specific result are output. They also present a ranking method which,

given a treet containing the keywords, assigns a score tot using an adaptation of PageRank [9]

for XML databases. Their ranking techniques are orthogonalto the retrieval and hence can easily

be incorporated in our work. XSEarch focuses on the semantics and the ranking of the results, and

during execution, they use an all-pairs index to check the connectivity between the nodes.

Efficiently computing thelowest common ancestor(LCA) of a pair of nodes in a tree is a prob-

lem that has received a lot of attention in the theoretical community and efficient approaches in

main memory are known for its solution [15, 6]. In particular, given a tree, after suitable pre-

processing it is possible to construct data structures, to answer to LCA queries (given a pairs of

nodes report the node which is the LCA of the pair in the tree) in O(1) time. The construction is

relatively involved (the interested reader could consult [15]) and efficient, provided that the data

structures fit in memory. We adapt suitably modified algorithms proposed for main memory LCA

of a pair of nodes, making them suitable for the problems we consider herein (algorithmNLOpt),
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and use them as a basis for comparison with our solutions.

Proximity search on labeled graphs Proximity search on labeled graphs [13, 7, 16, 17, 4] has

been suggested as an effective information discovery method. In most works the labeled graph is

derived by connecting the tuples of a relational database byprimary key/foreign key links. [4, 16, 7]

are particularly built for relational databases: SQL queries are used to derive the result. More

recent works [17, 7] use XML data as the motivation for labeled graphs; the edges correspond to

element/subelement connections or IDREF links.

The algorithms for keyword proximity search in labeled graphs are intrinsically expensive,

heuristics-based and typically use various forms of precomputation in order to improve the perfor-

mance. They do not significantly exploit the special case where the data structure is a tree.

Goldman et al. [13] retrieve and rank objects according to their proximity from other objects of

interest in a labeled graph. They show how to speed up the computation of the pairwise distances

between any two nodes of the graph by precomputing a hub structure. The choice of hubs is

guided by heuristics. However, when calculating the distance between two setsS1, S2 of nodes,

all combinations of nodes fromS1, S2 are tested for results, leading to a quadratic (cubic for

three keywords etc) cost similar to the Nested Loops algorithm (NL) of Figure 2. They propose

a way to avoid this quadratic number of disk accesses by clustering objects of the same type (eg.

movies or actors), which is a solution that can work for keywords appearing as tag names in an

XML document but is not realistic for arbitrary keywords. And still their algorithm suffers from a

quadratic (or more) number of comparisons.

The BANKS system [7] finds MCTs in a labeled graph by using an approximation to the Steiner

tree problem, which is NP-hard. The key idea (we omit optimization details) is the following:

BANKS progressively calculates the neighbor setsNi of distance up toK of every nodeui that

contains a keyword and outputs a spanning treeT when the root ofT is found in the intersection

of theNi’s. This leads, similarly to Goldman et al. [13], to a quadratic (for two keywords) number

of comparisons, in contrast to our one pass algorithms. Their implementation is tuned for a graph

that fits in main memory.

DISCOVER [16], XKeyword [17] and DBXplorer [4] are systems working on top of relational

databases, facilitating keyword search for relational [16, 4] and XML databases [17]. DISCOVER
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and DBXplorer output trees of tuples connected through primary-to-foreign key relationships, that

contain all the keywords of the query. They first get from the master index the tuples that contain

the keywords and then generate a set of SQL queries corresponding to all different ways to connect

the keywords based on the schema graph. XKeyword extends thework of DISCOVER by mate-

rializing path indices in a relational database, to reduce the number of joins in the generated SQL

queries. These works rely on a schema, in contrast to this work. More importantly, since the data

structure is a graph, it is impractical to store all the connections between all pairs of nodes in the

inverted index of the keywords. Hence, they may need to read from the disk an unbounded number

of connecting tuples, to discover the connections between the keyword nodes. In contrast, in our

work, we index the nodes that contain the keywords along withtheir “coordinates” in the source

tree, which leads to a single disk access per keyword in the typical case (when the set of nodes that

contain each keyword fits in a disk page). In Section 5.3, we compare these works to an adaptation

of our approach for a DBMS. This adaptation removes our advantage of tightly integrating the

keyword index with the representation of the “coordinates”of the nodes. However, we show that

we still perform considerably better than these works.

Finally, stack-based algorithms for processing XML queries have been proposed recently in

the literature computing containment joins [5] as well as holistic joins [10]. Our algorithms differ

from these algorithms in that we incrementally maintain andoutput LCAs and GDMCTs, which

are considerably more complex than checking ancestor-descendant relationships.

7 Conclusions and Future Work

In this paper, we have investigated the problem of XML keyword queries, with the aim of identi-

fying the most specific context elements (i.e., LCAs) that contain all the keywords, along with a

compact description of their witnesses (i.e., GDMCTs). We have proposed and evaluated efficient

algorithms for a number of variants of this problem, and haveestablished that the context of XML

keyword queries can indeed be efficiently determined as partof query evaluation.

Our work opens the door to a number of different avenues of research in XML keyword queries.

What would Information Retrieval style approximate matching look like? Our stack-based algo-

rithms maintain partial GDMCTs during query evaluation; are these the desired answers to ap-
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proximate keyword queries? What is the analog oftf∗idf for ranking the results of XML keyword

queries? What are appropriate linguistic mechanisms to incorporate our keyword querying primi-

tives into XQuery? We are currently exploring some of these promising directions of research.
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