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Abstract

Recent works have shown the benefits of keyword proximityckeia querying XML doc-
uments in addition to text documents. For example, givemygkeywords over Shakespeare’s
plays in XML, the user might be interested in knowimgwthe keywords co-occur. In this pa-
per, we focus on XML trees and define XML keyword proximity gas to return the (possibly
heterogeneous) set ofinimum connecting tredMCTs) of the matches to the individual key-
words in the query. We consider efficiently executing keydvproximity queries on labeled
trees (XML) in various settings: (i) when the XML databases leen pre-processed, and
(i) when no indices are available on the XML database. Wéoper a detailed experimental
evaluation to study the benefits of our approach, and shoiwotraalgorithms considerably

outperform prior algorithms and other applicable appreach

1 Introduction

Keyword search is a user-friendly information discoveghteique that has been extensively stud-
ied for text documents. Keyword proximity search is welitst to XML documents as well,
which are often modeled as labeled trees [3]. For examplaesider a document consisting of
(marked up) Shakespeare’s plays in XML. A user might be @sed in matching the query key-
words “mother, king, brother”, and determine where theycour and within what context. For
example, they may all appear within the same line or it mayhbe“king” and “brother” appear in

a line of a speech and “mother” appears in another line ofaheesspeech, and so on.
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In the case of XML trees, the problem of keyword proximityrebareduces to the problem of
finding the subtrees rooted at the lowest common ancest@Ag) of the XML nodes that contain
the keywords. Recently, a large corpus of work [18, 14, 19h28 been conducted on efficiently
finding the LCAs of the query keyword nodes in XML trees.

However, these works focus on computing the LCA nodes andhaeotvhole XML subtrees
rooted at the LCA nodes. These subtrees are needed in orderktohe results and display them
to the user, since ranking typically depends on the typesetbnnections. Furthermore, Xu and
Papakonstantinou [20] and Li et al. [18] provide efficiegalthms for locating only th&mallest
LCAs(see Section 6).

This paper presents algorithms to computelti@mum Connecting Trees (MCTafthe nodes
that contain the keywords, that is, the subtrees rootedeak @As of the nodes that contain the

keywords. We make the following technical contributions:

e We formulate two main problems: (i) identifying and presegtin a compact manner all
MCTs, which explain how the keywords are connected, andidentifying only MCTs

whose root is not an ancestor of the root of another MCT.

e We design and analyze efficient algorithms to compute MCT$wb cases: (i) when the
XML data has been pre-processed and relevant indices havedoastructed, and (ii) when
the XML data has not been pre-processed, i.e., the XML dat@oby be processed sequen-

tially.

e We perform a detailed experimental evaluation to study #webts of our approach, and
show that our algorithms considerably outperform bothraigorithms for keyword prox-

imity on labeled graphs [7, 17, 13] as well as other applieapproaches.

Notice that this work only focuses on how to efficiently rettine connections between the nodes
that contain the keywords. However, similarly to previo@A.works [20, 18], it does not solve the
problem of how to rank these connections. Intuitively, th€ Ms the basic connecting component
between objects of a tree although the specific strengthi@ttnnection has its own merit. The
ranking problem has been studied in previous works [14, [¢, Ti# combination of our execution

framework with these ranking techniques is left as futurekwo



The rest of this paper is organized as follows. We describatitation we use and formulate
the problems in Section 2. Our algorithms for the case ofxadeXML data are presented in
Section 3, and for unindexed data in Section 4. We presentalete experimental evaluation
of our algorithms in Section 5. Related work is discussedanti®n 6, and we conclude with

directions for further work in Section 7.

2 Framework

2.1 Notation

We use the conventional labeled directed tree notationgesent XML documents. Each node
v of the tree corresponds to an XML element and is labeled witiga\(v). If v is a leaf node
it also has a string valueal(v) that contains a list of keywords. We assume that each mode
has a unique idd(v). Figure 1 illustrates a tree that will be used in the examplé&v) is the
first component of the 4-tuple associated with each nod&he other three components will be
explained in Section 3.2, where we first make use of these coers.

A keyword querys simply a set of keywords, ..., k,,. It returns a compact representation
of the set of trees that connect the nodes that contain thedeelg in their value or their tag. The

following discussion formally defines and motivates the getics.

Definition 2.1 (MCT and LCA) Theminimum connecting tree (MCT9f nodes, . . ., v,, of the
input labeled tred’ is the minimum size subtrdg, of T" that connects, . . ., v,,.

The root of the tree is called tHewest common ancest@tCA) of the nodes;, ..., v,,. &

An MCT of keywordsk;, ..., k,, is an MCT of nodes, ..., v,, that contain the keywords.
For example, the MCTs (1) and (2) are two of the MCTs of the gu@&om, Harry”, and the
MCTs (3), (4) and (5) correspond to the query “Tom, Dick, iarr

a1 < p1 — a2 (1)

ag < Pg < S3 — P5 — Qg (2)



[r,1,42,0] root
[c1,2,41,1] conference
[s1,3,16,2] session
[p1,4,9,3] paper
[a1,5,6,4] aut hor (Harry Smith)
[a2,7,8,4] aut hor (Tom Jones)
[p2,10,15,3] paper
[as,11,12,4] aut hor (Tom Br own)
[a4,13,14,4] aut hor (Dick Smith)
[s2,17,26,2] session
[p3, 18,25,3] paper
[as,19,20,4] aut hor (Tom G een)
[ag,21,22,4] aut hor (Harry Brown)
[a7,23,24,4] aut hor (Di ck Jones)
[s3,27,40,2] session
[p4,28,31,3] paper
[as, 29,30,4] aut hor (Harry Jones)
[ps,32,35,3] paper
[ag, 33,34,4] aut hor (Tom Snith)
[pe, 36,39, 3] paper
[a10,37,38,4] aut hor (Di ck Brown)

Figure 1: Input Labeled Tree Used in Examples
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According to the typical assumption of keyword proximitysssms [7, 13, 17, 16, 4], smaller

ag Qg aig

MCTs are considered better solutions since they provideseclconnection between the key-

words. However, our framework and algorithms are not tiea particular ranking function, since
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we focus on efficiently generating all the MCTs. In our rurghexample, MCT (1) is better than
MCT (2) since MCT (1) shows that Tom and Harry are co-authdmidenMCT (2) merely shows
that they both had papers in the same session of the conéer8milarly, MCT (3) is better than
MCT (5), since MCT (5) shows that the 3 authors are linkedubo3 different papers in the same
session, while MCT (3) shows that they are linked througty @étlifferent papers in the same
session. Indeed, we will later augment our keyword queadstind the size of the MCTs, since
beyond a size the result is often uninteresting.

The set of MCTs is often overwhelmingly large since it maytaamthe following form of data
redundancy, which leads to a number of MCTs that is expoaleintthe number of keywords in
the query. Consider a ligt of nodes that contaih,, a listl, of nodes that contaih,, and so on,
up to a listl,,, of nodes containing,,. Suppose node is the pair-wise LCA of the nodes of the
lists and all nodes are at equal distances frorin our running example, there is such a Jist, as]
of “Tom” nodes (l;| = 2) and a list[ag, ag| of “Harry” nodes (lz| = 2), such that their common
LCA is ¢; (conference). Then there alig| x |l5| x ... x |l,,| MCTs. Notice that if there arg j
such that/;| > 1 and|l;| > 1, then each MCT can be implied (inferred) by the other MCTs and
the set of MCTs is redundant. For example, the MCTs

Qg <= P1 < S1 < C — S2 — P3 — Qg (6)

A3 «— P2 <= 81 <~ C — 83 — P4 — A (7)

of query “Tom, Harry” together imply the MCTs

Qg <= P1 < S1 < C — 83 — Pg — ag (8)

a3 < P2 < 81 <~ C1 — S — P3 — Qg (9)

The encoding of the set of MCTs grouped distance treagsolves this problem. We first

define distance MCTs.

Definition 2.2 (DMCT) Consider nodes, ..., v,, ofthe inputtred’. TheDistance MCT (DMCT)
Tp = d(Ty) of the MCTT), of nodesu,, . .., v, is the minimum node-labeled and edge-labeled

tree such that:



1. Ty contains the nodes,, . . ., v,,,
2. Tp contains the LCAs, . .., u; of any pair of nodesv;, v;) wherev;, v; € [vy,...,vp],
i g
3. there is an edge labeled with the numbér between any two distinct nodes

n,n’ € {v,...,vm,u1,...,u} if there is a path of lengtld from»’ to n in Ty, and the

path does not contain any nodé < {u, ..., u,,} other thann andn’. [ |

The DMCT (10) corresponds to the MCT (1) and the DMCTs (11-ddirespond to the
MCTs (6-9).

ap < p1— Gz (10)
as & o > ag (11)
as & c1 3, as (12)
ay - ¢ 2 ag (13)
as & C1 3, Qg 14

Notice that the exponential explosion in the number of keylsas still present.Grouped

DMCTsresolve the problem (if possible) by grouping together DN®@T the same structure.

Definition 2.3 (GDMCT) A Grouped DMCTof a treeT  is a labeled tree where edges are labeled
with numbers and nodes are labeled with lists of node id®ffo

A DMCT D belongsto a GDMCTG if D and G are isomorphic. Assuming that is the
mapping of the nodes @ to the nodes of7, which induces a corresponding mapping, also called

f, of the edges ab to the edges afr, the following must hold:

1. ifnp is a node ofD, ng is a node of5 and f(np) = ng then the label of.; contains the id

Oan,

2. ifep isan edge oD, e is an edge ofy and f(ep) = eq then the label ot , and the label

of e are the same number. [ |



The GDMCT (15) captures DMCTs (11-14). The notatigfu,, a3) indicates that the label of

the nodeu, is [as, as).
3 3
Ul[CLQ, a,g] — Up [Cl] — U9 [CI,@, ag] (15)

Note that each tree that is an instance of a GDMCT and is alsbtae® of the XML data tree
T is a DMCT of an MCT ofT".
We define the size of a GDMCT (or DMCT) to be the sum of the wesigditits edges. We

often eliminate from the solution those trees whose sizeseaxka user-provided size threshald

2.2 Problems

We consider two closely related keyword search problemisisyaper.

Problem 1 (All GDMCTs Problem) Given an input labeled tre€, keywords:,, . . ., k,,, and an
integer &, find the minimal set of tuplés, G), whereG is a GDMCT whose root has list labgi]

such that:

1. nisan LCA ofky, ..., k,,,

2. each DMCTD of size up taK rooted at node: that is an LCA of;, .. ., k,, belongs to at
least one GDMCT, such that(n, G) is a tuple,

3. if any node ich; is removed from the labéh,, ..., n;,...,n,] of anoden’ € G of a tuple
(n, G) then there is at least one DMCID of size up taX that does not belong to any tuple
though it is rooted at the LCA of k4, ..., k,,.

4. every nodey; of the label[n,,...,n;,...,n,;] of a noden’ contains the same subsgtof

keywords fronk, . .., k..

5. the size of’ is no more thank. [ |

1This condition ensures that each DM@X contained in the GDMCT (that i) is also contained ifi") contains
all keywordsky, . .., k.



The query “Tom, Harry”, withK' = 5 returns the relation (16), while the same query with
K = 3returns (17).

T,-.
I
l»—-
<

{ (1, wilaa] = yglp] = ujlas])
(s1, U%[al] T Ug[sl] T U%[a:a]) (16)
(ps, uilas] < ug[ps] — u3lag])
(53, ullas] < uflss] > uilag]) }

{ (», wuilad] T ug[pi] T uj[as)) a7
(ps, uilas] & ug[ps] — u3lac]) }

A closely related problem to Problem 1, discussed next, eswhich returns only GDMCTs

whose roots (i.e., the LCAs) are not themselves ancestamots of other returned GMDCTSs.

Problem 2 (Lowest GDMCTs Problem) Given an input labeled tre&’, keywordsk, ..., k,,,

and an integers, find the minimal set of tuplds, G), such that:

1. (n,G) is a tuple for Problem 1, i.e., the All GDMCTs Problem, and

2. if (n’,G’) is also a tuple for Problem 1, thenis not an ancestor af’. i

For Problem 2, the query “Tom, Harry”, witR = 3 still returns (17), while the same query
with K = 5 returns the relation (18). Note that the tuple with= s; from the relation (16) is no
longer a solution for the Lowest GDMCTs Problem since it imanestor of nodg; which is part

of a solution.

lag)) (18)

In this paper, we focus our attention on these two problenmesalb consider variants of Prob-
lems 1 and 2, where we are interested in returning only the4 @t the complete GDMCTSs),
provided there is at least one DMCT rooted at the LCA with simemore than/k'. We refer to

these variants as the “All LCAs Problem” and the “Lowest LaAsblem” in the paper.



Notice that, in practice, one may augment GDMCTs with adddl information about their
nodes. For example, one may ask that the title of the papdwaya displayed along with the
paper. [17] has introduced the “target objects” concepttudte this requirement. For simplicity,
we will neglect such augmentations since they do not affeetperformance issues that are the
focus of this paper.

In the sequel, we design efficient algorithms for these @wisl, and experimentally evaluate
them, under two cases: (i) when the XML data has been prespsed and relevant indices have
been constructed before the keyword query is evaluatedi¢8e®), and (ii) when the XML data

has not been pre-processed, i.e., the XML data can only lmegsed sequentially (Section 4).

3 Algorithms: Indexed XML Data

In this section, we first focus on Problem 1 (All GDMCTs), aresigin two competitive algo-
rithms to solve it: a straightforward, nested-loops altjon, and a more sophisticated stack-based
algorithm that is tailored to the XML tree structure in idéyihg LCAs and GDMCTs. We then
discuss the modifications to our stack-based algorithmatteaheeded to solve the variants (Low-
est GDMCTs, All LCAs and Lowest LCAS) of our core problem. $halgorithms are compared

experimentally in Section 5.

3.1 Al GDMCTs: Nested Loops Algorithm

Intuitively, the nested loops algorithmll{) for the case of indexed XML data operates over sep-
arate lists of noded,(k), one for each query keyword, to identify the GDMCTs whose sizes
are no more than the user-provided threshéld,The master index for the nested loops algorithm
is organized as an inverted index, as follows. A hash tabke Keywords are the keys) of all the
keywords in the XML data tre@' is created and for each keywokdve keep a list.(k) (value of
hash table) of the nodesof T that contairk, where each node is stored with itath-id the list

of node ids along the path from the root’6fto n. This choice facilitates the easy identification
of the LCA and the GDMCT of a set of nodes, which can be detezthby simply examining the
path-ids of the respective nodes. This index is built in cagspovefl’ before any query arrives.

For example, some entries in the master index for the XML ¢fdegure 1 are shown below.



Nested-Loops Algorithmg, ..., &k, K) {
R: array of result GDMCTs;
Fori=1,...,mdo
GetL(k;) from master index;
For each combinatiofuy, . . ., u,,) with u; € L(k;) do
met = getMCT(uy, . .., U );
if (size(mct) < K)
Add mct to its corresponding GDMCT i if such
a GDMCT exists, else create a new GDMCTRnR
Return R;

}

getMCT (uy, ..., um ) {

Let p; denote the path-id ai;;

depth = 0;

While p;[depth] = ... = py,[depth] do
depth + +;

LCA = p1[depth — 1];

Return the MCT rooted at LCA,;

}

Figure 2: Nested Loops Algorithm

Tom [[73 C1, 817p17a2]7 [T7 C1,81,P2, (13], [Tv C1,52,P3, (15], [Tv C1, 837p5>a9]]
D Ck: [[7“7 C1, Slap27a4]7 [T7 C1,52,P3, CL7]7 [Ta C1, 53, D6, alOH

Harry: [[r,c1,s1,p1,a1],[r, c1, 82,03, a6], [T, €1, 83, pa, ag)]

The execution stage of the Nested Loops Algorithm, usingjitidex, is presented in Figure 2.
Essentially, it checks all combinations of nodes from thgwad lists, computes an MCT (min-
imum connecting tree) for each combination, and then meigesesulting MCT into the list of
result GDMCTSs, provided its size is within the user-spedifiereshold.

For example, given the keyword query “Tom, Harry”, and ashd K = 3, the Nested Loops
algorithm would examine th&2 node-pairs in the cross-product of the index entries for amiah
Harry, computd 2 MCTs, determine that only of them meet the threshold, and finally return two
GDMCTs (see relation (17)).

There are two main sources of inefficiency in the Nested La@bgsrithm. First, as illustrated
in the above example, it has to check all the combinationsodea from the keyword lists, i.e.,

getMCT(.) is called L(ky)| x - - - x | L(k,,)| times. Second (not illustrated in the above example),
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the grouping of the results into GDMCTs is not tightly intetgd with the algorithm and a lookup
to the arrayR is required for each relevant MCT found.

We next present a stack-based algorithm that overcomesthesie sources of inefficiency,
is tailored to the XML tree structure in identifying GDMCTand delivers performance that is

considerably better than the Nested Loops Algorithm.

3.2 Al GDMCTs: Stack-Based Algorithm

Our stack-based algorithm, which we refer t&cds makes use of a node numbering system, which
associateg¢start, end, depth) numbers with each node in the XML tree, whettear t
andend correspond to the first and the final times the node is visitead depth-first traversal of
the XML tree, anddept h is the depth of the node from the root of the tree. In Figured depict
the(start, end, depth) numbering with each node, as the last three components of the
4-tuple. For example, the numbering associated witts (3, 16, 2). Such a numbering has been
repeatedly utilized (see, e.g., [21, 5]), in a variety of Xkélated algorithms.

This numbering permits efficient checking of ancestor-dadant (or containment) relation-
ships (by comparing containment of the correspondiagart, end) intervals), and can also
be used to determine thiistancebetween an ancestor and a descendant node in the XML tree
(by computing the difference between correspondiegt hs). This latter fact (only exploited
in [21, 5] to check parent-child relationships) will be verseful for us to efficiently compute sizes
of MCTs. For example, one can determine thats an ancestor ai, (since the interva(3, 16)
contains the intervall3, 14)) and also determine that the distance between thexfiis.,4 — 2),

without knowing the intermediate node betwegranda,.

3.2.1 Index Structure and Algorithm

Intuitively, the stack-based algorithm for computing GDIVK; on indexed XML data, operates

over lists of nodes, two for each query keyword (these listdascribed below). It
e maintains candidate LCA nodes on a stack,

e computes and maintains partial GDMCTs at each candidate, f@Aubsets of query key-

words, and
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e computes and outputs result GDMCTs when all descendantsnafde candidate LCA are

known to have been examined.

In order to do so, the lists associated with each keywonged to contain, in addition to the
nodes off" that containk, ancestors of these nodes as well. This is because, whilesthar t ,
end, dept h) numbers suffice to check ancestor-descendant relatis)ghgy are insufficient
to identify the lowest common ancestors. For example, ongldvoot be able to determine that
the lowest common ancestor @f (with node numbering5, 6,4)) andas (with node numbering
(11, 12,4)) is s, (with node numbering3, 16, 2)).

Indexing by keyword is provided by the master index, whicbriganized as an inverted index,
as follows. A hash table of all the keywords in the XML dataffés created and for each keyword

k we keep two lists:
e [ (k) of the nodes of that contairk in 7', and
e [%(k) of the ancestors of nodes I k).

That is, the (master) index consists of two lisigX) and L“(k)) for each keyword. Each node
is stored agid, start, end, depth), and L(k) and L*(k) are sorted in ascendingt art order.
This index is also built in one pass ovErbefore any query arrives. For example, the entries for

keywords Tom, Dick and Harry, in the index for the XML tree ofjire 1, are shown below.

Tom L =[(a2,7,8,4),(a3,11,12,4), (a5, 19,20,4), (ag, 33,34,4)]
L* =1(r,1,42,0),(¢1,2,41,1), (s1,3,16,2), (p1,4,9,3), (p2, 10,15, 3), (s2, 17, 26, 2),
(p3, 18,25, 3), (s3,27,40,2), (ps, 32, 35, 3)]

Di ck: L =[(a4,13,14,4),(a7,23,24,4), (a0, 37,38,4)]
L* =1(r,1,42,0),(¢1,2,41,1), (s1,3,16,2), (p2, 10,15, 3), (s2, 17,26, 2), (ps3, 18,25, 3),
(s3,27,40,2), (ps, 36,39, 3)]

Harry: L =[(a1,5,6,4), (ag,21,22,4), (as, 29, 30,4)]
L* =1(r,1,42,0),(¢1,2,41,1), (s1,3,16,2), (p1,4,9,3), (s2,17,26,2), (ps3, 18,25, 3),
(s3,27,40,2), (p4, 28,31, 3)]

While the L® lists in this index are not present in the index for the nekiefs algorithm, each

entry in theL and L* lists is small and of fixed size, unlike in the nested loopeifivhere the
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Stack Algorithm SAk1, ..., km, K ) {
S: stack, where stack entgyconsists of §.nodelD,s.GDMCTSs), wheres. GDMCTs is a list of GDMCTs

1. L « GetListy, . .., kn);
2. While S not empty OR more nodes ihdo {

n « Find node with smallest start value In

While S is not empty AND top§).end< n.start do

POPG);

PUSH¢, S);

¥

~~oakw

Figure 3: High Level Description of Stack Algorithm for AIIMCTs Problem

entry size depends on the length of the path from the rooteoKiL tree). The asymptotic size
complexity of the master index for the Stack Algorithm istbethan that of the master index for
the Nested Loops Algorithm. This is because each ancestamaide containing keyword is
represented only once in the Stack Algorithm’s master indérereas each ancestor is represented
in the path-ids of the Nested Loops Algorithm’s master indsxnany times as it has descendants
that contain keyword:. Hence, generally deeper (resp. more shallow) trees eedgss (resp.
more) storage for the SA master index, compared to the Néstepls Algorithm index. We shall
also show empirically, in Section 5, that the sizes of thetaraadices for the two algorithms are
not substantially different.

We next describe the execution stage of the Stack Algoritnmmare detail. To clarify the
description and point out the novel contributions of theoalfpm, we split it into two parts. The
first part (Figure 3) describes how the selected list of naglésaversed in a depth-first manner
and the nodes are pushed and popped from the stack. Thisftgpeck-based traversal has been
successfully applied in previous works [5, 10] to efficigrathswer XML join queries as we explain
in Section 6. The second and novel part (Figure 4) of $Aealgorithm is the processing and
bookkeeping performed at each stack operation (i.e., pudpap) in order to maintain a minimum
amount of information that allows the efficient and timelymut of the GDMCTs.

The stackS consists of entries of the form.odelD,s.GDMCTSs), wheres. GDMCTs is a list
of GDMCTs found so far, rooted at the node withsighodeID. These GDMCTs may lpartial,

i.e., contain a subset of the query keywords, and are ambtaith the keywords their nodes

contain.
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GetlList(y, ..., km) {
1. Fori=1,...,mdo;
2.  GetL(k;) andL*(k;) from master index;
3. return(N?L(k;)) J(U; L(k;));
I* N?2L(k;) computes, in a single scan, nodes that appear in at leaststinctilists */ }

POPG){
4, h — pop(S);
5. Output and remove frof. GDMCTs those GDMCTs that contain all keywords;
/* results whose LCA ig */
6. h' «— top(S);
7. For each GDMCTZ in h.GDMCTSs do{
/* migrate the remaining GDMCTs dfto h’ */
8. d = h.depth—h'.depth;
9. r « root(G); /* r.nodelD= h.nodelD */
10. If degree(r) = 1 AND e is the edge of7 incident or then{
/* h does not have to be in the GDMCT, ahdcan replacé: as the new root */
11. label(e) < label(e) + d; I* GDMCT edge label */
12. label(r) < h'.nodelD; /* GDMCT node label *}
13. else{ /* h still needs to be in the GDMCT, and a new root must be created */
14. Create a new roet for G, andlabel(r") — h'.nodelD;
15. Add edge’ from ' tor, andlabel(e’) < d; }
16. If size(G) > K then dropG; /* pruning condition, size= sum of edge labels ¥

[* the next two steps combine and merge the GDMCT5 wfith those ofh’ */
17. h'.GDMCTs« h/.GDMCTsU CreateNewGDMCTsf.GDMCTSs,h'.GDMCTSs );
18. h'.GDMCTs+ Merge(h.GDMCTs,h'.GDMCTs ); }
PUSH@, S){
19. Pushs(n, ) ontoS; /* new stack entry */
20. Fori=1,...,mdo
21. If n containsk; thens.GDMCTs« s.GDMCTsU{n'};
* superscript identifies the keyword contained in the new single-nodejgdaDMCT */ }

CreateNewGDMCTsk.GDMCTs,h'.GDMCTs ){

[* Generate new GDMCTs that contain multiple keywords. sethat

even GDMCTs with all keywords will not be output at this poifit

22. NewGDMCTs— 0;
23. Foreacls € h.GDMCTs do

24, For eacl’ € h’'.GDMCTs do
* check if G’, G are disjoint */
25. If keywords(Z) N keywordsG’) = ) AND size(G) + size(G') < K then{
/* glue the disjoint trees on their common root */
26. NewGDMCTs— NewGDMCTsU mergeGDMCTSG, G'); }

27. Return NewGDMCTs}
Merge(h.GDMCTs,h'.GDMCTs ){

[* combine isomorphic trees */
28. NewGDMCTs— h.GDMCTsUR .GDMCTS;
29. Foreacls € h.GDMCTs do

30. For eacl’ € h’.GDMCTs do
31. If keywords(z) = keywords(G') AND G, G’ are isomorphic with mapping from G to G’
32. AND for every node:’ € G, " € G/, pu(u?) = v’ then{
/* merge node lists with the same keyword match.*/
33. Replace?, G’ in NewGDMCTSs by mergeGDMCTE&L, G, u); }

*mergeGDMCTSs(.) differs from Merge(.) because (a) it itgpR single GDMCTSs, and */
* (b) it does not check any condition before merging.*/
34. Return NewGDMCTSs}

Figure 4: Operations of Stack Algorithm for All GDMCTs Prebt
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The algorithm scans the lidt consisting of nodes that either contain at least one keyword
are ancestors of at least two nodes that contain the querydtdg; these are the only nodes that
have the chance of being an LCA or participating in a GDMCTd&wofL are being pushed and
popped from the stack as the scanning proceeds. In particular, at the end of ea@tidan of the
main loop (i.e., of the loop of lines 2—6 of Figure 3) the toprgmf S contains the node with
the highesst art value seen so far. The other entries of the stack correspothe ancestors of
n. Beforen is pushed onto the stack, all the stack entries that do noégpond to ancestors of
n are popped frond. This is accomplished by the loop of lines 4-5 of Figure 3. Wha entry
h is popped fromS, any complete GDMCTs fromd.GDMCTs are output (line 5 of Figure 4).
The remaining GDMCTs are partial. Since there is a posgjtifiat the parent oh may have
descendants that have the keywords that the partial GDMU$s, the partial GDMCTs of:
become partial (or complete) GDMCTs of its paréhtNotice that the entry’ may already have
partial GDMCTs that reflect the keywords found in descenslaht)’ that were inspected before
h. The transfer of each partial GDMGQT of & to the set of GDMCTs ok’ follows the following

steps:

e modify GG to reflect the new root (lines 10-15) of Figure 4,

e check to see if7 satisfies the pruning condition (line 16 of Figure 4)

Once we have the modified and pruned set of partial GDMCTswé compare them against
the GDMCTs of its parent’ and create new GDMCTs as is appropriate (line 17 of Figure 4),
which we merge with the GDMCTs df. In particular, we create a new GDMCT for each pair of
GDMCTs fromh and?’ that can be “glued” together to contain a larger subset ok#ysvords
(lines 23-26 of Figure 4). Finally, we merge (line 18 of Figu) into the same GDMCT every
pair of GDMCTs fromh and?’ that are isomorphic, to ensure the minimality of the number o
produced GDMCTs.

Notice that the reason that the result GDMCTSs rooted at rhoalee output wher is popped
from the stack (line 5 of Figure 4) and not when they are itytiproduced (lines 17, 22—-27 of
Figure 4) is because there could be more GDMCTSs that are ‘@abtg” with the GDMCTs already
produced (lines 18, 28—-33 of Figure 4).
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3.2.2 lllustrative Example

We illustrate the execution of our Stack Algorithm, usingextample, with two query keywords
“Tom, Harry”, and a threshold of. The master index listé& and L® are shown above for these
qguery keywords. In line (3), the intersection bf(Tom) andZ“(Harry) would produce the list
[(r,1,42,0), (¢1,2,41,1), (s1,3,16,2), (p1,4,9,3), (52,17, 26,2), (ps, 18, 25, 3), (53,27, 40, 2)].
Notice that the entrie§p,, 10, 15, 3), (p4, 28, 31, 3) and (ps, 32, 35, 3) are not present in this list,
since they are ancestors of only one of the query keywordshance can neither be an LCA, nor
be part of any GDMCT.

The Stack Algorithm then iteratively chooses entries frone conceptual union of)(Tom),

L(Harry), and this intersection. Some of the initial stackas in the execution are depicted below.

(pla @)
(817 (b) . . . . .
1. (. 0) The first four entries in the intersection of thés are pushed o8.
C1,
(r,0)
(a1, {ai})
(p1,0) The first entrya; from L(Harry) is pushed oiy, and a partial GDMCT is
2. | (s1,0) created; the superscript Bfin the GDMCT ofqa, indicates a match for the
(c1,0) second query keyword “Harry”.
(r,0)
(p1, {p1 = a})
3 (s1,0) When examining the first entry, from L(Tom), the top of stack; is
' (c1,0) popped, and a new GDMCT is createghat
(r,0)
(a2, {a3})
(p1, {1 EN a?}) | The first entrya, from L(Tom) is pushed o, and a partial GDMCT
4. | (s1,0) is created; the superscript bin the GDMCT ofa, indicates a match
(c1,0) for the first query keyword “Tom”.
(r,0)

16



When examining the second entny from

—) 2 gl <— i) —)
(b1, {pr = afay < p = a1 = az}) L(Tom), the top of stacks is popped, and new
51,0
S. E ' @; (combined) GDMCTs are createdat Note
c1,
(r.0) that a solution has been found, but it is not out-
T?

put yet.

When examining the second entryfrom L(Tom), the top of

. E:’;;l = ation = ab) stackp, is also popped, and the answigr, a} < p, — a2)
.0) is output. Additional GDMCTs are also associated with the
(new) top of stacls;.
(a3, {ag})
- (s1,{s1 > a2, s1 > al}) | The entryas from L(Tom) is then pushed on the stack, and a
(c1,0) partial GDMCT is created.
(r,0)

(s1,{s1 = a, 51 > [a},a}]})

8. | (c1,0)

(r,0)

When examining the next entgy from the intersection of.*(Tom) andL®(Harry), the top

of stackas is popped, new GDMCTs are created, and merged with the GDMG3aciated
with s;. In particular, the GDMCTs; 2, a} is created (since; is at distance from s;), and
merged withs, = al, resulting ins; = [al, al]. The GDMCTa} & s; = a2 is not created,

since its size (oft) exceeds the user-defined threshold.of

9. Entries from the lists continue being examined, new GDMCieated, and pruned until all

the answers are output.

3.3 Lowest GDMCTs: Stack-Based Algorithm

We now present a simple modification of the Stack Algorithririgiures 3, 4 to efficiently answer
Problem 2 (the Lowest GDMCTSs Problem). This is the case whemser is interested only in the
lowest GDMCTs, i.e., those GDMCTs whose roots are not aocesif other returned GDMCT
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roots. The key observation is that once we output the GDMQG&smdeu (in line 5 of Figure 4),
none of the ancestors afin the stack can be LCAs of returned GDMCTSs; hence, we canvemo
all of them from the stack! Specifically, we can add the foilogvlines after line 5 of the Stack

Algorithm in Figure 4.

5a. Ifa GDMCT was output thef
5b. S — 0

5c. return;}

As an example, consider again the query keywords “Tom, Habgt with a threshold ob.
Once the first solutiorp,, al Lp L a?) is output in Step 6 (in the illustrative example of
Section 3.2.2), the stack is emptied. Thus, no GDMCT with @Alof ¢, or s; would be returned.
(Note that, in the All GDMCTs Problem for this example, théusion (s, at < s; = a2) would
also be returned.) We refer to this algorithmS#s_owAl | .

3.4 LCAs: Stack-Based Algorithms

The Stack Algorithm can also be easily modified to solve theL&IAs Problem and the Low-
est LCAs Problem, where the user is not interested in the GD8/6ut only in the LCA nodes.
Essentially, the algorithms, which modifyA and SALowAl | and we refer to aSAOne and

SALowOne, respectively, would still need to maintain GDMCTs withcktaodes, with two sim-

plifications:

e Procedure Merge(.) in Figure 4 could be simplified, no meygihGDMCTs would need to

be done, and line 33 could be replaced by:

33. Remove one aff, G’ in NewGDMCTs;

e Itis possible to output an LCA early when the first GDMCT (wathkeywords) is computed
for that node (in Procedure CreateNewGDMCTs(.) in Figurerdtead of waiting until the

node is popped from the stack.
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An important point to note is that, while tempting, it doeg soffice to simply (i) maintain,
with each stack node, the distancel; to the closest descendantof » found so far containing
keywordk;, and (ii) produce an output when each distance has beenifilleshd the sum of the
distances i< K. This is because, except for the special case of two quenyd&s, the size of a
GDMCT is not simply the sum of the distances from the LCA toreatthe nodes containing the

m keywords.

3.5 Complexity Analysis

This section presents (Section 3.5.3) a worst-case coitpkexalysis forSA. Before doing so,
we perform an analysis of the maximum number of the resulBRMCTs (Section 3.5.1) and
we discuss how individual operations 8A can be performed in linear time on the size of the
GDMCTs (Section 3.5.2).

3.5.1 Total Number of GDMCTs

We show that in the worst case the numbers of DMCTs and of GD8&®& exponential on the
number of keywords. However, under reasonable assumptixplained below, the worst case
number of GDMCTs is smaller than that of DMCTs. Also noticattm practice the number of
GDMCTs is typically much smaller than the number of DMCTse dio the grouping.

Consider a query withm keywordsk, ko, . . ., k... Let L(k;) be the list of the nodes of trée
that contain keyword;. A DMCT can be obtained by combining one node from each oftlists
L(k;),1 < i < m. Thus, in the worst case, the total number of DMCTSs is givelBy, |L(k;)|,
which is exponential imm. GDMCTs group isomorphic DMCTSs to provide a more compaatltes
But what is the worst case total number of GDMCTs? We showtthatcan also be exponential
in m.

In particular, consider a node that has each of the: keywordsk; in its subtree, and each
keywordk; occurs ath different depths! = 1,..., h in the subtree rooted at It is easy to see
that there has to be a different GDMCT for each combinatiotkeyword, depth). In this case,
there ard[” ;h = h™ GDMCTSs, which is exponential im.

However, under reasonable assumptions, the number of GBMEasymptotically smaller
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that that of DMCTs. Consider the simple case where GDMCTg mavinternal nodes, no node

contains more than one keyword, and the XML tree has hdijhTThen the maximum possible

number of DMCTs id1", | L(k;)| as above, but the maximum number of GDMCT4g{i% (each

of them keywords can be indepth ..., H). Hence, ifH is viewed as a constant, the number of

GDMCTs is asymptotically smaller than that of the DMCTs.

3.5.2 Complexity of Finding Isomorphic GDMCTs

Deciding when two GDMCTs can be mergedSA is expensive, unless we refine the representa-
tion of GDMCTs. In this section we describe a canonical repngation of a GDMCT that allows
(a) arapid determination of whether GDMCTSs can be gluedttagen CreateNewGDMCTSs (lines
23-25 of Figure 4), and (b) checking whether two GDMCTSs apenigrphic, permitting them to be

merged (lines 31-33 of Figure 4). In this canonical represem:

e Each node in the GDMCT is annotated with the keywords in itsree, in lexicographic

ordering, and the size of its subtree.

e The children sub-trees (rooted at nodgs. . . n;) of noden are ordered according to lexi-

cographic ordering of the annotations of the roots of théddren subtrees.

Given this canonical representation, one can linearize3B&CTs in an XML-like nested
representation with start and end tags, obtained from tde aonotations. Given this linearized

representation:

e Checking whether two GDMCTSs can be glued together requinesking if their keyword
sets are disjoint, and if their combined size does not exééeathich can be checked using
their annotations in the canonical representations; tmske done in a single pass of the
GDMCTs, that is, in linear time on the size of the GDMCTSs.

e Checking whether two GDMCTs are isomorphic can be done bwtagy the canonical

representations; this can be done in linear time on the $iteedGDMCTSs as well.
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3.5.3 Time Complexity of SA

In the SA algorithm, each node in(which is computed in GetList) is pushed on to the stack, and
popped from the stack, at most once. When a node is poppedtfi@stack, its GDMCTs need
to be compared (and possibly merged) with the GDMCTs of iteqanode in the stack. Since
each operation on a pair of GDMCTs can be done in linear timinersize of the GDMCTSs, the
total time complexity of SA is a function of the total numbdér@DMCT comparisons, which is

guadratic in the total number of GDMCTSs. As a result, in thestxwase, we have:

Theorem 1 The time complexity of SAG(|L| + K - (IT7%, |L(k;)|)?)).

4 Processing Unindexed XML Data

In this section, we consider the case when no master indexaitable on the XML data tree,
and the goal is to efficiently solve the All GDMCTs Problem &ospecific keyword query (with

a threshold). Both the Nested Loops Algorithm and the Stalgothm have straightforward
adaptations to work without index lists, by doing a singlepaver the data tree. In particular,
NLSt r eam which is the streaming version B, first traverses in one pass the data tree to create
the index lists of the query keywords and then executes thaltyhrithm?. The streaming version

of the Stack Algorithm, which we refer to &ASt r eam is realized by making the following
changes to the Stack Algorithm of Figures 3, 4. Notice tiabt r eammakes an additional pass

over the data tree, unlikeASt r eamwhich just makes a single pass.

Remove line 1 of Figure 3.
Replace lines 2—3 of Figure 3 with:
2. While S not empty OR more nodes i do
3. n « Getnext node in depth-first order fraim

~

/*Note thatd in line 8 of of Figure 4 will always be 1.7

2The main drawback of this approach is that the indexing aecettecution stages are separated, which means
that the entire inverted index entries would have to be dtarel then processed. This factor becomes more important
when the index entries are too long to fit in memory, and areaddéw and from secondary storage during the indexing
and processing stages.
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Frequency| XMark 10MB | XMark 100MB| DBLP
1-10 41176 161048 401181

11- 200 10924 15883 19213
>200 1294 9210 956

Table 1: Number of keywords in each frequency range in the sketis used

5 Experimental Evaluation

We have designed and performed a comprehensive set of exges to understand the perfor-
mance of the proposed algorithms. We used both real and etyomitiata sets. The synthetic
datasets were generated using the XMark benchmark [2] fisusdatabase sizes. We also used
the DBLP database [1] to explore the performance of our dlgas using more realistic data
distributions. The experiments were conducted on a Xeo@RZ2computer with 1GB of RAM
running Windows 2000 Professional. The algorithms werdémented in Java and the parsing of
the XML files is performed using the SAX API of the Xerces Jaaaser®. The master index is
implemented as a Java Hashtable persistent object.

There are three main parameters affecting the performaineeralgorithms, namely (i) the
value of K denoting the threshold, (ii) the numberof keywords, and (iii) the size of the dataset.
To understand better the performance of our algorithmsdgwlords of different selectivities, we
perform experiments using sets of keywords having diffefreguencies, namelpw, correspond-
ing to keywords with frequency between 1 and 10 in each ddteation, medium corresponding
to keywords with frequency 11-200, ahigh, corresponding to keywords with frequency above
200. The number of keywords in each frequency range, in tifereint data sets used, is shown in
Table 1.

The experiments are divided into three classes. First wii@eathe proposed algorithBA,
and its variantsSALowAl | , SALowOne. As a baseline for comparison, we use the algorithm
NL, which computes LCAs and GDMCTs using a nested loops appro#e also evaluate an
improvement of this basic strategy that uses the optimalrahlgn for identifying the LCA of a
pair of keywords [15]. This algorithm\LOpt , still considers all pairs of keywords in a nested
loops fashion, but it identifies the LCA of a pair very effidignnamely inO(1) time. Next, in

Section 5.2, we evaluate our algorithms for the case whendiogs are available on the XML data.

Shttp://xml.apache.org/xerces-j/
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Figure 5: Varyingk’

(c) DBLP, medium frequency

Dataset (MBs)| SAindex (MBs)| NL index (MBs)
1 5.1 3.7
10 49 37
100 500 377

Table 2: Index Size Requirements®A

Each value reported in our graphs is an average collected 5® repetitions of the experiment.
Finally, we compare th8A algorithm against algorithms for keyword proximity seaachlabeled

graphs [16, 17, 4]. However, since the algorithms of therpnork operate on data stored in
relational database systems we also built a version of theoEAML data stored in a relational

database, so that the comparison is straightforward.

5.1 Evaluating SA and its Variants

Our first experiment evaluates the index size requiremditegropose®A algorithm, for differ-
ent sizes of XML data collections of the XMark benchmarksEive compare the size of the index
required by the Stack Algorithn8f) compared to the Nested Loops AlgorithidL( for various
XMark dataset sizes. We allocatebytes for each node identifier and easthar t , end value

in the depth-first numbering, anidbyte for thedept h number. Since thet art value serves
as a unigue node identifier as well, we take this into accauntr space computation for tisA
index. Table 2 presents the index sizeS#f compared with that oflL, for various database sizes
generated using the generation tools available in the XMarichmark. Considering the entries of
the table, it is evident that the index size requirement&fare abouB3% higher than that oNL.

As we will soon demonstrat&A introduces this small space overhead in order to providersrd

23



of magnitude performance improvements.

Figure 5 presents the performance of the algorithmis @he distance threshold) increases for
a fixed number of keywords (equal to two), for the XMark 100M#iélahe DBLP datasets. In the
rest of the section, due to space considerations, we do Beept the graphs for low frequency
keywords since we have found that they take constant tim&(8p msec which is the disk access
time) to execute. For the same reason, we only presentsdsulthe most common in practice)
medium frequency keywords for DBLP, because we use therlXifiglark dataset to show how the
time scales for frequent keywords (we have found that DBldbescfollowing the same patterns).

It is evident thaSAis considerably superior to boML andNLOpt . SA's performance benefits
are pronounced when high frequency keywords are invohiadegshe number of nodes from the
underlying XML tree involved in the operation increasessidarably. NL incurs high overhead
because it considers all possible pairs of nodes contaihi@gjuery keywords and groups the
results in GDMCTsNLOpt also considers all pairs, although each pair requires masshtime to
process (compared ) and thus its performance is somewhat improved. Disk aa@ssars to
be the dominating factor in Figure 5(a) and Figure 5(c) (bheeaelatively smaller lists of nodes are
involved due to medium frequency query keywords), whergasgssing time is the dominating
performance factor in Figure 5(b). Table 3 presents thesgeenumber of GDMCTs for the various
keyword frequencies in the 100MB XMark dataset, for diffaréhreshold values. It is evident
that the number of GDMCTs produced in the case of high frequéeywords is much higher,
contributing considerably to the increased overhead . oAindNL Opt , in addition to their inherent
overhead of considering all node pairs. The trend for alballgms is to experience a degradation
in their performance a&’ increases, for a specific data size and keyword frequencguse the
expected size of the stack nodes involved in the operatioreases. Notice that for algorithms
SALowAl | and SALowOne this degradation in performance is not significant, even pamed
to algorithmSA, since the output produced by these algorithms is much emat particular it
is interesting to observe that for the AlgoritieALowOne, which produces the least output, its
performance appears almost insensitive to the rangéwalues tested. In contrast, it only depends
on the specific dataset and subsequently on the corresgpgdéary keyword frequency.

Figure 6 presents the results of an experiment exploringén®rmance impact of an increas-

ing number of keywords, for a fixed threshald = 5. Notice that for clarity of displayNL Opt
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K | medium frequency high frequency,
5 0. 38 33.9
10 28 186
15 37 385

Table 3: Average number of GDMCTs for the 100MB XMark datagmt medium and high fre-
guency keywords
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Figure 6: Varying number of keywords

(c) DBLP, medium frequency

is not plotted since its performance is very closé\Nta SinceNL considers all combinations of

keywords, one from each keyword list, its performance datates exponentially to the number
of keyword lists. AlgorithmSA and its variants are capable of scaling gracefully to aremsing
number of keywords, since they perform a single pass ovekayword lists and their performance
benefits are substantial.

Figure 7 presents the performance of the algorithms foresming database size, for various
values of the distance threshald; notice the log scale on thg axis. To isolate the effects of
increasing data size, we present the results for keywotdsted uniformly at random among the
1000 keywords with the highest frequency in each data speotisely. The results, which are
shown in Figure 7, indicate that the proposed algorithmieggracefully with increasing database
size, exhibiting almost linear increase in performancédnwitabase size. The scalability limita-
tions of algorithmN\L are evident in the figure. Increasing the database size eceegbto increase
in effect the absolute frequencies of the most 1000 freckeywords, which is the keyword collec-
tion from which our queries are derived. As a result, by iasieg the database size, the keyword
lists provided as input to each algorithm respectively atemmlarger in size. Table 4 presents

some statistics of the distribution of frequencies of thed.tost frequent keywords, as the size
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Size max freq | min freq | avg. freq
10MB 6663 218 296
100MB | 66247 2176 2945
300MB | 1999274 | 6557 8820

Table 4: Statistics on the frequency of 1000 most frequeyivkeds for increasing database size,
for XMark data

2 keywords, K=5 2 keywords, K=15

1000000 10000000
100000 1000000
100000
10000

1000

1000

100 100 4
° 10|||||:____:

1 1+

10 100 300 10 100 300
MB MB

mNLOSA
(a) XMark, K=5 (b) XMark, K=15

10000

msec
msec

Figure 7: Varying database size

of the datasets increases. It is evident that the top 1000delfrequencies increase substantially

with increasing database size.

5.2 Evaluating theSASt r eamAlgorithm

We now present the evaluation of the variants of our algorgiior non-indexed data, where the
execution times increase dramatically due to the lack oéxith that leads to reading the whole
XML file. Figure 8 compares algorithnidL St r eamandSASt r eamfor increasing values of the
distance threshold, for two keywords, for medium and high frequency keywordstidé that
NLSt r eaminitially parses the XML document, constructing indicesgdadhen operates on those
indices. In contrast AlgorithrBASt r eamcan operate immediately in conjunction with document
parsing. In Figure 8(a), since we are dealing with not souesd keywordsNLSt r eanis per-
formance is dominated by the time to read the document aradectlke keyword lists and thus its
performance appears to increase only marginally with amirey values of<. Figure 8(c) presents
a breakdown of the times spent at the two staged &t r eanis execution. In effectSASt r eam
produces the desired result faster than the time requireldLi8f r eamto identify the relevant

keywords and build indices. The performance advantag&Ast r eamare pronounced as the
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Figure 8: VaryingK in the algorithms for non-indexed, 100 MB XMark data

frequency of the keywords involved in the operation incesasince its performance is linear in
the size of the document. Contrasting Figure 8(b) and Fig§(ul¢, we observe that the time re-
quired byNL St r eamto produce the output increases, since larger lists of nadegvolved in
the operation. The performance advantag&St r eamoffers in this case are substantial.

In Figures 9(a) and (b), we present the performanc&Ast r eamandNLSt r eamas the
number of keywords increases, for a fixed distance threskiotd 5. In Figures 9(c) and (d), we
present a breakdown of the times taken by algoritfinst r eamat the various stages of its exe-
cution. NLSt r eanis execution time increases exponentially with in contrast toSASt r eam
whose times remain relatively stable, since documentpgesid identification of relevant answers
are interleaved. As observed in Figures 9(c) and (d), pautaine is the dominating factor in the
performance oNLSt r eamwith processing time becoming significant as the number pivkeds

increases.
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5.3 Adaptation of SA algorithm for DBMS

Next we comparesSA against three systems that perform keyword proximity searc labeled
graphs: DBXplorer [4], DISCOVER [16] and XKeyword [17] (s8ection 6 for a short description
of these works). Since all of them operate on data stored @teéional database, in order to have
a fair comparison we implemented a versiorsafwhich operates on data stored in a DBMS.

In particular, the exact same indexing method is used as ieyXrd and DISCOVER. That s,
Oracle Intermedia Text Indeéids used to find the nodes that contain the keywords. The nddes o
tree along with their (start,end,depth) triplet are stared relation, which we refer to ddaster
relation, whose text attributes are indexed by Oracle inéglia. The runtime of the algorithm
consists of two stages: reading the text index to get thesibg®es that contain the keywords and
their ancestors, and executing the SA algorithm on thesesia@iven the nodes that contain the
keywords, their ancestors are computed using the (staf},igiormation on which a B+ index has
been built. The index reading stage to find the nodes withéyevkirds is identical to the one used
in XKeyword and DISCOVER. However, these works continue biding a set of intermediate
tables (tuple sets) and finally executing a set of join qeeioeproduce the results. On the other
hand,SA does not need to access the database any more to computeuite feigure 10 compares
the performance of these algorithms for the DBLP datasgurgil0 (b) analyzes the cost of each
algorithm into the costs of the consisting stages. Notie¢we do not include DBXplorer in the
graphs, since it is slower than DISCOVER due to the lack ofromm subexpressions reuse.

Finally, notice that the performance 8A decreases considerably when building the master
index as described above, since two steps are needed toegkéyiword lists: first query the
DBMS text index to get the node ids, and second get the canelpg (start,end,depth) triplets
from the Master relation. On the other hand, these tripletgetrieved in a single step using the

file-based master index described in Section 3.2.1.

6 Related Work

Lowest Common Ancestor The first area of research relevant to this work is the contjouta

of the LCA of a set of nodes of a data tree. Kersten et al. [18k@nt an algorithm, which

“http://technet.oracle.com/products/text/contentlhtm
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for two keywords, is the same as the Nested Loops algorithir) (i present. For more than
two keywords, their semantics are different from the tiaddl proximity search semantics [13].
In particular, their algorithm inputs a set of relation® (j.sets of nodes of different types) that
contain the keywords and outputs all pairwise LCAs and noball LCAs. Notice that the nodes
are grouped by type and not by keywords, so there could bevigailLCAs that only contain the
same keyword twice. Also notice that they use a schema, itvasirio our work.

Li et al. [18] and XKSearch [20] defined Smallest LCAs (SLCAg)be LCAs that do not
contain other LCAs. Li et al. [18] incorporated SLCA searohXQuery. The algorithms of
XKSearch benefit from the observation that, in contrast éogéneral LCA problem, the number
of smallest LCAs is bounded by the size of the smallest kegilist. Consequently, in [20] the
keyword lists of the inverted index are themselves indexadl iadexed lookup is used to find
potential matches in the large keyword lists. The algorithas a generalization to finding all
LCAs but then its key observation does not apply and, moreitapt, it has no efficient way to
produce summaries (such as the GDMCTSs) of why each resudt iscah LCA. The algorithm in
[20] cannot be straightforwardly modified to support theeg@ahLCA problem.

XRANK [14] and XSEarch [12] return subtrees as answers tké#yevord queries. However,
the algorithm of XRANK does not return MCTSs to explain how keywords connect to each other.
Furthermore, only the most specific result are output. Th&y present a ranking method which,
given a tree containing the keywords, assigns a score tsing an adaptation of PageRank [9]
for XML databases. Their ranking techniques are orthogtmtie retrieval and hence can easily
be incorporated in our work. XSEarch focuses on the sensaatid the ranking of the results, and
during execution, they use an all-pairs index to check tmmeotivity between the nodes.

Efficiently computing théowest common ancestfirCA) of a pair of nodes in a tree is a prob-
lem that has received a lot of attention in the theoreticahrmmnity and efficient approaches in
main memory are known for its solution [15, 6]. In particulgiven a tree, after suitable pre-
processing it is possible to construct data structuresnswar to LCA queries (given a pairs of
nodes report the node which is the LCA of the pair in the tra€)(1) time. The construction is
relatively involved (the interested reader could consliii]] and efficient, provided that the data
structures fit in memory. We adapt suitably modified algonigiproposed for main memory LCA

of a pair of nodes, making them suitable for the problems wesicler herein (algorithriLOpt ),
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and use them as a basis for comparison with our solutions.

Proximity search on labeled graphs Proximity search on labeled graphs [13, 7, 16, 17, 4] has
been suggested as an effective information discovery rdetimomost works the labeled graph is
derived by connecting the tuples of a relational databageilnary key/foreign key links. [4, 16, 7]
are particularly built for relational databases: SQL geerare used to derive the result. More
recent works [17, 7] use XML data as the motivation for ladejeaphs; the edges correspond to
element/subelement connections or IDREF links.

The algorithms for keyword proximity search in labeled dramre intrinsically expensive,
heuristics-based and typically use various forms of prgmdation in order to improve the perfor-
mance. They do not significantly exploit the special caserevtiee data structure is a tree.

Goldman et al. [13] retrieve and rank objects according éar froximity from other objects of
interest in a labeled graph. They show how to speed up the atatign of the pairwise distances
between any two nodes of the graph by precomputing a hubtsteuc The choice of hubs is
guided by heuristics. However, when calculating the distdpetween two setS;, S, of nodes,
all combinations of nodes fromy;, S, are tested for results, leading to a quadratic (cubic for
three keywords etc) cost similar to the Nested Loops aligariNL) of Figure 2. They propose
a way to avoid this quadratic number of disk accesses byesingtobjects of the same type (eg.
movies or actors), which is a solution that can work for keydgoappearing as tag names in an
XML document but is not realistic for arbitrary keywords. d\still their algorithm suffers from a
guadratic (or more) number of comparisons.

The BANKS system [7] finds MCTs in a labeled graph by using gar@ximation to the Steiner
tree problem, which is NP-hard. The key idea (we omit optatian details) is the following:
BANKS progressively calculates the neighbor s&tsof distance up tdx of every nodeu; that
contains a keyword and outputs a spanning freghen the root ofl" is found in the intersection
of the N;’s. This leads, similarly to Goldman et al. [13], to a quadréior two keywords) number
of comparisons, in contrast to our one pass algorithms.rTimglementation is tuned for a graph
that fits in main memory.

DISCOVER [16], XKeyword [17] and DBXplorer [4] are systemsfking on top of relational
databases, facilitating keyword search for relationa) fl&énd XML databases [17]. DISCOVER
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and DBXplorer output trees of tuples connected through amnyato-foreign key relationships, that
contain all the keywords of the query. They first get from trester index the tuples that contain
the keywords and then generate a set of SQL queries corréisygaio all different ways to connect
the keywords based on the schema graph. XKeyword extendgditieof DISCOVER by mate-
rializing path indices in a relational database, to redheenumber of joins in the generated SQL
gueries. These works rely on a schema, in contrast to thik.vixdore importantly, since the data
structure is a graph, it is impractical to store all the cantioes between all pairs of nodes in the
inverted index of the keywords. Hence, they may need to nea the disk an unbounded number
of connecting tuples, to discover the connections betwkerkéyword nodes. In contrast, in our
work, we index the nodes that contain the keywords along thigir “coordinates” in the source
tree, which leads to a single disk access per keyword in thiedalcase (when the set of nodes that
contain each keyword fits in a disk page). In Section 5.3, wepare these works to an adaptation
of our approach for a DBMS. This adaptation removes our aaggnof tightly integrating the
keyword index with the representation of the “coordinateisthe nodes. However, we show that
we still perform considerably better than these works.

Finally, stack-based algorithms for processing XML quet@ve been proposed recently in
the literature computing containment joins [5] as well akdtic joins [10]. Our algorithms differ
from these algorithms in that we incrementally maintain antput LCAs and GDMCTSs, which

are considerably more complex than checking ancestoeddsaat relationships.

7 Conclusions and Future Work

In this paper, we have investigated the problem of XML keydvgueries, with the aim of identi-
fying the most specific context elements (i.e., LCAs) thattam all the keywords, along with a
compact description of their witnesses (i.e., GDMCTSs). \&eehproposed and evaluated efficient
algorithms for a number of variants of this problem, and hestablished that the context of XML
keyword queries can indeed be efficiently determined asgbaery evaluation.

Our work opens the door to a number of different avenues efares in XML keyword queries.
What would Information Retrieval style approximate manchiook like? Our stack-based algo-

rithms maintain partial GDMCTs during query evaluatione #énese the desired answers to ap-
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proximate keyword queries? What is the analogf-atif for ranking the results of XML keyword

queries? What are appropriate linguistic mechanisms trjparate our keyword querying primi-

tives into XQuery? We are currently exploring some of thesenising directions of research.
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