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Abstract

The performance of XML database queries can be greatly enhanced by employing materialized
views. We present containment and rewriting algorithms for tree pattern queries that correspond
to a large and important subset of XQuery, in the presence of a structural summary of the database
(i.e., in the presence of a Dataguide). The tree pattern language captures structural identifiers and
optional nodes, which allow us to translate nested XQueries into tree patterns. We character-
ize the complexity of tree pattern containment and rewriting, under the constraints expressed in
the structural summary, whose enhanced form also entails integrity constraints. Our approach is
implemented in the ULoad [4] prototype and we present a performance analysis.
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1 Introduction

Materialized views can greatly improve query
processing performance. While many works have
addressed the topic in the context of the rela-
tional model, the issue is a topic of active re-
search in the context of XML. We study the
problem of rewriting a query using material-
ized views, whereas both the query and the
views are described by a tree pattern language,
which is appropriately extended to capture a
large XQuery subset. We assume the presence of
a structural summary and structural identifiers;
both increase the opportunities for rewriting.

As an example illustrating key concepts, re-
quirements and contributions, consider the fol-
lowing XQuery:

for $x in doc(“XMark.xml”)//item[//mail] return

〈res〉 {$x/name/text(),

for $y in $x//listitem return

〈key〉 {$y//keyword} 〈/key〉} 〈/res〉

A simplified XMark document fragment ap-
pears in Figure 1(a). At the right of each node’s
label, we show the node’s identifier, e.g. n1, n2

etc.

We exploit XML structural summaries to in-
crease rewriting opportunities. In short, a struc-
tural summary (or strong Dataguide [15]) of an
XML document is a tree, including all paths
occurring in the document. Figure 1(b) shows
the structural summary of the document in Fig-
ure 1(a).

Each view is defined by an extended tree pat-
tern and produces a nested table, which may in-
clude null values. Figure 1(c) depicts the def-
initions of views V1 and V2, and the result ob-
tained by evaluating the views over the sample
document above. As is common in tree pattern
languages, / denotes child and // denotes de-
scendant relationships. Variables, such as ID,

C, and V label certain nodes of the tree pat-
tern. Dashed edges indicate that a tuple should
be produced even if the (sub)tree pattern hang-
ing at the dashed edge cannot bind to a cor-
responding subtree of the input. For example,
consider the last tuple of V1: The variable ID is
bound to n21, despite the fact that n21 has no
〈bold〉 descendant; V is bound to null (⊥).

Furthermore, if an edge is labeled as n, there
will be a single attribute in the tuple for the sub-
tree pattern hanging below the n-edge. The con-
tent of this attribute is a relation whose tuples
are the bindings of the variables of the subtree.
For example, the A attribute of V1 corresponds
to the subtree under the single n-edge of the tree
pattern. Its values are relations of unary tuples,
whose only attribute is the variable C of the pat-
tern hanging at the n-edge.

Rewriting can benefit from knowledge of the
structure of the document and of the structure
IDs. We describe our contributions in the area
using cases from the running example.

Summary-based rewriting Consider the follow-
ing rewriting opportunities that are enabled by
the structural summary. First, although the tree
pattern of V1 does not explicitly indicate that V1

stores data from 〈item〉 nodes, V1 is useful if the
structural summary in Figure 1(b) guarantees
that all children of 〈region〉 that have 〈description〉

children are labeled item.
Second, in the absence of structural sum-

maries, evaluation of the $y//keyword path of
the query is impossible since neither V1 nor
V2 store data from keyword nodes. However,
if the structural summary implies that all /re-

gion//item//keyword nodes are descendants of
some /region//item/description/parlist/listitem, we
can extract the keyword elements by navigating
inside the content of 〈listitem〉 nodes, stored in
the A.C attribute of V1.
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Figure 1: (a) XMark document fragment, (b) its structural summary and (c) two materialized
views.

Third, V1 stores /re-

gion//*/description/parlist/listitem elements, while
the query requires all 〈listitem〉 descendants of /re-

gions//item. V1’s data is sufficient for the query, if
the summary ensures that /regions//item//listitem

and /regions//*/description/parlist/listitem deliver
the same data.

Summary-based optimization The rewriting
query can be more efficient if it utilizes the
knowledge of the structural summary. For ex-
ample, V1 may store some tuples that should
not contribute to the query, namely from 〈item〉
nodes lacking 〈mail〉 descendants. In this case,
using V1 to rewrite our sample query requires
checking for the presence of 〈mail〉 descendants
in the C attribute of each V1 tuple. If all 〈item〉
nodes have 〈mail〉 descendants, V1 only stores use-
ful data, and can be used directly.

The above require using structural infor-
mation about the document and/or integrity
constraints, which may come from a DTD
or XML Schema, or from other structural

XML summaries, such as Dataguides [15].
The XMark DTD [29] can be used for
such reasoning, however, it does not al-
low deciding that /regions//item//listitem and
/regions//*/description/parlist/listitem bind to the
same data. The reason is that 〈parlist〉 and
〈listitem〉 elements are recursive in the DTD, and
recursion depth is unbound by DTDs or XML
Schemas. While recursion is frequent in XML,
it rarely unfolds at important depths [19]. A
Dataguide is more precise, as it only accounts
for the paths occurring in the data; it also of-
fers some protection against a lax DTD which
“hides” interesting data regularity properties.

Rewriting with rich patterns In addition to
structural summaries, we also make use of the
rich features of the tree patterns, such as nest-
ing and optionality. For example, in V1, 〈listitem〉
elements are optional, that is, V1 (also) stores
data from 〈item〉 elements without 〈listitem〉 de-
scendants. This fits well the query, which must
indeed produce output even for such 〈item〉 el-
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ements. The nesting of 〈listitem〉 elements un-
der their 〈item〉 ancestor is also favorable to the
query, which must output such 〈listitem〉 nodes
grouped in a single 〈res〉 node. Thus, the sin-
gle view V1 may be used to rewrite across nested
FLWR blocks.

Exploiting ID properties Maintaining struc-
tural IDs enables opportunities for reassembling
fragments of the input as needed. For exam-
ple, data from 〈name〉 nodes can only be found
in V2. V1 and V2 have no common node, so
they cannot be simply joined. If, however, the
identifiers stored in the views carry information
on their structural relationships, combining V1

and V2 may be possible. For instance, struc-
tural IDs allow deciding whether an element is a
parent (ancestor) of another by comparing their
IDs. Many popular ID schemes have this prop-
erty [1, 22, 26]. Assuming structural IDs are
used, V1 and V2 can be combined by a structural
join [1] on their attributes V1.ID and V2.ID.
Furthermore, some ID schemes also allow infer-
ring an element’s ID from the ID of one of its
children [22, 26]. Assuming V1 stored the ID
of 〈parlist〉 nodes, we could derive from it the
ID of their parent 〈description〉 nodes, and use
it in other rewritings. Realizing the rewriting
opportunities requires ID property information
attached to the views, and reasoning on these
properties during query rewriting. Observe that
V1 and V2, together, contain all the data needed
to build the query result only if the stored IDs
are structural.
Contributions and outline We address the
problem of view-based XML query containment
and rewriting in the presence of structural and
integrity constraints. We consider queries and
views expressed in a rich tree pattern formalism,
particularly suited for nested XQuery queries,
and which extends previously used view [5, 30]

and tree pattern [2, 8, 24] formalisms. Given a
query and a set of views:

• We characterize the complexity of pattern
containment under Dataguides [15] and in-
tegrity constraints, and provide a contain-
ment decision algorithm.

• We describe a sound and complete view-
based rewriting algorithm which produces
an algebraic plan combining the tree pat-
tern views, whose result is, for all inputs,
equivalent to the query result in the pres-
ence of Dataguide constraints.

• The containment and rewriting algorithms
have been fully implemented in the ULoad
prototype, which was recently demon-
strated [4]. We report on their practical ap-
plicability and performance.

The novelty of our work is manifold. (i) Go-
ing beyond XPath views [5, 30], our tree pat-
terns store data for several nodes, feature op-
tional and/or nested edges, and describe inter-
esting ID properties, crucial for the success of
rewriting. (ii) To the best of our knowledge,
ours is the first work to address XML query
rewriting under Dataguide constraints. Strong
Dataguides can be built and maintained in lin-
ear time out of tree-structured data [15]. Our
experimental observations confirm those of [15],
demonstrating that in many practical applica-
tions, Dataguides are very compact, and can be
efficiently exploited.

This paper is organized as follows. Section 2
reviews preliminary definitions. For readability,
containment and rewriting algorithms are pre-
sented in two steps. Section 3 considers con-
tainment and rewriting for a very simple flavor
of conjunctive patterns and constraints, while
Section 4 extends these results to the full tree
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Figure 2: Sample XML document d, conjunctive
pattern p, and embedding e : p→ d.

pattern language and to richer constraints. Sec-
tion 5 presents a performance evaluation. We
review related works, and conclude.

2 Preliminaries

2.1 Data model

We view an XML document as an unranked la-
beled ordered tree. Every node n has (i) a unique
identity from a set I, (ii) a tag label(n) from a
set L, which corresponds to the element or at-
tribute name, and (iii) may have a value from a
set A, which corresponds to atomic values of the
XML document. We may denote trees in a sim-
ple parenthesized notation based on node labels
and ignoring node IDs, e.g. a(b c(d)).

Figure 2 (left) depicts a sample XML docu-
ment, where node values are shown underneath
the node label, e.g. “1”, “2” etc. Other nota-
tions in Figure 2 will be explained shortly.

We denote that node n1 is node n2’s parent as
n1 ≺ n2 and the fact that n1 is an ancestor of n2

as n1≺≺n2.

2.2 Conjunctive tree patterns

We recall the classical notions of conjunctive tree
patterns and embeddings [2, 20]. A conjunctive
tree pattern p is a tree, whose nodes are labeled

from members of L ∪ {∗}, and whose edges are
labeled / or //. A distinguished subset of p nodes
are called return nodes of p. At right in Figure 2,
we show a pattern p, whose return nodes are
enclosed in boxes.

An embedding of a conjunctive tree pattern
p into an XML document d is a function e :
nodes(p)→ nodes(d) such that:

• For any n ∈ nodes(p), if label(n) 6= ∗, then
label(e(n)) = label(n).

• e maps the root of p into the root of d.

• For any n1, n2 ∈ nodes(p) such that n1 ≺
n2, e(n1) ≺ e(n2).

• For any n1, n2 ∈ nodes(p) such that
n1≺≺n2, e(n1)≺≺e(n2)

Dotted arrows in Figure 2 illustrate an embed-
ding.

The result of evaluating a conjunctive tree pat-
tern p, whose return nodes are np

1, . . . , n
p
k, on an

XML document d is the set p(d) consisting of
all tuples (nd

1, . . . , n
d
k) where nd

1, . . . , n
d
k are doc-

ument nodes and there exists an embedding e of
p in d such that e(np

i ) = nd
i , i = 1, . . . , k.

Given a pattern p, a tree t and an embedding
e : p→ t, we denote by e(p) the subtree of t that
consists of the nodes e(n) to which the nodes of p
map to, and the edges that connect such nodes.
For example, in Figure 2, the t subtree shown in
bold is e(p). We may use the notation u ∈ e(p)
to denote that node u appears in the tree e(p).
In Figure 2, note that e(p) contains has more
nodes than p, since the intermediary c node also
belongs to e(p).

2.3 Path summaries

Given a document d, a rooted simple path (or
simply path) is a succession of /-separated labels
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/l1/l2/ . . . /lk, k ≤ 1, such that l1 is the label of
d’s root, l2 is the label of one of the root’s chil-
dren, l3 the label of one node on the path /l1/l2
etc. Note that only node labels (not values) ap-
pear in paths.

The simple summary of d, denoted S(d), is
a tree, such that there is a label and parent-
preserving mapping φ : d → S(d), mapping all
nodes n1, n2, . . . , nk ∈ d reachable by the same
path p from d’s root to the same node np ∈ S(d).
We may use a path p to designate its correspond-
ing node in S(d). The parent ≺ and descen-
dant ≺≺ notations extend naturally to summary
nodes. Figure 3 (left) shows the summary corre-
sponding to the document in Figure 2.

A document d conforms to a summary S1, de-
noted S1 |= d, iff S(d) = S1.

2.4 Summary-based canonical model

Let p be a conjunctive tree pattern, and S be a
summary. The S-canonical model of p, denoted
modS(p), is the set of all S subtrees te = e(p)
where e is an embedding e : p → S. Let the
return nodes in p be np

1, . . . , n
p
k. Then for every

tree te ∈ modS(p) corresponding to an embed-
ding e, the tuple (e(np

1), . . . , e(n
p
k)) is called the

return tuple of te. Note that two different trees
t1, t2 ∈ modS(p) may have the same return tu-
ples.

In Figure 3, for the represented pattern p and

summary S, we have modS(p) = {t1, t2}.

Proposition 2.1 Let t be a tree and S be a sum-
mary such that S |= t, p be a k-ary conjunctive
pattern, and {nt

1, . . . , n
t
k} ⊆ nodes(t).

(nt
1, . . . , n

t
k) ∈ p(t) ⇔ ∃ te ∈ modS(p) such

that:

1. t has a subtree isomorphic to te. For sim-
plicity, we shall simply say te is a subtree of
t (although strictly speaking, te is a subtree
of S, and thus disjoint from t).

2. For every 0 ≤ i ≤ k, node nt
i is on path nS

i ,
where nS

i is the i-th return node of te.

The proof of the proposition can be found in the
extended version of this paper ([18]).

For example, in Figure 2, bold lines and node
names trace a d subtree isomorphic to t2 ∈
modS(p) (recall t2 from Figure 3). For the sam-
ple document and pattern, the thick-lined sub-
tree is the one Proposition 2.1 requires in order
for the boxed nodes in d to belong to p(d).

A pattern p is said S-unsatisfiable if for any
document d such that S |= d, p(d) = ∅.
The above proposition provides a convenient
means to test satisfiability: p is S-satisfiable iff
modS(p) 6= ∅.

Definition 2.1 Let S be a summary, p be a pat-
tern, and n a node in p. The set of paths associ-
ated to n consists of those S nodes sn, such that
for some embedding e : p→ S, e(n) = sn.

At right in Figure 3, the pattern p is repeated,
showing next to each node (in italic font) the
paths associated to that node.

The paths associated to all p nodes can be
computed in O(|p| × |S|) time and space com-
plexity.
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3 Summary-based containment

and rewriting of conjunctive

patterns

3.1 Summary-based containment

We start by defining pattern containment under
summary constraints:

Definition 3.1 Let p, p′ be two tree patterns,
and S be a summary. We say p is S-contained in
p′, denoted p ⊆S p′, iff for any t such that S |= t,
p(t) ⊆ p′(t).

A practical method for deciding containment
is stated in the following proposition:

Proposition 3.1 Let p, p′ be two conjunctive k-
ary tree patterns and S a summary. The follow-
ing are equivalent:

1. p ⊆S p′

2. ∀ tp ∈ modS(p) ∃ tp′ ∈ modS(p′) such
that(i) tp′ is a subtree of tp and (ii) tp, tp′

have the same return nodes.

3. ∀ tp ∈ modS(p) whose return nodes are
(nt

1, . . . , n
t
k), we have (nt

1, . . . , n
t
k) ∈ p′(tp).

Proposition 3.1 gives an algorithm for test-
ing p ⊆S p′: compute modS(p), then test
that (nS

1 , . . . , nS
k ) ∈ p′(te) for every te ∈

modS(p), where (nS
1 , . . . , nS

k ) are the return
nodes of p. The complexity of this algorithm is
O(|modS(p)|×|S|×|p|×|p′|), since each modS(p)
tree has at most |S| × |p| nodes [18], and p′(te)
can be computed in |te| × |p

′| [16]. In the worst
case, |modS(p)| is |S||p|. This occurs when any
p node matches any S node, e.g. if all p nodes
are labeled ∗, and p consists of only the root
and // children. For practical queries, however,
|modS(p)| is much smaller, as Section 5 shows.

A simple extension of Proposition 3.1 ad-
dresses containment for unions of patterns:

Proposition 3.2 Let p, p′1, . . . , p
′
m be k-ary con-

junctive patterns and S be a summary. Then,
p ⊆S (p′1 ∪ . . . ∪ p′m) ⇔ for every te ∈ modS(p)
such that (n1, . . . , nk) are the return nodes of
te, there exists some 1 ≤ i ≤ m such that
(n1, . . . , nk) ∈ p′i(te).

The proof can be found in the extended ver-
sion of this paper [18]. We define S-equivalence
as two-way containment, and denote it ≡S .
When S is obvious from the context, we simply
call it equivalence.

3.2 Summary-based rewriting

Let p1, . . . , pn and q be some patterns and S be
a summary. The problem of rewriting q using
p1, . . . , pn under S constraints consists of find-
ing all algebraic expressions e built with the pat-
terns pi and the operators ∪, ⊲⊳=, ⊲⊳≺, ⊲⊳≺≺ , and
π, such that e ≡S q. Here, op1 ⊲⊳= op2 denotes
a join pairing input tuples which contain exactly
the same node, while ⊲⊳≺, ⊲⊳≺≺ denote structural
joins returning tuples where nodes from one in-
put are parent/ancestors of nodes from the other
input. Note that we are interested in logical al-
gebraic expressions, which we will simply call
plans.

Clearly, the plans of two rewritings may syn-
tactically differ, while being equivalent by virtue
of well-known algebraic laws (thus, clearly, also
S-equivalent), such as πn1

(πn1,n2
(p)) and πn1

(p).
One could obtain such a plan from the other by
applying those laws. Therefore, we reformulate
the problem into: find all plans e (up to algebraic
equivalence) such that e ≡S q.

A simple rewriting algorithm consists of building
plans based on p1, . . . , pn, and testing their S-
equivalence to the target pattern q. However,
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it is not clear how to test equivalence between
plans and patterns under summary constraints.
In contrast, we do have a containment decision
algorithm for conjunctive patterns.

This leads to the idea of manipulating, during
rewriting, plan-pattern pairs, such that in each
pair, the plan and the pattern are by construc-
tion S-equivalent. A plan is equivalent to the
query q iff the pattern associated to the plan is
equivalent to q.

Note, however, that not any plan has an equiv-
alent pattern, as illustrated in Figure 4. The
S paths associated to the b pattern nodes are
shown next to the nodes. The only S-equivalent
rewriting of q based on p1, p2, p3 is (p1 ⊲⊳b=b p2)∪
p3, yet no pattern is equivalent to p1 ⊲⊳b=b p2.
The intuition is that we can’t decide whether a
should be an ancestor or a descendant of c in
the hypothetic pattern equivalent to p1 ⊲⊳b=b p2.
However, (p1 ⊲⊳b=b p2) ≡S (p4 ∪ p5), where p4, p5

are the patterns at right in Figure 4. More gen-
erally:

Proposition 3.3 Any algebraic plan built with
⊲⊳=, ⊲⊳≺, ⊲⊳≺≺ , and π on top of some patterns
p1, . . . , pn is S-equivalent to a union of conjunc-
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Figure 5: Sample configuration for pattern joins.

tive patterns.

In practice, the situations where unions are
actually required to get an equivalent represen-
tation of a join result are not very frequent.

Traditionally, the rewriting of a conjunctive
relational query is driven by the query itself.
For instance, the bucket algorithm [17] collects
possible rewritings for every query atom, and
builds complete rewritings by combining them.
A rewriting exists iff there are rewritings for ev-
ery atom, and if they can be combined. An
interesting question is, then, whether such tar-
get query-driven techniques may be used in our
case. In other words, can we rewrite q by finding
rewritings for every q node and then combining
them ?

The answer is no: finding rewritings for every
q node is neither sufficient, nor necessary. To see
that it is not necessary, consider, for instance, a
summary S = r(a(b)), the query q = /r//a//b,
and the pattern p1 = /r//b. Clearly, p1 ≡S q,
yet p1 lacks an a node (implicitly present above
b, due to the S constraints).

To see that covering all q nodes is not suffi-
cient, consider Figure 5, where q asks for b ele-
ments at least two levels below the root, while p1

provides all b elements, including some not in q.
The pattern p2 does not cover any q nodes, yet
(p2 ⊲⊳a≺≺ b p1) ≡S q, thus the rewriting process
must explore such plans.
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Algorithm 1: Conjunctive pattern
rewriting under summary constraints

Input : summary S, patterns
p1, . . . , pn, q

Output: rewritings of q using p1, . . . , pn

M0 ← {(pi, pi) | 1 ≤ i ≤ n}; M ←M01

repeat2

foreach (li, pi) ∈M, (lj , pj) ∈M0 do3

foreach possible way of joining li4

and lj using ⊲⊳=id
, ⊲⊳≺, ⊲⊳≺≺ do

(l, p)← (li, pi) ⊲⊳ (lj , pj)5

if p 6= pi and p 6= pj then6

if p ≡S q then7

output l8

else9

if |l| ≤ |q| × |S| then10

M ←M ∪ {(l, p)}11

until M is stationary12

foreach minimal N ⊆M s.t.13

∪(l,p)∈N p ≡S q do

output ∪(l,p)∈N p14

In contrast with relational query rewriting, an
equivalent rewriting of a conjunctive pattern un-
der S constraints may be a union of plans. For
example, considering p1 in Figure 5 as the query,
a possible rewriting is q ∪ p3.

In practice, one is typically interested in minimal
rewritings only, that is, plans such that no sub-
plan thereof is a rewriting. Let S be a summary,
and assume we are rewriting q using p1, . . . , pn.
The following two propositions allow restricting
the search to avoid non-minimal rewritings:

Proposition 3.4 Assume that for some 1 ≤ i ≤
n, for any np ∈ nodes(pi) \ root(pi) and x asso-

ciated path of np, and for any nq ∈ nodes(q) \
root(q) and y associated path of nq, x 6= y, x is
neither an ancestor nor a descendant of y. Let
e be a rewriting of q in which pi appears. Then
there exists a rewriting e′ which is a subplan of
e, but e′ does not use pi.

The data contained in such a pattern pi be-
longs to different parts of the document than
those needed by the query, thus pi can be dis-
carded. An example is pattern p4 for the rewrit-
ing of q in Figure 5.

Proposition 3.5 Assume that for some plan-
pattern pairs (li, ri) and (lj , rj) and possible join
result (l, r) = (li, ri) ⊲⊳ (lj , rj), the patterns (or
pattern sets) r and ri coincide (in their tree
structure and associated paths). Let e be a q
rewriting using (l, r). Then there exists a rewrit-
ing e′ which is a subplan of e but which uses li
instead of l.

Proposition 3.5 allows to avoid building a
(plan, pattern) pair, if the resulting pattern does
not differ from the pattern of one of its children.
Intuitively, such a (plan, pattern) pair does not
open any new rewriting possibilities.

The following proposition limits the size of the
join plans explored:

Proposition 3.6 Given a pattern q and sum-
mary S, the size of a join plan p, part of a min-
imal rewriting of q, is at most |q|× |S|, where |q|
is the number of q nodes and the size of p is the
number patterns pi appearing in p.

The intuition is that an equivalent rewriting
has to enforce the structural relationships be-
tween all q nodes. Enforcing each q edge may
require joining at most |S| patterns.

Prior to testing whether a pattern p obtained
via rewriting is S-contained in q, one must iden-
tify k return nodes of p, namely n1, . . . , nk,

9



where k is the arity of q, extract from p a pat-
tern p′ whose only return nodes are n1, . . . , nk,
then test if p′ ⊆S q. This choice of k nodes is
needed because containment is defined on same-
arity patterns. If p’s arity is smaller than k,
clearly p /≡S q. Otherwise, there are many ways
of choosing k return nodes of p, which may lead
to a large number of containment tests.

The following proposition allows to signifi-
cantly reduce these tests:

Proposition 3.7 Let p, q be two k-ary patterns
and S a summary. If p ⊆S q, then for every re-
turn node ni of p and corresponding return node
mi of q, the S paths associated to ni are a subset
of the S paths associated to mi.

3.3 Rewriting algorithm

Algorithm 1 describes conjunctive pattern
rewriting. M0 is the set of initial (pi, pi) pairs,
where the first pi is interpreted as a plan, and
the second as a pattern. We assume the set
p1, . . . , pn is pruned according to Proposition 3.4
prior to running Algorithm 1. M is the working
set, initialized at M0; intermediary plans accu-
mulate in M . Join plans are developed at lines
2-11; we build left-deep plans only (the right-
hand join operand comes from M0), to avoid
constructing rewritings which differ only by their
join orders. As soon as (l, p) is obtained, p’s sat-
isfiability is tested, and if p is S-unsatisfiable,
(l, p) is discarded. The condition at line 6 de-
rives from Proposition 3.5.

Union plans are built on top of join plans at
lines 13-14 (obviously, the two could have been
intertwined). The set N is minimal in the sense
that for any N ′ ⊂ N , ∪(l,p)∈N ′ p is not an equiv-
alent rewriting of q.

The ≡S tests (lines 7 and 13) are performed
based on Propositions 3.1 and 3.2. When looking

for ways of choosing k return nodes prior to the
containment test (lines 7, 13), thanks to Propo-
sition 3.7 we only consider those (n1, . . . , nk) tu-
ples of p return nodes such that the paths asso-
ciated to each return node ni are a subset of the
paths associated to the corresponding q return
node.

The condition at line 10 guards the addition of
a new (plan, pair) to the working set, according
to Proposition 3.5.

Proposition 3.8 Algorithm 1 is correct and
complete. It produces all ≡S minimal rewrit-
ings of q (up to algebraic equivalence) based on
p1, . . . , pn, under S constraints.

The complexity of Algorithm 1 is determined
by the size of the search space, multiplied by
the complexity of an equivalence test. The

search space size is in O(2
C

|q|
|p| ), where |p| =

Σi=1,...,n|nodes(pi)| and |q| = |nodes(q)| (the for-
mula assumes that every pi node, 1 ≤ i ≤ n,
can be used to rewrite every q node using a join
plan).

4 Complex summaries and pat-

terns

In this section, we present a set of useful, mu-
tually orthogonal extensions to the tree pat-
tern containment and rewriting problems dis-
cussed previously. The extensions consist of us-
ing more complex summaries, enriched with a
class of integrity constraints (Section 4.1), re-
spectively, more complex patterns. Section 4.2
considers patterns endowed with value predi-
cates, Section 4.3 addresses patterns with op-
tional edges, Section 4.4 describes containment
of patterns which may store several data items
for a given node, and Section 4.5 enriches pat-
terns with nested edges. Finally, Section 4.6
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Figure 6: Enhanced summary and sample pat-
terns.

outlines the impact of these extensions on the
rewriting algorithm.

4.1 Enhanced summaries

Useful information for the rewriting process may
be derived from an enhanced summary, or sum-
maries with integrity constraints. Let d be a
document and S0 be its (plain) summary. Its
enhanced summary S is obtained from S0 by dis-
tinguishing a set of edges as strong. Let n1 be
an S node, and n2 be a child of n1. The edge
between n1 and n2 is said strong if every d node
on path n1 has at least one child on path n2.
Such edges reflect the presence of integrity con-
straints, obtained either from a DTD or XML
Schema, or by counting nodes when building the
summary. We depict strong edges by thick lines,
as in Figure 6.

The notion of conforming to a summary nat-
urally extends to enhanced summaries. A docu-
ment d conforms to an enhanced summary S iff
d conforms to the simple summary S0 obtained
from S, and furthermore, d respects the parent-
child integrity constraints enforced by strong S
edges. Pattern containment based on enhanced
summary constraints can then be defined.

The difference between simple and enhanced
summaries is visible at the level of canonical
models. Let S be an enhanced summary, and
p a conjunctive pattern. The canonical model

of p based on S, denoted modS(p), is obtained
as follows. For every embedding e : p → S,
modS(p) includes the minimal tree te contain-
ing: (i) all nodes in e(p) and (ii) all nodes con-
nected to some node in e(p) by a chain of strong
edges only. For example, in Figure 6, the canon-
ical model of pattern p1 consists of the tree t1,
where the b child of the c node and the f node
appear due to the strong edges connecting them
to their parents in S.

Modulo the modified canonical model, en-
hanced summary-based containment can be de-
cided just like for simple summaries. For ex-
ample, applying Proposition 3.1 in Figure 6, we
obtain that patterns p1 and p2 are S-equivalent.

4.2 Value predicates on pattern nodes

A useful feature consists of attaching value predi-
cates to pattern nodes. Summary-based contain-
ment in this case requires some modifications, as
follows.

A decorated conjunctive pattern is a conjunc-
tive pattern where each node n is annotated
with a logical formula φn(v), where the free vari-
able v represents the node’s value. The formula
φn(v) is either T (true), F (false), or an expres-
sion composed of atoms of the form v θ c, where
θ ∈ {=, <, >}, c is some A constant, using ∨ and
∧.

Containment on (unions of) decorated pat-
terns requires some (space-consuming, yet con-
ceptually simple) extensions that are detailed in
[18].

4.3 Optional pattern edges

We extend patterns to allow a distinguished sub-
set of optional edges, depicted with dashed lines;
p1 and p2 in Figure 7 illustrate this. Intuitively,
pattern nodes at the lower end of a dashed edge
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may lack matches in a data tree, yet matches for
the node at the higher end of the optional edge
are retained in the pattern’s semantics. For ex-
ample, in Figure 7, where t is a data tree (with
same-tag nodes numbered to distinguish them),
p1(t) = {(c1, b2), (c1, b3), (c2,⊥)}, where ⊥ de-
notes the null constant. Note that b2 lacks a
sibling node, yet it appears in p1(t); and, c2 ap-
pears although it has no descendants matching
d’s subtree.

d
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d
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d3 d4
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Figure 7: Optional patterns example.

To formally define semantics of optional pat-
terns, we introduce optional embeddings.

Definition 4.1 Let t be a tree and p be a pattern
with optional edges. An optional embedding of p
in t is a function e : nodes(p)→ nodes(t)∪ {⊥}
such that:

1. e maps the root of p into the root of t.

2. ∀ n ∈ nodes(p), if e(n) 6= ⊥ and label(n) 6=
∗, then label(n) = label(e(n)).

3. ∀ n1, n2 ∈ nodes(p) such that n1 is the /-
parent (respectively, //-parent) of n2:

(a) If the edge (n1, n2) is not optional, then
e(n2) is a child (resp. descendant) of
e(n1).

(b) If the edge (n1, n2) is optional: (i) If
e(n1) = ⊥ then e(n2) = ⊥. (ii) If
e(n1) 6= ⊥, let E′ be the set of optional
embeddings e′ from the p subtree rooted

at n2, into some t subtree rooted in a
child (resp. descendant) of e(n1). If
E′ 6= ∅, then e(n2) = e′(n2) for some
e′ ∈ E′. If E′ = ∅, then e(n2) = ⊥.

Conditions 1-3(a) above are those for standard
embeddings. Condition 3(b) accounts for the op-
tional pattern edges: we allow e to associate ⊥
to a node n2 under an optional edge only if no
child (or descendant) of e(n1) could be success-
fully associated to n2.

Based on optional embeddings, optional pat-
tern semantics is defined as in Section 2.2.

Given a summary S and an optional pattern
p, modS(p) is obtained as follows:

• Let E be the set of optional p edges. Let
p0 be the strict pattern obtained from p by
making all edges non-optional.

• For every te ∈ modS(p0) and set of edges
F ⊆ E, let te,F be the tree obtained from te
by erasing all subtrees rooted in a node at
the lower end of a F edge. If p(te,F ) 6= ∅,
add te,F to modS(p).

For example, in Figure 7, let p0 be the strict
pattern corresponding to p1 (not shown in the
figure), then modS(p0) = {t1}. Applying the
definition above, we obtain: t1 when F ; t2 when
F contains the edge under the d node; t3 when
F contains the edge under the c node, or when F
contains both optional edges. Thus, modS(p1) =
{t1, t2, t3}.

As described above, the canonical model of
an optional pattern may be exponentially larger
than the simple one. In practice, however, this
is not the case, as Section 5 shows.

Containment for (unions of) optional patterns
is determined based on canonical models as in
Section 3. For example, in Figure 7, we have
p1 ⊆S p2.
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4.4 Multiple attributes per return

node

So far, we have defined pattern semantics ab-
stractly as tuples of nodes. For practical reasons,
however, one should be able to specify what in-
formation items does the pattern retain from ev-
ery return node. To express this, we define at-
tribute patterns, whose nodes may be annotated
with up to four attributes:

• ID specifies that the pattern contains the
node’s identifier. The identifier is under-
stood as an atomic value, uniquely identify-
ing the node.

• L (respectively V) specifies that the pat-
tern contains the node’s label (respectively
value).

• C specifies that the pattern contains the
node’s content, i.e. the subtree rooted at
that node. The subtree may be stored in a
compact encoding, or as a reference to some
repository etc. We will only retain that a
navigation is possible in a C node attribute,
towards the node’s descendants.

Figure 8 depicts the attribute patterns p1 and
p2.

Embeddings of an attribute pattern are de-
fined just like regular ones. Attribute pattern
semantics is as follows. Let p be an attribute pat-
tern, whose return nodes are (n1, . . . , nk), and t
be a tree. Let fID : nodes(t)→ A be a labeling
function assigning identifiers to t nodes. Then,
p(t, fID) is defined as:

{ tup(n1, n
t
1) + . . . + tup(nk, n

t
k) |

∃ e : p→ t, e(n1) = nt
1, . . . , e(nk) = nt

k }

where + stands for tuple concatenation, and
tup(ni, n

t
i) is a tuple having: an attribute IDi =

"d", fID(b ), val(b ), val(e ), cont(e )
"d", fID(b ), val(b ), val(e ), cont(e )

p1

b

a

c

*
e
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Figure 8: Attribute patterns.

fID(nt
i) if ni is labeled ID; an attribute Li =

label(nt
i) if ni is labeled L; an attribute Vi =

value(nt
i) if ni is labeled V ; and an attribute

Ci = cont(nt
i) if ni is labeled C. For example,

Figure 8 depicts p1(t, fID), for the data tree t
and some labeling function fID.

The S-canonical model of an attribute pattern
is defined just like for regular ones. Attribute
pattern containment is characterized as follows:

Proposition 4.1 Let p1,a, p2,a be two attribute
patterns, whose return nodes are (n1

1, . . . , n
1
k), re-

spectively (n2
1, . . . , n

2
k), and S be a summary. We

have p1,a ⊆S p2,a iff:

1. For every i, 1 ≤ i ≤ k, node n1
i is labeled ID

(respectively, V , L, C) iff node n2
i is labeled

ID (respectively, V , L, C).

2. Let p2 be the simple pattern obtained from
p2,a. For every te ∈ modS(p1,a), whose
return nodes are (nt

1, . . . , n
t
k), we have

(nt
1, . . . , n

t
k) ∈ p2(te).

In Figure 8, p1 ⊆S p2. Containment of unions
of attribute patterns may be characterized by ex-
tending Proposition 3.2 with a condition similar
to 1 above.

4.5 Nested pattern edges

We extend our patterns to distinguish a subset
of nested edges, marked by an n edge label. See,
for example, pattern p3 in Figure 9, identical to
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Figure 9: Nested patterns and their semantics.

p1 in Figure 8 except for the n edge1. Let n1 be
a pattern node and n2 be a child of n1 connected
by a nested edge. Let nt

1 be a data node corre-
sponding to n1 in some data tree. The data ex-
tracted from all nt

1 descendants matching n2 will
appear as a grouped table inside the single tuple
corresponding to nt

1. Figure 9 shows p3(t) for the
tree t from Figure 8. Here, the attributes V3 and
C3 have been nested under a single attribute A3,
corresponding to the third return node. Com-
pare this with p1(t) in Figure 8. The semantics
of a nested pattern is a nested relation (detailed
in [3]).

Let pn,1, pn,2 be two nested patterns whose
return nodes are (n1

1, . . . , n
1
k), respectively,

(n2
1, . . . , n

2
k), and S be a summary. For each

n1
i and embedding e : pn,1 → S, the nesting

sequence of n1
i and e, denoted ns(n1

i , e), is the
sequence of S nodes p′ such that: (i) for some
n′ ancestor of n1

i , e(n′) = p′; (ii) the edge go-
ing down from n′ towards n1

i is nested. Clearly,
the length of the nesting sequence ns(n1

i , e) for
any e is the number of n edges above n1

i in pn,1,
and we denote it |ns(n1

i )|. For every n2
i and

e′ : pn,2 → S, the nesting sequence ns(n2
i , e

′)
is similarly defined.

1Edge nesting and node attributes are, of course, or-

thogonal features. We used a nested attribute pattern in

Figure 9 solely to ease comparison with Figure 8.

Proposition 4.2 Let pn,1, pn,2 be two nested
patterns and S a summary as above. pn,1 ⊆S pn,2

iff:

1. Let p1 and p2 be the unnested patterns ob-
tained from pn,1 and pn,2. Then, p1 ⊆S p2.

2. For every 1 ≤ i ≤ k, the following condi-
tions hold:

(a) |ns(n1
i )| = |ns(n2

i )|.

(b) for every embedding e : pn,1 → S, there
exists an embedding e′ : pn,2 → S with
the same return nodes as e, such that
ns(n1

i , e) = ns(n2
i , e

′).

Intuitively, condition 1 ensures that the tuples
in p1 are also in p2, abstraction being made from
their nesting. Condition 2(a) requires the same
nested signature for p1 and p2, while 2(b) im-
poses that nesting be applied “under the same
nodes” in both patterns.

Condition 2(b) can be safely relaxed, in the
presence of another class of integrity constraints.
Assume a distinguished subset of S edges are
one-to-one, meaning every XML node on the
parent path s1 has exactly one child node on
the child path s2. Then, nesting data under an
s1 node has the same effect as nesting it under
its s2 child. Taking into account such informa-
tion, the equality in condition 2(b) is replaced
by: ns(n1

i , e) and ns(n2
i , e

′) are connected by
one-to-one edges only.

Nested edges combine naturally with the other
pattern extensions we presented. For example,
Figure 9 shows the pattern p2 with two nested,
optional edges, and p4(t) for the tree t in Fig-
ure 7. Note the empty tables resulting from
the combination of missing attributes and nested
edges.
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4.6 Extending rewriting

The pattern and summary extensions presented
in Sections 4.1-4.5 entail, of course, that the
proper canonical models and containment tests
be used during rewriting. In this section, we re-
view the remaining necessary changes to be ap-
plied to the rewriting algorithm of Section 3.3 to
handle these extensions.

Extended summaries can be handled directly.

Decorated patterns entail the following adap-
tation of Algorithm 1. Whenever a join plan of
the form l1 ⊲⊳n1=n2

l2 is considered (line 5), the
plan is only built if φn1

(v)∧φn2
(v) 6= F , in which

case, the node(s) corresponding to n1 and n2 in
the resulting equivalent pattern(s) are decorated
with φn1

(v) ∧ φn2
(v).

Optional patterns can be handled directly.

Attribute patterns require a set of adaptations.

First, we need to refine Proposition 3.5 to
consider two patterns equal if their nodes and
associated paths are the same and if their at-
tribute annotations are the same. For instance,
when rewriting the query q = // ∗ ID L V , if
p1 = // ∗ ID L and p2 = // ∗ ID V , the join
p1 ⊲⊳ID=ID p2 is useful, because the resulting
pattern has more attributes than p1 or p2, even
if its nodes and paths are the same as those of
p1 and p2.

Second, some selection (σ) operators may be
needed to ensure no plan is missed, as follows.
Let p be a pattern corresponding to a rewriting
and n be a p node. At lines 7 and 13 of the
algorithm 1, we may want to test containment
between q (the target pattern) and (a union in-
volving) p. Let nq be the q node associated to n
for the containment test.

• If n is labeled ∗ and stores the attribute L
(label), and nq is labeled l ∈ L, then we

add to the plan associated to p the selection
σn.L=l.

• If n is decorated with the formula φn(v) = T
and stores the attribute V (value), and nq is
decorated with the formula φnq(v), then we
add to the plan associated to p the selection
σφnq (v).

Third, prior to Algorithm 1, we unfold all C
attributes in the query and view patterns:

• Assume the node n in pattern p has only one
associated path s ∈ S. To unfold n.C, we
erase C and add to n a child subtree iden-
tical to the S subtree rooted in s, in which
all edges are parent-child and optional, and
all nodes are labeled with their label from
S, and with the V attribute.

• If n has several associated paths s1, . . . , sl,
then (i) decompose p into a union of dis-
joint patterns such that n has a single asso-
ciated path in each such pattern and (ii) un-
fold n.C in each of the resulting patterns, as
above.

Before evaluating a rewriting plan, the nodes
introduced by unfolding must be extracted from
the C attribute stored in the (unfolded) ancestor
n. This is achieved by XPath navigation on n.C.

A view pre-processing step may be enabled by
the properties of the ID function fID employed
in the view. For some ID functions, e.g. OR-
DPATHs [22] (illustrated in Figure 2) or Dewey
IDs [26], fID(n) can be derived by a simple com-
putation on fID(n′), where n′ is a child of n. If
such IDs are used in a view, let n1 ∈ pi be a node
annotated with ID, and n2 be its parent. As-
sume n1 is annotated with the paths s1

1, . . . , s
1
k,

and n2 with the paths s2
1, . . . , s

2
l . If the depth

15



difference between any s1
i and s2

j (such that s2
j is

an ancestor of s1
i ) is a constant c (in other words,

such pairs of paths are all at the same “vertical
distance”), we may compute the ID of n2 by c
successive parent ID computation steps, starting
from the values of n1.ID.

Based on this observation, we add to n2 a “vir-
tual” ID attribute annotation, which the rewrit-
ing algorithm can use as if it was originally there.
This process can be repeated, if n2’s parent paths
are “at the same distance” from n2’s paths etc.
Prior to evaluating a rewriting plan which uses
virtual IDs, such IDs are computed by a special
operator navfID

which computes node IDs from
the IDs of its descendants.

Nested patterns entail the following adapta-
tions.

First, Algorithm 1 may build, beside struc-
tural join plans (line 5), plans involving nested
structural joins, which can be seen as simple
joins followed by a grouping on the outer rela-
tion attributes. Intuitively, if a structural join
combines two patterns in a large one by a new
unnested edge, a nested structural join entails
a new nested one. Nested structural joins are
detailed in [3, 8].

Second, prior to the containment tests, we
may adapt the nesting path(s) of some nodes in
the patterns produced by the rewritings. Let
(l, r) be a plan-pattern pair produced by the
rewriting. (i) If r has a nesting step absent from
the corresponding q node, we eliminate it by ap-
plying an unnest operator on l. (ii) If a q node
has a nesting step absent from the nesting se-
quence of the corresponding r node, if this r node
has an ID attribute, we can produce the required
nesting by a group-by operator on l; otherwise,
this nesting step cannot be obtained, and con-
tainment fails.

annotation
C

mail

site

C

n

C

n
n

description

XMark query 7

Figure 10: XMark pattern containment.

5 Experimental evaluation

Our approach is implemented in the ULoad Java-
based prototype [4, 27]. We report on mea-
sures performed on a laptop with an Intel 2 GHz
CPU and 1 GB RAM, running Linux Gentoo,
and using JDK 1.5.0. We denote by XMarkn
an XMark [29] document of n MB. All doc-
uments, patterns and summaries used in
this section are available at [27].

Containment To start with, we gather some
statistics on summaries of several documents, in-
cluding two snapshots of the DBLP data, from
2002 and 2005. In Table 1, ns is the number of
strong edges, and n1 the number of one-to-one
edges; such edges are quite frequent, thus many
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Doc. Shakespeare Nasa SwissProt XMark11 XMark111 XMark233 DBLP ’02 DBLP ’05

Size 7.5 MB 24 MB 109 MB 11 MB 111 MB 233 Mb 133 MB 280 MB
|S| 58 24 117 536 548 548 145 159

nS(n1) 40 (23) 80 (64) 167 (145) 188 (153) 188 (153) 188 (153) 43 (34) 47 (39)

Table 1: Sample XML documents and their summaries.

integrity constraints can be exploited by rewrit-
ing. Table 1 demonstrates summaries are quite
small, and change little as the document grows:
from XMark11 to XMark232, the summary only
grows by 10%, and similarly for the DBLP data.
Intuitively, the complexity of a data set levels off
at some point. Thus, while summaries may have
to be updated (in linear time [15]), the updates
are likely to be modest.

To test containment, we first extracted the
patterns of the 20 XMark [29] queries, and tested
the containment of each pattern in itself under
the constraints of the largest XMark summary
(548 nodes). Figure 10 (top) shows the canoni-
cal model size, and containment time. Note that
|modS(p)| is small, much less than the theoretical
bound of |S||p|. The S-model of query 7 (shown
at top right in Figure 10) has 204 trees, due to
the lack of structural relationships between the
query variables, which is not the frequent case
in practice. The impact of optional edges on
the canonical model size is quite moderate: 16
XMark patterns have optional edges, yet small
canonical models (except for query 7).

We also generated synthetic, satisfiable pat-
terns of 3 − 13 nodes, based on the 548-nodes
XMark summary. Pattern node fanout is f = 3.
Nodes were labeled ∗ with probability 0.1, and
with a value predicate of the form v = c with
probability 0.2. We used 10 different values.
Edges are labeled // with probability 0.5, and
are optional with probability 0.5. For this mea-

sure, we turned off edge nesting, since: randomly
generated patterns with nested edges easily dis-
agree on their nesting sequences, thus contain-
ment fails, and nesting does not significantly
change the complexity (Section 4.5). For each n,
we generated 3 sets of 40 patterns, having r=1,
2, resp. 3 return nodes; we fixed the labels of the
return nodes to item, name, and initial, to avoid
patterns returning unrelated nodes. For every
n, every r, and every i = 1, . . . , 40, we tested
pn,i,r ⊆S pn,j,r with j = i, . . . , 40, and averaged
the containment time over 780 executions. Fig-
ure 10 shows the result, separating positive from
negative cases. The latter are faster because the
algorithm exits as soon as one canonical model
tree contradicts the containment condition, thus
modS(p) need not be fully built. Successful test
time grows with n, but remains moderate. The
curves are quite irregular, since |modS(p)| varies
a lot among patterns, and is difficult to control.

We repeated the measure with patterns gen-
erated on the DBLP’05 summary. The contain-
ment times (detailed in Figure 11) are 4 times
smaller than for XMark. This is because the
XMark summary contains many nodes named
bold, emph etc., thus our pattern generator in-
cludes them often in the patterns, leading to
large canonical models. A query using three bold
elements, however, is not very realistic. Such for-
matting tags are less frequent in DBLP’s sum-
mary, making DBLP synthetic patterns closer
to real-life queries. We also tested patterns with
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Figure 11: DBLP pattern containment.

50%, and with 0% optional edges, and found op-
tional edges slow containment by a factor of 2
compared to the conjunctive case. The impact
is much smaller than the predicted exponential
worst case (Section 4.3), demonstrating the al-
gorithm’s robustness.

Rewriting We rewrite the query patterns ex-
tracted from the XMark [29]. The view pattern
set is initialized with 2-node views, one node la-
beled with the XMark root tag, and the other
labeled with each XMark tag, and storing ID,
V , to ensure some rewritings exist. Experi-
menting with various synthetic views, we noticed
that large synthetic view patterns did not signifi-
cantly increased the number of rewritings found,
because the risk that the view has little, if any, in
common with the query increases with the view
size. The presence of random value predicates
in views had the same effect. Therefore, we gen-
erated 100 random 3-nodes view patterns based
on the XMark233 summary, with 50% optional
edges, such that a node stores a (structural) ID
and V with a probability 0.75. Figure 12 shows
for each query: the time to prepare the rewriting
and prune the views as described in Section 3,

Figure 12: XMark query rewriting

the time elapsed until the first equivalent rewrit-
ing is found (this includes the setup time), and
the total rewriting time. The first rewriting is
found quite fast. This is useful since in the pres-
ence of many rewritings, the rewriting process
may be stopped early. Also, view pruning was
very efficient: of the 183 initial views, on average
only 57% were kept.

Experiment conclusions Pattern containment
performance closely tracks the canonical model
size for positive tests; negative tests perform
much faster. Containment performance scales
up with the summary and pattern size. Rewrit-
ing performance depends on the views and num-
ber of solutions; a first rewriting is identified fast.

6 Related works

Containment and rewriting for semistructured
queries have received significant attention in the
literature, either in the general case [14, 23,
20], or under schema and other semantic con-
straints [11, 12, 21, 28]. We studied tree pattern
containment in the presence of Dataguide [15]
constraints which, to our knowledge, had not
been previously addressed. One difference be-
tween schema and summary constraints is that a
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summary limits tree depth (and guarantees finite
algebraic rewriting), while a (recursive) schema
does not. In practical documents, recursion is
present, but not very deep [19], making sum-
maries an interesting rewriting tool. More gen-
erally, schemas and summaries enable different
(partially overlapping) sets of rewritings. Our
containment decision algorithm is related to the
basic containment algorithm of [20], enhanced
to benefit from summary constraints. The op-
timizations proposed in [20] could also be ap-
plied to our setting, speeding up containment.
Summary constraints are related to path con-
straints [6], and to the constraints used for query
minimization in [2]. However, summaries allow
describing all possible paths in the document,
which the constraints of [2] do not.

An algebraic framework for unconstrained
XQuery minimization is described in [10]. Con-
tainment of nested XQueries has been studied
in [13], based on a model without node identity,
unlike our model.

Recent works have addressed materialized
view-based XML query rewriting [5, 7, 9, 30].
The novelty of our work consists on using sum-
mary constraints, and information about the
view attributes and their interesting properties
useful for rewriting. Restricted to unnested
views, our rewriting problem bears similari-
ties with the problem of answering XQuery
queries when the data is shredded in a relational
database, studied e.g. in [25]. However, our ap-
proach does not need SQL as an intermediary
language.

The patterns we consider are similar to those
of [8, 24], which, however, did not consider view-
based rewriting.

7 Conclusion

We studied the problem of XML query pattern
rewriting based on summary constraints, using
detailed information about view contents and
interesting properties of element IDs; all these
features tend to enable rewritings which would
not otherwise be possible. Our future work in-
cludes extending ULoad with XML Schema con-
straints, and view maintenance in the presence
of updates.
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