

Extending XQuery for Analytics
Kevin Beyer, Don Chamberlin, Latha S. Colby, Fatma Özcan, Hamid Pirahesh, Yu Xu*

IBM Almaden Research Center

650 Harry Rd
San Jose, CA 95120

Abstract

XQuery is a query language under development by the W3C
XML Query Working Group. The language contains constructs
for navigating, searching, and restructuring XML data. With
XML gaining importance as the standard for representing busi-
ness data, XQuery must support the types of queries that are
common in business analytics. One such class of queries is
OLAP-style aggregation queries. Although these queries are
expressible in XQuery Version 1, the lack of explicit grouping
constructs makes the construction of these queries non-intuitive
and places a burden on the XQuery engine to recognize and opti-
mize the implicit grouping constructs. Furthermore, although the
flexibility of the XML data model provides an opportunity for
advanced forms of grouping that are not easily represented in
relational systems, these queries are difficult to express using the
current XQuery syntax. In this paper, we provide a proposal for
extending the XQuery FLWOR expression with explicit syntax
for grouping and for numbering of results. We show that these
new XQuery constructs not only simplify the construction and
evaluation of queries requiring grouping and ranking but also
enable complex analytic queries such as moving-window aggre-
gation and rollups along dynamic hierarchies to be expressed
without additional language extensions.

1. Introduction
As XML gains acceptance as a standard format for data storage
and exchange, XML data repositories need to deal with data gen-
erated by both document-centric applications and transaction-
centric applications. XML query languages must, therefore, be
well-suited for expressing queries that require searching and navi-
gating through multiple levels of XML objects as well as relating
and combining objects as required for analysis of transaction-
oriented data. This includes queries that involve grouping, rank-

ing, moving-window aggregation, and comparisons across differ-
ent levels of partitions, in addition to navigation, extraction, filter-
ing, and construction.

XQuery [15][16][17], a query language developed by the W3C
XML Query Working Group [14], is emerging as the standard
language for querying XML data. XQuery provides constructs for
expressing a large class of queries, but it does not include an ex-
plicit grouping construct comparable to the group by clause in
SQL. Lack of an explicit grouping construct makes certain classes
of common business analytic queries needlessly difficult to ex-
press and execute efficiently. Futhermore, business objects often
have complex structures and varying schemas demanding ad-
vanced analytic capabilities that are even more difficult to express
in the current XQuery syntax. In this paper, we examine these
classes of queries and propose extensions to XQuery. We show
how these extensions make analytic queries on XML data easier
to express and optimize. These extensions include features that
enable users to clearly express their intent for grouping complex
data and for numbering of results. Moreover, the extensions en-
able new types of powerful analytic queries like rollup queries on
“ragged-hierarchies” that are difficult to express in XQuery and
even in SQL, its more mature relative.

The remainder of this paper is organized as follows: Section 2
explores some of the limitations of the existing XQuery syntax for
queries requiring grouping. Section 3 introduces a proposal for an
explicit grouping construct to remove these limitations with sev-
eral examples that illustrate this proposal. Section 4 introduces a
companion proposal for output numbering. Section 5 illustrates
advanced OLAP-style queries using the extended constructs.
Section 6 presents the results of some preliminary measurements
of the impact of explicit grouping on the performance of an
XQuery engine [2]. Related work and our conclusions are pre-
sented in Sections 7 and 8, respectively.

2. The Grouping Problem
___ We motivate the problem with some illustrative examples. We

begin with an example query based on an input document consist-
ing of a bibliography containing many books. The structure of a
book is represented by the following example instance. A book
may have zero or more authors and zero or one publisher.

*Work performed at IBM Almaden. Current Address: University of
California, San Diego, La Jolla, CA 92093.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

503

<book>
 <title>Transaction Processing</title>
 <author>Jim Gray</author>
 <author>Andreas Reuter</author>
 <publisher>Morgan Kaufmann</publisher>
 <year>1993</year>
 <price>59.00</price>
 <discount>6.00</discount>
</book>

Suppose that we need to find the average net price (after discount)
of books for each publisher and year. This query may be ex-
pressed in the current XQuery syntax, following the style of the
grouping examples shown in the XQuery specification [15] and in
[1], as follows:

(Q1) Find the average net price of books for each publisher and
year.

for $p in distinct-values(//book/publisher),
 $y in distinct-values(//book/year)
let $netprices :=
 //book[publisher = $p and year = $y]/(price – discount)
where fn:exists($netprices)
order by $p, $y
return
 <group>
 <publisher>{$p}</publisher>
 <year>{$y}</year>
 <avg-net-price>{avg($netprices)}</avg-net-price>
 </group>

This XQuery expression involves computing the set of distinct
publishers and the set of distinct years, then finding the set of
books corresponding to each (publisher, year) pair and computing
the average net price for each non-empty set of books. As pointed
out in [1], this method of expressing grouping has several prob-
lems. Arguably, this is not the most natural way for users to ex-
press the intent of grouping books by publisher and year. More
seriously, a straightforward execution of this query would be very
inefficient because it would involve many passes over the set of
books resulting in expensive and redundant navigation and self-
joins. In order to produce an efficient plan, an XQuery optimizer
would need to detect the grouping implied by the query, which
might be quite difficult to do in complex cases. The expression
shown above also suffers from the problem of missing rows for
books that do not have any publishers. This is a consequence of
the fact that the non-existence of a publisher element for a book
will not be represented in the sequence of publisher elements
produced by the expression //book/publisher in the first for clause.

Another serious problem with the current XQuery syntax for
grouping applications is illustrated by the following query:

(Q2) Find the average price of books for each author.

for $a in distinct-values(//book/author)
let $b := //book[author = $a]

return
 <group>
 {$a}
 <avg-price> {avg($b/price)} </avg-price>
 </group>

In our example input data set, each book can have multiple au-
thors. The result of Q2 will contain a group for each individual
author, paired with the average price of all books co-authored by
that individual, regardless of other co-authors. For example, the
output element with author Gray will contain the average price of
all books by Gray, Gray and Reuter, etc. This may or may not
capture the user's intent. A user might reasonably want to find the
average price of books by each distinct set of authors. In this al-
ternative query, books by Gray would be in a different group from
books by Gray and Reuter. This alternative query is quite difficult
to express using the current XQuery syntax, but can be easily
expressed using a syntactic extension described in Section 3.3.

Difficulties with the current XQuery syntax are even more pro-
nounced in the case of analytic queries that involve partitioning
data in different ways in order to perform moving aggregations or
comparisons of aggregations at different levels of a multi-
dimensional hierarchy. For example, consider a document con-
taining many sale elements. An example sale element is
shown below.

<sale>
 <timestamp>2004-01-31T11:32:07</timestamp>
 <product>Green Tea</product>
 <state>CA</state>
 <region>West</region>
 <quantity>10</quantity>
 <price>9.99</price>
</sale>
Now consider the following query:
(Q3) For each year and state, compare the total yearly sales in
that state to the total yearly sales in the region containing the
state, ordered by year, region, and state.
The following example output element represents the result of this
query:

<summary>
 <year>2004</year>
 <region>West</region>
 <state>OR</state>
 <state-sales>42500.00</state-sales>
 <region-sales>105860.00</region-sales>
 <state-percentage>40.1</state-percentage>
</summary>

In the current XQuery syntax, this query might be expressed as
follows:
for $year in
 distinct-values(//sale/year-from-dateTime(timestamp))

504

for $region in distinct-values(//sale/region)
let $region-sales := //sale[region = $region and
 year-from-dateTime(timestamp) = $year]
let $region-sum := sum($region-sales/(quantity * price))
for $state in distinct-values($region-sales/state)
let $state-sales := $region-sales[state = $state]
let $state-sum := sum($state-sales/(quantity * price))
order by $year, $region, $state
return <summary>
 <year>{ $year }</year>
 <region>{ $region }</region>
 <state>{ $state }</state>
 <state-sales>{ $state-sum }</state-sales>
 <region-sales>{ $region-sum }</region-sales>
 <state-percentage>
 { $state-sum * 100 div $region-sum }
 </state-percentage>
 </summary>
This query as written suggests seven passes over the data for
computing the two levels of aggregations, but these can be com-
puted in two passes if the system is clever enough to convert the
multiple self-joins into a grouping query and combine the sum
aggregate computations with the generation of groups. Notice
how different Q1 and Q3 are: Q1 uses a cross-product of grouping
values and an exists predicate to eliminate empty groups,
while Q3 uses correlated expressions. Crafting a system that de-
tects grouping queries in their varied forms is extremely difficult.
We illustrate, in Section 3.1, how the constructs that we propose
allow a more direct translation of this query into an efficient
evaluation plan.

3. Explicit Grouping

3.1 Basic Syntax and Semantics
In XQuery, the term tuple denotes a set of named values that are
related in some way. For example, a tuple might consist of several
values that describe a book, such as the title, author, publisher,
and price of the book. Tuples are not part of the XQuery data
model [16], but are used as an intermediate result during the proc-
essing of XQuery expressions such as FLWOR expressions and
quantified expressions. The for and let clauses within a
FLWOR expression generate an ordered sequence of tuples. Each
tuple, in turn, consists of one or more named variables that are
bound to values. All the tuples generated during processing of a
FLWOR expression contain the same set of variables.
Grouping, in general, is an operation that applies to a homogene-
ous sequence of tuples such as that found inside an XQuery
FLWOR expression. Some subset of the variables, called group-
ing variables, are used to define the groups—one group for each
distinct combination of values for the grouping variables. Within
each group, the values of the remaining (non-grouping) variables
are aggregated in some way. Because it provides a natural envi-
ronment for a grouping operation, the FLWOR expression is the
obvious place to add a grouping extension to the XQuery syntax.

Grouping can be defined within a FLWOR expression without
making any changes to the XQuery data model.
The following is a simplified version of the FLWOR syntax in the
current XQuery specification, using the same EBNF notation but
omitting or simplifying certain features that are not relevant to
this discussion:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
 OrderByClause? ReturnClause
ForClause ::= "for" "$" VarName ("at" "$" VarName)? "in" Expr
 ("," "$" VarName ("at" "$" VarName)? "in" Expr)*
LetClause ::= "let" "$" VarName ":=" Expr
 ("," "$" VarName ":=" Expr)*
WhereClause ::= "where" Expr
OrderByClause ::= "stable"? "order" "by" OrderSpec
 ("," OrderSpec)*
OrderSpec ::= Expr ("ascending" | "descending")?
ReturnClause ::= "return" Expr

We propose to extend the FLWOR syntax by introducing an op-
tional group by clause following the current optional where
clause. If present, the group by clause may be followed by
optional let clauses and an optional where clause. The result-
ing syntax is as follows:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
 (GroupByClause LetClause* WhereClause?)?
 OrderByClause? ReturnClause
GroupByClause ::= "group" "by"
 Expr "into" "$" VarName
 ("," Expr "into" "$" VarName)*
 ("nest" Expr "into" "$" VarName
 ("," Expr "into" "$" VarName)*)?

The group by clause can be thought of as operating on an input
tuple stream that is generated by the clauses that precede the
group by, and in turn generating an output tuple stream that is
processed by the clauses that follow the group by. Both the
input and the output tuple streams consist of tuples of bound vari-
ables, but the variables in the output tuple stream are not in gen-
eral the same as the variables in the input tuple stream. The cardi-
nality of the output tuple stream is less than or equal to the cardi-
nality of the input tuple stream.
The expressions in the group by clause (immediately following
the group by keyword) are called grouping expressions and the
variables they are bound to are called grouping variables. The
expressions in the nest clause are called nesting expressions and
the variables they are bound to are called nesting variables. Each
tuple in the output stream represents one group and consists of a
value for each grouping variable and each nesting variable.
A group is formed for each distinct set of values for the grouping
expressions. Section 3.3 details the semantics of equality used in
computing the groupings. In the output tuple stream generated by
a group by clause, each grouping variable is bound to a value

505

that is representative of its group. If the group contains nodes, the
particular node that is chosen as the representative is implemen-
tation-dependent. Each nesting variable is bound to the sequence
of values returned by a nesting expression for all the input tuples
in the group.
Using the extended FLWOR syntax, we can express the first
query in Section 2 as follows:

(Q1) Find the average net price of books for each publisher and
year.

for $b in //book
group by $b/publisher into $p, $b/year into $y
nest $b/price - $b/discount into $netprices
return
 <group>
 {$p, $y}
 <avg-net-price>{avg($netprices)}</avg-net-price>
 </group>

In the above query, in the input tuple stream that is seen by the
group by clause, each tuple contains one variable: $b, bound
to one book. In the output tuple stream generated by the group
by clause and used by the return clause, each tuple contains
three variables: $p, bound to a publisher element, $y, bound
to a year element, and $netprices, bound to a sequence of
atomic values that represent net prices of books. Figure 1 shows
an example of the tuple stream after the group by (and before
the return) for the above query.

Since an empty sequence is considered to be a distinct value for
grouping purposes, books with no publisher are present in the
result of Q1 when it is expressed with explicit grouping.

Figure 1: Example variable bindings after group by in Q1

The optional let clauses following the group by clause allow
group properties to be computed and reused in multiple places.
The optional where clause, applied after the let clauses, allows
filtering of tuples resulting from the group by operation (in
effect, eliminating groups that do not satisfy a predicate).

The usefulness of these clauses is illustrated by the following
example:

(Q4) List all the publishers whose average book price is more
than 100, in descending order by average price.

for $b in //book
group by $b/publisher into $pub nest $b/price into $prices
let $avgprice := avg($prices)
where $avgprice > 100
order by $avgprice descending
return
 <expensive-publisher>
 { $pub }
 <avg-price> {$avgprice} </avg-price>
 </expensive-publisher>

In this example, the let clause following the group by clause
permits the average price of books by a given publisher to be
computed once and then used in both a predicate and an element
constructor.

The nest clause in our proposed syntax allows all of the infor-
mation from the sequence of tuples contributing to a group to be
retained for use in further computations after the group by. We
illustrate this with the following example, which shows how
query Q3 from Section 2 may be expressed with the extended
group by syntax.

(Q3) For each year and state, compare the total yearly sales in
that state to the total yearly sales in the region containing the
state, ordered by year, region, and state.

for $s in //sale
group by $s/region into $region,

<publisher>
 Morgan Kaufmann
</publisher>

<year>
 1993
</year>

(65.00,
 43.00,
 57.00)

$p $y $netprices

<publisher>
 Morgan Kaufmann
</publisher>

(34.00,
 75.00)

<publisher>
 Addison-Wesley
</publisher>

(48.00)

<year>
 1995
</year>

<year>
 1993
</year>

 year-from-dateTime($s/timestamp) into $year
 nest $s into $region-sales
let $region-sum := sum($region-sales/(quantity * price))
order by $year, $region
return
 for $s in $region-sales
 group by $s/state into $state
 nest $s into $state-sales
 let $state-sum := sum($state-sales/(quantity * price))
 order by $state
 return
 <summary>
 {$year, $region, $state}
 <state-sales>{ $state-sum }</state-sales>
 <region-sales>{ $region-sum }</region-sales>
 <state-percentage>
 { $state-sum * 100 div $region-sum }
 </state-percentage>
 </summary>

506

In the expression shown above, the first group by clause
groups the sale elements by region and year and binds the se-
quence of sales in each group into the nesting variable $re-
gion-sales, and then the subsequent let clause binds the
aggregated total sales for the region into the $region-sum
variable. An example output tuple in the result of this grouping is
shown below.

Figure 2: Example bindings after group by region and year

For each tuple in this intermediate result, the nested FLWOR
expression further partitions the sale elements in $region-
sales by state into the nesting variable $state-sales,
which is immediately aggregated into $state-sum using a let
clause. The final return clause then formats the result, con-
structing new elements as needed. The result is the same sequence
of summary elements produced by Q3 in Section 2.
Note that a group by clause may not necessarily contain a
nest subclause, as illustrated by the following example, which
computes the distinct pairs of publishers and titles in the input
bibliography document. This query is similar in intent to the SE-
LECT DISTINCT feature in SQL.

(Q5) List the distinct pairs of publishers and titles.

for $b in //book
group by $b/publisher into $pub, $b/title into $title
order by $pub, $title
return <pair> {$pub, $title} </pair>

In XQuery without an explicit group by operator, this query
would be expressed by computing a Cartesian product of all pub-
lishers and titles and then filtering out the combinations that are
not present in the input document. Apart from being awkward to
write, this solution becomes rapidly more inefficient as the num-
ber of variables increases. In addition, the query expressed with-
out explicit grouping would ignore books that have a publisher
but no title, or a title but no publisher.
As a group is formed from a collection of tuples, the values re-
turned by a given nesting expression are concatenated together
into a sequence that is bound to a nesting variable. In this process,
the sequences returned by the nesting expression for individual
tuples are merged and lose their individual identity. This is neces-
sary because the XQuery data model does not support nested
sequences. One consequence is that the cardinalities of the se-
quences bound to two different nesting variables after grouping
can be different. A second consequence is that any nesting ex-

pression that evaluates to an empty sequence will not appear in
the resulting nested sequence. This has implications for count-
related optimizations. Consider the following example query:

(Q6) For each year display the number of books published and
the list of book titles published that year.

for $b in //book
group by $b/year into $year nest $b/title into $titles
return
 <yearly-report>
 { $year}
 <book-count> {count($titles)} </book-count>
 <title-list> {$titles} </title-list>
 </yearly-report>

Since we know that each book has exactly one title, counting
titles instead of books will produce the same result. If books were
allowed to be published without titles (or with multiple titles) then
we would need a second nesting variable to aggregate and count
the books themselves. Alternatively, aggregating and counting
books could be replaced by aggregating and counting a literal
such as 1 (either explicitly by the user or by an optimizer). In
SQL, such count optimizations may be applied based purely on
the (non) nullability of the input arguments. In XQuery, one has
to be aware of the number of allowed occurrences of child ele-
ments (derived potentially from schema information) in order to
enable such optimizations in general.

<region>
 West
</region>

1993 124.90

$region $year $region-sales $region-sum

(<sale>
 …
 </sale>,
 <sale>
 …
 </sale>
)

3.2 Variable Scoping Rules
The values bound to variables in the output tuple stream of a
group by are properties of groups, not of individual tuples.
Therefore, these variables are not in scope until after the forma-
tion of groups is complete. For this reason, a grouping expression
may not reference a grouping variable defined by another group-
ing expression.
In the clauses that follow the group by clause of a grouped
FLWOR expression (i.e., the let, where, order by, and re-
turn clauses that follow group by), the scoping rules for vari-
able names are as follows:
1. Grouping and nesting variables are in scope. Each of these

variables is bound to a value derived from a group. If a
grouping or nesting variable has the same name as a previ-
ously bound variable, it overrides the previous binding.
In the following example, which illustrates the use of group
by in inverting a hierarchy, the variable-name $b is itera-
tively bound to each book in the input stream. The same
variable-name is then rebound explicitly to the sequence of
all the books in the group corresponding to a given publisher
in the output stream of the group by.

(Q7) Create a list of publisher elements, each containing the
name of a publisher and a nested list of book elements repre-
senting books published by that publisher.

for $b in //book
group by $b/publisher into $pub nest $b into $b
order by $pub

507

return
 <publisher>
 <name> {string($pub)} </name>
 <books> {$b} </books>
 </publisher>

2. Variables bound outside the FLWOR and not overridden
inside the FLWOR remain in scope. However, variables that
are bound in the FLWOR before the group by clause (i.e.
variables bound by for and let clauses that precede
group by) are not in scope. A reference to one of these
variable names is a static error (unless the name has been re-
bound as a grouping or nesting variable). This is because the
individual tuples of the input stream no longer exist in the
output tuple stream. An alternative design might preserve the
names of the variables in the input stream, automatically re-
binding each of these variables to a sequence representing all
the values for that variable in a given group. This design was
considered and rejected on the grounds that implicit rebind-
ing of variables is confusing and unnecessary. We believe
that users should be very much aware that the variables in
scope after grouping are different from the variables in scope
before grouping, and that this awareness can be reinforced
by giving different names to the post-grouping variables.

3.3 Equality

As mentioned in Section 2, the current XQuery syntax does not
provide a way to express grouping based on equality of se-
quences. In our group by extension proposal, we allow group-
ing of sequences using fn:deep-equal [17] as the default
comparison function. This default comparison function has the
following properties:

1. If a grouping expression returns a sequence of items,
each permutation is considered a distinct value.

2. An empty sequence is treated as a distinct value for
grouping purposes.

Using the default comparison for grouping we can express the
variant of query Q2 from Section 2 as follows:

 (Q2a) Find the average price of books for each distinct set of
authors.

for $b in //book
group by $b/author into $a
 nest $b/price into $prices
return
 <group>
 {$a}
 <avg-price> {avg($prices)} </avg-price>
 </group>

The above formulation of Q2a uses the default deep-equal
function for grouping books by their authors; therefore it will
generate an output element for each distinct permutation of au-

thors. For example, a book by Gray and Reuter will not be in the
same group as a book by Reuter and Gray.
In order to allow comparisons based on other definitions of se-
quence equality to be used instead of the fn:deep-equal
function, we extend the group by clause with using sub-
clauses as follows:

GroupByClause ::= "group" "by"
 Expr "into" "$" VarName ("using" QName)?

 ("," Expr "into" "$" VarName ("using" QName)?)*
 ("nest" Expr "into" "$" VarName
 ("," Expr "into" "$" VarName)*)?

The using subclause specifies the comparison function to be
used in comparing the grouping expressions. In order to be use-
ful, such a function must be deterministic, transitive, and free of
side effects. For example, a set-equal function might be de-
fined that compares two sequences and returns true if one se-
quence is a permutation of the other. The following example de-
fines such a function which is then used in the using subclause
of the previous example to group by set semantics. Of course, this
query would execute more efficiently if the set-equal function
were built-in rather than user-defined.

declare function local:set-equal
 ($arg1 as item()*, $arg2 as item()*) as xs:boolean
 { every $i1 in $arg1 satisfies
 some $i2 in $arg2 satisfies $i1 eq $i2
 and every $i2 in $arg2 satisfies
 some $i1 in $arg1 satisfies $i1 eq $i2
 }
for $b in //book
group by $b/author into $a using local:set-equal
nest $b/price into $prices
return
 <group>
 {$a}
 <avg-price> {avg($prices)} </avg-price>
 </group>

The ability of the proposed syntax to form groups based on multi-
valued grouping keys stands in contrast to the group by opera-
tor of SQL, in which each grouping key has a single value. The
proposed XQuery grouping operator takes advantage of the flexi-
bility of XML, in which a given path may return zero, one, or
many elements.

3.4 Ordering
3.4.1 Ordering within Groups
In the tuple stream resulting from a group by, each nesting
variable is bound to the sequence of values returned by the nest-
ing expression for all the tuples in the group. We show, in this
section, how the ordering of the items in this nesting sequence can
enable order-based aggregations over the sequence to be ex-

508

pressed easily. The ordering of values in this nested sequence is,
by default, dependent on the ordering mode in the Static Context
[15]. Ordering mode is an XQuery feature that permits a user to
specify whether the ordering of results is significant. In the cur-
rent XQuery specification, ordering mode controls whether the
result of a FLWOR expression with no order by clause pre-
serves the binding order in which the tuples were generated by the
for and let clauses. Since the values in a nested sequence come
from tuples that have a well-defined ordering in the input stream,
it is appropriate for ordering mode to control the ordering of these
values. If ordering mode is ordered, the nested sequence pre-
serves the ordering of the input tuple stream. If ordering mode is
unordered, the ordering of values in the nested sequence is
undefined.
Allowing the user to order the nested sequence with an ordering
that is different from the default ordering would enable several
types of “windowing” queries to be expressed more succinctly. In
order to allow the nested sequence to be ordered in a different
way we extend the nest subclause with order by specifica-
tions as follows:

GroupByClause ::= "group" "by"
 Expr "into" "$" VarName ("using" QName)?
 ("," Expr "into" "$" VarName ("using" QName)?)*

 ("nest" Expr OrderByClause? "into" "$" VarName
 ("," Expr OrderByClause? "into" "$" VarName)*)?

If order by is specified for a given nesting variable, it controls
the ordering of nested values in the same way that an order by
clause orders the result of a FLWOR expression. When an order
by clause is used inside a nest clause, the variables in scope for
that order by clause are the variables of the input tuple stream
(before groups are formed).
The following "moving window" example illustrates the useful-
ness of ordering the nested results within groups.

(Q8) Within each region, order the sales by timestamp; then for
each sale, show the total amount of the sale and the total amount
of the previous ten sales in that region.
The following example output element illustrates the expected
result from this query:

<region name = "West">
 <sale>
 <timestamp>2004-04-01T11:32:07</timestamp>
 <sale-amount>25.00</sale-amount>
 <previous-ten-sales>180.00</previous-ten-sales>
 </sale>
 (... more <sale> elements ...)
</region>

The XQuery representation of this query is as follows:

for $s in //sale
group by $s/region into $region
nest $s order by $s/timestamp into $rs

order by $region
return
 <region name = string($region)>
 {for $s1 at $i in $rs
 return
 <sale>
 {$s1/timestamp}
 <sale-amount>{$s1/quantity * $s1/price}</sale-amount>
 <previous-ten-sales>
 {sum(for $s2 at $j in $rs
 where $j < $i and $j >= $i – 10
 return $s2/quantity * $s2/price)}
 </previous-ten-sales>
 </sale>
 }
 </region>

In the above query, the nesting variable $rs is bound to the se-
quence of all the sales within each region ordered by the time-
stamp of the sale. In the return clause, the first for clause
iterates through the sales in this ordered nested sequence binding
$s1 to each sales and $i to the position of $s1 within the se-
quence. The for-where-return within the sum function
performs a second iteration through the nested sequence to re-
trieve the ten previous sales, i.e., sales whose position in the or-
dered nested sequence is within 10 slots from $s1’s position (i.e.,
$i) in the sequence.

3.4.2 Ordering of Groups

In an ordinary FLWOR expression, the binding order in which
tuples are generated by the for and let clauses is significant. If
the FLWOR expression has no order by clause and ordering
mode is ordered, the result of the FLWOR expression pre-
serves binding order. If the FLWOR expression has an order
by clause that includes the keyword stable, binding order is
preserved among results that have equal ordering-keys. However,
in a grouped FLWOR expression, the results represent properties
of groups rather than individual input tuples, and groups have no
meaningful input sequence that can be preserved. Therefore, in a
grouped FLWOR expression that has no order by clause, the
ordering of the result sequence is undefined. Similarly, the key-
word stable is ignored in the order by clause of a grouped
FLWOR expression.

3.5 Putting it all together
Since both the input and the output of a group by clause are
tuple streams, in principle a group by clause could be followed
by another group by clause in the same FLWOR. But there
seems to be little motivation for this. The output tuple stream of a
group by consists of grouping variables (which have already
been grouped) and nesting variables (whose values are sequences,
so it is difficult to perform any further grouping on them). There-
fore, this proposal allows only one group by clause in a

509

FLWOR expression. Users can specify additional grouping op-
erations within nested FLWORs (by including, for example, a
FLWOR with a group by inside a return clause).
The combined EBNF syntax for FLWOR expressions with our
proposed extensions is as follows:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
 (GroupByClause LetClause* WhereClause?)?
 OrderByClause? ReturnClause
GroupByClause ::= "group" "by"
 Expr "into" "$" VarName ("using" QName)?
 ("," Expr "into" "$" VarName ("using" QName)?)*
 ("nest" Expr OrderByClause? "into" "$" VarName
 ("," Expr OrderByClause? "into" "$" VarName)*)?

4. Output Numbering
In the current syntax of XQuery, the for clause of a FLWOR
expression may contain a positional variable, identified by the
keyword at, which is bound to an increasing sequence of ordinal
numbers as the for clause iterates over its input sequence. For
example, the following FLWOR expression might generate a
numbered list of book titles authored by Jim Melton:

(Q9) List the books authored by Jim Melton, including the title
and ordinal number of each book.

for $b at $i in //book[author = "Jim Melton"]
return
 <book>
 <number>{$i}</number>
 {$b/title}
 </book>

The result of Q9 might be as follows:

<book>
 <number>1</number>
 <title>Understanding the New SQL</title>
</book>
<book>
 <number>2<number>
 <title>Understanding SQL and Java Together</title>
</book>

It is important to understand that the positional variable in an at
subclause is bound to the ordinal number of each input item in the
binding order of the for clause, which is not necessarily the
same as the order in which these items appear in the result of the
FLWOR expression. In the above example, Jim Melton's books
are numbered according to their position in the input document
("document order"). However, suppose that the query were modi-
fied slightly to list Jim Melton's books in order by price:

(Q9a) List the books authored by Jim Melton in order of increas-
ing price, with an ordinal number for each book.

for $b at $i in //book[author = "Jim Melton"]
order by $b/price ascending
return
 <book>
 <number>{$i}</number>
 {$b/title, $b/price}
 </book>

The result of Q9a might be as follows:

<book>
 <number>2<number>
 <title>Understanding SQL and Java Together</title>
 <price>49.95</price>
</book>
<book>
 <number>1</number>
 <title>Understanding the New SQL</title>
 <price>54.95</price>
</book>

The result of Q9a illustrates that positional variables in the for
clause represent input ordering and do not reflect the output order
of a FLWOR expression that contains an order by clause. It
would be useful in many cases to bind another kind of positional
variable to represent output ordering. For this purpose, a posi-
tional variable could be added to the return clause, using syn-
tax consistent with the existing syntax in the for clause, as fol-
lows:

ReturnClause ::= "return" ("at" "$" VarName)? Expr
The semantics of a positional variable in a return clause are as
follows: Each time the return clause is executed, the positional
variable is bound to an integer representing the ordinal number of
that execution, starting with 1.
Output positional variables are useful both for numbering output
streams and for filtering them, as illustrated by the following ex-
ample:

(Q9b) Find the three most expensive books written by Jim Melton,
in order of decreasing price, and generate an ordinal number for
each.

for $b in //book[author = "Jim Melton"]
order by $b/price descending
return at $rank
 if ($rank <= 3) then
 <book>
 <rank>{$rank}</rank>
 {$b/title, $b/price}
 </book>
 else ()

In the existing XQuery syntax, which does not have a positional
variable in the return clause, this query requires an additional
FLWOR expression to reorder the input stream, as follows:

510

let $ranked-books :=
 (for $b in //book[author = "Jim Melton"]
 order by $b/price descending
 return $b)
return
 (for $b at $i in $ranked-books
 where $i <= 3
 return
 <book>
 <rank>{$i}</rank>
 {$b/title, $b/price}
 </book>)

Note that the proposal for a positional variable in the return
clause of a FLWOR expression is completely independent of the
proposal for a group by clause. The proposals are compatible
and complimentary, but either can be adopted and used without
the other. An example query that uses both grouping and output
ordering is given in Q10 below.

 (Q10) For each month, show the monthly sales ranked by region,
including the rank of each region for that month.
The following is an example output element from Q10:

<monthly-report year="2004" month="10">
 <regional-results>
 <rank>1</rank>
 <region>West</region>
 <total-sales>3950.00</total-sales>
 </regional-results>
 (... more <regional-results> elements ...)
</monthly-report>

Q10 can be expressed using the proposed XQuery extensions as
follows:

for $s in //sale
group by year-from-dateTime($s/timestamp) into $year,
 month-from-dateTime($s/timestamp) into $month
 nest $s into $month-sales
order by $year, $month
return
 <monthly-report year="{$year}" month="{$month}">
 {for $ms in $month-sales
 group by $ms/region into $region
 nest $ms/quantity * $ms/price into $sales-amounts
 let $sum := sum($sales-amounts)
 order by $sum descending
 return at $rank
 <regional-results>
 <rank> {$rank} </rank>
 { $region }

 <total-sales> {$sum} </total-sales>
 </regional-results>}
 </monthly-report>

5. Advanced Grouping
By exploiting the ability to group on complex objects, we can
write OLAP cube and rollup queries [9] without further extension.
Moreover, we can use the power of XML and XQuery to write
queries that are nearly impossible in a relational system. As a
first example, consider a rollup query on an unbounded “ragged-
hierarchy”, which is difficult for SQL to handle because it re-
quires a fixed number of columns. The hierarchy is captured by
the <categories> element in an extended collection of books:
 <book>
 <title>Transaction Processing</title>
 <publisher>Morgan Kaufmann</publisher>
 <year>1993</year>
 <price>59.00</price>
 <categories>
 <software><db><concurrency/></db>
 <distributed/></software>
 </categories>
 </book>

 <book>
 <title>Readings in Database Systems</title>
 <publisher>Morgan Kaufmann</publisher>
 <year>1998</year>
 <price>65.00</price>
 <categories>
 <software><db/></software>
 <anthology/>
 </categories>
 </book>

Inside the <categories> element is an arbitrary forest of elements
that represent the book’s categorical membership. For example,
Transaction Processing is in four categories: “software”, “soft-
ware/db”, “software/db/concurrency”, and “software/distributed”;
Readings in Database Systems is in three categories: “software”,
“software/db”, and “anthology”. We can answer rollup queries
over such a hierarchy, for example:

(Q11) Find the average price of books in each category.
Example output:

<result><category>software</category>
 <avg-price>62.00</avg-price></result>
<result><category>software/db</category>
 <avg-price>62.00</avg-price></result>
<result><category>software/db/concurrency</category>
 <avg-price>59.00</avg-price></result>

511

<result><category>software/distributed</category>
 <avg-price>59.00</avg-price></result>
<result><category>anthology</category>
 <avg-price>65.00</avg-price></result>

To express Q11, we cannot directly use a group by on the cate-
gory because that would group books by their entire categoriza-
tion as a whole, rather than each individual category. Therefore,
we define an auxiliary function that produces all individual cate-
gories of a book as follows:
declare function local:paths($x as element()*) as xs:string* {
 for $i in $x
 let $name := fn:local-name-from-QName(fn:node-name($x))
 return ($name,
 for $j in local:paths($i/*)
 return fn:concat($name, ‘/’, $j)) }
The function recursively produces all the paths below the input
elements by concatenating the name of each input element to the
paths of its children. When used in the query below on our books,
it produces the list of categories described above. The following
query places each book into every category group to which it
belongs then aggregates the prices:

for $b in //book
for $c in local:paths($b/categories/*)
group by $c into $category
nest $b/price into $prices
return <result><category>{$category}</category>
<avg-price>{avg($prices)}</avg-price></result>

As a second example, consider a datacube query:

(Q12) Find the average price of books overall, by publisher, by
year, and by (publisher, year) combinations.
Example output:

<result><group/>
 <avg-price>63.50</avg-price></result>
<result><group><publisher>Morgan Kaufmann</publisher>
 </group>
 <avg-price>63.50</avg-price></result>
<result><group><year>1993</year></group>
 <avg-price>59.00</avg-price></result>
<result><group><year>1998</year></group>
 <avg-price>65.00</avg-price></result>
<result><group><publisher>Morgan Kaufmann</publisher>
 <year>1993</year></group>
 <avg-price>59.00</avg-price></result>
<result><group><publisher>Morgan Kaufmann</publisher>
 <year>1998</year></group>
 <avg-price>65.00</avg-price></result>

To write Q12, we again use the “membership function” paradigm.
In this case, we define a function that takes a sequence as input,
which represents the cube dimensions, and produces the powerset
of the sequence:

declare function local:cube($dims as item()*) as item()* {
 if empty($dims) then <group/>
 else for $subgroup in local:cube(fn:subsequence($dims, 2)))
 return ($subgroup,
 <group>{$dims[1], $subgroup/*}</group>) }

The query again looks nearly identical to the previous two:

for $b in //book
let $pub := <publisher>{$b/publisher/*}</publisher>
for $cell in local:cube(($pub, $b/year))
group by $cell into $cell
nest $b/price into $prices
return <result>{$cell }
 <avg-price>{avg($prices)}</avg-price></result>

The only wrinkle to contend with is the optional publisher ele-
ment, which is handled in the let clause by creating an empty
publisher when one does not exist. If we omit this step, then
books without a publisher are not reported when we are grouping
by publisher, but this is another useful query to pose.

Of course, the paths and cube functions are not easy to write,
and we expect that a common set of such membership functions
will be provided by the implementations and eventually standard-
ized. Furthermore, the system should understand the common
membership functions to optimize the query. In these two exam-
ples, we replicate the input item into every group to which it be-
longs, which substantially increases in both storage and time re-
quirements. However, many algorithms exist to process such
queries much more efficiently [3].

The membership function paradigm generalizes SQL’s cube,
rollup, and grouping-set constructs through complex-
object grouping without adding new constructs. Even though our
datacube example is easily performed on relational data in SQL
today, this proposal is substantially more powerful because the
dimensions themselves can be complex objects including sets of
items and the dimension may even be derived by other member-
ship functions. For example, the cube function works with an
unspecified number of dimensions and can, therefore, perform
dynamic, data-driven datacube queries.

6. Experiments

One of the motivations for adding an explicit group by syntax
to XQuery is that this syntax enables users to express their intent
very clearly. Explicit grouping relieves the XQuery optimizer
from the difficult task of recognizing a grouping "pattern" in a
query that superficially looks like something more complex, such
as nested iterations with a self-join. We believe that explicit
grouping will enable systems to significantly improve perform-
ance by choosing better plans in cases where they would other-

512

wise fail to recognize the grouping "pattern." We implemented
our proposed group by extension in System RX [2] which is a
system supporting native XML storage and query processing de-
scribed elsewhere in these proceedings. To investigate the per-
formance impact of explicit grouping, we conducted an experi-
ment with two equivalent sets of queries expressed in XQuery
with and without explicit group by.
The experiments were based on XML documents containing pur-
chase order data with each order containing detailed lineitem
information about several items purchased, customer information,
and other order information. Each order element had an aver-
age of four lineitem elements. Each lineitem element con-
tained many child elements. The textual representation of each
order document was about 3K bytes in size.
The queries used in this experiment were simple grouping queries.
They involved extracting all the lineitem elements from all the
order elements in the input collection and then grouping these
lineitem elements by different combinations of child elements.
The query templates with and without explicit grouping are pre-
sented in Table 1.

Table 1

 Query With Explicit
Group By (Qgb)

Query Without Explicit
Group By (Q)

Group By
One Ele-
ment

(a)

for $litem in
//order/lineitem

group by $litem/a into $a

nest $litem into $items

return <r>{$a,
count($items)}</r>;

for $a in distinct-
values(//order/lineitem/a)
let $items :=
 for $i in //order/lineitem
 where $i/a = $a
return $i
return <r>{$a,
count($items)}</r>;

Group By

Two Ele-
ments

(a, b)

for $litem in
//order/lineitem

group by $litem/a into $a,
$litem/b into $b

nest $litem into $items
return <r>{$a, $b,
count($items)}</r>;

for $a in distinct-
values(//order/lineitem/a),
$b in distinct-
values(//order/lineitem/b)
let $items :=
 for $i in //order/lineitem
 where $i/a = $a and
 $i/b = $b
return $i
where exists($items)
return <r>{$a, $b,
count($items)}</r>;

Six different pairs of queries were generated from the templates
by substituting different child elements of lineitem for the
grouping terms “a” and “b” in order to vary the number of groups
produced in the result. Each grouping element occurred exactly
once in its parent (i.e., lineitem) element. Queries Q1, Q2,
Q3, and Q6 denote the single element group by queries grouping
by shipinstruct, shipmode, tax, and quantity, respec-
tively. Queries Q4 and Q5 denote the two-element group by que-
ries grouping by (shipinstruct, shipmode) and by (ship-
instruct, tax), respectively. These queries were run against
input collections containing different numbers of order docu-
ments. The number of lineitems that were aggregated ranged
from 8K to 32K. No indexes were used in the experiments and no

rewrites were performed to detect the group-by implied in the
query without the explicit group by.

0

5

10

15

20

25

4 7 9 28 36 50
No. of groups in the result

t(Q
)/t

(Q
gb

)

8000 16000 32000 No. of lineitems

Q1 Q2
Q3

Q4
Q5

Q6

The chart shown above summarizes the results of the group by
experiments. The numbers along the X-axis denote the number of
groups in the result. The Y-axis shows the comparison of the exe-
cution times for the two different versions of the queries com-
puted as t(Q)/t(Qgb) where t(Q) and t(Qgb) are the execution
times (averaged over different runs) for the query expressed with-
out and with the explicit group by, respectively. The performance
of the query without the explicit group by, relative to that of the
query with the explicit group by, deteriorates as the number of
distinct values (or distinct pairs of values) of the grouping child
elements increases. This is because it results in corresponding
increases in the number of scans over the input collection.

7. Related Work
The problems associated with the lack of explicit constructs for
grouping in XQuery have previously been identified by other
researchers [1][4][6][12]. In [1], the authors point out many of
the subtleties involved in correctly expressing grouping queries in
the current XQuery syntax including the challenges associated
with recognizing and optimizing the execution of such queries. In
addition to the difficulties of dealing with grouping complex ob-
jects and empty sequences, they point out several issues involved
in the reliance on element construction to represent “tuples” that
arise in grouping and other analytic queries. In this paper, we
have provided a concrete proposal for overcoming the limitations
resulting from the lack of explicit grouping constructs. Although
some of the issues related to the lack of explicit tuples such as the
loss of types resulting from element construction have since been
mitigated by the inclusion of a construction mode that preserves
types in the current XQuery specification [15], other issues such
as the loss of node identities through element construction still
remain. While the addition of tuples to the XQuery data model is
a potentially interesting area of research, it is beyond the scope of
this paper. Some of the problems with lack of better support for
group by, distinct, and outer-join in XQuery are also mentioned in
[4] and proposed extensions are presented. Their proposed group
by extension is similar to ours in spirit but complete details of
syntax and semantics are not provided. They also do not consider
options for specifying equality, ordering within groups, and more
advanced forms of aggregation.

513

Other researchers have proposed methods to provide better sup-
port for grouping operations on XML data either at the logical
algebraic level or at the physical operator level. Natix [8] pro-
vides a tuple-based algebra that includes grouping operators for
the efficient construction of XML elements. Techniques for using
rewrite rules to transform queries with grouping operations, ex-
pressed as nested queries in the current syntax, into efficient plans
using group by operators have been explored by researchers in
[6][7][11] and [12]. This is a promising optimization similar to the
techniques for de-correlating nested queries into group-by and
outer-join operators that have been developed for relational
[10][13] and object-oriented [5] systems.
These transformations, are however, more difficult when group-
ing complex objects and were not considered in the papers men-
tioned above. Furthermore, it may not always be possible to de-
tect the implied grouping operations and apply such transforma-
tions. Detecting a basic “group by” pattern in a query expressed
without explicit grouping would involve identifying the pattern
suggested by the combination of constructs (distinct-values, self-
joins, existence tests on empty groups, etc.) that are required to
express grouping. This combination is very difficult to detect in
complex analytic queries that compute rollups and moving aggre-
gates across deeply nested data. Furthermore, if any of these
constructs is omitted in the query expression then the expression
cannot simply be converted into a single grouping operation. The
missing constructs would need to be compensated, potentially
through correlated outer-joins (probably based on node-ids) and
other operations. This would result in a more complex query ex-
pression which would be harder to further optimize through re-
write transformations.
While the rewrite transformations described in [6][7][11][12] are
useful optimization techniques, we believe that they are compli-
mentary and additional constructs are needed at the language
level to enable easier expressivity and more efficient execution of
analytic queries.

8. Conclusions
Analytical queries written using in the current XQuery draft are
difficult to read, write, and process efficiently. We propose a
series of XQuery extensions that greatly simplify analytical que-
ries. The extensions cover not only basic grouping queries, but
also advanced analytic queries like ranking, moving window que-
ries, and allocation queries.
The proposal enables new features that go significantly beyond
what is offered today, even from mature technologies like SQL.
Most obvious is the ability to group by complex objects, including
permutations and sets of items, and to override the default notion
of group membership. By careful crafting of complex grouping
values, the language can express rollup and cube queries without
further extension, and can even handle “ragged-hierarchies,” a
notoriously difficult problem for SQL. Moreover, the new syntax
is also useful for common tree transformations such as hierarchy
inversions.
In summary, the proposed XQuery extensions offer a powerful
and flexible set of tools that benefit the user and implementor
alike.

9. Acknowledgments
We are grateful to Bobbie Cochrane for her valuable insights
during the early stages of this work.

10. References
[1] K. Beyer, R.J. Cochrane, L.S. Colby, F. Özcan, H.

Pirahesh, “XQuery for Analytics: Challenges and
Requirements”, XIME-P 2004.

[2] K. Beyer, et al, “System RX: One Part Relational, One
Part XML”, SIGMOD 2005.

[3] K. Beyer and R. Ramakrishnan, “Bottom-Up Computa-
tion of Sparse and Iceberg CUBEs”, SIGMOD 1999,
pages 359-370.

[4] V. Borkar and M. Carey, “Extending XQuery for
Grouping, Duplicate Elimination, and Outer Joins”,
XML 2004.

[5] S. Cluet and G. Moerkotte, “Nested Queries in Object
Bases”, DBPL 1993.

[6] A. Deutsch, Y. Papakonstantinou and Y. Xu, “The
NEXT Framework for Logical XQuery Optimization”,
VLDB 2004, pages 168-179.

[7] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi,
“Query processing of streamed XML data”, CIKM
2002, pages 126-133.

[8] T. Fiebig and G. Moerkotte, “Algebraic XML Construc-
tion in Natix”, WISE(1), 2001, pages 212-221.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh,
“Data Cube: A Relational Aggregation Operator Gener-
alizing Group-By, Cross-Tab, and Sub-Totals”, ICDE
1996, pages 152-159.

[10] W. Kim, “On Optimizing an SQL-like Nested Query”,
ACM TODS, 7(3), pages 443-469, 1982.

[11] N. May, S. Helmer, and G. Moerkotte, “Three cases for
query decorrelation in XQuery”, XSym 2003, pages 70-
84.

[12] S. Paparizos, et al, “Grouping in XML”, EDBT 2002
Workshop, LNCS 2490, pages 128-147.

[13] P. Seshadri, H. Pirahesh and T. Y. Cliff Leung, “Com-
plex Query Decorrelation”, ICDE 1996, pages 450-458.

[14] World Wide Web Consortium (W3C). XML Query
Working Group. See http://www.w3.org/XML/Query.

[15] World Wide Web Consortium (W3C). XQuery 1.0: An
XML Query Language. W3C Working Draft, Apr. 4,
2005. See http://www.w3.org/TR/xquery/.

[16] World Wide Web Consortium (W3C). XQuery 1.0 and
XPath 2.0 Data Model. W3C Working Draft, Apr. 4,
2005. See http://www.w3.org/TR/xpath-datamodel/.

[17] World Wide Web Consortium (W3C). XQuery 1.0 and
XPath 2.0 Functions and Operators. W3C Working
Draft, Apr. 4, 2005. See http://www.w3.org/TR/xpath-
functions/.

514

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Seshadri:Praveen.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Leung:T=_Y=_Cliff.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde96.html#SeshadriPL96
http://www.w3.org/XML/Query
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

	1. Introduction
	2. The Grouping Problem
	3. Explicit Grouping
	3.1 Basic Syntax and Semantics
	3.2 Variable Scoping Rules
	3.3 Equality
	3.4 Ordering
	3.4.1 Ordering within Groups
	3.4.2 Ordering of Groups

	3.5 Putting it all together
	4. Output Numbering
	5. Advanced Grouping
	6. Experiments
	7. Related Work
	8. Conclusions
	9. Acknowledgments
	10. References

